design and commissioning of an experiment to and commissioning of an experiment to characterize the...

Download Design and Commissioning of an Experiment to and Commissioning of an Experiment to Characterize the Performance of a Lithium-Bromide ... 2.3 ESP-r Absorption ... Interpolation procedure

Post on 14-Feb-2018

214 views

Category:

Documents

1 download

Embed Size (px)

TRANSCRIPT

  • Design and Commissioning of an Experiment to

    Characterize the Performance of a Lithium-Bromide

    Absorption Chiller

    By

    Geoffrey Johnson

    B.Eng., Carleton University, 2008

    A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs

    in partial fulfillment of the requirements for the degree of

    Master

    in

    Applied Science

    Carleton University

    Ottawa, Ontario

    2011, Geoffrey Johnson

  • ii

    Abstract

    Solar air conditioning systems based on absorption chillers could help relieve the

    central electrical grid of the burden caused by residential air conditioning during the

    cooling season. Currently it is unclear whether residential solar air conditioning systems

    based on absorption chillers can succeed in Canada. Building performance simulation

    may be used to answer questions regarding the potential of solar air conditioning systems

    based on absorption chillers. Current methods of building performance simulation of

    solar air conditioning systems based on absorption chillers rely on absorption chiller

    models whose calibration should be improved. Consequently, there is a need for reliable

    absorption chiller performance data. In this research, a facility has been developed to

    characterize the performance of an absorption chiller. For this facility, an absorption

    chiller with a nominal cooling capacity of 35 kW has been acquired. This facility has

    been used to measure the performance of the acquired absorption chiller for a variety of

    controlled boundary conditions. It is intended that the performance data gathered in this

    research be used as part of a data set to calibrate a model of an absorption chiller in the

    future for building performance simulation.

  • iii

    Acknowledgements

    The author is grateful for the funding provided by Natural Resources Canada along with

    the Natural Sciences and Engineering Research Council of Canada through the Solar

    Buildings Research Network and through Ian Beausoleil-Morrisons Discovery Grant.

    Special thanks to Stephanie Seemel, Jimmy Ly, Rabita Huq and Briana Kemery who

    contributed to the thermopile and thermocouple calibration and to the operation of the

    facility developed in this research.

    I would like to acknowledge my supervisor, Dr. Ian Beausoleil-Morrison, who has shown

    nothing but patience with this project. I would also like to acknowledge my fiance and

    parents who have supported me unconditionally since before the beginning of this work.

  • iv

    Table of Contents

    1.0 Introduction.............................................................................................................1

    1.1 Motivation ............................................................................................................ 1

    1.2 Potential for Solar Thermal Air Conditioning in Canada .................................... 2

    1.3 Literature Review ................................................................................................. 4

    1.3.1 Simulation Based Studies of Solar Air Conditioning Systems Based on

    Absorption Chillers...................................................................................................... 6

    1.3.2 Experimental Studies of Solar Air Conditioning Systems Based on Absorption

    Chillers....................................................................................................................... 11

    1.3.3 Simulation Based Studies of Absorption Chiller Performance ........................ 15

    1.3.4 Experimental Studies of Absorption Chiller Performance ............................... 20

    1.4 Objectives ........................................................................................................... 24

    1.5 Outline of Thesis ................................................................................................ 25

    2.0 Modelling Solar Cooling Systems........................................................................26

    2.1 Typical Equipment of a Residential Solar Air Conditioning System Based on an

    Absorption Chiller ......................................................................................................... 26

    2.2 Absorption Cycle Thermodynamics................................................................... 28

    2.3 ESP-r Absorption Chiller Model ........................................................................ 32

    3.0 Design and Commissioning of an Experiment...................................................38

  • v

    3.1 Absorption Chiller Laboratory Design ............................................................... 38

    4.0 Instrumentation and Uncertainty Analysis........................................................49

    4.1 Thermocouple Calibration.................................................................................. 49

    4.2 Thermopile Calibration ...................................................................................... 52

    4.3 Experimental Uncertainty Analysis ................................................................... 61

    5.0 Results....................................................................................................................77

    5.1 Sample Absorption Chiller Performance Experiment ........................................ 77

    5.2 Derived Parameters of an Absorption Chiller Performance Experiment ........... 82

    5.3 Absorption Chiller Performance Data ................................................................ 86

    5.4 Absorption Chiller Transient Performance During Start-up ............................ 102

    5.5 Experimental Validation .................................................................................. 104

    6.0 Conclusions and Future Work...........................................................................107

    6.1 Conclusions ...................................................................................................... 107

    6.2 Future Work ..................................................................................................... 108

    References.......................................................................................................................110

  • vi

    List of Tables

    Table 3.1: Flow meters ..................................................................................................... 42

    Table 3.2: Experimentally measured quantities ................................................................ 43

    Table 3.3: Fluid circuit requirements ................................................................................ 44

    Table 3.4: External pumps ................................................................................................ 44

    Table 3.5: Heat exchangers ............................................................................................... 45

    Table 3.6: Electric in-line heaters ..................................................................................... 45

    Table 4.1: Thermocouple calibration equations................................................................ 51

    Table 4.2: Summary of thermopile junction number selection calculation ...................... 54

    Table 4.3: Interpolation procedure bias error estimation summary .................................. 69

    Table 4.4: Thermopile EMF measurement bias error calculation summary .................... 73

    Table 4.5: Data acquisition system bias error conversion from mV to oC ....................... 73

    Table 4.6: Thermocouple bias error summary .................................................................. 75

    Table 5.1: Experimental grid: Boundary conditions for which absorption chiller

    performance was investigated. .......................................................................................... 78

    Table 5.2: Specific heat and density functions for water .................................................. 84

    Table 5.3: Absorption chiller performance dependence on generator flow rate ............. 101

  • vii

    List of Figures

    Figure 1.1: Electricity generated in Ontario ....................................................................... 2

    Figure 2.1: Typical residential solar air conditioning system based on an absorption

    chiller ................................................................................................................................ 27

    Figure 2.2: Idealized absorption cycle temperature - entropy diagram ............................ 28

    Figure 2.3: Solar thermal driven absorption air conditioning system ............................... 29

    Figure 2.4: Absorption cycle refrigerant temperature - entropy diagram ......................... 30

    Figure 2.5: ESP-r absorption chiller model ...................................................................... 33

    Figure 3.1: Absorption chiller test facility design schematic ........................................... 39

    Figure 3.2: Absorption chiller test facility: inlet piping to chiller .................................... 46

    Figure 3.3: Absorption chiller test facility: Yazaki WFC-SC10 ....................................... 47

    Figure 3.4: Absorption chiller test facility: pumps and structural support ....................... 47

    Figure 4.1: Thermocouple calibration equipment ....................................................

Recommended

View more >