derivation 2

Upload: keyyongpark

Post on 03-Feb-2018

239 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/21/2019 Derivation 2

    1/49

    Derivation and Log-linearization of Chari, Kehoe,

    and McGrattan (2007)s Closed Economy Model

    Chi-hong Chen

    Chari, V. V., Patrick J. Kehoe, and Ellen R. McGrattan (2007), Business cycle accounting,Econometrica, 75 (3), pp. 781-836.

  • 7/21/2019 Derivation 2

    2/49

    1 The benchmark prototype economy

    The benchmark prototype economy that we employ in our accounting procedure

    is a stochastic model.

    The economy has four exogenous stochastic variables: the eciency wedgezt,the labor wedge 1 lt, the investment wedge

    11+xt

    , and the government

    consumption wedge gt.

    ct : per capita consumption

    lt : per capita labor

  • 7/21/2019 Derivation 2

    3/49

    kt : per capita capital stock

    xt : per capita investment

    wt : wage rate

    rt : rental rate on capital

    Nt : population

    Tt : per capita lump-sum transfers

  • 7/21/2019 Derivation 2

    4/49

    yt : per capita output

    Zt : productivityZt =zt (1 +)

    t

    : discount factor

    : depreciation rate of capital

    1 +: the rate of labor-augmenting technical process

    1 +n : the population growth rate

  • 7/21/2019 Derivation 2

    5/49

    The representative consumer maximize expected utility subject to the budget

    constraint and the capital accumulation law:

    Et

    1

    Xt=0tU(ct; lt)Nt

    ct+ (1 +xt)xt= (1lt)wtlt+rtkt+Tt

    (1 +n) kt+1= (1) kt+xt

  • 7/21/2019 Derivation 2

    6/49

    Solution of consumers maximization problem:

    maxfct;lt;kt+1g

    Et

    1Xt=0

    tU(ct; lt)Nt

    ct+ (1 +xt) [(1 +n) kt+1(1) kt] = (1lt)wtlt+rtkt+Tt

    The Lagrangian:

  • 7/21/2019 Derivation 2

    7/49

    L =1Xt=0

    tU(ct; lt)Nt+

    1Xt=0

    ttfwtlt (1lt) +rtkt+Ttct(1 +xt) [(1 +n) kt+1(1) kt]g

    @L

    @ct=tUctNt

    tt = 0

    @L

    @lt=tUltNt+tt (1lt)wt = 0

  • 7/21/2019 Derivation 2

    8/49

    @L

    @kt+1=tt (1 +xt) (1 +n)+Et

    t+1t+1 [rt+1+ (1 +xt+1) (1)] = 0

    UctNt =t

    Ult

    Uct= (1lt)wt (A1)

    t (1 +xt) (1 +n) =Ett+1 [rt+1+ (1) (1 +xt+1)]

  • 7/21/2019 Derivation 2

    9/49

    UctNt (1 +xt) (1 +n) =EtUct+1Nt+1 [rt+1+ (1) (1 +xt+1)]

    Uct (1 +xt) =EtUct+1 frt+1+ (1) (1 +xt+1)g (A2)

    The production function is:

    F(kt; Ztlt)

  • 7/21/2019 Derivation 2

    10/49

    The representative rm maximizes prots:

    F(kt; Ztlt)wtltrtkt

    Solution of rms maximization problem

    max

    fkt;ltg

    tF(kt; Ztlt)wtltrtkt

  • 7/21/2019 Derivation 2

    11/49

    @t@kt

    =Fkt (kt; Ztlt)rt = 0

    @t

    @lt

    =ZtFlt (kt; Ztlt)wt= 0

    Fkt (kt; Ztlt) =rt (A3)

    ZtFlt (kt; Ztlt) =wt (A4)

  • 7/21/2019 Derivation 2

    12/49

    Substitute (A4) into (A1) and rearrange

    Ult

    Uct= (1lt)wt= (1lt)ZtFlt (kt; Ztlt)

    Ult

    Uct= (1lt)ZtFlt (kt; Ztlt)

    Substitute (A3) into (A2) and rearrange

  • 7/21/2019 Derivation 2

    13/49

    Uct (1 +xt) =EtUct+1 [rt+1+ (1) (1 +xt+1)]

    Uct (1 +xt) =EtUct+1 Fkt+1 (kt+1; Zt+1lt+1) + (1) (1 +xt+1) The government maintains a balanced budget every period:

    gt+Tt=ltwtlt+xtxt

  • 7/21/2019 Derivation 2

    14/49

    Substituting the government budget constraint and prot function into consumer

    budget constraint to get the resource constraint:

    ct+ (1 +xt)xt=wtlt (1lt) +rtkt+ltwtlt+xtxtgt

    ct+xt+xtxt=wtltltwtlt+rtkt+ltwtlt+xtxtgt

    ct+xt+gt =wtlt+rtkt

  • 7/21/2019 Derivation 2

    15/49

    ct+xt+gt =yt

    The equilibrium conditions of the benchmark prototype economy are:

    ct+xt+gt =yt (1)

    yt =F(kt; Ztlt) (2)

