design of a positive feedback investment cycle to achieve...

73
1 Design of a Positive Feedback Investment Cycle to Achieve a Lunar Habitat: ROI Calculator for Capability SteppingStones Final Report GMU SEOR SYST 495 Submitted: April 23, 2012 Submitted to: Dr. Lance Sherry Submitted by: Daniel Hettema Scott Neal Anh Quach Robert Taylor Sponsored By:

Upload: trinhcong

Post on 28-Apr-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

  1  

Design  of  a  Positive  Feedback  Investment  Cycle  to  Achieve  a  

Lunar  Habitat:  ROI  Calculator  for  Capability  

Stepping-­‐Stones          

Final  Report  GMU  SEOR  SYST  495  

 Submitted:   April  23,  2012  Submitted  to:   Dr.  Lance  Sherry  Submitted  by:   Daniel  Hettema     Scott  Neal     Anh  Quach     Robert  Taylor  

         

Sponsored  By:  

  2  

 

Table  of  Contents  Table  of  Tables  .............................................................................................................  4  

Table  of  Figures  ............................................................................................................  5  

Abstract  .......................................................................................................................  7  

Context  ........................................................................................................................  9  Introduction  ..................................................................................................................................................................  9  Benefits  of  Space  ........................................................................................................................................................  9  Past  and  Current  Investment  ................................................................................................................................  9  Potential  Outcomes  .................................................................................................................................................  11  Obstacles  ......................................................................................................................................................................  12  

Industry  Limitations  ..............................................................................................................................................  12  Capital  Investment  ..................................................................................................................................................  12  Debris  ............................................................................................................................................................................  12  Launch  Costs  ..............................................................................................................................................................  14  

Stakeholders  ..............................................................................................................................................................  14  High-­‐Altitude/Space  Tourism  ............................................................................................................................  15  Debris  Collection  ......................................................................................................................................................  15  Space  Habitats  ..........................................................................................................................................................  16  Launch  Services  ........................................................................................................................................................  16  Governments  ..............................................................................................................................................................  17  Earth’s  Population  ..................................................................................................................................................  17  

“Optimal”  Stakeholder  Interactions  ................................................................................................................  18  Realities  .......................................................................................................................................................................  19  Debris  Collection  ......................................................................................................................................................  19  LEO  Habitat  Bootstrap  Funding  .......................................................................................................................  21  Stakeholder  Objectives/Issues  Chart  ...............................................................................................................  23  Disinvestment  Cycle  ................................................................................................................................................  24  

Need  &  Problem  Statements  ......................................................................................  27  Need  ..............................................................................................................................................................................  27  Problem  .......................................................................................................................................................................  27  

Proposed  Solution:  Capability  Stepping-­‐Stones  ..........................................................  28  Project  Boundary  ....................................................................................................................................................  28  Single-­‐String  Design  ...............................................................................................................................................  28  Capability  Stepping-­‐Stones  .................................................................................................................................  29  High-­‐Altitude  Tourism  ...........................................................................................................................................  29  Debris  Collection  ......................................................................................................................................................  29  LEO  Habitation  .........................................................................................................................................................  29  LEO  Hub  and  Moon  Base  ......................................................................................................................................  30  Permanent  Lunar  Habitat  ...................................................................................................................................  30  

Building  Blocks  .........................................................................................................................................................  31  Decision  Support  Tool  (ROI  Calculator)  ........................................................................................................  33  

  3  

Models  .......................................................................................................................  34  Top  Level  .....................................................................................................................................................................  34  Stepping-­‐Stone  1  .....................................................................................................................................................  35  Stepping-­‐Stone  2  .....................................................................................................................................................  36  Stepping-­‐Stone  3  .....................................................................................................................................................  38  Launch  Costs  ..............................................................................................................................................................  40  

Stepping-­‐Stone  4  .....................................................................................................................................................  40  Stepping-­‐Stone  5  .....................................................................................................................................................  42  

Results  .......................................................................................................................  44  Overall  ..........................................................................................................................................................................  44  High-­‐Altitude  Tourism  ..........................................................................................................................................  45  Non-­‐Modeled  Output  ..............................................................................................................................................  47  

Debris  Collection  .....................................................................................................................................................  47  LEO  Habitats  ..............................................................................................................................................................  49  Non-­‐Modeled  Output  ..............................................................................................................................................  51  

LEO  Hub  &  Moon  Base  ..........................................................................................................................................  51  Non-­‐Modeled  Output  ..............................................................................................................................................  54  

Permanent  Lunar  Habitat  ....................................................................................................................................  54  

Trade-­‐off  Analysis  ......................................................................................................  56  Stepping-­‐Stone  5  Cost  Reduction  .....................................................................................................................  56  Debris  Collection  .....................................................................................................................................................  56  Launch  Costs  .............................................................................................................................................................  57  Lunar  Mining  &  Manufacturing  .........................................................................................................................  58  

Recommendations  .....................................................................................................  60  Capability  Rank-­‐List  ...............................................................................................................................................  60  Timeline  ......................................................................................................................................................................  61  Potential  User  ...........................................................................................................................................................  62  

Management  .............................................................................................................  64  WBS  ...............................................................................................................................................................................  64  Budget  ..........................................................................................................................................................................  67  Gantt  Chart  .................................................................................................................................................................  68  Breakdown  of  Hours  Worked  ............................................................................................................................  71  

References  .................................................................................................................  72    

  4  

Table  of  Tables  Table  1:  Stakeholder  objectives/issues  chart  _______________________________________________________________  24  Table  2:  Debris  Collection  Variables  _________________________________________________________________________  37  Table  3:  LEO  Habitat  Variables  ______________________________________________________________________________  39  Table  4:  LEO  Hub  &  Moon  Base  Variables  ___________________________________________________________________  41  Table  5:  Permanent  Lunar  Habitat  Variables  _______________________________________________________________  43  Table  6:  Overall  Results  ______________________________________________________________________________________  44  Table  7:  High-­‐Altitude  Tourism  Input  Values  _______________________________________________________________  46  Table  8:  LEO  Habitat  Input  Values  __________________________________________________________________________  49  Table  9:  Hub  &  Moon  Base  Input  Values  ____________________________________________________________________  52  Table  10:  Permanent  Lunar  Habitat  Input  Variables   ______________________________________________________  54  Table  11:  Permanent  Lunar  Habit  Cost  Reduction  Methods  _______________________________________________  56  Table  12:  Capability  Rank-­‐List  _______________________________________________________________________________  61  Table  13:  Project  Budget  _____________________________________________________________________________________  67  Table  14:  Breakdown  of  Hours  Worked  _____________________________________________________________________  71  

