definition and concept of femtocell

41
Femtocells 1. INTRODUCTION Mobile operators have been searching for licensed indoor coverage solutions since the beginning of wireless networks. Unfortunately, the bulk of this opportunity (i.e. residential environments) has been beyond the addressable market for cost and operational reasons. These reasons has triggered the design and development of new cellular standards such as WiMax (802.16e),the third generation partnership project’s(3GPP’s)High speed packet access(HSPA)and LTE standards, and3GPP2’s EVDO. In parallel, WiFi mesh networks are also being developed to provide high- rate data services in a more distributed fashion. Although the Wi-Fi networks will not be able to support the same level of mobility and coverage as the cellular standards, to be competitive for home and office use, cellular data systems will need to provide service roughly comparable to that offered by Wi-Fi networks. The recent technology is femto cell, the main aim of femto cell is to improve coverage and capacity of a mobile network by allowing service providers to extend service coverage indoors, especially where access would otherwise be Department of Electronics & Communication Engineering K.B.N. College of Engineering, Gulbarga. Page 1

Upload: arunodoydasgupta3078

Post on 16-Nov-2014

2.658 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Definition and Concept of Femtocell

Femtocells

1. INTRODUCTION

Mobile operators have been searching for licensed indoor coverage solutions

since the beginning of wireless networks. Unfortunately, the bulk of this opportunity

(i.e. residential environments) has been beyond the addressable market for cost and

operational reasons. These reasons has triggered the design and development of new

cellular standards such as WiMax (802.16e),the third generation partnership

project’s(3GPP’s)High speed packet access(HSPA)and LTE standards, and3GPP2’s EVDO.

In parallel, WiFi mesh networks are also being developed to provide high-rate data

services in a more distributed fashion. Although the Wi-Fi networks will not be able to

support the same level of mobility and coverage as the cellular standards, to be

competitive for home and office use, cellular data systems will need to provide service

roughly comparable to that offered by Wi-Fi networks.

The recent technology is femto cell, the main aim of femto cell is to improve

coverage and capacity of a mobile network by allowing service providers to extend

service coverage indoors, especially where access would otherwise be limited or

unavailable. A femto cell is a very small base station. so small, infect that can be placed

in a customer’s residence. Femto cells are low-power access points that can combine

mobile and Internet technologies within the home. The femto cell unit generates a

personal mobile phone signal in the home and connects this to the operator’s network

through the Internet. This will allow improved coverage and capacity for each user

within their home.

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 1

Page 2: Definition and Concept of Femtocell

Femtocells

2. FEMTOCELLS

2.1 DEFINITION AND CONCEPT OF FEMTOCELL

Femtocells are low-power wireless access points that operate in licensed

spectrum to connect standard mobile devices to a mobile operator’s network using

residential DSL or cable broadband connections.

Concept of femtocell

A femtocell is a very small base station. So small, infect that can be placed in a

customer’s residence as shown in figure 1. The femtocell unit generates a personal

mobile phone signal in the home and connects this to the operator’s network using

standard broadband DSL on Cable service and typically supports 2 to 5 mobile phones in

a residential setting. This will allow improved coverage and capacity for each user within

their home.

Figuer1. Femtocell concept

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 2

Page 3: Definition and Concept of Femtocell

Femtocells

2.2 MOTIVATION

Before the development of femtocells there was existence of other cells such as

distributed antenna, microcells.

Table 1. Distributed antenna and Microcells

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 3

Page 4: Definition and Concept of Femtocell

Femtocells

But due to their unsatisfactory coverage and capacity, operators are forced to

develop femtocell.

Femto Solution

Table 2. Femtocell

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 4

Page 5: Definition and Concept of Femtocell

Femtocells

2.3 Need for femtocell

Third-generation cellular technology suffers from inadequate indoor-signal

penetration, leading to poor coverage in the environment where consumers spend two-

thirds of their time. Poor coverage diminishes the quality of voice and video

applications, and slows down high-speed data services

To keep customers satisfied, 3G carriers have increased capacity by building

additional microcell sites. This strategy is becoming much less attractive. Site acquisition

costs are exorbitant and continue to mount as space on viable towers and buildings fills

up, landlords exact high rents and regulators impose onerous permit requirements.

Public opposition to the building of large-scale base stations is increasingly common.

