dense in itself

61
Dense-in-itself From Wikipedia, the free encyclopedia

Upload: man

Post on 16-Dec-2015

253 views

Category:

Documents


2 download

DESCRIPTION

1. From Wikipedia, the free encyclopedia2. Lexicographical order

TRANSCRIPT

  • Dense-in-itselfFrom Wikipedia, the free encyclopedia

  • Contents

    1 Binary relation 11.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.1.1 Is a relation more than its graph? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    1.2 Special types of binary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.1 Difunctional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.3 Relations over a set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.4 Operations on binary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    1.4.1 Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4.2 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.4.3 Algebras, categories, and rewriting systems . . . . . . . . . . . . . . . . . . . . . . . . . 7

    1.5 Sets versus classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.6 The number of binary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.7 Examples of common binary relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.8 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.11 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    2 Dense order 112.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.2 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    3 Dense-in-itself 123.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    4 Directed set 134.1 Equivalent denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134.3 Contrast with semilattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

    i

  • ii CONTENTS

    4.4 Directed subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    5 Partially ordered set 165.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175.3 Extrema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175.4 Orders on the Cartesian product of partially ordered sets . . . . . . . . . . . . . . . . . . . . . . . 185.5 Sums of partially ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185.6 Strict and non-strict partial orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195.7 Inverse and order dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195.8 Mappings between partially ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195.9 Number of partial orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205.10 Linear extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205.11 In category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215.12 Partial orders in topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215.13 Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215.14 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215.15 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225.16 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225.17 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    6 Preorder 236.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246.3 Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256.4 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256.5 Number of preorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256.6 Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266.7 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    7 Reexive relation 277.1 Related terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277.3 Number of reexive relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287.4 Philosophical logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

  • CONTENTS iii

    7.8 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    8 Set (mathematics) 318.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328.2 Describing sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328.3 Membership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    8.3.1 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338.3.2 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    8.4 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358.5 Special sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358.6 Basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    8.6.1 Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368.6.2 Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378.6.3 Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388.6.4 Cartesian product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    8.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408.8 Axiomatic set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418.9 Principle of inclusion and exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418.10 De Morgans Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418.11 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418.12 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428.13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428.14 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    9 Total order 439.1 Strict total order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449.3 Further concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    9.3.1 Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449.3.2 Lattice theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449.3.3 Finite total orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459.3.4 Category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459.3.5 Order topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459.3.6 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459.3.7 Sums of orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    9.4 Orders on the Cartesian product of totally ordered sets . . . . . . . . . . . . . . . . . . . . . . . . 469.5 Related structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    10 Transitive relation 48

  • iv CONTENTS

    10.1 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4810.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4810.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    10.3.1 Closure properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4910.3.2 Other properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4910.3.3 Properties that require transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    10.4 Counting transitive relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4910.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4910.6 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    10.6.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5010.6.2 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    10.7 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    11 Upper and lower bounds 5111.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5111.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5111.3 Bounds of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5111.4 Tight bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5211.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5211.6 Text and image sources, contributors, and licenses . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    11.6.1 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5311.6.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5411.6.3 Content license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

  • Chapter 1

    Binary relation

    Relation (mathematics)" redirects here. For a more general notion of relation, see nitary relation. For a morecombinatorial viewpoint, see theory of relations. For other uses, see Relation Mathematics.

    In mathematics, a binary relation on a set A is a collection of ordered pairs of elements of A. In other words, it is asubset of the Cartesian product A2 = A A. More generally, a binary relation between two sets A and B is a subsetof A B. The terms correspondence, dyadic relation and 2-place relation are synonyms for binary relation.An example is the "divides" relation between the set of prime numbers P and the set of integers Z, in which everyprime p is associated with every integer z that is a multiple of p (but with no integer that is not a multiple of p). Inthis relation, for instance, the prime 2 is associated with numbers that include 4, 0, 6, 10, but not 1 or 9; and theprime 3 is associated with numbers that include 0, 6, and 9, but not 4 or 13.Binary relations are used in many branches of mathematics to model concepts like "is greater than", "is equal to", anddivides in arithmetic, "is congruent to" in geometry, is adjacent to in graph theory, is orthogonal to in linearalgebra and many more. The concept of function is dened as a special kind of binary relation. Binary relations arealso heavily used in computer science.A binary relation is the special case n = 2 of an n-ary relation R A1 An, that is, a set of n-tuples where thejth component of each n-tuple is taken from the jth domain Aj of the relation. An example for a ternary relation onZZZ is lies between ... and ..., containing e.g. the triples (5,2,8), (5,8,2), and (4,9,7).In some systems of axiomatic set theory, relations are extended to classes, which are generalizations of sets. Thisextension is needed for, among other things, modeling the concepts of is an element of or is a subset of in settheory, without running into logical inconsistencies such as Russells paradox.