  • 7/21/2019 Derivation 2

    16/49

    UltUct

    = (1lt)ZtFlt (kt; Ztlt) (3)

    Uct (1 +xt) =EtUct+1 Fkt+1 (kt+1; Zt+1lt+1) + (1) (1 +xt+1) (4) The method assumes that frictions associated with specic economic environ-

    ment manifest themselves as distortions in the rst-order condition and resource

    constraints in the prototype model.

    These distortions are called wedges.

  • 7/21/2019 Derivation 2

    17/49

    The economy with four wedges exactly reproduces the data on output, labor,

    investment, and government consumption.

    2 In explicit functional form

    We substitute the utility function and production function into the equilibrium

    conditions.

    The equilibrium conditions of the prototype economy are:

  • 7/21/2019 Derivation 2

    18/49

    ct+xt+gt =yt (1)

    yt =F(kt; Ztlt) (2)

    Ult

    Uct= (1lt)ZtFlt (kt; Ztlt) (3)

    Uct (1 +xt) =EtUct+1Fkt+1 (kt+1; zt+1lt+1) + (1) (1 +xt+1)

    (4)

  • 7/21/2019 Derivation 2

    19/49

    Production function and utility function are:

    F(k;zl) =k (zl)1

    u (c; l) = log c+ log (1l)

    Equilibrium conditions in explicit form:

    ct+xt+gt =yt (1.a)

  • 7/21/2019 Derivation 2

    20/49

    yt=kt (Ztlt)1 (2.a)

    ct

    1lt

    != (1lt)Zt (1) k

    t (Ztlt)

    (3.a)

    (1 +xt)1

    ct=Et

    1

    ct+1

    h (kt+1)

    1 (Zt+1lt+1)1 + (1) (1 +xt+1)i

    (4.a)

    evt = vt(1+)t

  • 7/21/2019 Derivation 2

    21/49

    We assume that gt uctuates around a trend of(1 +)t

    Equilibrium conditions in detrended per-capita form:

    ~ct+ ~xt+ ~gt = ~yt (1.b)

    ~yt=~kt

    ~Ztlt1

    (2.b)

    ect1lt

    != (1lt)eZt (1) ekt eZtlt (3.b)

  • 7/21/2019 Derivation 2

    22/49

    (1 +xt) (1 +)1~ct

    =Et1

    ~ct+1

    ekt+11 eZt+1lt+11 + (1) (1 +xt+1)

    (4.b)

    Endogenous variables are: ect, ext, eyt, ekt, lt. We need the capital accumulation law to close the model.

    (1 +n) kt+1= (1) kt+xt (5)

  • 7/21/2019 Derivation 2

    23/49

    (1 +n) (1 +) ~kt+1= (1) ~kt+ ~xt (5.b)

    3 Steady state of the prototype model

    Variables without time index are steady state values.

    (1 +x) (1 +) =ek1 eZl1 + (1) (1 +x)

  • 7/21/2019 Derivation 2

    24/49

    (1 +x) (1 +)

    (1) (1 +x) =ek1 eZl1

    1

    eZ1 "(1 +x) (1 +)

    (1) (1 +x)#= ek

    l!1

    ekl

    =

    ( 1

    eZ1

    "(1 +x) (1 +)

    (1) (1 +x)

    #) 11

    (ss1)

    We obtain the steady-state ofekl

    .

  • 7/21/2019 Derivation 2

    25/49

    (1 +n) (1 +) ~k= (1) ~k+ ~x

    [(1 +n) (1 +)(1)] ~k= ~x

    ~y =~k

    ~Zl1

    = ~Z1ekl

    !1 ek = ~Z1ekl

    !l

    ~c+ ~x+ ~g = ~y

  • 7/21/2019 Derivation 2

    26/49

    ~c= ~y ~x~g = ~Z1ekl

    !l[(1 +n) (1 +)(1)]

    ~kl

    !l~g (ss2)

    ec

    1l= (1l) eZ(1) ek

    eZl

    ec=

    (1l)

    (1l)eZ1 (1)ek

    l

    !(ss3)

    Use (ss2) and (ss3) to solve l:

  • 7/21/2019 Derivation 2

    27/49

    ~Z1ekl

    !l[(1 +n) (1 +)(1)]

    ~kl

    !l~g =

    (1l)

    (1l)eZ1ekl

    !