Acquiring a site is only half the battle: Sophisticated base station equipment must

then be purchased, installed, insured, operated and maintained. The net present value

of a cell site in the U.K. is estimated to be $500,000. Carriers thus face a serious

dilemma

Well it's clear more and more consumers want to use mobile phones in the

home, even when there’s a fixed line available. Friends and family usually call a mobile

number first, and it’s where messages and contact lists are stored.

However, it is often the case that providing full or even adequate mobile

residential coverage is a significant challenge for operators.

From a competitive perspective, femtocells are important because mobile

operators need to seize residential minutes from fixed providers, and respond to

emerging VoIP and WiFi offerings.

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 5

Page 6: Definition and Concept of Femtocell

Femtocells

Improving user experience in the home is also essential for reducing churn and

gaining marketshare and new revenues. However, high deployment costs ensure that

3G networks rarely extend beyond the regulatory minimum.

Using femtocells solves these problems with a device that employs power and

backhaul via the user’s existing resources. It also enables capacity equivalent to a full 3G

network sector at very low transmit powers, dramatically increasing battery life of

existing phones, without needing to introduce WiFi enabled handsets.

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 6

Page 7: Definition and Concept of Femtocell

Femtocells

2.4 Initial Network Discovery

Two initial network access information acquisition procedures

1. If a Femto BS with initial access capability is found, MS requests and obtains

initial network access information through that Femto Cell

2. Else, if only Femto BSs with no initial access capability are found, MS requests

and obtains initial network access information (without registration) through Macro BS

Initial access information gathering

The information gathering procedure for network entry applies to the

aforementioned initial access cases (1) and (2)

During the initial access, MS transmits the information of found Femto BSs

to the initially accessed BS entity (e.g. Macro/Femto BS managing entity)

The BS entity populates a list of neighbor Femto cells residing in the

vicinity of the MS based on the given extra Femto BS information by the

MS

The neighbor list, including the Femto Cells and their system information,

is given to MS, who tries initial network entry to one of the provided

Femto BS within the given list

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 7

Page 8: Definition and Concept of Femtocell

Femtocells

Figure 2. Initial Network Entry to Macro BS-Case (2)

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 8

Page 9: Definition and Concept of Femtocell

Femtocells

2.5 Classification of femtocells

Since a large number of femtocells can be installed by subscribers, in certain

scenarios femtocell access shall be restricted to certain subscribers who are

authenticated and authorized for exclusive access and related network service.

Additionally, femto BS can provide a mechanism delivering initial access

information (e.g. BS ID, frequency, closed group information, NSP, roaming capability) of

it’s own and neighboring femto BSs to any MSs in order to facilitate their network

discovery/selection and entry procedure to femtocells.

Femto BS can be classified into 4 types:

Based on bearer connection capability

Open femto BS : Provides bearer connectivity (full network services) to any

MS

Closed femto BS : Only provides bearer connectivity to allowed (identifiable)

MSs

Based on initial access information capability

Initial access able femto BS : Provides initial access information for any MSs

Initial access unable femto BS : Not allow to provide initial access information

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 9

Page 10: Definition and Concept of Femtocell

Femtocells

3. FEMTOCELL WORKING

Femtocells from part of the mobile operation’s network, although they are

located at home or in the business.

Most of the functionality of a completer 3G cell site has been miniaturized onto a

chip, which look and operates like a WiFi access point, and is connected via broadband

DSL back to the mobile operator’s network. A femtocell is installed at home and

connected to mains power and a standard broadband IP connection (typically DSL)

through to the mobile operator’s core network. Voice calls, text massages and data

services are provided by the same systems.

Femtocells operate at very low radiation power levels (50 milliwatts peak output

during a call, much lower when idle), and typically have a range of 200 meters. The

signals do not travel through walls particularly well, but this is a benefit because it

allows the frequency to be reused for other calls in nearby building. Where users walk

outside or out of range, calls are automatically handed over to the external mobile

network. Any standard 3G phone can be used on the femtocell if permitted by the

mobile operator. Unlike WiFi access points, 3G Femotcells operate using licensed

spectrum and thus must be supplied and operated in conjunction with the mobile

operator Figure 1 shows working of femtocell.

