degeneracies in lens models no h0 from gravitational...

47
Degeneracies in lens models No H 0 from gravitational lenses? Olaf Wucknitz Hamburger Sternwarte / JBO [email protected] [email protected] Jodrell Bank, 20. June 2001

Upload: others

Post on 14-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Degeneracies in lens modelsNo H0 from gravitational lenses?

Olaf Wucknitz

Hamburger Sternwarte / JBO

[email protected]@jb.man.ac.uk

Jodrell Bank, 20. June 2001

Page 2: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Degeneracies and scaling relations in power-lawmodels for gravitational lenses

• This is the real title

• Expect many lovely equations!

• Results of recent work in Hamburg and JB

• Paper to be submitted soon

titlepage introduction discussion contents back forward previous next fullscreen 1

Page 3: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Introduction (1)

• Introduction

• Time delays

• Spherical power-law models

• External shear

• Mass-sheet degeneracy

• Previous work on 2237+0305 (with interpretation)

• Generalized power-law models

titlepage introduction discussion contents back forward previous next fullscreen 2

Page 4: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Introduction (2)

• Linear formalism to study H0 and scaling relations

• The “critical shear”

• Special cases

• Application to the systems Q2237+0305, PG 1115+080,

RX J0911+0551 and B 1608+656

• Discussion

titlepage introduction discussion contents back forward previous next fullscreen 3

Page 5: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Lens configuration

source plane

observer

lens

true source

Dds

Dd

Ds lens plane

α

α∗

α∗

Positions in source plane zs

and lens plane (image plane)

z measured as angles as seen

by the observer.

Dsα = Ddsα∗

Apparent deflection angle α

shifts position.

zs = z −α(z) lens equation

titlepage introduction discussion contents back forward previous next fullscreen 4

Page 6: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Deflection angle and potential

Point mass passed in a distance of r:

α∗ =4GMc2 r

Deflection angle is conservative field.

α(z) = ∇ψ(z)

Analogy to Newtonian gravitational field in two dimensions

titlepage introduction discussion contents back forward previous next fullscreen 5

Page 7: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Poisson equation

Surface mass density σ = Σ/Σc in units of critical surface mass

density Σc

∇2ψ(z) = 2σ(z)

Σc =1

4πc2

G

Ds

DdDds

Invert to get potential for arbitrary mass distribution

ψ(z) =1π

∫d2z′ ln |z − z′|σ(z′)

titlepage introduction discussion contents back forward previous next fullscreen 6

Page 8: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Light travel time

Light travel time of two images of one source can be different!

tz =1c

DdDs

Dds(1 + zd)

(12|α(z)|2 − ψ(z)

)+ const

Cosmology determines the distances:

Di =c

H0di(zi,Ω, λ, α, . . . )

Split constant factor into H0 and

deff = (1 + zd)dd ds

dds

titlepage introduction discussion contents back forward previous next fullscreen 7

Page 9: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Scaled Hubble constant

This deff only depends on cosmological model and redshifts.

h =H0

deff

h tz =12|α(z)|2 − ψ(z) + const

Time delay between images i and j:

h∆tij = h (ti − tj)

=12(|αi|2 − |αj|2

)− (ψi − ψj)

=12

(αi −αj) · (αi +αj)− (ψi − ψj)

titlepage introduction discussion contents back forward previous next fullscreen 8

Page 10: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Time delay

h∆tij =12

(αi −αj) · (αi +αj)− (ψi − ψj)

Now use lens equation zs = zi −αi

h∆tij =12

(zi − zj) · (αi +αj)− (ψi − ψj)

This is linear in ψ (resp. α). But: Cannot directly be split into

contributions from two images.

Use lens equation again to transform αi to αj and vice versa in

mixed terms, split delay into light travel times.

h ti = −12r

2i + zi ·∇ψi − ψi − C

titlepage introduction discussion contents back forward previous next fullscreen 9

Page 11: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Spherical power-law models

Spherically symmetric models

ψ(g)(r) = f rβ

α(r) = β f rβ−1

σ(r) =β2

2rβ−2

Special cases:

• β → 0 has ψ ∝ ln r and α ∝ 1/r. This is a point mass

• β = 1 has α = const. “Singular isothermal sphere” (SIS). Good

approximation for real galaxies!