  5  

Table  of  Figures  Figure  1:  NASA  Budget  History  as  %  of  Total  Budget  ______________________________________________________  10  Figure  2:  Location  of  Space  Debris  __________________________________________________________________________  13  Figure  3:  "Optimal"  Coordinated  Stakeholders  _____________________________________________________________  19  Figure  4:  Reality  #1:  Debris  Collection  Underfunded  _______________________________________________________  20  Figure  5:  Debris  Collection  Tension  Cycle  ___________________________________________________________________  21  Figure  6:  Reality  #2:  Lack  of  Bootstrap  Funding  for  Space  Habitats  ______________________________________  22  Figure  7:  Reality  #3:  High  Cost  of  Launch  Services  _________________________________________________________  23  Figure  8:  Disinvestment  Cycle  ________________________________________________________________________________  25  Figure  9:  Building  Block  Diagram  ___________________________________________________________________________  32  Figure  10:  Top  Level  I/O  _____________________________________________________________________________________  35  Figure  11:  Input/Output  Diagram  for  High-­‐Altitude  Tourism  _____________________________________________  35  Figure  12:  Input/Output  Diagram  for  High-­‐Altitude  Tourism  and  Debris  Collection  _____________________  36  Figure  13:  Efficiency  of  Debris  Collection  Graph  ____________________________________________________________  37  Figure  14:  Input/Output  Diagram  for  LEO  Habitats  _______________________________________________________  39  Figure  15:  Launch  Cost  Reduction  ___________________________________________________________________________  40  Figure  16:  Input/Output  Diagram  for  LEO  Hub  and  Moon  Base  ___________________________________________  41  Figure  17:  Input/Output  Diagram  for  Permanent  Lunar  Habitat  _________________________________________  43  Figure  18:  Investment  Cycle   _________________________________________________________________________________  45  Figure  19:  High-­‐Altitude  Investment/Revenue  _____________________________________________________________  46  Figure  20:  High-­‐Altitude  Total  Trips  ________________________________________________________________________  47  Figure  21:  Reduction  in  High-­‐Altitude  Tourism  Insurance  _________________________________________________  48  Figure  22:  High-­‐Altitude  Tourism  Investment  with  and  without  debris  collection  _______________________  49  Figure  23:  LEO  Habitat  Investment  &  Revenue  _____________________________________________________________  50  Figure  24:  Total  #  of  LEO  Habitats  __________________________________________________________________________  51  Figure  25:  Hub  &  Moon  Base  Investment  &  Revenue  _______________________________________________________  52  Figure  26:  Number  of  LEO  Habitats  for  SS  4  ________________________________________________________________  53  Figure  27:  Trips  to  LEO  Hub  &  Moon  Base  __________________________________________________________________  53  Figure  28:  Permanent  Lunar  Habitat  Investment  &  Revenue  ______________________________________________  55  Figure  29:  Amount  of  Regolith  Removed  ____________________________________________________________________  55  Figure  30:  Debris  Collection  Effect  on  LEO  Habitats   _______________________________________________________  57  Figure  31:  Launch  Costs  on  LEO  Hub  ________________________________________________________________________  58  Figure  32:  Lunar  Habitat  Investment  With  and  Without  Mining  &  Manufacturing  ______________________  59  Figure  33:  Recommended  Stepping-­‐Stone  Timeline  ________________________________________________________  62  Figure  34:  Project  Budget  ____________________________________________________________________________________  67  

  6  

Figure  35:  Project  CPI  &  SPI  _________________________________________________________________________________  68  

  7  

Abstract  As  mankind  continues  to  progress,  a  logical  next  step  is  the  expansion  into  

space.    Independent  space  enterprises  are  developing  capabilities  to  support:  space  

tourism,  space  debris  collection,  low  earth  orbit  (LEO)  habitats,  lunar  visits,  and  

temporary/permanent  lunar  habitats.  The  structure  of  the  space  market  has  created  

an  industry  structure  such  that  activities  are  independent,  are  not  coordinated,  and  

do  not  consider  leveraging  adjacent  capabilities.  For  example,  insurance  costs  are  

determined  based  on  individual  capabilities  and  do  not  take  into  account  synergies  

and  liability  mitigation  to  reduce  risk  from  adjacent  capabilities.  This  project  

evaluates  the  return  on  investment  from  coordination  of  activities  to  create  

“capability  stepping-­‐stones”  from  the  five  independent  capabilities  listed  above  to  

develop  a  lunar  habitat.  

A  decision  support  tool  that  utilizes  discrete-­‐event  simulation  was  developed  

to  estimate  the  ROI  from  alternate  investment,  direct  operating,  indirect  costs,  and  

revenues  to  determine  cost,  time,  and  risk  thresholds  to  achieve  ROI  financial  

targets.  This  model  is  based  on  data  from  peer-­‐reviewed  government  and  industry  

sources  such  as  DARPA,  NASA,  and  the  ESA  and  includes  quarterly  computation  of  

Net  Present  Value  (NPV).  

Data  and  inputs  for  the  decision  support  tool  were  used  where  available.  

Trade-­‐off  analysis  indicates  the  necessity  of  debris  collection,  and  the  importance  of  

lowering  launch  costs  on  the  development  of  space.  One  of  the  major  factors  

achieved  through  capability  stepping-­‐stones  is  lowering  of  launch  costs,  insurance  

  8  

costs  and  reversal  of  the  declining  trend  of  LEO  conditions.  These  results  indicate  an  

important  role  for  international  governance  and  collaboration  between  capability  

stepping-­‐stones  of  the  space-­‐market  place  to  maximize  the  potential  of  space.  

 

 

  9  

Context  

Introduction  

Benefits  of  Space  

  Many  technological  advances  were  developed  during  the  Space  Race  

coinciding  with  the  Cold  War.  Advances  in  technology  gave  us  many  new  devices  

such  as  the  CAT  and  MRI  machines  used  in  hospitals  across  the  globe.  The  Space  

Race  also  provided  the  technologies,  which  developed  the  foundation  for  the  

personal  computer,  a  key  tool  of  our  time.  