The battle is most likely to be between the modified 3G RAN (which some RAN

Network vendors are keen to promote because it reuses their existing RNC products)

versus UMA, which has new, custom designed systems architected to handle the much

larger number of cells and IP connectivity. SIP based solutions may be of interest where

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 10

Page 11: Definition and Concept of Femtocell

Femtocells

the user wants to bypass the network operator completely, and is happy to operate in a

different way to achieve this.

Figure 3. Femtocell working

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 11

Page 12: Definition and Concept of Femtocell

Femtocells

4. SYSTEM ARCHITECTURE

US : Kineto Wireless announced today its full support for the 3GPP agreement

reached last week on the Home NodeB (HNB) architecture for femtocell-to-core

network connectivity. Recognizing that a standard is needed for the mass-market

success of femtocells, Kineto took a lead role in developing consensus among the

contributing companies. Having an agreed architecture marks a major milestone

towards the completion of a global 3G femtocell standard.

“Developing an industry-wide standard requires a tremendous amount of

cooperation between vendors and operators, with all parties contributing their

knowledge and experience to develop the best possible solution,” said Patrick Tao,

Kineto’s vice president of technology. “The femtocell standardization effort within 3GPP

provides a great example of such cooperation, with the agreed architecture merging key

attributes of the 3GPP UMA/GAN-based approach proposed by Kineto with other

companies’ proposals to create an optimized architecture capable of supporting mass-

market femtocell deployments.”

The agreed 3GPP HNB architecture follows an access network-based approach,

leveraging the existing Iu-cs and Iu-ps interfaces into the core service network. The

architecture defines two new network elements, the HNB (a.k.a. Femtocell) and the

HNB Gateway (a.k.a. Femto Gateway). Between these elements is the new Iu-h

interface.

Home NodeB (HNB) – Connected to an existing residential broadbandservice, an

HNB provides radio coverage for standard 3G handsets within a home. HNBs

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 12

Page 13: Definition and Concept of Femtocell

Femtocells

incorporate the capabilities of a standard NodeB as well as the radio resource

management functions of a standard Radio Network Controller (RNC).

HNB Gateway (HNB-GW): Installed within an operator’s network, the HNB

Gateway aggregates traffic from a large number of HNBs back into an existing

core service network through the standard Iu-cs and Iu-ps interfaces.

Iu-h Interface: Residing between an HNB and an HNB-GW, the Iu-h interface

includes a new HNB application protocol (HNBAP) for enabling highly-scalable,

ad-hoc HNB deployment. The interface also introduces an efficient, scalable

method for transporting Iu control signaling over the Internet.

Figure 4. System Architecture

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 13

Page 14: Definition and Concept of Femtocell

Femtocells

5. HANDOVER OPERATION

Handover (called handoff in the US) is the process by which a mobile phone

switches between different call sites during a phone call, continuing with seamless audio

in both directions. One of the most complex aspects of mobile phone systems.

Femtocell users need this capability when entering or leaving their home – perhaps a

rare use case, but essential nonetheless.

5.1 Handover in Mobile Phone systems

As a person move around when on a call, your mobile phone continuously

measures the signal level and quality from nearby cell sites. These measurement reports

are streamed to the current active base station, which determines when and where to

initiate a handover sequence. Complex algorithms are used when making these

judgments, in order to ensure that best use is made of all available capacity while

reducing the likelihood of dropping a call during (or by postponing) a handover.

In the case where connection to the current active cell site is dropped, the

system is smart enough to allow the mobile phone to request a new connection on a

different cell site and reconnect the call. This typically causes a short break of up to a

few seconds in the conversation. If the call cannot be reconnected, then it drops out.

3G systems are slightly more complex because it is possible for a mobile to be

actively connected to more than one cell site at the same time. This feature, called soft

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 14

Page 15: Definition and Concept of Femtocell

Femtocells

handover, allows the same signal transmitted by a mobile phone to be picked up by

multiple cell sites and the best quality reception selected on a continuous basis.

5.2 Femtocell Handover

Femtocells do not implement soft handover, regardless of the radio technology

used. Instead, all calls are switching instantly to or from the femtocell and the external

outdoor cellular network. This is known as “hard handover” and would typically not be

audible or noticeable to the caller.