• β = 2 is constant surface mass density σ

titlepage introduction discussion contents back forward previous next fullscreen 10

Page 12: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

External shear

Influence of external masses (field galaxies, clusters) approximated

by Taylor expansion. First important terms in potential are

quadratic.

ψ(γ)(z) =12ztΓz

Γ =(−γx −γy−γy +γx

)α(z) = Γ z

γ = γ ( cos 2θγ , sin 2θγ )

titlepage introduction discussion contents back forward previous next fullscreen 11

Page 13: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Constant mass sheet

An additional constant surface mass density σ(z) ≡ κ contributes

with

ψ(κ)(z) = κr2

2,

α(z) = κ z .

titlepage introduction discussion contents back forward previous next fullscreen 12

Page 14: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

The mass-sheet degeneracy

Multiply lens equation by 1− κ.

(1− κ)zs = (1− κ)z − (1− κ)∇ψ(z)

This is again a lens equation with (1− κ)-scaled zs and ψ with an

additional convergence κ. The same is true for the time delays:

(1− κ)h ti =− 12

(1− κ) r2i + (1− κ)zi ·∇ψi

− (1− κ)ψi − (1− κ)C

A potential ψ is equivalent to one of (1− κ)ψ+ κ r2/2, but source

position, potential and time delays (or H0) are scaled with 1− κ.

For 0 6 κ < 1 we only can determine upper limit of H0.

titlepage introduction discussion contents back forward previous next fullscreen 13

Page 15: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Previous work for 2237+0305 (1)

Wambsganß & Paczynski (1994): Numerical modelfitting (image

positions as constraints) for a range of 0 < β < 2.

titlepage introduction discussion contents back forward previous next fullscreen 14

Page 16: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Previous work for 2237+0305 (2)

Result: χ2 ≈ const, γ ∝ 2− β, ∆t ∝ 2− β

titlepage introduction discussion contents back forward previous next fullscreen 15

Page 17: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Interpretation: mass-sheet degeneracy (1)

We learned before: The potentials

ψ and ψ = (1− κ)ψ + κ r2/2

are equivalent. Deflection angles are:

α and α = (1− κ)α+ κ z

0

0 1 2

r/r0

....................................................................................................................................................................................................................................................................................................................................................................................................................................... β = 1 α = 1

..................................

..................................

..................................

..................................

..................................

..................................

..................................

..................................

..................................

..................................

..................................

..................................

..................................

...............................β = 1 α = (1− κ) + κ r

........

........

........

...............................................................................................................................................................................................

................................

..................................

...................................

.......................................

........................................

..........................................

.............................................

...............................................

........................ β = 1.5 α = r0.5

titlepage introduction discussion contents back forward previous next fullscreen 16

Page 18: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Interpretation: mass-sheet degeneracy (2)

Alternative potential is equal to modified power law near the

images (first order in α).

α(r) = r0 reference model

α(r) = (1− κ) r0 + κ r equivalent model

α(r) = f rβ equivalent power-law model

2− β = 1− κ

Remember from mass-sheet degeneracy:

γ , zs , H0 ∝ 1− κ∝ 2− β

titlepage introduction discussion contents back forward previous next fullscreen 17

Page 19: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

The general power-law model (1)

• radial dependence: power-law

• angular dependence: arbitrary

ψ(g) = rβ F (θ)

With Poisson equation and

∇2 = ∂2r + r−1 ∂r + r−2 ∂2

θ

we find density

σ =rβ−2

2

(β2F (θ) + F ′′(θ)

)

titlepage introduction discussion contents back forward previous next fullscreen 18

Page 20: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

The general power-law model (2)

Examples are elliptical mass distributions, elliptical potentials, . . .