    1.1 Formal denition

    A binary relation R is usually dened as an ordered triple (X, Y, G) where X and Y are arbitrary sets (or classes), andG is a subset of the Cartesian product X Y. The sets X and Y are called the domain (or the set of departure) andcodomain (or the set of destination), respectively, of the relation, and G is called its graph.The statement (x,y) G is read "x is R-related to y", and is denoted by xRy or R(x,y). The latter notation correspondsto viewing R as the characteristic function on X Y for the set of pairs of G.The order of the elements in each pair ofG is important: if a b, then aRb and bRa can be true or false, independentlyof each other. Resuming the above example, the prime 3 divides the integer 9, but 9 doesn't divide 3.A relation as dened by the triple (X, Y, G) is sometimes referred to as a correspondence instead.[1] In this case therelation from X to Y is the subset G of X Y, and from X to Y" must always be either specied or implied by thecontext when referring to the relation. In practice correspondence and relation tend to be used interchangeably.

    1

  • 2 CHAPTER 1. BINARY RELATION

    1.1.1 Is a relation more than its graph?According to the denition above, two relations with identical graphs but dierent domains or dierent codomainsare considered dierent. For example, ifG = f(1; 2); (1; 3); (2; 7)g , then (Z;Z; G) , (R;N; G) , and (N;R; G) arethree distinct relations, where Z is the set of integers and R is the set of real numbers.Especially in set theory, binary relations are often dened as sets of ordered pairs, identifying binary relations withtheir graphs. The domain of a binary relation R is then dened as the set of all x such that there exists at least oney such that (x; y) 2 R , the range of R is dened as the set of all y such that there exists at least one x such that(x; y) 2 R , and the eld of R is the union of its domain and its range.[2][3][4]A special case of this dierence in points of view applies to the notion of function. Many authors insist on distin-guishing between a functions codomain and its range. Thus, a single rule, like mapping every real number x tox2, can lead to distinct functions f : R ! R and f : R ! R+ , depending on whether the images under thatrule are understood to be reals or, more restrictively, non-negative reals. But others view functions as simply sets ofordered pairs with unique rst components. This dierence in perspectives does raise some nontrivial issues. As anexample, the former camp considers surjectivityor being ontoas a property of functions, while the latter sees itas a relationship that functions may bear to sets.Either approach is adequate for most uses, provided that one attends to the necessary changes in language, notation,and the denitions of concepts like restrictions, composition, inverse relation, and so on. The choice between the twodenitions usually matters only in very formal contexts, like category theory.

    1.1.2 ExampleExample: Suppose there are four objects {ball, car, doll, gun} and four persons {John, Mary, Ian, Venus}. Supposethat John owns the ball, Mary owns the doll, and Venus owns the car. Nobody owns the gun and Ian owns nothing.Then the binary relation is owned by is given as

    R = ({ball, car, doll, gun}, {John, Mary, Ian, Venus}, {(ball, John), (doll, Mary), (car, Venus)}).

    Thus the rst element of R is the set of objects, the second is the set of persons, and the last element is a set of orderedpairs of the form (object, owner).The pair (ball, John), denoted by RJ means that the ball is owned by John.Two dierent relations could have the same graph. For example: the relation

    ({ball, car, doll, gun}, {John, Mary, Venus}, {(ball, John), (doll, Mary), (car, Venus)})

    is dierent from the previous one as everyone is an owner. But the graphs of the two relations are the same.Nevertheless, R is usually identied or even dened as G(R) and an ordered pair (x, y) G(R)" is usually denoted as"(x, y) R".

    1.2 Special types of binary relationsSome important types of binary relations R between two sets X and Y are listed below. To emphasize that X and Ycan be dierent sets, some authors call such binary relations heterogeneous.[5][6]

    Uniqueness properties:

    injective (also called left-unique[7]): for all x and z in X and y in Y it holds that if xRy and zRy then x = z. Forexample, the green relation in the diagram is injective, but the red relation is not, as it relates e.g. both x = 5and z = +5 to y = 25.

    functional (also called univalent[8] or right-unique[7] or right-denite[9]): for all x in X, and y and z in Yit holds that if xRy and xRz then y = z; such a binary relation is called a partial function. Both relations inthe picture are functional. An example for a non-functional relation can be obtained by rotating the red graphclockwise by 90 degrees, i.e. by considering the relation x=y2 which relates e.g. x=25 to both y=5 and z=+5.

  • 1.2. SPECIAL TYPES OF BINARY RELATIONS 3

    Example relations between real numbers. Red: y=x2. Green: y=2x+20.

    one-to-one (also written 1-to-1): injective and functional. The green relation is one-to-one, but the red is not.

    Totality properties:

    left-total:[7] for all x in X there exists a y in Y such that xRy. For example R is left-total when it is a functionor a multivalued function. Note that this property, although sometimes also referred to as total, is dierentfrom the denition of total in the next section. Both relations in the picture are left-total. The relation x=y2,obtained from the above rotation, is not left-total, as it doesn't relate, e.g., x = 14 to any real number y.

    surjective (also called right-total[7] or onto): for all y in Y there exists an x in X such that xRy. The greenrelation is surjective, but the red relation is not, as it doesn't relate any real number x to e.g. y = 14.