The 2G and 3G systems from the same mobile network co-exist, as is very

common with GSM and UMTS, and then handover between 2G and 3G can also occur.

Operators prefer to use 3G systems because of the higher traffic capacity and lower

costs. Their systems are therefore configured to automatically select 3G where good

reception is available, reverting to 2G when out of coverage – typically either in a rural

area or inside building where 3G signals can’t so easily penetrate (due to operating at

higher frequencies and having fewer 3G call sites thus being further away).

Many 3G femtocells are also capable of 2G GSM reception. 2G typically

penetrates buildings better than 3G, it allows the femtocell to determine where it is (by

reading the cell site identification on its broadcast channel), derive some timing/clocking

reference (as one input to its timing algorithm), and work out which 2G cell sites might

be most appropriate to handover to when a mobile phone leaves the femtocell zone.

Presumably, these 2G cell site identifies can then be transmitted to the mobile phone as

potential handover candidates (known as the neighbor list), and be measured during

any active call in case a handover is requied.

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 15

Page 16: Definition and Concept of Femtocell

Femtocells

5.3 Optimizing Handover into a Femtocell

There are potentially three approaches to optimizing handover into a femtocell:

1. Adding femtocells to the neighbor lists of the outdoor macro cells: This is

unlikely to be as scalable or workable solution. Although neighbor lists can be quite

large, the time taken to scan round many different settings increases proportionally. In

dense urban areas, there may potentially be some 100’s of femtocells colleocated with

an outdoor macro cell. The mobile phone would not be searching for the most likely cell

site to switch over to, and dropped calls would increase. Additionally, the complex

management to download and maintain vast numbers of femtocell candidates add an

overhead to the network operator.

2. Adding some smarts into the mobile phone:One of the key benefits of femtocells

is that they work with any standard 3G phone – this is a clear competitive advantage

compared with WiFi dual-mode solutions that are restricted to specific (and sometimes

more expensive) dual mode devices. However, it could be argued that with some

additional functionality in the phone itself, then improved handover into the femtocell

zone is enabled. For example, the phone could learn about its femtocell zone and the

matching external cell site used outside. When on a call in the external cell site it could

additionally monitor for the femtocell and switch across to it when in range.

3. Making the femtocell as clever as possible: Ensuring that any calls about to

dropout when entering the femtocell zone are quickly restored as soon as the mobile

can detect and lock-on to the femtocell. Parameter selected by the femtocell, such as

the cell-ld and paging zone, can encourage more rapid identification. Some optimization

may be required in the mobile network too, but the idea would be to avoid any changes

to the mobile phone itself. This is one area where femtocell vendors will be able to

differentiate themselves.

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 16

Page 17: Definition and Concept of Femtocell

Femtocells

6. DESIGN OF FEMTOCELL

The following are the key features that are to be considered as the characteristics

of femtocell in the design of femtocell.

Low-impact – Space may be limited for some households. As a result femtocells

must be physically small, ideally aesthetically pleasing and easy to position.

Furthermore, they should also be silent in operation, generate low levels of heat output

and inexpensive to run in terms of on-going [electricity] cost.

Low RF power – The transmit RF power output of femtocells is low; between 10

and 100 milli-watts. Put in perspective, this is a lower power level than many Wi-Fi

access points, which can be specified up to 1 Watt of output power. Additionally, by

being close to the femtocell the 3G handset is itself able to transmit at lower power

levels than it might otherwise have to when on the macro network.

Capacity – Femtocells are aimed at delivering dedicated 3G coverage to a

household and in doing so can provide a very good end-user experience within the

home environment. As a result, femtocells have a design “capacity” of up to 6 end-user.

Low-cost – There is significant competition for access solutions in the home

space. Wi-Fi is commonplace, easy to install/configure, provide a very good benchmark

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 17

Page 18: Definition and Concept of Femtocell

Femtocells

in terms of performance, and are highly cost effective. Femtocells will be offered for

purchase via their Operators. This may be direct or through resellers.

Energy offset - Low-power consumption – Clearly if the end-user is to foot the bill

for the electrical energy consumed by the femtocell base-station then this figure must

be low enough not to raise concerns as to its impact on the fuel bill. That said, from an

Operator’s perspective, this OPEX is effectively offloaded, which makes the business

case for femtocells even more attractive.