                Space  provides  the  next  step  for  humanity,  the  final  step  in  exploration  for  

mankind.  Space  provides  many  unique  opportunities  for  the  inhabitants  of  Earth:  

new  jobs,  new  technologies,  and  new  ideas.  Establishing  a  new  space  market  will  

provide  much  needed  economic  growth  to  help  raise  the  standard  of  living  across  

the  globe.  Through  the  further  development  and  habitation  of  space,  it  would  likely  

be  seen  even  greater  advancements  in  technologies  as  we  work  to  develop  those  

that  will  be  necessary  to  achieve  a  sustainable  life  in  space.  New  ideas  will  lead  to  

better  technologies  that  will  in  turn  help  the  people  of  Earth  live  a  better  life.  

Past  and  Current  Investment  

United  States  investment  in  space  since  1958  has  declined  (Fig.  1)  [1].  During  

the  mid-­‐1960s,  NASA  had  its  largest  federal  budget  as  a  percentage  of  the  GDP.  

During  this  time  period,  many  new  technologies  were  developed  that  culminated  

with  putting  the  first  men  on  the  Moon.  Since  then,  the  annual  percentage  of  the  

  10  

federal  budget  for  NASA  has  fallen  significantly,  reaching  a  point  of  0.48%  of  the  

GDP  for  the  current  2012  NASA  budget,  one  tenth  of  NASA’s  peak  budget  in  the  

1960s.  

 

Figure  1:  NASA  Budget  History  as  %  of  Total  Budget  

This  decline  in  budget  allotment  can  be  attributed  primarily  to  lack  of  

interest  or  change  in  priorities  by  people,  government,  and  the  private  sector  

regarding  space  programs.  Without  motivation  for  space  development,  interest  in  

space  has  diminished.  Interest  in  the  development  of  space  translates  to  investment,  

so  garnering  interest  in  space  is  necessary.  

        Private  investments  are  at  an  all  time  high,  with  several  companies  around  

the  world  collectively  investing  100-­‐180  million  dollars  of  their  own  resources,  

towards  developing  space  technologies[2].    Some  of  the  more  notable  companies  

are:  Virgin  Galactic,  Bigelow  Aerospace,  SpaceX,  STI,  ULA  and  XCOR.  Each  company  

  11  

has  its  own  space  objectives  and  goals,  that  when  used  together  can  optimize  the  

development  and  expansion  of  space  habitation.  

  However,  before  any  of  this  can  happen,  collaboration  must  occur  among  

industries  that  will  reduce  the  duplication  of  technologies  and  the  waste  of  

investment.  Through  collaboration,  avoiding  the  process  of  “reinventing  the  wheel”  

will  be  paramount  in  effective  capital  investment,  while  maximizing  ROI  possible.  

Potential  Outcomes  

The  capabilities  necessary  to  achieve  a  permanent,  sustainable  presence  on  

the  Moon  are  based  on  five  key  functionalities:  launch,  hazard  mitigation,  space  

travel,  habitation,  and  sustainability.  

1)  Launch:  The  ability  to  launch  supplies,  personnel,  and  equipment  from  

Earth  is  integral  to  any  initial  space  endeavor.  

2)  Hazard  mitigation:  After  escaping  Earth’s  gravity,  the  ability  to  mitigate  

risk  from  both  natural  and  man-­‐made  hazards  in  space  takes  precedence.  

3)  Space  travel:  Space  travel  is  also  important  to  consider.  The  average  

distance  to  the  Moon  from  the  Earth  is  384,400km,  a  distance  that  required  just  

under  76  hours  of  travel  time  for  the  astronauts  of  the  Apollo  11  missions  [3]  [4].  

4)  Habitation:  Once  on  the  Moon,  with  temperatures  ranging  from  -­‐233  to  

133  degrees  Celsius  on  the  surface,  habitation  of  its  inhospitable  environment  of  the  

Moon  is  the  next  step.  

5)  Sustainability:  Sustainability  of  this  habitation,  as  well  as  all  previous  

functionalities  is  then  necessary  to  the  development  of  a  permanent  presence  on  the  

Moon.  This  sustainability  also  includes  maintaining  ship  integrity  upon  re-­‐entry  into  

  12  

the  Earth’s  atmosphere,  and  maintaining  the  integrity  and  operation  of  a  lunar  

habitat  amidst  a  radiation  storm,  for  example.  

Obstacles  

  While  conditions  and  travel  time  to  the  Moon  can  be  managed,  certain  

elements  of  the  aforementioned  functionalities  present  obstacles  to  be  overcome.  

These  obstacles  are  social,  environmental,  and  technological  in  nature.  

Industry  Limitations  

Capital  Investment  

  The  main  problem  facing  industries  attempting  to  promote  a  space  market  is  

the  lack  of  interest  exhibited  by  governments  and  the  Earth’s  population.  

Government’s  disinterest  can  be  quantified  by  a  lack  of  NASA  funding  compared  to  

1962  through  1970  during  the  Space  Race,  as  in  Fig.  1.  This  lack  of  interest  may  have  

propagated  from  the  general  public.  According  to  a  poll  conducted  by  TIPP  in  2011,  

only  10%  of  respondents  showed  interest  in  raising  NASA’s  budget  [6].  The  origin  of  

this  lack  of  interest  is  a  focus  on  near-­‐term  problems  such  as  the  state  of  the  

economy.  This  lack  of  interest  is  exacerbated  by  doubt  surrounding  the  feasibility  of  

the  development  of  space,  and  the  benefit  versus  the  risk  of  space.  

Debris  

  Since  the  start  of  the  space  race  in  the  late  1950s,  governments  and  private  

industries  has  been  launching  satellites  to  orbit  Earth.    As  of  2011,  NASA  was  

tracking  22,000  pieces  of  debris,  each  larger  than  4  inches  in  length,  an  increase  of  

3,000  from  NASA’s  2006  numbers  [5]  [6].    Fig.  2  shows  the  location  of  the  22,000  

  13  

pieces  of  debris  in  high  Earth  orbit  dots  are  not  to  scale,  but  represent  the  location  

of  debris  [7].  