    Uniqueness and totality properties:

  • 4 CHAPTER 1. BINARY RELATION

    A function: a relation that is functional and left-total. Both the green and the red relation are functions. An injective function: a relation that is injective, functional, and left-total. A surjective function or surjection: a relation that is functional, left-total, and right-total. A bijection: a surjective one-to-one or surjective injective function is said to be bijective, also known asone-to-one correspondence.[10] The green relation is bijective, but the red is not.

    1.2.1 DifunctionalLess commonly encountered is the notion of difunctional (or regular) relation, dened as a relation R such thatR=RR1R.[11]

    To understand this notion better, it helps to consider a relation as mapping every element xX to a set xR = { yY| xRy }.[11] This set is sometimes called the successor neighborhood of x in R; one can dene the predecessorneighborhood analogously.[12] Synonymous terms for these notions are afterset and respectively foreset.[5]

    A difunctional relation can then be equivalently characterized as a relation R such that wherever x1R and x2R have anon-empty intersection, then these two sets coincide; formally x1R x2R implies x1R = x2R.[11]

    As examples, any function or any functional (right-unique) relation is difunctional; the converse doesn't hold. If oneconsiders a relation R from set to itself (X = Y), then if R is both transitive and symmetric (i.e. a partial equivalencerelation), then it is also difunctional.[13] The converse of this latter statement also doesn't hold.A characterization of difunctional relations, which also explains their name, is to consider two functions f: A Cand g: B C and then dene the following set which generalizes the kernel of a single function as joint kernel: ker(f,g) = { (a, b) A B | f(a) = g(b) }. Every difunctional relation R A B arises as the joint kernel of two functionsf: A C and g: B C for some set C.[14]

    In automata theory, the term rectangular relation has also been used to denote a difunctional relation. This ter-minology is justied by the fact that when represented as a boolean matrix, the columns and rows of a difunctionalrelation can be arranged in such a way as to present rectangular blocks of true on the (asymmetric) main diagonal.[15]Other authors however use the term rectangular to denote any heterogeneous relation whatsoever.[6]

    1.3 Relations over a setIf X = Y then we simply say that the binary relation is over X, or that it is an endorelation over X.[16] In computerscience, such a relation is also called a homogeneous (binary) relation.[16][17][6] Some types of endorelations arewidely studied in graph theory, where they are known as simple directed graphs permitting loops.The set of all binary relations Rel(X) on a set X is the set 2X X which is a Boolean algebra augmented with theinvolution of mapping of a relation to its inverse relation. For the theoretical explanation see Relation algebra.Some important properties of a binary relation R over a set X are:

    reexive: for all x in X it holds that xRx. For example, greater than or equal to () is a reexive relation butgreater than (>) is not.

    irreexive (or strict): for all x in X it holds that not xRx. For example, > is an irreexive relation, but is not. coreexive: for all x and y in X it holds that if xRy then x = y. An example of a coreexive relation is therelation on integers in which each odd number is related to itself and there are no other relations. The equalityrelation is the only example of a both reexive and coreexive relation.

    The previous 3 alternatives are far from being exhaustive; e.g. the red relation y=x2 from theabove picture is neither irreexive, nor coreexive, nor reexive, since it contains the pair(0,0), and (2,4), but not (2,2), respectively.

    symmetric: for all x and y in X it holds that if xRy then yRx. Is a blood relative of is a symmetric relation,because x is a blood relative of y if and only if y is a blood relative of x.

  • 1.4. OPERATIONS ON BINARY RELATIONS 5

    antisymmetric: for all x and y in X, if xRy and yRx then x = y. For example, is anti-symmetric (so is >, butonly because the condition in the denition is always false).[18]

    asymmetric: for all x and y in X, if xRy then not yRx. A relation is asymmetric if and only if it is bothanti-symmetric and irreexive.[19] For example, > is asymmetric, but is not.

    transitive: for all x, y and z in X it holds that if xRy and yRz then xRz. A transitive relation is irreexive if andonly if it is asymmetric.[20] For example, is ancestor of is transitive, while is parent of is not.

    total: for all x and y in X it holds that xRy or yRx (or both). This denition for total is dierent from left totalin the previous section. For example, is a total relation.

    trichotomous: for all x and y in X exactly one of xRy, yRx or x = y holds. For example, > is a trichotomousrelation, while the relation divides on natural numbers is not.[21]

    Right Euclidean: for all x, y and z in X it holds that if xRy and xRz, then yRz. Left Euclidean: for all x, y and z in X it holds that if yRx and zRx, then yRz. Euclidean: An Euclidean relation is both left and right Euclidean. Equality is a Euclidean relation because ifx=y and x=z, then y=z.