Radial derivative:

z ·∇ψ(g) = β ψ(g)

Shear and convergence are special case with β = 2 and

F (γ)(θ) =κ− γ cos 2(θ − θγ)

2.

titlepage introduction discussion contents back forward previous next fullscreen 19

Page 21: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Magnification and amplification (1)

Surface brightness is preserved!

But mapping zs→ z does not preserve area. Sources are

magnified and thus amplified.

µ(z) =image area

source area

=∣∣∣∣ ∂z∂zs

∣∣∣∣=∣∣∣∣∂zs

∂z

∣∣∣∣−1

=∣∣∣∣1− ∂α∂z

∣∣∣∣−1

=(

(1− ψxx)(1− ψyy)− ψ2xy

)−1

titlepage introduction discussion contents back forward previous next fullscreen 20

Page 22: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Magnification and amplification (2)

µ(z) =(

(1− ψxx)(1− ψyy)− ψ2xy

)−1

Magnifications µ (or µ−1)

• are not linear in ψ in the general case,

• depend on second derivatives of ψ,

• are difficult to determine observationally!

titlepage introduction discussion contents back forward previous next fullscreen 21

Page 23: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Parameters

parameters number

h Hubble constant 1

γ external shear 2

β power-law exponent 1

Fi angular part F (θi) n

F ′i dF/dθ(θi) n

zs source position 2

C constant in light times 1

total without fluxes 2n+ 7F ′′i for fluxes n

titlepage introduction discussion contents back forward previous next fullscreen 22

Page 24: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Constraints

constraints number

zi lens equations 2nti light travel times n

total without fluxes 3nµi/µj flux ratios n− 1

n = 4: 15 parameters with 12 constraints.

Fix β for all calculations, γ for most.

Include flux ratios? This adds n parameters but only n− 1constraints!

titlepage introduction discussion contents back forward previous next fullscreen 23

Page 25: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Time delay for power-law model

Remember general equation

h ti = −12r2i + zi ·∇ψi − ψi − C

With z ·∇ψ(g) = β ψ(g), we obtain

h ti = −12r

2i − (1− β)ψ(g)

i + ψ(γ)i − C

ψ(g)i = rβi Fi Fi = F (θi)

How to determine Fi? (later: lens equations!)

titlepage introduction discussion contents back forward previous next fullscreen 24

Page 26: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Isothermal case

Special case: isothermal! (β = 1)

h ti = −12r2i + ψ

(γ)i − C

Now we do not need lens equations at all.

(cf. Witt, Mao & Keeton 2000)

Four light travel times can be used to determine h, C and γ.

titlepage introduction discussion contents back forward previous next fullscreen 25

Page 27: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Including the lens equations (1)

Remember lens equation

zs = z −∇ rβ F (θ)− Γz

Transformation from polar to cartesian coordinates(∂x∂y

)=(

cos θ − sin θ/rsin θ cos θ/r

)(∂r∂θ

)In terms of observables zi:

zs =

(1− rβ−2

i

(β Fi −F ′iF ′i βFi

)− Γ

)zi

titlepage introduction discussion contents back forward previous next fullscreen 26

Page 28: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Including the lens equations (2)

In terms of the unknown parameters:

zs = zi − rβ−2i

(xi −yiyi xi

)(βFiF ′i

)+(xi yi−yi xi

)(γxγy

)Use lens equations to determine Fi and F ′i :

βFi = r−βi

(r2i − xixs − yiys + γx (x2

i − y2i ) + 2 γy xiyi

)F ′i = r−βi

(yixs − xiys − 2 γx xiyi + γy (x2

i − y2i ))

titlepage introduction discussion contents back forward previous next fullscreen 27

Page 29: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Finally: the general set of equations

Use Fi from lens equation to express ψ(g) in time delay equations.

β

2− βh ti −

1− β2− β

zs · zi +β

2− βC

= − r2i

2− x2

i − y2i

2γx − xiyi γy

h ∝ 2− ββ

Remember 2237+0305 with spherical models:

h ∝ 2− β

titlepage introduction discussion contents back forward previous next fullscreen 28

Page 30: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Explicit solution for h (1)

Use Cramer’s rule to find solution.