Easy end-user installation – Like cable modems and DSL routers, femtocells will

be installed by consumers and activated through service providers. This means that the

Operator no longer has to employ installation teams or have a truck-roll every time a

new femtocell is “deployed”. From the end-user perspective the unit must be a simple

“plug and play” installation with a minimal amount of intervention required.

Backhaul via broadband– Femtocells utilize Internet protocol (IP) and flat base-

station architectures. Backhaul connection to Operator networks will be through wired

broadband Internet service existing in the home such as DSL, cable, or fiber optics as

available. There are no connections required to the wider cellular network other than

through the IP core. This will benefit Operators by effectively offloading traffic that

would otherwise be on the macro-layer directly onto the internet from the femtocell;

this not only reduces the load on the core network but also lowers the cost of delivering

wireless traffic when compared to the macro network.

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 18

Page 19: Definition and Concept of Femtocell

Femtocells

Interference - The use of femtocells in spectrum also currently used by the macro

layer may, if not managed correctly, give rise to issues with interference between cells;

macro with femtocell and in the instance of close proximity of two or more units,

femtocell with femtocell. Operators will likely want to launch femtocells on the same

channel as their macro cell network for capacity reasons.

Handovers - Current macro RF planning techniques are inappropriate for

femtocells. Not least because of the sheer potential numbers of femtocells and

managing the neighbor lists that would be necessary. Also the potential to “ping-pong”

between layers, especially as an end-user moves around the home and enters into areas

where the signal strength from the macro-cell is greater than that of the femtocell, must

be considered very carefully to ensure that the networks provide the best overall

coverage without issue. To illustrate, in macro based 3G networks the overhead

associated with soft-handovers accounts for a significant proportion of RNC processing

capability. Understandably then and in order not to exacerbate the issue, great care and

sophisticated algorithms are necessary to overcome these potential issues and ensure

that the over-all network quality is not impacted by inefficient handovers and wasted

capacity.

Security - Given the requirements for low-cost and easy installation, the use of

the broadband internet as the network interface becomes very easy to understand.

However this raises security risks in that broadband internet has open access. There are

various approaches to address this issue including the embedding of the Iub interface

within the IP signaling itself while network security is managed by the IP security (IPSec)

protocol.

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 19

Page 20: Definition and Concept of Femtocell

Femtocells

Worldwide cellular network standards support – Understandably femtocell

products are likely to appeal to many end-users around the world. As a result differing

models will be developed and offered to satisfy the various needs from the different

regions. Products will offer support for their respective and existing (3GPP) UMTS and

(3GPP2) CDMA standards, as well as emerging standards such as WiMAX, UMB and LTE.

Support for existing 3G handsets and devices –Support for existing handsets and

devices is a very important consideration for the end-user and Operator alike, not least

because of the cost of changing devices if that were necessary. In each technology

market, femtocells will support existing handsets and devices further helping to drive

uptake of 3G services and femtocells in particular.

Operation (transmit/receive) in Operator-owned spectrum – Femtocells operate

in licensed spectrum owned by Operators and may share the same spectrum (currently

the 2100MHz frequency band) with the macro network.

Operator controlled – Femtocells operate in licensed spectrum and as such

Operators must ensure that they comply with the conditions of that license and any

other controls enforced by a regulator. To these ends femtocells feature client software

that enables remote configuration and monitoring via an Operations, Administration,

Maintenance and Provisioning (OAM&P) system in a similar manner to that used by the

macro network.

New services and applications – Femtocells are likely to become an integral part

of managing all communications in and out of the home environment. Femtocells

enable Operators to cost-effectively offer in-home pricing and integrate mobile services

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 20

Page 21: Definition and Concept of Femtocell

Femtocells

into triple-play / quad-play service offerings. Femtocell architectures include provision

for a services environment on which applications may be added, thereby facilitating new

revenue opportunities.

Service Assurance – Remote Management to enable an operator to provide the end-

user quality of service at the edge of the network.

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 21

Page 22: Definition and Concept of Femtocell

Femtocells

7. BENEFITS OF FEMTOCELLS

Due to the substantial benefits, femtocell technology is causing quite a “buzz” in

the industry. Research has forecasted that by 2011 there will be 102 million users of

femtocell products on 32 million access points worldwide.