    serial: for all x in X, there exists y in X such that xRy. "Is greater than" is a serial relation on the integers. Butit is not a serial relation on the positive integers, because there is no y in the positive integers (i.e. the naturalnumbers) such that 1>y.[22] However, "is less than" is a serial relation on the positive integers, the rationalnumbers and the real numbers. Every reexive relation is serial: for a given x, choose y=x. A serial relation canbe equivalently characterized as every element having a non-empty successor neighborhood (see the previoussection for the denition of this notion). Similarly an inverse serial relation is a relation in which every elementhas non-empty predecessor neighborhood.[12]

    set-like (or local): for every x in X, the class of all y such that yRx is a set. (This makes sense only if relationson proper classes are allowed.) The usual ordering < on the class of ordinal numbers is set-like, while its inverse> is not.

    A relation that is reexive, symmetric, and transitive is called an equivalence relation. A relation that is symmetric,transitive, and serial is also reexive. A relation that is only symmetric and transitive (without necessarily beingreexive) is called a partial equivalence relation.A relation that is reexive, antisymmetric, and transitive is called a partial order. A partial order that is total is calleda total order, simple order, linear order, or a chain.[23] A linear order where every nonempty subset has a least elementis called a well-order.

    1.4 Operations on binary relationsIf R, S are binary relations over X and Y, then each of the following is a binary relation over X and Y :

    Union: R S X Y, dened as R S = { (x, y) | (x, y) R or (x, y) S }. For example, is the union of >and =.

    Intersection: R S X Y, dened as R S = { (x, y) | (x, y) R and (x, y) S }.

    If R is a binary relation over X and Y, and S is a binary relation over Y and Z, then the following is a binary relationover X and Z: (see main article composition of relations)

    Composition: S R, also denoted R ; S (or more ambiguously R S), dened as S R = { (x, z) | there existsy Y, such that (x, y) R and (y, z) S }. The order of R and S in the notation S R, used here agrees withthe standard notational order for composition of functions. For example, the composition is mother of isparent of yields is maternal grandparent of, while the composition is parent of is mother of yields isgrandmother of.

  • 6 CHAPTER 1. BINARY RELATION

    A relation R on sets X and Y is said to be contained in a relation S on X and Y if R is a subset of S, that is, if x R yalways implies x S y. In this case, if R and S disagree, R is also said to be smaller than S. For example, > is containedin .If R is a binary relation over X and Y, then the following is a binary relation over Y and X:

    Inverse or converse: R 1, dened as R 1 = { (y, x) | (x, y) R }. A binary relation over a set is equal to itsinverse if and only if it is symmetric. See also duality (order theory). For example, is less than ().

    If R is a binary relation over X, then each of the following is a binary relation over X:

    Reexive closure: R =, dened as R = = { (x, x) | x X } R or the smallest reexive relation over X containingR. This can be proven to be equal to the intersection of all reexive relations containing R.

    Reexive reduction: R , dened as R = R \ { (x, x) | x X } or the largest irreexive relation over Xcontained in R.

    Transitive closure: R +, dened as the smallest transitive relation over X containing R. This can be seen to beequal to the intersection of all transitive relations containing R.

    Transitive reduction: R , dened as a minimal relation having the same transitive closure as R. Reexive transitive closure: R *, dened as R * = (R +) =, the smallest preorder containing R. Reexive transitive symmetric closure: R , dened as the smallest equivalence relation over X containingR.

    1.4.1 ComplementIf R is a binary relation over X and Y, then the following too:

    The complement S is dened as x S y if not x R y. For example, on real numbers, is the complement of >.

    The complement of the inverse is the inverse of the complement.If X = Y, the complement has the following properties:

    If a relation is symmetric, the complement is too. The complement of a reexive relation is irreexive and vice versa. The complement of a strict weak order is a total preorder and vice versa.

    The complement of the inverse has these same properties.

    1.4.2 RestrictionThe restriction of a binary relation on a set X to a subset S is the set of all pairs (x, y) in the relation for which x andy are in S.If a relation is reexive, irreexive, symmetric, antisymmetric, asymmetric, transitive, total, trichotomous, a partialorder, total order, strict weak order, total preorder (weak order), or an equivalence relation, its restrictions are too.However, the transitive closure of a restriction is a subset of the restriction of the transitive closure, i.e., in generalnot equal. For example, restricting the relation "x is parent of y" to females yields the relation "x is mother ofthe woman y"; its transitive closure doesn't relate a woman with her paternal grandmother. On the other hand, thetransitive closure of is parent of is is ancestor of"; its restriction to females does relate a woman with her paternalgrandmother.

  • 1.5. SETS VERSUS CLASSES 7

    Also, the various concepts of completeness (not to be confused with being total) do not carry over to restrictions.For example, on the set of real numbers a property of the relation "" is that every non-empty subset S of R with anupper bound in R has a least upper bound (also called supremum) in R. However, for a set of rational numbers thissupremum is not necessarily rational, so the same property does not hold on the restriction of the relation "" to theset of rational numbers.The left-restriction (right-restriction, respectively) of a binary relation between X and Y to a subset S of its domain(codomain) is the set of all pairs (x, y) in the relation for which x (y) is an element of S.

