des outils pour l’adaptation de maillage anisotrope en ... · pdf filedes outils pour...
Post on 31-May-2019
218 views
Embed Size (px)
TRANSCRIPT
Des outils pour ladaptationde maillage anisotrope en
dimension 2 et 3F. Hecht
Laboratoire Jacques-Louis Lions
Universite Pierre et Marie Curie
Paris, France
http://www.ann.jussieu.fr/~hecht mailto:hecht@ann.jussieu.fr
Cermics, Novembre, 2003 1
http://www.ann.jussieu.fr/~hechtmailto:hecht@ann.jussieu.fr
PLAN
Introduction
un schema dadaptation
Metrique et Maillage unite
Outil lie aux metriques
intersection, interpolation, gradation
Metrique versu indicateur derreur
Metrique pour element fini P1
Metrique pour element fini P2
Probleme de convergence (pas le temps)
http://www.ann.jussieu.fr/~hecht/freefem++.htm
Exemples / Demo of FreeFem++
Conclusion / Future (pas le temps)
Cermics, Novembre, 2003 2
Introduction : Le vrai probleme
Nous voulons resoudre une EDP, dans un domain avec la methode des
elements finis,
Le plus vite possible avec une precision donnee .
The theorie of error indicator given, the level of the error, but how to
compute the local mesh size to get a equidistribuate error.
Cermics, Novembre, 2003 3
Scheme of mesh adaption
i=0 ;
Soit Thi initial mesh
loop
compute ui the solution on mesh Thi
evaluate the level of error
si < 0 break
compute the new local mesh size
construct a mesh according to prescribe the mesh size.
Remarque : comment transforme un indicateur derreur local K en carte de
taille. Moralement, il faut estimer :
Khi
Cermics, Novembre, 2003 4
A main IDEA
The difficulty is to find a tradeoff between the error estimate and the mesh
generation, because this two work are strongly different.
To do that, we propose way based on a metric M and unit mesh w.r.t M The metric is a way to control the mesh size.
remark : The class of the mesh which can be created by the metric, is very
large.
Cermics, Novembre, 2003 5
Example of mesh adapted for 2 functions
f1 = (10 x3 + y3) + atan2(0.001, (sin(5 y) 2 x))
f2 = (10 y3 + x3) + atan2(0.01, (sin(5 x) 2 y)).
Enter ? for help Enter ? for help Enter ? for help
Cermics, Novembre, 2003 6
Metric / unit Mesh
In Euclidean geometry the length || of a curve of IRd parametrized by (t)t=0..1is
|| = 10
< (t), (t) >dt
We introduce the metric M(x) as a field of d d symmetric positive definitematrices, and the length ` of w.r.t Mis :
` = 10
< (t),M((t))(t) >dt
The key-idea is to construct a mesh where the lengths of the edges are
close to 1 accordingly to M.
Cermics, Novembre, 2003 7
Remark on the Metric
Let S be a surface , parametrized by
F (u) R3 with(u) IR2, and let (t) = F ((t)), t [0,1]
be a curve on the surface. The length of the curve is
|| = 10
< (t),(t) >dt
|| = 10
< (t), tFF(t) >dt
and on a parameteric surface the metric is
M = tFF
Cermics, Novembre, 2003 8
the Metric versus mesh size
at a point P ,
M =(
a bb c
)
M = R(
1 00 2
)R1
where R = (v1, v2) is the matrix construct with the 2 unit eigenvectors vi and
1, 2 the 2 eigenvalues.
The mesh size hi in direction vi is given by 1/
i
i =1
h2i
Cermics, Novembre, 2003 9
Remark on metric :
If the metric is independant of position, then geometry is euclidian. But the
circle in metric become ellipse in classical space.
Infact, the unit ball (ellipse) in a metric given the mesh size in all the
direction, because the size of the edge of mesh is close to 1 the metric.
If the metric is dependant of the position, then you can speak about
Riemmanian geometry, and in this case the sides of triangle are geodesics,
but the case of mesh generation, you want linear edge.
Cermics, Novembre, 2003 10
Metrix Tools
The unit ball B(M) in a metrix M plot the maximum mesh size on all the direction.If you two unknows u and v, we just compute the metrix Mv and Mu , find a metrix Muvcall intersection such that :
B(Muv) B(Mu) B(Mv)
Near the wall we inforce the metric such that :
Mw = (n t)(
f(y+)/h2wall 00 f(y+)R
)(n t)t
Where R is the radius of curvature, n, t the normal and tangent vector and f(y+) is asmooth decreasing function from 1 to 0.
