dem) cundall strack cundall - دانشگاه تهران · cundall, p. a., and strack o. d. l.,...

14
* Email: [email protected] * DEM) Cundall Cundall Strack ∆t

Upload: doquynh

Post on 18-Jun-2018

224 views

Category:

Documents


1 download

TRANSCRIPT

*Email: [email protected]

*

DEM)

Cundall

CundallStrack

∆t

DEM

DEM

Potapov Campbell

Lin Ng

Favier

Jensen

DISCBALL

-

-

-

-

ValuesParameters

245107Normal contact

stiffness(N/m)

245107Tangential contact

stiffness(N/m)

2000Density of particles(kg/m3)

5&0.01Damping coefficients (α,β)

0.01Critical time step factor

(FRAC)

0.5Inter-paticle friction

coefficients

Confining

pressure

(MPa)

Density

High

Angular

grains

Medium

angular

grains

Round

grains

0.1 0.858 0.876 0.880

0.5 0.867 0.878 0.884

1 0.867 0.880 0.884

2 0.869 0.882 0.880

4 0.870 0.885 0.886

Friction

coefficient

(µ)

Density

High

angular

grains

Medium

angular

grains

Round

grains

0 0.889 0.903 0.918

0.25 0.872 0.888 0.890

0.5 0.867 0.880 0.884

0.75 0.869 0.880 0.883

e

1Density

1

A

AA

A

Ae

S

S

S

V

Friction

coefficient

(µ)

Void ratio

High

angular

grains

Medium

angular

grains

Round

grains

0 0.125 0.107 0.089

0.25 0.147 0.126 0.123

0.5 0.153 0.137 0.131

0.75 0.151 0.136 0.133

-

mobilizedSin

a

- va

µ=0.5

mobilizedSin

mobilizedSin

Confining

pressure

(MPa)

(Φmobilized)max

High

angular

grains

Medium

angular

grains

Round

grains

0.1 41.8° 39.7° 30.3°

0.5 42.1° 38° 30.8°

1 41.5° 36.8° 30.4°

2 41° 35.8° 28.4°

4 40.5° 36.4° 27.1°

Confining

pressure

(MPa)

Dilation value in a=18%

High

angular

grains

Medium

angular

grains

Round

grains

0.1 7.4% 6.6% 3.4%

0.5 7.1% 6.8% 4.1%

1 6.2% 5.5% 3.9%

2 6.1% 5.1% 2.5%

4 5.4% 3.6% 2.4%

µ=0

mobilizedSin

mobilizedSin

Friction

coefficient

(µ)

(Φmobilized)max

High

angular

grains

Medium

angular

grains

Round

grains

0 18.3° 14.3° 12.9°

0.25 34.6° 30.2° 25.2°

0.5 41.5° 36.8° 30.4°

0.75 44° 38.7° 33.2°

Friction

coefficien

t

(µ)

Dilation value in a=18%

High

angula

r

grains

Mediu

m

angular

grains

Roun

d

grains

0 1% 0.5% 0.6%

0.25 3.3% 2% 0.7%

0.5 6.2% 5.5% 3.9%

0.75 8.8% 6.3% 5.3%

High angular grains Medium angular grains Round grains

e ()max Dilation e ()max Dilation e ()max Dilation

0.125 44°

11.1% 0.107 39.9°

8.2% 0.089 37.5°

8%

0.147 42.2°

8.1% 0.126 38.9°

7% 0.123 32.9°

5.1%

0.151 42.1°

7.7% 0.136 37°

5.3% 0.131 30.5°

3.9%

0.153 41.5°

6.2% 0.137 36.8°

5.5% 0.133 31.2°

3.8%

mobilizedSin

Sowers & Sowers

Effect of Angularity and Grading on Peak Effective

Friction Angle of Coarse Sand in Degrees

(e.g. Sowers and Sowers, 1951)

Dense Loose Symbol Shape and Grading

37 30 SP Rounded, Uniform0

40 34 SW Rounded, Well

Graded

43 35 SP Angular, Uniform

45 39 SW Angular, Well

Graded

Taylor(1948)

Leps(1970)

Sacramento

Skinner

Kruyt &

Rothenburg

1. Cundall, P. A., (1971), “A computer model for simulating progressive large scale movements in block rock

systems”, Proceedings of the Symposium of the International Society of Rock Mechanics, Nancy, Article 8.

2. Cundall, P. A., (1978), “Ball: A computer program to model granular media using the distinct element

method”, Technical note TN-LN-13, Advance Technology group. London: Dames and Moore.