    1.4.3 Algebras, categories, and rewriting systemsVarious operations on binary endorelations can be treated as giving rise to an algebraic structure, known as relationalgebra. It should not be confused with relational algebra which deals in nitary relations (and in practice also niteand many-sorted).For heterogenous binary relations, a category of relations arises.[6]

    Despite their simplicity, binary relations are at the core of an abstract computation model known as an abstractrewriting system.

    1.5 Sets versus classesCertain mathematical relations, such as equal to, member of, and subset of, cannot be understood to be binaryrelations as dened above, because their domains and codomains cannot be taken to be sets in the usual systems ofaxiomatic set theory. For example, if we try to model the general concept of equality as a binary relation =, wemust take the domain and codomain to be the class of all sets, which is not a set in the usual set theory.In most mathematical contexts, references to the relations of equality, membership and subset are harmless becausethey can be understood implicitly to be restricted to some set in the context. The usual work-around to this problemis to select a large enough set A, that contains all the objects of interest, and work with the restriction =A instead of=. Similarly, the subset of relation needs to be restricted to have domain and codomain P(A) (the power set ofa specic set A): the resulting set relation can be denoted A. Also, the member of relation needs to be restrictedto have domain A and codomain P(A) to obtain a binary relation A that is a set. Bertrand Russell has shown thatassuming to be dened on all sets leads to a contradiction in naive set theory.Another solution to this problem is to use a set theory with proper classes, such as NBG or MorseKelley set theory,and allow the domain and codomain (and so the graph) to be proper classes: in such a theory, equality, membership,and subset are binary relations without special comment. (A minor modication needs to be made to the concept ofthe ordered triple (X, Y, G), as normally a proper class cannot be a member of an ordered tuple; or of course onecan identify the function with its graph in this context.)[24] With this denition one can for instance dene a functionrelation between every set and its power set.

    1.6 The number of binary relations

    The number of distinct binary relations on an n-element set is 2n2 (sequence A002416 in OEIS):Notes:

    The number of irreexive relations is the same as that of reexive relations. The number of strict partial orders (irreexive transitive relations) is the same as that of partial orders. The number of strict weak orders is the same as that of total preorders. The total orders are the partial orders that are also total preorders. The number of preorders that are neithera partial order nor a total preorder is, therefore, the number of preorders, minus the number of partial orders,minus the number of total preorders, plus the number of total orders: 0, 0, 0, 3, and 85, respectively.

    the number of equivalence relations is the number of partitions, which is the Bell number.

  • 8 CHAPTER 1. BINARY RELATION

    The binary relations can be grouped into pairs (relation, complement), except that for n = 0 the relation is its owncomplement. The non-symmetric ones can be grouped into quadruples (relation, complement, inverse, inverse com-plement).

    1.7 Examples of common binary relations order relations, including strict orders:

    greater than greater than or equal to less than less than or equal to divides (evenly) is a subset of

    equivalence relations: equality is parallel to (for ane spaces) is in bijection with isomorphy

    dependency relation, a nite, symmetric, reexive relation. independency relation, a symmetric, irreexive relation which is the complement of some dependency relation.

    1.8 See also Conuence (term rewriting) Hasse diagram Incidence structure Logic of relatives Order theory Triadic relation

    1.9 Notes[1] Encyclopedic dictionary of Mathematics. MIT. 2000. pp. 13301331. ISBN 0-262-59020-4.

    [2] Suppes, Patrick (1972) [originally published by D. van Nostrand Company in 1960]. Axiomatic Set Theory. Dover. ISBN0-486-61630-4.

    [3] Smullyan, Raymond M.; Fitting, Melvin (2010) [revised and corrected republication of the work originally published in1996 by Oxford University Press, New York]. Set Theory and the Continuum Problem. Dover. ISBN 978-0-486-47484-7.

    [4] Levy, Azriel (2002) [republication of the work published by Springer-Verlag, Berlin, Heidelberg and New York in 1979].Basic Set Theory. Dover. ISBN 0-486-42079-5.

    [5] Christodoulos A. Floudas; PanosM. Pardalos (2008). Encyclopedia of Optimization (2nd ed.). Springer Science&BusinessMedia. pp. 299300. ISBN 978-0-387-74758-3.

  • 1.10. REFERENCES 9

    [6] Michael Winter (2007). Goguen Categories: A Categorical Approach to L-fuzzy Relations. Springer. pp. xxi. ISBN978-1-4020-6164-6.

    [7] Kilp, Knauer and Mikhalev: p. 3. The same four denitions appear in the following:

    Peter J. Pahl; Rudolf Damrath (2001). Mathematical Foundations of Computational Engineering: A Handbook.Springer Science & Business Media. p. 506. ISBN 978-3-540-67995-0.