 

Figure  2:  Location  of  Space  Debris  

NASA  can  only  track  debris  larger  than  10  cm  in  diameter,  and  estimates  that  there  

are  500,000  pieces  of  debris  diameters  ranging  from  1  to  10  cm.  These  debris  travel  

at  up  to  speeds  of  28,163  kph  [8]  and  are  easily  capable  of  damaging  spacecraft  and  

satellites.  

  Scientists  indicate  that  the  quantity  of  space  debris  has  reached  a  critical  

level  [9].  Hugh  Lewis,  a  UK  researcher,  warned  that  threat  from  space  debris  would  

rise  50%  in  the  decade  and  quadruple  in  the  next  50  years  [10].  According  to  an  

NRO  study,  by  2020,  the  probability  of  a  catastrophic  collision  would  be  at  10%  in  

LEO  [11].    If  this  problem  is  not  addressed,  the  insurance  cost  associated  with  

protecting  people  and  assets  would  greatly  increase.  

  14  

Launch  Costs  

  The  projected  launch  cost  into  space  is  under  $1,000  per  pound  using  SpaceX  

Falcon  Heavy  rocket  with  four  launches  per  year  [12].  This  cost  is  the  biggest  hurdle  

preventing  mankind  from  quickly  expanding  into  space.    For  example,  assuming  the  

Falcon  Heavy  had  a  full  payload  of  53,000  kg  (117,000  lb)  the  cost  to  launch  would  

be  $117  million.  Note,  too,  that  this  projection  is  optimistic  compared  to  previous  

launch  cost  indices.  As  a  point  of  reference,  the  NASA  space  shuttle  launch  cost  index  

is  $4729  in  2002,  or  over  $6000/lb  with  added  inflation  [13].  Fortunately,  an  

increase  in  launch  frequency  will  help  drive  down  the  cost  index  by  lowering  costs  

related  to  maintaining  idle  components.  Bulk  launch  contracts  also  qualify  for  

discounts  from  certain  launch  companies,  such  as  SpaceX.  In  lieu  of  breakthrough  

technological  advances,  which  won’t  be  considered  for  this  project,  these  

approaches  to  lowering  the  launch  cost  index  must  suffice.  

Stakeholders  

  Designing  a  positive  feedback  investment  cycle  concerning  space  involves  all  

companies  concerned  with  the  development  of  a  space  market.  This  list  includes  

industries  such  as  high-­‐altitude/space  tourism,  debris  collection,  space  habitats,  and  

launch  services.  Also  included  in  the  list  of  stakeholders  are  the  Earth’s  population,  

and  governments  that  serve  as  investors  to  a  commercial  development  of  a  lunar  

habitat.  

  15  

High-­‐Altitude/Space  Tourism  

  Virgin  Galactic  is  a  prime  example  of  a  company  in  the  category  of  High-­‐

altitude/space  tourism  companies.  High-­‐altitude/space  tourism  serves  as  the  

catalyst  for  garnering  the  interest  of  Earth’s  population.  Brief,  commercial  exposure  

of  civilians  to  space  is  the  first  step  to  encouraging  Earth’s  population  to  make  space  

a  higher  priority.  This  added  interest  translates  to  investment  into  all  aspects  of  

space  development.  Initial  exposure  will  be  limited  to  a  select  few  due  to  the  high  

cost  of  tickets.    

Debris  Collection  

  Collection  of  debris  is  key  to  reversing  the  trend  of  declining  conditions  in  

low  and  high  Earth  orbit.  “With  so  much  orbital  debris,  there  have  been  surprisingly  

few  disastrous  collisions”  [8].  NASA  discusses  their  debris  avoidance  procedures  for  

the  space  shuttle  and  space  station  in  [8].  Planning  and  execution  of  avoidance  

maneuvers  for  the  space  station  can  take  up  to  30  hours.  The  potential  risk  of  

collision  will  continue  to  grow  and  must  be  addressed,  and  it  is  a  problem  facing  not  

only  NASA,  but  any  future  space  tourism  or  space  habitation  endeavor.  

Despite  this,  it  is  difficult  for  organizations  developing  solutions  for  debris  collection  

to  receive  funding.  This  is  due  in  part  to  the  complexity  of  capturing  debris  that  

travels  up  to  28,000  kph  in  order  to  maintain  orbit  [8].  Star  Technology  and  

Research,  developer  of  the  ElectroDynamic  Debris  Eliminator  [14],  is  only  in  the  

feasibility  stage  (phase  I)  of  their  Small  Business  Innovative  Research  (SBIR)  

contract  with  Navy  SPAWAR  (Space  and  Warfare  Systems  Command).  This  company  

shows  promise,  as  their  solution  is  developed  using  existing  feasible  technology  

  16  

[11].  Government  funding  should  be  augmented  by  investment  from  private  sector  

that  is  interested  in  the  development  of  space.  

Space  Habitats  

  Space  habitats  are  an  integral  part  of  the  development  of  a  lunar  habitat.  

When  one  thinks  of  a  space  habitat,  one  might  think  of  the  International  Space  

Station.  However,  the  concept  of  a  space  habitat  is  evolving,  as  seen  in  Bigelow  

Aerospace  inflatable  habitats.  The  development  of  habitats  that  are  resilient  to  the  

hazards  of  space,  such  as  debris  collision,  radiation,  and  solar  flares,  is  necessary.  

The  initial  purpose  of  these  habitats  is  to  provide  governments  and  the  private  

industry  with  an  environment  to  conduct  research.  This  purpose  will  eventually  give  

way  to  more  general  all-­‐purpose  habitats  which  provide  a  hospitable  environment  

for  spacefaring  tourists.  

Launch  Services  

  The  ability  to  transport  of  commodities,  equipment,  and  personnel  to  space  

from  Earth  is  the  lifeblood  of  the  development  of  a  lunar  habitat.  The  sustainability  

of  space  habitats  and  space  tourism  industry  will  depend  on  the  ability  to  maintain  a  

supply  line  from  Earth;  at  least  until  these  commodities  can  be  obtained  in  space.  