In the shearless case (γ = 0):

h0 := h(γ = 0)

h0 = −2− β2β

g0

∣∣∣∣∣∣∣∣∣t1 x1 y1 1t2 x2 y2 1t3 x3 y3 1t4 x4 y4 1

∣∣∣∣∣∣∣∣∣−1

g0 =

∣∣∣∣∣∣∣∣∣r21 x1 y1 1r22 x2 y2 1r23 x3 y3 1r24 x4 y4 1

∣∣∣∣∣∣∣∣∣titlepage introduction discussion contents back forward previous next fullscreen 29

Page 31: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Explicit solution for h (2)

For arbitrary shear:

h = h0

(1 +

gxg0γx +

gyg0γy

)

g =

∣∣∣∣∣∣∣∣∣x2

1 − y21 x1 y1 1

x22 − y2

2 x2 y2 1x2

3 − y23 x3 y3 1

x24 − y2

4 x4 y4 1

∣∣∣∣∣∣∣∣∣ , 2

∣∣∣∣∣∣∣∣∣x1y1 x1 y1 1x2y2 x2 y2 1x3y3 x3 y3 1x4y4 x4 y4 1

∣∣∣∣∣∣∣∣∣

External shear can change the result significantly.

titlepage introduction discussion contents back forward previous next fullscreen 30

Page 32: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Introducing the “critical shear” (1)

This equation deserves attention!

h = h0

(1 +

gxg0γx +

gyg0γy

)

In one dimension, define critical shear γc so, that

h

h0= 1− γ

γc

holds, analogous to scaling in mass-sheet degeneracy

h ∝ 1− σ

σc

titlepage introduction discussion contents back forward previous next fullscreen 31

Page 33: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Introducing the “critical shear” (2)

Include direction here:

h

h0= 1− γ · γc

γ2c

γc = −g0

g2g

Hubble constant vanishes for γ = γc or more generally for

γ · γc = γ2c

If H0 is fixed, all time delays become 0.

titlepage introduction discussion contents back forward previous next fullscreen 32

Page 34: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Shifting the galaxy

We assumed lens centre z0 = 0 as known.

It can be shown, that h for fixed γ and also γc do not change

when the galaxy is shifted.

titlepage introduction discussion contents back forward previous next fullscreen 33

Page 35: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Spherical models (1)

Time delay and lens equations are overdetermined. Assume they

are valid for one β. Here r2−β0 = β f .

h ti = −12zt(1− Γ)z − 1− β

βr2−β0 rβ − C

zs =(

1− Γ− r02−β rβ−2

i 1)zi

Eliminate Γ from the first using the second equation and find

solution with Cramer’s rule:

hsph

h0=r2−β0

g0

∣∣∣∣∣∣∣∣∣rβ1 x1 y1 1rβ2 x2 y2 1rβ3 x3 y3 1rβ4 x4 y4 1

∣∣∣∣∣∣∣∣∣titlepage introduction discussion contents back forward previous next fullscreen 34

Page 36: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Spherical models (2)

hsph

h0=r2−β0

g0

∣∣∣∣∣∣∣∣∣rβ1 x1 y1 1rβ2 x2 y2 1rβ3 x3 y3 1rβ4 x4 y4 1

∣∣∣∣∣∣∣∣∣This vanishes for point mass models (β = 0). Remember:

h

h0= 1− γ · γc

γ2c

It can be shown, that even γ = γc.

titlepage introduction discussion contents back forward previous next fullscreen 35

Page 37: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Nearly Einstein ring systems

h0 ∝2− ββ

general

hsph ∝ 2− β spherical, as in 2237+0305

hsph

h0=β

2= 1− γsph · γc

γ2c

γsph =2− β

2γc

titlepage introduction discussion contents back forward previous next fullscreen 36

Page 38: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

The Einstein cross 2237+0305

• Previous resultsconfirmed

• spherical:hsph ∝ 2− β

• shearless:h0 ∝ (2− β)/β

• hsph/h0 ≈ β/2

• γc = 0.13

• spherical:γ = 0.07 forβ = 1

titlepage introduction discussion contents back forward previous next fullscreen 37

Page 39: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

PG 1115+080

• Nearly equal ri

• Two time delays available

• Group of galaxies

• H0 = 40–80 km s−1 Mpc−1

The external shear in published models is 0.06–0.2. Critical shear

is γc = 0.22. Uncertainties in real γ therefore important!