Better coverage and capacity

– Due to short transmit-receive distance

Lower transmit power

Prolong handset life

Higher SINR

Higher spectral efficiency

Improved macro reliability

– BS can provide better reception for mobile users

Traffic originating indoors can be absorbed into femtocell networks over Ip

backbone

Cost Benefit

– $60,000/year/marcrocell vs. $200/year/femtocell

Reduced subscriber turnover

– Enhanced home coverage will reduce motivation for users to switch

carriers

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 22

Page 23: Definition and Concept of Femtocell

Femtocells

Capacity benefits of femtocell

– Reduced distance between sender and receiver leads to higher signal strength

[capacity improvement]

– Lowered transmit power decrease the Interference for neighboring cells

[capacity improvement]

– Femto-AP can devote a larger portion of resource for fewer users.

[frequency efficiency]

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 23

Page 24: Definition and Concept of Femtocell

Femtocells

8. DISADVANTAGES AND FUTURE SCOPE

Disadvantages

1. High price ($300).

2. Difficult to install.

(Cabling, roof access etc)

3. Dependent on signal from nearest cell town.

4. Requires broadband connection.

5. More complex to set up, requires a new/different

phone number, more potential for errors.

6. It does not provide good coverage in outdoors.

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 24

Page 25: Definition and Concept of Femtocell

Femtocells

FUTURE SCOPE

By 2012, there will be 36 million shipments with an installed base of 70 million

femtocell serving 150 million users

Femtocells by Feature

Figure 5. Market Forecast

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 25

Page 26: Definition and Concept of Femtocell

Femtocells

9. APPLICATIONS

9.1 DSL Modem

The step is to integrate the femtocell into an existing DSL broadband modem

design. No additional external connections are needed – the modem will already have

power and data connectivity, and usually a list of other standard features too. The

femtocell module is hardwired into the modem and can be given priority of voice calls

to ensure improved performance.

The overall cost of the combined unit is much less than two separate boxes, it is

the ease of installation and remote management which benefits this option. Many

mobile operators have started offering DSL broadband as an additional service,

particularly in Europe. If the additional cost of a combined modem/femtocell is

acceptable, then this could be shipped to customers as part of a package.

9.2 Cable Modem

More households in the USA receive their broadband internet service from their

cable TV supplier than from the phone company (as is more common in Europe and

elsewhere). The modem can be separate from the TV Set-top box or a combined unit.

The large Cable TV companies in the US, such as Comcast, previously had

agreements to resell mobile services on the Sprit network. This appears to have been

discontinued. Although Cable TV companies do own some spectrum (via the Spectrum

Co) business, and so could legally launch and operate a rather than traditional mobile

phone.

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 26

Page 27: Definition and Concept of Femtocell

Femtocells

CONCLUSION

Femtocell is as an Access Point Base Station—is a small cellular base station,

typically designed for use in residential or small business environments. It connects to

the service provider’s network via broadband (such as DSL or cable); current designs

typically support 5 to 100 mobile phones in a residential setting. A femtocell allows

service providers to extend service coverage indoors, especially where access would

otherwise be limited or unavailable.

http://en.wikipedia.org/wiki/Base_stationUnsatisfactory coverage and the increasing

number of high-data-rate application are two driving forces for femtocell development

Femtocells have the potential to provide high-quality network access to indoor

users at low cost

– improve coverage

– Provide huge capacity gain

From technical standpoint, some challenges shall be overcome

– New network architecture

– Interference mitigation

– Synchronization

– End-to-end QoS support

– Seamless handover support

Femtocells are an alternative way to deliver the benefits of Fixed Mobile

Convergence. The distinction is that most FMC architectures require a new (dual-mode)

handset which works with existing home/enterprise Wi-Fi access points, while a

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 27

Page 28: Definition and Concept of Femtocell

Femtocells

femtocell-based deployment will work with existing handsets but requires installation of

a new access point.

REFERENCES

1. http://www.thinkfemtocell.com/system/what_are_femtoc ells.html

2. http://www.thinkfemtocell.com/system/crystal- frequency-oscillators-in-

Femtocells.html

3. http://www.femtoforum.org

4. www.google.com

5. www.lycos.com

Department of Electronics & Communication EngineeringK.B.N. College of Engineering, Gulbarga.

Page 28