design and analysis of a hyperspectral microwave receiver

26
W. Blackwell, C. Galbraith, T. Hancock, R. Leslie, I. Osaretin, M. Shields, P. Racette (NASA GSFC), L. Hilliard (NASA GSFC) IGARSS 2012 Design and Analysis of a Hyperspectral Microwave Receiver Subsystem

Upload: others

Post on 09-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

W. Blackwell, C. Galbraith, T. Hancock, R. Leslie, I. Osaretin, M. Shields, P. Racette (NASA GSFC), L. Hilliard (NASA GSFC)

IGARSS 2012

Design and Analysis of a Hyperspectral Microwave Receiver Subsystem

IGARSS - 2 WJB 7/25/12

• Project summary, key objectives, and roles/responsibilities • RF receiver electronics and scan head • IF processor module • Next steps

Outline

IGARSS - 3 WJB 7/25/12

• Hyperspectral microwave (HM) sounding has been proposed to achieve unprecedented performance

• HM operation is achieved using multiple banks of RF spectrometers with large aggregate bandwidth

• A principal challenge is Size/Weight/Power scaling

• Objectives of this work: – Demonstrate ultra-compact (100 cm3)

52-channel IF processor (enabler) – Demonstrate a hyperspectral

microwave receiver subsystem – Deliver a flight-ready system to

validate HM sounding

Project Summary and Key Objectives

Factor of ten reduction in

sensor volume!!

IGARSS - 4 WJB 7/25/12

HyMAS System Components Roles and Responsibilities

Scan Head Assembly (GSFC CoSMIR/CoSSIR)

IGARSS - 5 WJB 7/25/12

HyMAS (9-channel) IF Frequency Plan

IGARSS - 6 WJB 7/25/12

• K-connector (18-29 GHz) input from RF front-end • Two IF amplifiers (18-29 GHz)

– Buffered with attenuators for gain adjustment and matching at IF input/output • Provides termination for RF front-end output and multiplexer input • Nominally 3 dB at input/output, “0 dB” in between stages

• Multiplexer channelizes IF band • Detectors detect power at output of each channel • Op-amp fed by detectors, drives ADC • Microcontroller sequences data flow

IF Processor Description

IGARSS - 7 WJB 7/25/12

HyMAS – IF Processor

IGARSS - 8 WJB 7/25/12

• Single port feeds 9-channels through a corporate feed power splitting network – Reduces interaction among contiguous channels – Low-risk for initial demonstration

• IF channel filters are LTCC-based substrate integrated waveguide (SIW) cavity types – High unloaded Q resonators (500+) in small volume for low insertion

loss and sharp filter skirts – Probe/bond pads for S-parameter testing and assembly

• First 9-channel design completed and in fabrication – Omega Micro Technology (DuPont 9K7), expect parts in 9/2012

IF Multiplexer

IGARSS - 9 WJB 7/25/12

• Substrate Integrated Waveguide (SIW) filters offer lower insertion loss and better filter shape factor than stripline interdigital filters due to their higher Q (> 500) resonators – Filters are realized in two-layer LTCC stack with via “fences”

creating the waveguide side walls – Via “posts” control coupling in between resonator cavities

HyMAS LTCC SIW Filters

21.00 22.00 23.00 24.00 25.00Freq [GHz]

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

Y1

SIW resonatorXY Plot 1 ANSOFT

Curve InfodB(S(Port1,Port1))

Setup1 : Sw eep1dB(S(Port2,Port1))

Setup1 : Sw eep1

HFSS Simulation HFSS Model

WG cavity

Coupling (“iris”)

IGARSS - 10 WJB 7/25/12

IF Channel 1 (HFSS)

18 20 22 24 26 2816 30

-80

-60

-40

-20

-100

0

freq, GHz

dB(S

(2,1

))dB

(S(1

,1))

Out of band response to be attenuated by detector roll-off

IGARSS - 11 WJB 7/25/12

IF Channel 2 (HFSS)