    Eike Best (1996). Semantics of Sequential and Parallel Programs. Prentice Hall. pp. 1921. ISBN 978-0-13-460643-9.

    Robert-Christoph Riemann (1999). Modelling of Concurrent Systems: Structural and Semantical Methods in the HighLevel Petri Net Calculus. Herbert Utz Verlag. pp. 2122. ISBN 978-3-89675-629-9.

    [8] Gunther Schmidt, 2010. Relational Mathematics. Cambridge University Press, ISBN 978-0-521-76268-7, Chapt. 5

    [9] Ms, Stephan (2007), Reasoning on Spatial Semantic Integrity Constraints, Spatial Information Theory: 8th InternationalConference, COSIT 2007, Melbourne, Australiia, September 1923, 2007, Proceedings, Lecture Notes in Computer Science4736, Springer, pp. 285302, doi:10.1007/978-3-540-74788-8_18

    [10] Note that the use of correspondence here is narrower than as general synonym for binary relation.

    [11] Chris Brink; Wolfram Kahl; Gunther Schmidt (1997). Relational Methods in Computer Science. Springer Science &Business Media. p. 200. ISBN 978-3-211-82971-4.

    [12] Yao, Y. (2004). Semantics of Fuzzy Sets in Rough Set Theory. Transactions on Rough Sets II. Lecture Notes in ComputerScience 3135. p. 297. doi:10.1007/978-3-540-27778-1_15. ISBN 978-3-540-23990-1.

    [13] William Craig (2006). Semigroups Underlying First-order Logic. American Mathematical Soc. p. 72. ISBN 978-0-8218-6588-0.

    [14] Gumm, H. P.; Zarrad, M. (2014). Coalgebraic Simulations and Congruences. Coalgebraic Methods in Computer Science.Lecture Notes in Computer Science 8446. p. 118. doi:10.1007/978-3-662-44124-4_7. ISBN 978-3-662-44123-7.

    [15] Julius Richard Bchi (1989). Finite Automata, Their Algebras and Grammars: Towards a Theory of Formal Expressions.Springer Science & Business Media. pp. 3537. ISBN 978-1-4613-8853-1.

    [16] M. E. Mller (2012). Relational Knowledge Discovery. Cambridge University Press. p. 22. ISBN 978-0-521-19021-3.

    [17] Peter J. Pahl; Rudolf Damrath (2001). Mathematical Foundations of Computational Engineering: A Handbook. SpringerScience & Business Media. p. 496. ISBN 978-3-540-67995-0.

    [18] Smith, Douglas; Eggen, Maurice; St. Andre, Richard (2006),ATransition to AdvancedMathematics (6th ed.), Brooks/Cole,p. 160, ISBN 0-534-39900-2

    [19] Nievergelt, Yves (2002), Foundations of Logic and Mathematics: Applications to Computer Science and Cryptography,Springer-Verlag, p. 158.

    [20] Flaka, V.; Jeek, J.; Kepka, T.; Kortelainen, J. (2007). Transitive Closures of Binary Relations I (PDF). Prague: Schoolof Mathematics Physics Charles University. p. 1. Lemma 1.1 (iv). This source refers to asymmetric relations as strictlyantisymmetric.

    [21] Since neither 5 divides 3, nor 3 divides 5, nor 3=5.

    [22] Yao, Y.Y.; Wong, S.K.M. (1995). Generalization of rough sets using relationships between attribute values (PDF).Proceedings of the 2nd Annual Joint Conference on Information Sciences: 3033..

    [23] Joseph G. Rosenstein, Linear orderings, Academic Press, 1982, ISBN 0-12-597680-1, p. 4

    [24] Tarski, Alfred; Givant, Steven (1987). A formalization of set theory without variables. American Mathematical Society. p.3. ISBN 0-8218-1041-3.

    1.10 References M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories: with Applications to Wreath Products andGraphs, De Gruyter Expositions in Mathematics vol. 29, Walter de Gruyter, 2000, ISBN 3-11-015248-7.

    Gunther Schmidt, 2010. Relational Mathematics. Cambridge University Press, ISBN 978-0-521-76268-7.

  • 10 CHAPTER 1. BINARY RELATION

    1.11 External links Hazewinkel, Michiel, ed. (2001), Binary relation, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4

  • Chapter 2

    Dense order

    In mathematics, a partial order < on a set X is said to be dense if, for all x and y in X for which x < y, there is a z inX such that x < z < y.

    2.1 ExampleThe rational numbers with the ordinary ordering are a densely ordered set in this sense, as are the real numbers. Onthe other hand, the ordinary ordering on the integers is not dense.

    2.2 GeneralizationsAny binary relation R is said to be dense if, for all R-related x and y, there is a z such that x and z and also z and y areR-related. Formally:

    8x 8y xRy ) (9z xRz ^ zRy):

    Every reexive relation is dense. A strict partial order < is a dense order i < is a dense relation.