Launch  capabilities  have  always  been  a  major  obstacle.  With  regards  to  launch  

capability,  the  focus  has  shifted  from  government  to  the  private  industry.  This  shift  

is  evidenced  by  the  retirement  of  the  space  shuttle,  the  $8,500  launch  cost  per  

pound  to  LEO  of  the  Space  Launch  System  currently  being  developed  by  NASA  [15],  

and  the  welcome  addition  of  sub-­‐$1000  launch  cost  index  of  the  SpaceX  Falcon  

Heavy.  

  17  

  Further  improvement  of  the  launch  cost  index  can  be  achieved  through  the  

increased  frequency  of  launches  by  lowering  overhead  costs  and  taking  advantage  

of  economies  of  scale.  This  increased  frequency  of  launch  depends  on  the  

development  of  a  maintained  presence  in  space  that  requires  these  launch  services,  

such  as  space  habitats.  

Governments  

  Governments  provide  regulation,  and  policy  which  serve  to  prevent  the  

misuse  of  space.  To  enforce  this,  a  military  presence  in  space  is  necessary.  The  US  

government  also  has  some  stake  in  the  development  space  with  NASA.  

Unfortunately,  as  seen  in  Fig.  1,  the  declining  trend  of  budget  allocation  for  NASA  

represents  a  low  prioritization  of  the  development  of  space.  Nonetheless,  a  

commercial  development  of  space  and  eventual  lunar  habitat  by  the  private  

industry  must  be  regulated,  and  this  is  the  role  of  governments.  

In  addition  to  governments  with  active  space  programs,  such  as  China,  

Russia,  Brazil,  India,  and  Japan,  there  are  also  countries  without  a  space  program  

that  still  want  to  establish  a  presence  in  space.  These  governments  can  instead  

purchase  a  space  habitat,  have  it  launched  into  orbit,  and  then  launch  personnel  to  

use  with  a  commercial  launch  service.  

Earth’s  Population  

  Commercial  development  of  a  lunar  habitat  requires  consumer  spending  and  

investment  from  the  private  sector,  governments,  and  Earth’s  population  in  general.  

Obtaining  this  investment  necessitates  garnering  interest  in  space  for  Earth’s  

population.  

  18  

The  Earth’s  population’s  main  objective  is  obtaining  a  better  quality  of  life.  

From  an  entertaining  perspective,  establishing  a  commercial  market  in  space  

provides  the  opportunity  for  civilians  to  travel  into  space,  and  experience  

microgravity.  Also,  research  conducted  in  space  by  governments  and  private  

industry  can  lead  to  innovation.  An  example  of  this  is  crystal  formation  which  is  

much  more  fine  and  pronounced  in  the  conditions  in  space.  Specifically,  the  growth  

of  insulin  protein  crystals  in  space  lead  to  a  better  understanding  of  insulin  which  

can  allow  pharmaceutical  companies  to  better  treat  the  symptoms  of  diabetes  [16].  

“Optimal”  Stakeholder  Interactions  

  A  summary  of  the  interactions  between  these  stakeholders  is  illustrated  in  

Fig.  3.  Earth’s  population  demands  trips  from  High-­‐Altitude/Space  tourism,  which  

provides  civilian  space  travel.  High-­‐Altitude/Space  tourism  is  regulated  by  

government,  benefits  from  a  cleaned  LEO,  and  demands  habitats  from  Space  

Habitats  for  longer  term  space  tourism.  Debris  collection  provides  a  less  hazardous  

LEO  to  Space  Tourism,  Government,  Satellite  Companies,  and,  most  importantly,  

Space  Habitats.  Space  Habitats  demands  launches  from  Launch  services,  which  in  

turn  provides  them,  and  Space  habitats  provides  habitat  leasing  to  the  Government,  

and  Space  Tourism.  

  19  

 

Figure  3:  "Optimal"  Coordinated  Stakeholders  

Realities  

  There  are  a  few  realities  that  prevent  this  “optimal”  coordination  of  

stakeholders.  These  realities  include  a  lack  of  funding  for  debris  collection,  space  

habitats  requiring  bootstrap  funding,  and  the  environment  surrounding  launch  

costs.  

Debris  Collection  

The  first  reality  is  underfunded  debris  collection.  Depicted  in  Fig.  4,  satellite  

companies,  high-­‐altitude/space  tourism,  space  habitats,  and  government  all  benefit  

from  a  cleaner  LEO.    

  20  

 

Figure  4:  Reality  #1:  Debris  Collection  Underfunded  

  However,  the  only  stakeholder  providing  any  funding  to  debris  collection  

currently  is  government,  and  their  funding  is  only  exploratory  and  insufficient.  

Because  of  this,  debris  collection  does  not  take  place,  and  the  conditions  of  LEO  

continue  to  decline.  This  creates  a  tension  illustrated  in  the  debris  collection  cycle,  

seen  in  Fig.  5.  

  21  

 

Figure  5:  Debris  Collection  Tension  Cycle  

  To  reiterate:  because  there  is  no  debris  collection,  debris  continues  to  

increase  through  debris  colliding  with  itself,  and  new  accidents  occurring.  This  

increase  in  debris  increases  the  probability  of  a  debris  collision,  which  in  turn  

increases  orbital  insurance  costs.  Finally,  because  this  insurance  cost  continues  to  

raise,  activity  in  LEO  will  remain  low,  resulting  in  reduced  incentive  to  undertake  a  

debris  collection  endeavor.  

LEO  Habitat  Bootstrap  Funding  

  The  second  reality  is  a  lack  of  bootstrap  funding  for  Space  Habitats.  This  

reality  is  depicted  in  Fig.  6.  

  22  

 

Figure  6:  Reality  #2:  Lack  of  Bootstrap  Funding  for  Space  Habitats  

  While  High-­‐Altitude/Space  Tourism,  Government,  and  private  industry  can  

all  benefit  from  Space  Habitats,  no  funding  is  provided  to  Space  Habitats  to  ensure  

their  success.  The  relationship  between  Space  Habitats  and  Launch  services  is  

particularly  important.  Depicted  in  Fig.  7,  the  third  reality  is  the  high  cost  of  launch  

services.  Because  Space  Habitats  lack  bootstrap  funding,  their  development  is  

hindered,  and  their  demand  for  launches  by  Launch  Services  is  encumbered.  Low  

launch  frequency  and  inconsistent  demand  are  contributing  factors  that  keep  launch  

costs  from  improving.  