24 25 26 27 28 2923 30

-120

-100

-80

-60

-40

-20

-140

0

-25

-20

-15

-10

-5

-30

0

freq, GHz

dB(S

(2,1

))m1 m2dB

(S(1,1))

m1freq=dB(S(2,1))=-6.218

23.96GHz

m2freq=dB(S(2,1))=-6.059

24.50GHz

IGARSS - 12 WJB 7/25/12

IF Channel 3 (HFSS)

24 25 26 27 28 2923 30

-120

-100

-80

-60

-40

-20

-140

0

-30

-20

-10

-40

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-6.197

24.57GHz

m2freq=dB(S(2,1))=-5.964

25.13GHz

IGARSS - 13 WJB 7/25/12

IF Channel 4 (HFSS)

24 25 26 27 28 2923 30

-120

-100

-80

-60

-40

-20

-140

0

-30

-25

-20

-15

-10

-5

-35

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-5.757

25.16GHz

m2freq=dB(S(2,1))=-6.092

25.79GHz

IGARSS - 14 WJB 7/25/12

IF Channel 5 (HFSS)

24 25 26 27 28 2923 30

-140

-120

-100

-80

-60

-40

-20

-160

0

-30

-20

-10

-40

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-6.070

25.79GHz

m2freq=dB(S(2,1))=-6.051

26.42GHz

IGARSS - 15 WJB 7/25/12

IF Channel 6 (HFSS)

24 25 26 27 28 2923 30

-150

-100

-50

-200

0

-25

-20

-15

-10

-5

-30

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-5.924

26.46GHz

m2freq=dB(S(2,1))=-5.833

26.98GHz

IGARSS - 16 WJB 7/25/12

IF Channel 7 (HFSS)

24 25 26 27 28 2923 30

-150

-100

-50

-200

0

-25

-20

-15

-10

-5

-30

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-5.974

27.04GHz

m2freq=dB(S(2,1))=-5.876

27.65GHz

IGARSS - 17 WJB 7/25/12

IF Channel 8 (HFSS)

24 25 26 27 28 2923 30

-150

-100

-50

-200

0

-25

-20

-15

-10

-5

-30

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-5.739

27.68GHz

m2freq=dB(S(2,1))=-5.522

28.24GHz

IGARSS - 18 WJB 7/25/12

IF Channel 9 (HFSS)

24 25 26 27 28 2923 30

-200

-150

-100

-50

-250

0

-25

-20

-15

-10

-5

-30

0

freq, GHz

dB(S

(2,1

))

m1

m2dB

(S(1,1))

m1freq=dB(S(2,1))=-6.070

28.33GHz

m2freq=dB(S(2,1))=-6.134

28.86GHz

IGARSS - 19 WJB 7/25/12

IF Filter Layout (LTCC)

30 mm

8 m

m

4.5 mm

IGARSS - 20 WJB 7/25/12

IF Processor Form Factor 1 Horizontal Resonators

Top View: 8/9-channel Panel Side View: 52-ch IF Processor

IGARSS - 21 WJB 7/25/12

IF Processor Form Factor 2 Horizontal+Vertical (Stacked) Resonators

Top View: 26-channel Panel Side View: 52-ch IF Processor

IGARSS - 22 WJB 7/25/12

IF Processor Form Factor 3 (Project Goal) Vertical (Stacked) Resonators

Top View: 52-channel Panel Side View: 52-ch IF Processor

IGARSS - 23 WJB 7/25/12

• Hyperspectral microwave sensors could change the landscape of atmospheric sounding for both LEO and GEO systems.

• An intermediate frequency processor fabricated in LTCC technology is a key innovation enabling ultracompact microwave radiometry in a variety of applications with severe constraints on size, weight, and power.

• Fabrication and testing of the hyperspectral microwave receiver subsystem will occur in 2012/2013 with airborne validation in 2014/2015.

Summary

IGARSS - 24 WJB 7/25/12

Backup

IGARSS - 25 WJB 7/25/12

CoSMIR/CoSSIR Scan Head

IGARSS - 26 WJB 7/25/12

Frequency Plan