    2.3 See also Dense set Dense-in-itself Kripke semantics

    2.4 References David Harel, Dexter Kozen, Jerzy Tiuryn, Dynamic logic, MIT Press, 2000, ISBN 0-262-08289-6, p. 6

    11

  • Chapter 3

    Dense-in-itself

    In mathematics, a subset A of a topological space is said to be dense-in-itself if A contains no isolated points.Every dense-in-itself closed set is perfect. Conversely, every perfect set is dense-in-itself.A simple example of a set which is dense-in-itself but not closed (and hence not a perfect set) is the subset of irrationalnumbers (considered as a subset of the real numbers). This set is dense-in-itself because every neighborhood of anirrational number x contains at least one other irrational number y 6= x . On the other hand, this set of irrationalsis not closed because every rational number lies in its closure. For similar reasons, the set of rational numbers (alsoconsidered as a subset of the real numbers) is also dense-in-itself but not closed.The above examples, the irrationals and the rationals, are also dense sets in their topological space, namely R . As anexample that is dense-in-itself but not dense in its topological space, consider Q \ [0; 1] . This set is not dense in Rbut is dense-in-itself.

    3.1 See also Nowhere dense set Dense order Perfect space Glossary of topology

    3.2 References Steen, Lynn Arthur; Seebach, J. Arthur Jr.. Counterexamples in Topology (Dover reprint of 1978 ed.). Berlin,New York: Springer-Verlag. p. 6. ISBN 978-0-486-68735-3. MR 507446.

    This article incorporates material from Dense in-itself on PlanetMath, which is licensed under the Creative CommonsAttribution/Share-Alike License.

    12

  • Chapter 4

    Directed set

    In mathematics, a directed set (or a directed preorder or a ltered set) is a nonempty set A together with a reexiveand transitive binary relation (that is, a preorder), with the additional property that every pair of elements has anupper bound.[1] In other words, for any a and b in A there must exist a c in A with a c and b c.The notion dened above is sometimes called an upward directed set. A downward directed set is denedanalogously,[2] meaning when every doubleton is bounded below.[3] Some authors (and this article) assume that adirected set is directed upward, unless otherwise stated. Beware that other authors call a set directed if and only if itis directed both upward and downward.[4]

    Directed sets are a generalization of nonempty totally ordered sets, that is, all totally ordered sets are directed sets(contrast partially ordered sets which need not be directed). Join semilattices (which are partially ordered sets) aredirected sets as well, but not conversely. Likewise, lattices are directed sets both upward and downward.In topology, directed sets are used to dene nets, which generalize sequences and unite the various notions of limitused in analysis. Directed sets also give rise to direct limits in abstract algebra and (more generally) category theory.

    4.1 Equivalent denitionIn addition to the denition above, there is an equivalent denition. A directed set is a set A with a preorder suchthat every nite subset of A has an upper bound. In this denition, the existence of an upper bound of the emptysubset implies that A is nonempty.

    4.2 ExamplesExamples of directed sets include:

    The set of natural numbers N with the ordinary order is a directed set (and so is every totally ordered set). Let D1 and D2 be directed sets. Then the Cartesian product set D1 D2 can be made into a directed set bydening (n1, n2) (m1, m2) if and only if n1 m1 and n2 m2. In analogy to the product order this is theproduct direction on the Cartesian product.

    It follows from previous example that the set N N of pairs of natural numbers can be made into a directedset by dening (n0, n1) (m0, m1) if and only if n0 m0 and n1 m1.

    If x0 is a real number, we can turn the set R {x0} into a directed set by writing a b if and only if|a x0| |b x0|. We then say that the reals have been directed towards x0. This is an example of a directedset that is not ordered (neither totally nor partially).

    A (trivial) example of a partially ordered set that is not directed is the set {a, b}, in which the only orderrelations are a a and b b. A less trivial example is like the previous example of the reals directed towardsx0" but in which the ordering rule only applies to pairs of elements on the same side of x0.

    13

  • 14 CHAPTER 4. DIRECTED SET

    If T is a topological space and x0 is a point in T, we turn the set of all neighbourhoods of x0 into a directed setby writing U V if and only if U contains V.

    For every U: U U; since U contains itself. For every U,V,W : if U V and V W, then U W; since if U contains V and V contains W then UcontainsW.

    For every U, V: there exists the set U \ V such that U U \ V and V U \ V; since both U and Vcontain U \ V.

    In a poset P, every lower closure of an element, i.e. every subset of the form {a| a in P, a x} where x is axed element from P, is directed.

    4.3 Contrast with semilattices

    Witness

    Directed sets are a more general concept than (join) semilattices: every join semilattice is a directed set, as the joinor least upper bound of two elements is the desired c. The converse does not hold however, witness the directed set

  • 4.4. DIRECTED SUBSETS 15

    {1000,0001,1101,1011,1111} ordered bitwise (e.g. 1000 1011 holds, but 0001 1000 does not, since in the lastbit 1 > 0), where {1000,0001} has three upper bounds but no least upper bound, cf. picture. (Also note that without1111, the set is not directed.)