  23  

 

Figure  7:  Reality  #3:  High  Cost  of  Launch  Services  

Stakeholder  Objectives/Issues  Chart  

  Table  1  shows  a  summary  of  the  objectives  and  issues  facing  the  identified  

stakeholders.  They  have  been  broken  down  into  private  industry  companies  looking  

to  develop  space,  and  investors,  represented  by  Government  and  Earth’s  Population.  

High-­‐Altitude  Tourism’s  goal  is  to  foster  an  interest  in  space,  and  the  problem  they  

face  is  the  feasibility  of  sustaining  ships  that  repeatedly  re-­‐enter  the  Earth’s  

atmosphere.  Satellite  Companies  seek  lower  orbital  costs  and  increased  lifetimes  of  

satellites,  a  direct  benefit  of  debris  collection.  Issues  facing  Satellite  Companies  

sprout  from  this  lack  of  debris  collection  as  well  as  launch  costs.  Next,  Space  

Tourism,  which  has  been  separated  from  High-­‐Altitude  Tourism  due  to  a  difference  

in  objectives  and  issues,  seeks  sustainable  space-­‐based  tourism.  Space  Tourism  

faces  a  technology  gap  brought  on  by  prohibitive  launch  costs  and  the  current  

  24  

availability  of  space  habitats.  Lastly,  issues  concerning  Government  and  Earth’s  

Population  pertain  to  other  short-­‐term  concerns  unrelated  to  space  such  as  the  state  

of  the  economy,  and  war.  

Table  1:  Stakeholder  objectives/issues  chart  

 

Disinvestment  Cycle  

  From  the  analysis  of  identified  stakeholders,  an  illustration,  seen  in  Fig.  8,  of  

the  current  environment  surrounding  identified  space  markets  was  created.  

  25  

 

Figure  8:  Disinvestment  Cycle  

  This  disinvestment  cycle  is  a  summation  of  negative  loops  affecting  each  

space  market.  Beginning  at  the  top  right,  a  negative  cycle  is  created  following  the  

loop  from  investment  through  space  tourism,  launch  costs,  and  space  activity.  

Indicated  by  the  red  negative  cycle  symbol,  this  negative  loop  shows  that  a  lack  of  

investment  leads  to  a  decrease  in  space  tourism,  which  in  turn  negatively  impacts  

launch  costs,  which  leads  to  a  lower  amount  of  activity  in  space.  The  next  loop,  the  

debris  collection  loop,  begins  at  investment  and  goes  through  debris  collection,  

amount  of  debris,  orbital  insurance,  and  back  to  investment.  This  cycle  is  essentially  

the  same  cycle  depicted  from  the  second  stakeholder  reality  mentioned  earlier.  

Amount  of  debris  and  orbital  insurance  both  negatively  impact  space  tourism  and  

space  habitats  as  well.  Lastly  is  the  space  habitat  loop:  from  investment  to  space  

habitats  to  launch  frequency  to  launch  costs  to  space  activity  and  back  to  

Space Activity

investment

amount of debris

orbital insurance

space habitats

launch costs

Debris collection

launch frequency

space tourism

_

_

_

_

_

  26  

investment.  A  lack  of  investment  leads  to  a  decrease  in  space  habitats,  which  

negatively  impacts  launch  frequency,  and  therefore  launch  costs,  which  in  turn  

lowers  the  amount  of  activity  in  space.  The  development  of  space  markets  requires  

the  reversal  of  a  number  of  these  negative  loops.  

  27  

Need  &  Problem  Statements  

Need  

  There  is  a  need  to  break  the  dis-­‐investment  cycle,  by  focusing  on  reducing  

launch  costs,  and  insurance  premiums,  that  will  lead  to  a  profitable  development  of  

space.  

Problem  

  Evaluate  the  costs  and  revenues  of  space  markets  to  develop  synergy  in  

investments  of  capabilities  that  will  break  the  dis-­‐investment  cycle.  

  28  

Proposed  Solution:  Capability  Stepping-­‐Stones  

Project  Boundary  

  Due  to  the  complexity  of  establishing  a  lunar  habitat,  this  goal  was  broken  

down  into  achievable  stepping-­‐stones  that  lead  to  a  lunar  habitat.  These  stepping-­‐

stones  focus  on  existing  solutions  to  address  the  capabilities  of  launch,  debris  

collection,  low  Earth  orbit  (LEO)  habitats,  and  lunar  habitats.  

Single-­‐String  Design  

  After  conducting  research  concerning  the  environment  surrounding  a  

potential  space  market,  a  sequence  of  capability  stepping-­‐stones  was  developed.  

These  stepping-­‐stones  focus  on  combining  the  necessary  capabilities  of  an  industry  

or  industries  to  overcome  the  hurdles  of  launch  cost,  debris,  and  investment  under  

critical  mass  while  providing  that  industry  or  industries  the  specified  ROI.    Each  

stepping-­‐stone  requires  the  previous  stepping-­‐stone  to  be  established  before  the  

next  stepping-­‐stone  could  be  enacted.  These  stepping-­‐stones  include  high-­‐altitude  

tourism,  debris  collection,  LEO  habitats,  and  LEO  hub  and  Moon  base,  leading  

ultimately  to  a  permanent  lunar  habitat.  

  29  

Capability  Stepping-­‐Stones  

High-­‐Altitude  Tourism  

  Based  around  Virgin  Galactic  mission  plan,  these  high-­‐altitude  tourism  trips  

focus  on  bringing  in  the  initial  round  of  investments  to  space  companies.  This  

investment  spurs  the  construction  of  various  spaceports,  and  pushes  other  

industries  to  recognize  future  profit  from  investing  in  space  markets.    This  stepping-­‐

stone  also  serves  as  a  catalyst  for  fostering  an  interest  in  space  in  the  general  public.  

This  excitement  to  go  into  space  is  key  to  make  the  following  stepping-­‐stones  

achievable.  

Debris  Collection  

  The  potential  of  a  catastrophic  collision  from  space  debris  continues  to  grow.  

Progress  into  space  will  become  increasingly  encumbered  by  insurance  costs  should  

debris  collection  fail  to  take  place.  Logically,  before  LEO  can  become  habitable,  the  

majority  of  space  debris  in  LEO  needs  to  be  removed.    This  debris  has  the  potential  

to  be  returned  to  Earth  for  reselling  or  recycling  depending  on  the  value  of  the  

debris.    By  removing  large  amounts  of  the  debris  that  is  orbiting  in  LEO,  the  

insurance  factor  for  both  assets  and  humans  would  be  reduced  during  LEO  

habitation.  