3. Cundall, P. A., and Strack O. D. L., (1979),”A discrete numerical model for granular assemblies”,

Geotechnique, Vol. 29,pp. 47-65.

4. Rothenburg, L., and Bathurst, R.J., (1992), “Micromechanical features of granular assemblies with planner

elliptical particles”, Geotechnique, Vol. 42, No 1, pp. 79-95.

5. Ting, J., Khawaja, M., Meachum, L., and Rowell, J., (1993), “An ellipse-based discrete element model for

granular materials”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 17,

pp. 603-623.

6. Ng, T.T., (1994), “Numerical simulation of granular soil using elliptical particles”, Computers and

Geotechnics, Vol. 16, No. 2, pp. 153-169.

7. Barbosa, R, and Ghaboussi, J., (1992),”Discrete finite element method”, Engineering Computations, Vol. 9,

pp 253-266.

8. Mirghasemi, A.A., Rothenburg, L., and Matyas, E.L., (1997), “Numerical simulations of assemblies of two-

dimensional polygon-shaped particles and effects of confining pressure on shear strength”, Soils &

Foundations, Vol. 37, No 3, pp. 43-52.

9. Mirghasemi, A.A., Rothenburg, L., and Matyas, E.L., (2002), “Influence of particle shape on engineering

properties of two-dimensional polygon-shaped particles”, Geotechnique, Vol. 52, No 3, pp. 209-217.

10. Potapov, A, and Campbell, C. (1998), “A fast model for the simulation of non-round particles”, Granular

Matter, Vol. 1, pp 9-14.

11. Lin, X., and NG, T.T., (1997), “A three-dimensional discrete element model using arrays of ellipsoids”,

Geotechnique, Vol. 47,No. 2,pp. 319-329.

12. Favier, J., Abbaspour-Fard, M, Kremmer, M., and Raji, A., (1999), “Shape representation of axi-

symmetrical, non-spherical particles in discrete element simulation using multi-element model paticles”,

Engineering Computations, Vol. 16,pp. 467-480.

13. Jensen, R., Bosscher, P., Plesha, M., and Edil, T., (1999), “DEM simulation of granular media-structure

interface: effect of surface roughness and paticle shape”, International Journal for Numerical and Analytical

Methods in Geomechanics, Vol. 23, pp. 531-547.

14. Matsushima, T. and Saomto, H., (2002), “Discrete element modeling for irregularly-shaped sand grains”,

Proc. NUMGE2002: Numerical methods in geotechnical engineering, Mestat (ed.), pp.239-246.

15. Rothenburg, L. and Bathurst, R.J., (1991), “Numerical Simulations of Idealized Granular Assemblies with

plane Elliptical Particles”, J. Computer and Geotechnics, 11, 315–329.

16. Fumagalli, E., Mosconi, B. and Rossi, P. P., (1970), “Laboratory tests on materials and static models for

rockfill dams,” 10th

Int. Congress on large dams, Montreal, pp. 531-551.

17. Terzaghi, K., and Peck, R.B., (1948), “Soil mechanics in engineering practice”, John Wiley and Sons, Inc.,

New York.

18. Chen, L.S., (1948), “An investigation of stress, strain and strength characteristics of cohesionless soils by

triaxial compression tests, Proceedings, 2nd

Int. Conf. on Soil Mechanics and Foundation Engineering,

Rotterdam, Vol.5, pp. 35- 48.

19. Sowers, G.B, and Sowers, G.F., (1970), “Introductory soil mechanics and foundations”, Third Edition, The

MacMillan Co., New York, P. 556.

20. Taylor, D.W., (1948), “Fundamentals of soil mechanics”, John Wiley and Sons Inc., New York, P. 700.

21. Leps, R.M., (1970), “Review of shearing strength of rockfill”, Journal of the Soil Mechanics ans Foundation

Division, American Society of Civil Engineers, Volume 96, No SM4, Proceedings Paper7394, July 2970,

pp. 1159-1170.

22. Lee, K.L., and Seed, H.B. (1967), "Drained strength characteristics of sands", Journal of the Soil Mechanics

and Foundations Division, ASCE, 93(6): 117-141.

23. Skinner, A.E., (1969), “A note on the influence of interparticle friction on the shearing strength of a random

assembly of spherical particles”, Géotechnique 1:150-157.

24. Kruyt, N.P., Rothenburg, L., (2004), “Micromechanical study of macroscopic friction and dissipation in

idealised granular materials: the effect of interparticle friction”, 21st International Conference on Theoretical

and Applied Mechanics, Warsaw, Poland.