denise breitburg smithsonian environmental research...

39
Acidification in Chesapeake Bay: biological effects in an ecosystem context Pictures of seining, hypofin map Chesapeake Bay Denise Breitburg Smithsonian Environmental Research Center

Upload: others

Post on 11-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Acidification in Chesapeake Bay: biological effects in an ecosystem context

Pictures of seining, hypofin map

Chesapeake Bay

Denise Breitburg Smithsonian Environmental Research Center

Page 2: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Acidification in Chesapeake Bay: biological effects in an ecosystem context

Pictures of seining, hypofin map

Denise Breitburg Smithsonian Environmental Research Center

Chesapeake Bay

Challenges to predicting effects & managing an acidified Chesapeake Bay

Examples

Page 3: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Respiration

Atmospheric CO2

Dissolved CO2

(Acidification)

microbes

-O2 +CO2

algae

Hypoxia Acidification

Respiration – driven Hypoxia

Page 4: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Respiration (consumes O2

Releases CO2)

Atmospheric CO2

Dissolved CO2

(Acidification)

-O2 +CO2

microbes

algae

Hypoxia Acidification

Nutrients from farming, human

waste & other human activities

Page 5: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Challenge 1: Can’t really consider acidification in Chesapeake Bay without looking at the potential interactive effects of hypoxia and acidification

Page 6: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

y = 0.1557x + 6.7573 R² = 0.7186

6.8

7

7.2

7.4

7.6

7.8

8

0 1 2 3 4 5 6 7 8

Mea

n d

aily

min

imu

m p

H

Mean daily minimum dissolved oxygen (mg/L)

June – August 2004-2009: Data from MD-DNR shallow water monitoring program continuous monitoring sites with mean summer salinity >7.0 eyes on the bay

(Breitburg et al, accepted pending revision)

Page 7: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

We can come up with fairly predictable relationships between hypoxia and pH.

Challenge 2: Are DO criteria protective for pH effects?

Page 8: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Gedan, Breitburg & Feller, unpublished

Respiration-driven acidification Mangrove ponds in Belize & Panama

Page 9: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Some low pH is natural

Challenge 3: How much of the acidification in Chesapeake Bay is natural vs caused by human activities?

Chesapeake

Page 10: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Nutrients

Respiration (can cause Hypoxia)

Atmospheric CO2

Dissolved CO2

(Acidification)

Photosynthesis (removes CO2, adds

oxygen)

Feedback?

Page 11: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Challenge 4: Predicting combined effects of atmospheric CO2 + nutrient related acidification on pCO2/pH: Are there important feedbacks or are the sources simply additive?

We can’t wait to test potential biological & ecological responses until we have this answer, but we ultimately need this to predict acidification effects

Page 12: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Nutrients

Respiration (can cause Hypoxia)

Atmospheric CO2

Dissolved CO2 (Acidification)

Direct effects of acidification on target organisms

Page 13: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Mussels Oysters

Reduced growth and calcification rates (Miller et al. 2009, Waldbusser et al. 2010)

Bivalve larvae show reduced calcification and growth at pH levels that occur in US coastal waters

Hard clams

Decreased survival Delayed metamorphosis Smaller size at metamorphosis (Talmage & Gobler 2009)

Page 14: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Acidification may

make restoration

more difficult or

less successful •Strongest effect of

acidification may be in

low salinity areas that

are refuges from disease (Waldbusser et al. 2010)

•Continuous exposure

reduces the immune

response of oysters (Boyd & Burnett 1998)

7.46 8.03 7.67

High Salinity Low Salinity

High pH Mid pH Low pH 8.03 7.67 7.46

Page 15: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Fish

Increased otolith size in juvenile cobia (Bignami et al., 2013)

Failure to learn to respond appropriately to a common predator. (Ferrari et al. 2011)

impaired olfactory ability caused larvae to settle on reefs at times they would be more vulnerable to predators. (Devine et al., 2012)

Summer flounder: Reduced embryo survival Larvae with less energy reserves Metamorphose at smaller size Developmental abnormalities (Chambers et al., 2014)

• Atlantic silverside: Reduced larval survival & growth Dependent on time of year and parental exposure Murray et al. 2014 • Inland silverside: Reduced larval survival (Seth Miller) npubl)