LEO  Habitation  

  With  the  two  previous  stepping-­‐stones  complete,  LEO  human  habitation  

becomes  possible.  Now  there  would  be  an  interest  in  space  from  both  the  public  and  

also  governments,  most  of  the  necessary  ground  framework  would  have  been  

  30  

established,  and  the  risk  of  catastrophic  orbital  collisions  reduced.    Based  on  

Bigelow  Aerospace’s  mission  plan,  this  presence  in  space  allows  for  both  scientific  

research  as  well  as  short-­‐term  space  vacations  for  the  public.    As  the  amount  of  LEO  

habitats  increases,  the  cost  for  launching  reduces,  thus  making  it  more  accessible  to  

a  larger  portion  of  the  public.    As  the  number  of  LEO  habitats  increases,  our  ability  

to  sustain  life  at  LEO  is  developed.  

LEO  Hub  and  Moon  Base  

  One  of  the  advantages  of  the  LEO  habitats  utilized  in  the  previous  stepping-­‐

stone  is  the  modularity  of  the  habitats.  Bigelow  Aerospace  BA-­‐330s  can  be  

connected  together,  so  the  concept  of  creating  a  space  station  or  hub  from  piecing  

together  these  habitats  is  logical.  This  space  station  will  become  the  platform  for  

further  exploration  into  space.    By  utilizing  a  LEO  space  station,  a  space-­‐exclusive  

travel  vehicle  would  be  capable  of  quickly  and  efficiently  move  through  space  to  a  

similarly  constructed  lunar  base.  The  purpose  of  space-­‐exclusive  ships  is  to  mitigate  

the  frequency  of  reentry  into  the  atmosphere  which  can  damage  ships,  and  to  utilize  

alternative  fuels  that  do  not  require  fuel  to  be  launched  from  Earth.  This  lunar  base  

sets  the  groundwork  for  a  permanent  lunar  habitat.  

Revenue  is  obtained  through  tickets  to  both  the  LEO  hub  and  the  lunar  base.  

Traditional  launch  vehicles  would  be  used  to  get  tourists  to  the  LEO  hub.  From  

there,  the  space-­‐exclusive  travel  vehicles  would  taxi  Moon-­‐bound  tourists.  

Permanent  Lunar  Habitat  

  The  expansion  of  the  lunar  habitat  to  a  permanent  status  requires  utilizing  

the  materials  available  on  the  Moon.  While  certain  components,  such  as  nitrogen  

  31  

with  a  100  ppm  abundance  per  ton  of  lunar  regolith,  still  need  to  be  sent  from  Earth,  

basic  materials  necessary  for  sustaining  life,  such  as  water  and  oxygen,  can  be  

harvested  from  lunar  regolith.  This  permanent  lunar  habitat  represents  the  goal  of  

the  project,  and  seeks  to  utilize  mining  and  manufacturing  to  establish  a  permanent  

presence  on  the  Moon,  and  create  a  platform  delving  deeper  into  space  and  

capturing  and  utilizing  resources  of  other  celestial  bodies.  

Building  Blocks  

  A  building  block  diagram,  Fig.  9,  was  developed  to  summarize  the  purpose  of  

each  capability  stepping-­‐stone  and  to  show  how  each  stepping-­‐stone  builds  off  the  

previous  stepping-­‐stone.  High-­‐Altitude/Space  Tourism  serves  as  the  catalyst  to  

incite  the  interest,  and  therefore  the  investment,  of  the  Earth’s  population  into  

space.  To  elaborate,  the  success  of  Virgin  Galactic  will  garner  an  interest  in  space  

and  encourage  seed  funding  for  this  and  subsequent  stepping-­‐stones.  Part  of  this  

funding  would  be  fed  into  debris  collection  to  reverse  the  declining  trend  of  low  

Earth  orbit  conditions.  

  32  

 

Figure  9:  Building  Block  Diagram  

With  LEO  cleaned,  LEO  habitats  can  be  launched  into  orbit.  By  establishing  a  

location  in  space  that  must  be  maintained,  the  foundation  of  a  LEO  infrastructure  is  

established.  This  infrastructure  involves  the  launching  of  habitats,  personnel,  and  

commodities  to  LEO,  as  well  as  decommissioning  habitats  and  bringing  personnel  

down  safely.  This  creates  a  consistent  demand  for  launch  services  that  will  bring  

down  the  launch  cost  index  simply  by  reducing  overhead  and  taking  advantages  of  

economies  of  scale.  Moreover,  LEO  habitats  provide  an  environment  for  

governments  and  the  private  sector  to  conduct  research  in  space.  This  garners  

interest  from  these  investors  to  invest  in  LEO  habitats.    

The  LEO  hub  and  Moon  Base  stepping-­‐stone  extends  this  infrastructure  

further  into  space  to  facilitate  the  extension  of  sustainability.  This  infrastructure  has  

  33  

also  expanded  to  accommodate  space  tourism,  and  includes  the  addition  of  space-­‐

exclusive  ships  travelling  from  the  LEO  hub  to  the  Moon  base.  

Lastly,  the  permanent  lunar  base  is  self-­‐sustainable  through  lunar  mining  

and  manufacturing,  and  serves  the  foundation  for  delving  further  into  space.  

Oxygen,  water,  and  nitrogen,  basic  commodities  necessary  to  sustain  life,  can  be  

obtained  through  regolith  processing.  

Decision  Support  Tool  (ROI  Calculator)  

  These  capability  stepping-­‐stones  are  combined  together  to  create  an  ROI  

calculator  that  evaluates  the  return  on  investment  for  industries  involved.  This  ROI  

calculator  serves  as  a  decision  support  tool  that  allows  the  user  to  vary  inputs  into  

each  stepping-­‐stone  and  observe  the  effect  of  these  changes  on  return  on  

investment.  The  tool  also  allows  companies  to  identify  minimum  selling  prices  for  

commodities  to  attain  return  on  investment  in  a  specified  number  of  years.  