Estimates for isothermal models: H0 = 47–58 km s−1 Mpc−1 with

errors of ca. 20 %.

titlepage introduction discussion contents back forward previous next fullscreen 38

Page 40: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

RX J0911+0551

• Very different ri

• High shear from cluster

• obs.: γ ≈ 0.1

• mod.: γ ≈ 0.3

Very high critical shear of γc = 0.56, but uncertainties in real shear

also high. No time delay yet.

titlepage introduction discussion contents back forward previous next fullscreen 39

Page 41: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

B 1608+656

• Three time delays!

• Highly accurate positions

• Two lensing galaxies

Critical shear: γc = 0.10

For shearless models: H0 = (37± 5) km s−1 Mpc−1

For isothermal models: γ = 0.34 and

H0 = (130± 15) km s−1 Mpc−1

Models in Koopmans & Fassnacht (1999): Both galaxies have

about same mass.

titlepage introduction discussion contents back forward previous next fullscreen 40

Page 42: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Discussion (1)

• Simple analytical considerations for general family of models

ψ = rβ F (θ) with external shear

• Include time delays for quadruple lenses

• For constant γ: H0 ∝ (2− β)/β

• Scaling independent of geometry, shear or time delay ratios. Error

will be the same for all lenses!

• 10 % error in β leads to 20 % error in H0.

• Spherical models with varying shear: H0 ∝ 2− βThis is shearless value ×β/2.

titlepage introduction discussion contents back forward previous next fullscreen 41

Page 43: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Discussion (2)

• Effect of shear quantified by new concept of “critical shear” γc.

• Conclusion for future work

? Shear effects: Choose systems with low uncertainties (large γc)

? β effects: Use other means to measure β (dynamical studies

of galaxies, lenses with extended sources)

titlepage introduction discussion contents back forward previous next fullscreen 42

Page 44: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

H0 from lenses and other methods

(from Koopmans & Fassnacht, 1999)

titlepage introduction discussion contents back forward previous next fullscreen 43

Page 45: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

Contents

0 Title page1 Degeneracies and scaling relations in power-law models for gravitational

lenses2 Introduction (1)3 Introduction (2)4 Lens configuration5 Deflection angle and potential6 Poisson equation7 Light travel time8 Scaled Hubble constant9 Time delay

10 Spherical power-law models11 External shear12 Constant mass sheet13 The mass-sheet degeneracy14 Previous work for 2237+0305 (1)

titlepage introduction discussion contents back forward previous next fullscreen 44

Page 46: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

15 Previous work for 2237+0305 (2)16 Interpretation: mass-sheet degeneracy (1)17 Interpretation: mass-sheet degeneracy (2)18 The general power-law model (1)19 The general power-law model (2)20 Magnification and amplification (1)21 Magnification and amplification (2)22 Parameters23 Constraints24 Time delay for power-law model25 Isothermal case26 Including the lens equations (1)27 Including the lens equations (2)28 Finally: the general set of equations29 Explicit solution for h (1)30 Explicit solution for h (2)31 Introducing the “critical shear” (1)32 Introducing the “critical shear” (2)33 Shifting the galaxy34 Spherical models (1)

titlepage introduction discussion contents back forward previous next fullscreen 45

Page 47: Degeneracies in lens models No H0 from gravitational lenses?astro.uni-bonn.de/~wucknitz/download/jbtalk.pdf · Lens con guration source plane observer lens true source Dds Dd Ds lens

35 Spherical models (2)36 Nearly Einstein ring systems37 The Einstein cross 2237+030538 PG 1115+08039 RX J0911+055140 B 1608+65641 Discussion (1)42 Discussion (2)43 H0 from lenses and other methods44 Contents

titlepage introduction discussion contents back forward previous next fullscreen 46