Page 16: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Acidification increases crab hardening time

0

1

2

3

4

5

6

7

2 3 4

Day

s to

Har

dn

ess

Block

Ambient

pH 7

pH 6.5*

*

Blue crab Lane & T. Miller, unpublished

Page 17: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Nutrients

Respiration (can cause Hypoxia)

Atmospheric CO2

Dissolved CO2 (Acidification)

Direct effects of acidification on ecosystem services provided by target organism

Page 18: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Clean oysters = less food for associated oyster reef invertebrates

pH = 7.9 pH = 7.45

Keppel et al., unpublished

Page 19: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Challenge 5: Identifying key species, mechanisms and interactions while being open to surprises

Lots of species, lots of potential effects.

Page 20: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Nutrients

Respiration (can cause Hypoxia)

Atmospheric CO2

Dissolved CO2 (Acidification)

Combined effects of hypoxia and acidification

Page 21: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Hypoxia plus acidification (HYpHOXIA) can sometimes have greater combined effects than either stressor alone

Hard clams

Gobler et al 2014

Challenge 6: Predicting effects of multiple stressors when one of those stressors is acidification.

Page 22: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Nutrients/nutrient management

Respiration (can cause Hypoxia)

Food for target species

Atmospheric CO2

Dissolved CO2 (Acidification)

Effect of prey abundance on response of target organisms to acidification

*Energetic costs of acidification

Page 23: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Do fisheries target winners or losers?

Can decreased fisheries mortality compensate for mortality and lost production due to acidification (and the interaction between acidification and other stressors?

Nutrients

Respiration (can cause Hypoxia)

Food for target species

Atmospheric CO2

Dissolved CO2 (Acidification)

Fisheries

Page 24: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Southeast Australian marine ecosystem (Griffith et al, 2011: Atlantis model)

• Effects of fisheries and acidification were not simply additive

• Fishing either partially mitigated or exacerbated effects of acidification

• Heavy fishery exploitation eventually affected the ‘ability of the ecosystem to respond to acidification, leading to accelerated biodiversity loss, regime shifts and changes in trophic structure.’

Page 25: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Challenge 7: Good fisheries food-web models that can incorporate effects of acidification and other stressors

Page 26: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

http://www.divebums.com/week/2007/Sep17-2007/red-abalone_kevin-lee.jpg

Temperature is also rising:

Low pH reduces tolerance of red abalone larvae

to high temperatures (Zippay & Hofmann 2010)

Page 27: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Spatial Scale

Tem

po

ral S

cale

Co-occurrence of multiple stressors & their effects

• Do stressors occur in sequence or

coincide? • Do they affect the same species or

different species? • Do they affect the same or different

physiological processes?

Page 28: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Challenge 8: Cycling conditions may have different effects than constant conditions temporal patterns are a major difference between respiration-driven and atmospheric CO2-driven acidification

Page 29: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Are cycling conditions fundamentally different? • Interaction with circadian rhythms of physiological

processes & behaviors

dis

so

lve

d o

xyg

en

(m

g/L

)

0

2

4

6

8

10

12

time of day

pH

6.5

7.0

7.5

8.0

8.5

Oxygen and pH daily cycles

MD-DNR: eyesonthebay.net

Page 30: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Diel-cycling hypoxia affects

fish growth & behavior

Net Respiration

Net Production

Day Night

Targett lab – U Del

Energetic cost of highly variable environment

Page 31: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Mean daily minimum DO during days with salinity > 11 (mg/L)

2.0 3.0 4.0 5.0 6.0 7.0

Infe

ctio

n p

reva

lence

(%

)

40

50

60

70

80

90

100

2008

2009

Diel-cycling increases

prevalence and intensity

of P. marinus infections in

oysters (Breitburg et al, accepted

pending revision)

% days with min DO < 2.0 mg/L

0 10 20 30 40

Infe

ctio

n inte

nsity

0.0

1.0

2.0

3.0

4.0

mean salinity < 12

mean salinity > 12

MD-Sea Grant

Page 32: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Shallow Water Hypoxia - Tipping the Balance for Individuals, Populations and Ecosystems Breitburg, Targett, Rose, Michael, Townsend (Funding NOAA-CSCOR)