    ( ~Z1ekl!

    [(1 +n) (1 +)(1)]~k

    l!) l~g=

    1

    (1l)eZ1ekl

    !

    1

    (1l)eZ1ekl

    !l

  • 7/21/2019 Derivation 2

    28/49

    (~Z1ekl

    ![(1 +n) (1 +)(1)]

    ~kl

    !+

    1

    (1l)eZ1ekl

    !)l

    = ~g+ 1

    (1l)eZ1ekl

    !

    The above equation solves the steady-state value of l.

    It follows:

    ek = ekl

    !l

  • 7/21/2019 Derivation 2

    29/49

    ec= (1l)

    (1l)eZ1 (1)ek

    l

    !

    ~y= ~Z1ek

    l!

    l

    ~x= [(1 +n) (1 +)(1)] ~k

  • 7/21/2019 Derivation 2

    30/49

    4 Log-linearization

    We log-linearize the equilibrium conditions around the steady state.

    bct = log

    ectlog

    ec

    bxt= log extlog ex

    byt = log

    eytlog

    ey

    bkt = log ektlog ek

  • 7/21/2019 Derivation 2

    31/49

    blt= log eltlog el

    bgt= log egtlog eg

    bZt= log

    eZtlog

    eZ

    blt =ltl

    bxt=xtx

    Equilibrium conditions in detrended per-capita form:

  • 7/21/2019 Derivation 2

    32/49

    ~ct+ ~xt+ ~gt = ~yt (1.b)

    ~yt=~kt

    ~Ztlt1

    (2.b)

    ect1lt

    != (1lt)eZt (1) ekt eZtlt (3.b)

    (1 +xt) (1 +)1~ct=Et 1~ct+1 ekt+11 eZt+1lt+11 + (1) (1 +xt+1)

    (4.b)

  • 7/21/2019 Derivation 2

    33/49

    (1 +n) (1 +) ~kt+1= (1) ~kt+ ~xt (5.b)

    Equation (1.b)

    ~ct+ ~xt+ ~gt = ~yt

    ~cect + ~xext + ~gegt = ~yebyt

  • 7/21/2019 Derivation 2

    34/49

    ec (1 + ct) + ex (1 + xt) + eg (1 + gt) = ey (1 + yt)

    ecct+

    exxt+

    eggt=

    eyyt

    eceyct+ exeyxt+ egeygt= yt (1.c)

    Equation (2.b)

  • 7/21/2019 Derivation 2

    35/49

    ~yt=~kt ~Ztlt1

    ~yeyt =

    ~kekt

    ~ZeZtlelt

    1

    ~yeyt =

    ~k ~Zl1 ekt+(1)Zt+(1)lt

    eyt =ekt+(1)Zt+(1)lt

  • 7/21/2019 Derivation 2

    36/49

    1 + yt= 1 +kt+ (1)Zt+ (1) lt

    yt=kt+ (1) Zt+ (1) lt (2.c)

    Equation (3.b)

    ect1lt!= (1lt) eZt (1) ekt eZtlt

  • 7/21/2019 Derivation 2

    37/49

    ect = (1lt) eZt (1) ekt eZtlt (1lt)

    ec= (1l)

    eZ(1)

    ek

    eZl

    (1l)

    1

    (1t) (1l)=

    1

    ec eZ(1) ek eZl

    ecect = (1ltl) eZeZt (1)ekekt eZeZtlelt1lelt

  • 7/21/2019 Derivation 2

    38/49

    ecect = (1ltl) h eZ(1) ek (Zl)i ekt+(1)Ztlt 1lelt

    ect = (1ltl)

    " 1

    ec eZ(1)

    ek

    eZl

    #ekt+(1)

    Ztlt

    1lelt

    ect =

    (1ltl)

    (1t) (1l)ekt+(1)

    Ztlt

    1lelt

    1 + ct= (1ltl)

    (1t) (1l)

    1 +kt+ (1)Ztlt h

    1l

    1 +lti

  • 7/21/2019 Derivation 2

    39/49

    (1t) (1l) (1 + ct) = (1ltl)1 +kt+ (1) Ztlt h1lllti

  • 7/21/2019 Derivation 2

    40/49

    (1t) (1l) (1 + ct) = (1ltl)1 +kt+ (1)Ztlt h1lllti

    = (1ltl)

    0B@ 1 +kt+ (1)Ztltllkt (1) lZt+lltlltlltktllt (1)Zt+lltlt

    1CA

    = (1ltl) 1 +kt+ (1)Ztltllkt (1) lZt+lltllt != [(1l)lt]h

    (1l)