    4.4 Directed subsetsThe order relation in a directed sets is not required to be antisymmetric, and therefore directed sets are not alwayspartial orders. However, the term directed set is also used frequently in the context of posets. In this setting, a subsetA of a partially ordered set (P,) is called a directed subset if it is a directed set according to the same partial order:in other words, it is not the empty set, and every pair of elements has an upper bound. Here the order relation on theelements of A is inherited from P; for this reason, reexivity and transitivity need not be required explicitly.A directed subset of a poset is not required to be downward closed; a subset of a poset is directed if and only if itsdownward closure is an ideal. While the denition of a directed set is for an upward-directed set (every pair ofelements has an upper bound), it is also possible to dene a downward-directed set in which every pair of elementshas a common lower bound. A subset of a poset is downward-directed if and only if its upper closure is a lter.Directed subsets are used in domain theory, which studies directed complete partial orders.[5] These are posets inwhich every upward-directed set is required to have a least upper bound. In this context, directed subsets againprovide a generalization of convergent sequences.

    4.5 See also Filtered category Centered set Linked set

    4.6 Notes[1] Kelley, p. 65.

    [2] Robert S. Borden (1988). A Course in Advanced Calculus. Courier Corporation. p. 20. ISBN 978-0-486-15038-3.

    [3] Arlen Brown; Carl Pearcy (1995). An Introduction to Analysis. Springer. p. 13. ISBN 978-1-4612-0787-0.

    [4] Siegfried Carl; Seppo Heikkil (2010). Fixed Point Theory in Ordered Sets and Applications: From Dierential and IntegralEquations to Game Theory. Springer. p. 77. ISBN 978-1-4419-7585-0.

    [5] Gierz, p. 2.

    4.7 References J. L. Kelley (1955), General Topology.

    Gierz, Hofmann, Keimel, et al. (2003), Continuous Lattices and Domains, Cambridge University Press. ISBN0-521-80338-1.

  • Chapter 5

    Partially ordered set

    {x,y,z}

    {y,z}{x,z}{x,y}

    {y} {z}{x}

    The Hasse diagram of the set of all subsets of a three-element set {x, y, z}, ordered by inclusion. Sets on the same horizontal leveldon't share a precedence relationship. Other pairs, such as {x} and {y,z}, do not either.

    In mathematics, especially order theory, a partially ordered set (or poset) formalizes and generalizes the intuitiveconcept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together witha binary relation that indicates that, for certain pairs of elements in the set, one of the elements precedes the other.Such a relation is called a partial order to reect the fact that not every pair of elements need be related: for somepairs, it may be that neither element precedes the other in the poset. Thus, partial orders generalize the more familiartotal orders, in which every pair is related. A nite poset can be visualized through its Hasse diagram, which depictsthe ordering relation.[1]

    A familiar real-life example of a partially ordered set is a collection of people ordered by genealogical descendancy.Some pairs of people bear the descendant-ancestor relationship, but other pairs bear no such relationship.

    16

  • 5.1. FORMAL DEFINITION 17

    5.1 Formal denitionA (non-strict) partial order[2] is a binary relation "" over a set P which is reexive, antisymmetric, and transitive,i.e., which satises for all a, b, and c in P:

    a a (reexivity); if a b and b a then a = b (antisymmetry); if a b and b c then a c (transitivity).

    In other words, a partial order is an antisymmetric preorder.A set with a partial order is called a partially ordered set (also called a poset). The term ordered set is sometimesalso used, as long as it is clear from the context that no other kind of order is meant. In particular, totally ordered setscan also be referred to as ordered sets, especially in areas where these structures are more common than posets.For a, b, elements of a partially ordered set P, if a b or b a, then a and b are comparable. Otherwise they areincomparable. In the gure on top-right, e.g. {x} and {x,y,z} are comparable, while {x} and {y} are not. A partialorder under which every pair of elements is comparable is called a total order or linear order; a totally orderedset is also called a chain (e.g., the natural numbers with their standard order). A subset of a poset in which no twodistinct elements are comparable is called an antichain (e.g. the set of singletons {{x}, {y}, {z}} in the top-rightgure). An element a is said to be covered by another element b, written a c < d ...

    5.3 ExtremaThere are several notions of greatest and least element in a poset P, notably:

  • 18 CHAPTER 5. PARTIALLY ORDERED SET

    Greatest element and least element: An element g in P is a greatest element if for every element a in P, a g.An element m in P is a least element if for every element a in P, a m. A poset can only have one greatest orleast element.

    Maximal elements and minimal elements: An element g in P is a maximal element if there is no element a inP such that a > g. Similarly, an element m in P is a minimal element if there is no element a in P such that a