Focusses on current conditions – So we have not pushed the acidification part of our experiments as hard as we should if we want to consider future scenarios

Oyster disease dynamics

Oyster growth rates

Juvenile fish growth rates and fish behavior

Page 33: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Raw Estuarine

water

Raw Estuarine

water

Master (1 rep/trt)

Slave (5 reps/trt)

Adult infected oysters

Dissolved Oxygen (mg/L)

pH

Treatments

control control

7.0 – 8.0 control

7.0 – 8.0 1.5 - 10

control 0.5 - 10

7.0 – 8.0 0.5 - 10

LabView program

Barometric pressure

NIT

RO

GEN

N

ITR

OG

EN

NIT

RO

GEN

N

ITR

OG

EN

NIT

RO

GEN

N

ITR

OG

EN

CO

2

OX

YGEN

NIT

RO

GEN

Mass flow controllers (Dakota)

Air compressors

Perkinsus

CO2 analyzer

Raw Estuarine

water Raw

Raw Estuarine

water

Extra algae

Dissolved oxygen (Oxyguard) pH (Durafet) Temperature Salinity

Page 34: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5

10.010.511.0

Dis

solv

ed o

xyge

n (

mg/

L)

2012 dissolved oxygen trend

DO_WB_mean

DO_WP_mean

DO_GP_mean

DO_BP_mean

DO_BB_mean

6.90

7.00

7.10

7.20

7.30

7.40

7.50

7.60

7.70

7.80

7.90

8.00

7/3

1/2

012

2:2

4

7/3

1/2

012

14

:24

8/1

/20

12 2

:24

8/1

/20

12 1

4:2

4

8/2

/20

12 2

:24

8/2

/20

12 1

4:2

4

8/3

/20

12 2

:24

8/3

/20

12 1

4:2

4

8/4

/20

12 2

:24

8/4

/20

12 1

4:2

4

pH

(u

nit

s)

2012 pH trend

DO_WB_mean

DO_WP_mean

DO_GP_mean

DO_BP_mean

DO_BB_mean

Page 35: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Time (hrs)

00 04 08 12 16 20 00

pH

6.8

7.0

7.2

7.4

7.6

7.8

8.0

DO

(m

gL

-1)

0

2

4

6

8

10

12

SDO/SpH

SDO/NpH

MDO/SpH

NDO/SpH

NDO/NpH

Light Dark Light

Time (hrs)

00 04 08 12 16 20 00

pH

6.8

7.0

7.2

7.4

7.6

7.8

8.0

DO

(m

gL

-1)

0

2

4

6

8

10

12Light Dark Light

2012

Page 36: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Pre

vale

nce o

f P

. m

ari

nus

(pro

port

ion

pop

ula

tion

in

fecte

d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

cycling hypoxia

high cycling ph (low)pH

high constant oxygen

high cycling ph (low)pH

Severe cycling hypoxia increases Dermo prevalence & intensity, but cycling pH to 7.1 does not

Page 37: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Pro

port

ion

ph

ag

ocytic h

em

ocyte

s

0.00

0.05

0.10

0.15

0.20

cycling hypoxia

high cycling ph (7.1)pH

high constant oxygen

high cycling ph (7.1)pH

• Holding oyster hemocytes at a constant pH of 7.1 reduces their activity (Boyd & Burnett 1998),

• But cycling to the same pH stimulates the immune response

Page 38: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

• Juveniles are tolerant and show no growth reduction at constant and cycling pH conditions that kill larvae

Menidia beryllina Seth Miller, D. Breitburg, et al., unpublished

Page 39: Denise Breitburg Smithsonian Environmental Research Centerdnr.maryland.gov/waters/bay/Documents/MDOATF/OA_B...2.0 3.0 4.0 5.0 6.0 7.0) 40 50 60 70 80 90 100 2008 2009 Diel-cycling

Major challenges, but important

Thanks to NOAA-CSCOR, SI and MD-Sea Grant for funding, and to collaborators, students, postdocs & technicians for many long hours and for sharing ideas

1) Hypoxia connection 2) Protective criteria 3) Identifying anthropogenic component 4) Are CO2 sources additive 5) Identifying more important biological

experiments/measurements 6) Multiple stressors 7) Food web/upper trophic level models 8) Variable vs constant conditions