    1 +kt+ (1)Ztltllti

    = (1l) (1l)

    1 +kt+ (1) Ztlt(1l) llt

    lt (1l)

    1 +kt+ (1)Ztlt

    + ltllt

    = (1l) (1l) 1 +kt+ (1) Ztlt (1l) lltlt (1l)

  • 7/21/2019 Derivation 2

    41/49

    (1l) (1l) (1 + ct) = (1l) (1l) 1 +kt+ (1)Ztlt (1l) llt lt (1l)

    (1 + ct) = 1 +kt+ (1)Ztlt 1

    (1l)

    llt 1

    (1l)

    lt

    ct =kt+ (1) Ztlt 1

    (1l)llt

    1

    (1l)lt

    ct =kt+ (1) Zt"+

    1

    (1l)l#lt

    1

    (1l)lt (3.c)

  • 7/21/2019 Derivation 2

    42/49

    Equation (4.b)

    (1 +xt) (1 +)1

    ~ct=Et

    1

    ~ct+1

    ekt+11 eZt+1lt+11 + (1) (1 +xt+1)

    (1 +x) (1 +)1

    ~c=

    1

    ~c

    ek1 eZl1 + (1) (1 +x)

    (1 +x) (1 +) = ek1 eZl1 + (1) (1 +x)

  • 7/21/2019 Derivation 2

    43/49

    (1 +x) (1 +) = ~y~k + (1) (1 +x)

    (1 +x) (1 +)

    =

    ~y~k

    + (1) (1 +x)

    (1 + xt+x) (1 +)1

    ~cect =Et

    1

    ~cect+1

    "

    ~yeyt+1

    ~kekt+1+ (1) (1 + xt+1+x)

    #

    (1 + xt+x) (1 +) ect =Ete

    ct+1

    ~y~k

    eyt+1kt+1 + (1) (1 + xt+1+x)

  • 7/21/2019 Derivation 2

    44/49

    Ignore Et for a moment

    (1 + xt+x) (1 +) ect+1ct =

    eyekeyt+1kt+1 + (1) (1 + xt+1+x)

    (1 + xt+x) (1 +) (1 + ct+1 ct) =

    24 eyek(1 + yt+1 kt+1)+ (1) (1 + xt+1+x)

    35

    (1 + xt+x) (1 + ct+1ct)(1 +)

    = 24 eyek(1 + yt+1 kt+1)+ (1) (1 + xt+1+x)35

  • 7/21/2019 Derivation 2

    45/49

    LHS

    (1 + xt+x) (1 + ct+1 ct)(1 +)

    = [1 + (ct+1 ct)] [(1 +x) + xt]

    (1 +)

    = (1 +x)(1 + )

    + xt

    (1 +)

    + (ct+1ct) (1 +x)

    (1 + )

    + (ct+1 ct) xt(1 +)

    = (1 +x)(1 +

    ) + xt(1 +

    ) + (ct+1ct) (1 +x)(1 +

    )

  • 7/21/2019 Derivation 2

    46/49

    RHS

    ey

    ek

    (1 + yt+1kt+1) + (1) (1 + xt+1+x)

    = ey

    ek + ey

    ek yt+1 kt+1+ (1) (1 +x) + (1) xt+1 LHS=RHS

  • 7/21/2019 Derivation 2

    47/49

    (1 +x)(1 +)

    + xt(1 +)

    + (ct+1ct) (1 +x)(1 +)

    =

    eyek + eyekyt+1 kt+1

    + (1) (1 +x) + (1) xt+1

    xt(1 +)

    +(ct+1ct) (1 +x)

    (1 +)

    =

    eyekyt+1 kt+1

    + (1) xt+1

    Add back expectation

  • 7/21/2019 Derivation 2

    48/49

    xt(1 +)

    +Et (ct+1 ct) (1 +x)(1 +)

    =Et eyek yt+1kt+1+ (1) xt+1

    xt(1 +)

    + (1 +x)

    (1 +)

    Etct+1(1 +x)

    (1 +)

    ct (4.c)

    = Eteyek yt+1 kt+1+ (1) xt+1 (5)

    Equation (5.b)

    (1 +n) (1 +) ~kt+1= (1) ~kt+ ~xt

  • 7/21/2019 Derivation 2

    49/49

    (1 +n) (1 +) ~kekt+1 = (1) ~kekt + ~xext

    (1 +n) (1 +) ~k

    1 +kt+1

    = (1) ~k

    1 +kt

    + ~x (1 + xt)

    (1 +n) (1 +) ~kkt+1= (1) ~kkt+ ~xxt

    (1 +n) (1 +) kt+1= (1) kt+ ~x~kxt (5.c)