Cermics, Novembre, 2003 11
Interpolation de Metric
Generalement, la Metrique, nest connue quaux sommets du maillage, il
faut donc interpole.
linterpolation direct des matrices (revient a dire que la fonction est P3 (on
genere trop de points).
literpolation en h revient a interpole avec
M(t) =((t)M
12
A + (1 t)M12B
)2car 1/h2 (trop lent)
une derniere solution est :
M(t) =((t)M1A + (1 t)M
1B
)1
Cermics, Novembre, 2003 12
Remark
The quality of the generated triangles, depend on the variation of the M inspace
The idea is to bound the variation of the M
H- variation
In the case of isotropic metric
M(P ) =1
h2PId
the length of a edge PQ of T
`(PQ) = |PQ| 10
1
h(t)dt
where h(t) = (1 t) hP + t hQ, linear interpolation
`(PQ) = |PQ|ln(hQ) ln(hP)
hQ hP the H-variation is
v(PQ) =hQ hP|PQ|
Cermics, Novembre, 2003 13
Definition
let be Max(v(PQ)) an all mesh edges PQ where v(PQ) =hQhP|PQ| )
let be the maximal ratio of the Euclidean length of all the two adjacent
and opposite edges in a new unit mesh
Result :
' ln()
Cermics, Novembre, 2003 14
Size correction w/r H-variation
In the isotropic case, the problem is to bound v(PQ) by a threshold value
thus simply modify hP and hQ accordingly :
hP = min(hP , hQ + |PQ|)
hQ = min(hQ, hP + |PQ|)
in anisotropic case
M(P ) = M(P ) M(Q)(1 + `P (PQ))2
M(Q) = M(Q) M(P )(1 + `Q(PQ))2 ,
where `P (PQ) (resp. `Q(PQ)) is the length of PQ w/r to M(P ) (resp.M(Q))
Cermics, Novembre, 2003 15
Metric computation with Hessien for P1 Lagrange finite element
The le Cea lemma say : the error is bound with the interpolation error. In a
classical Adaption way, the metric tensor M is constructed in order toequilibrate the error of interpolation.
Find a metric tensor M, such that, the adapted mesh constructed from Mminimizes the interpolation error :
||U h(U)||X
where h is the finite element interpolation operator considered
Cermics, Novembre, 2003 16
En dimension un et la solution u est connu
notons : u = inf[a,b] u et u = sup[a,b] u
.
1
2u(x a)(x b) (u1u)
1
2u(x a)(x b)
dou
(b a)2
8u u1u
(b a)2
8u
donc les erreurs dinterpolation sur [a, b] sont :
u1u||L (b a)2
8|u|
u1u||L1 (b a)3
12|u|
u1u||L2 (b a)
52
2
30|u|
Cermics, Novembre, 2003 17
En dimension Un Ladaptation revient a decouper le segment [x0, xN ] telle
que
Li = xi+1xi
|u| =
LN
soit independant de i.
La question naturelle est ba
|u| u1u|| Cp
ou p est un exposant a determiner en fonction de la norme et C une
contante independante de la longueur b a.
Cermics, Novembre, 2003 18
En dimension 2
With the P1 finite element the error interpolation is :
||uhu||T 1
2sup
x,yT( t ~ax |H(y)| ~ax )
where a is a vertex of triangle T
where |H| have the same eigen-vectors and the eigen-value of |H| is the absof the eigen-value of H,
We take M = 10 |H| and where 0 is the expected error.
Cermics, Novembre, 2003 19
Suite
||uhu||T 1
2sup
x,yT( t ~ax |H(y)| ~ax )
il y a 2 cas, le maximum est atteint en c a linterieur de T ou sur une arete
de T . Dans le second cas nous sommes ramene au cas 1D. Donc c considere
comme interne et on a donc : (uhu)xi (c) = 0, La formule de Taylor MacLaurin dit qil existe un point d ]a, c[ tel que
0 = (uhu)(a) = u(c) +1
2
(t ~ac
2(uhu)xixj
(d)
)~ac
mais
t ~ad
(2(uhu)
xixj(d)
)~ad sup
x,yT( t ~ax |H(y)| ~ax)
Cermics, Novembre, 2003 20
La solution uh est discrete
Nous voulons calculer H dune fonction P1 par morceaux. Approximation duHessien Hkh a chaque sommet k
Methode 1
Hkhij = 1
3|k|
k
iuhjwk
Remarques : cette approximation ne converge par si h 0, et le stencilest juste forme des triangles contenant k.
Methode 2 faire une double projection :
H = L2
(L2
(u
))
ou L2 est la projection L2 sur lespace des fonctions elements finis P1
Lagrange.
Remarques : cette approximation converge telle si h 0 ?. Le stencil estforme des triangles voisins des triangles contenant k.
Cermics, Novembre, 2003 21
Probleme ouvert
Pour que la methode adaptation proposer converge, juste pour le probleme
dinterpolation, (on calcul le Hessien a partir de linterpolation)
Question : construire un schema pour calculer une approximation du Hessien