 

  34  

Models  Each  stepping-­‐stone  model  was  constructed  using  SPEC  Innovations  

NimbusSE,  a  functional  database  and  modeling  tool.    These  models  provide  a  view  of  

necessary  functionality  of  each  stepping-­‐stone  and  allow  complex  interaction  with  

in  the  model  to  take  place.      

The  construction  of  these  models  first  started  with  creating  input/output  

(I/O)  diagrams.    After  the  top  level  I/O  diagram  was  finished  model  equations  were  

developed  to  identify  the  key  parameters  that  needed  to  be  modeled.    Then  each  

model  was  constructed  in  NimbusSE,  where  the  necessary  calculations  were  done  

using  back-­‐end  scripting  provided  by  the  tool.    Finally,  the  assumptions  and  

limitations  of  the  models  were  identified.    

Top  Level  

  Fig.  10  illustrates  the  I/O  diagram  for  the  top  level  model.    The  stepping-­‐

stone  capabilities  and  investment  are  the  inputs,  with  an  occasional  input  of  Seed  

Funding.    ROI  is  output  where  part  is  returned  back  and  used  as  investment  for  later  

stepping-­‐stones.  

  35  

 

Figure  10:  Top  Level  I/O  

Stepping-­‐Stone  1  

The  first  stepping-­‐stone  is  High-­‐Altitude  Tourism.  This  financial  model  is  

based  on  and  validated  by  Virgin  Galactic’s  financial  model.  The  input/output  

diagram  for  this  stepping-­‐stone  is  seen  in  Fig.  11.  

 

Figure  11:  Input/Output  Diagram  for  High-­‐Altitude  Tourism  

  The  equation  for  this  stepping-­‐stone  is  a  simple  ROI  equation.  

𝑅𝑂𝐼 =             𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠 / 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠  

ROIInvestment

Stepping StoneCapabilities

Seed Funding

Lunar Habitat ROI Calculator

  36  

 

  Revenue  is  given  by  number  of  tickets  sold,  and  investments  are  comprised  

of  the:  cost  of  the  ship,  development  costs,  and  maintenance  costs.  Assumption  were  

made  that  a  high-­‐altitude  tourism  ship  could  handle  two  flights  before  requiring  

maintenance  service,  and  that  two  flights  occur  per  month,  or  24  annually.  

Stepping-­‐Stone  2  

  High-­‐Altitude  Tourism  with  the  addition  of  Debris  collection,  the  second  

stepping-­‐stone,  was  designed  to  show  the  effect  of  debris  collection  on  orbital  

insurance  rates  for  the  previous  stepping-­‐stone.  The  input/output  diagram  for  this  

stepping-­‐stone  is  seen  in  Fig.  12.  

 

Figure  12:  Input/Output  Diagram  for  High-­‐Altitude  Tourism  and  Debris  Collection  

Stepping-­‐stone  2  builds  on  high-­‐altitude  tourism  thus  the  ROI  equation  is  

carried  over,  as  indicated  in  blue  on  the  input/output  diagram.    In  addition  the  ROI  

equation,  debris  equation  models  the  amount  of  debris  collected  over  time  is  

included.  Variable  definitions  are  included  in  Table  1.  

 

 

  37  

Table  2:  Debris  Collection  Variables  

Variable   Meaning  Xi   Debris  in  orbit  Xi+1   Debris  in  orbit  after  time  step  n   Number  of  active  debris  collectors  r   Rate  of  collection  e   Efficiency  of  collection  

  The  rate  of  collection  (r)  is  identified  as  the  pounds  of  debris  collected  over  a  

24-­‐hour  period.    The  efficiency  of  collection  (e)  acts  as  a  difficulty  factor  for  

collecting  debris  based  on  its  abundance.    While  the  amount  of  debris  is  large,  debris  

collection  is  simple.  As  the  debris  is  collected,  the  value  begins  to  drop  also.  As  seen  

in  Fig.  13,  the  minimum  efficiency  was  chosen  to  be  .3  (notional),  while  the  

maximum  efficiency  is  1.  

 

Figure  13:  Efficiency  of  Debris  Collection  Graph  

  38  

  The  equation  for  this  graph,  is  a  logistic  curve,  shown  below,  that  represents  

a  notional  idea  of  debris  collection  efficiency.  

 

  For  this  model,  the  assumption  is  made  that  no  collisions  occur  as  a  result  of  

the  debris  collectors.  In  addition,  the  debris  collected  is  not  salvaged.  Debris  

collection  is  a  necessary  step  in  the  development  of  these  space  markets,  and  while  

this  collected  debris  could  be  salvaged  for  revenue,  the  focus  of  this  stepping-­‐stone  

is  simply  to  reduce  insurance  costs  for  other  stepping  stones.  The  objective  of  debris  

collection  was  modeled  such  that  a  return  on  investment  isn’t  the  goal.  

  This  model  was  validated  using  Star  Tech  Inc.’s  debris  collection  model,  

which  indicated  it  would  take  6.7  years  to  remove  all  debris  in  orbit.  The  equation  

used  for  this  stepping-­‐stone  differs  with  the  inclusion  of  the  variable  “d,”  the  rate  of  

increase  of  debris  per  time  period.  

Stepping-­‐Stone  3  

  Stepping-­‐stone  3,  LEO  habitats,  is  modeled  from  the  perspective  of  Bigelow  

Aerospace,  which  will  be  offering  leases  for  LEO  habitats  in  the  coming  years.  This  

serves  as  the  basis  and  validation  of  the  model.  The  input/output  diagram  for  

stepping-­‐stone  3  can  be  seen  in  Fig.  14.  

  39  

 

Figure  14:  Input/Output  Diagram  for  LEO  Habitats  

  The  profit  equation  does  not  include  the  cost  for  the  renter  to  launch  to  the  

habitat,  but  does  include  the  maintenance  cost  to  send  a  specialist  to  fix  any  issues  

with  the  habitat;  variable  definitions  are  in  Table  3.  

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑃 ∗ 𝑛 − [𝐶!𝑛 + 𝐶!"!!

!"#$!+ !

!𝐶!"

!!!"#$!

]  

 

Table  3:  LEO  Habitat  Variables  

Variable   Meaning  P   Habitat  lease  price  Ch   Cost  of  habitat  CLH   Cost  to  launch  

habitat  CLP   Cost  to  launch  

person  to  habitat  CMN   Maintenance  cost  Lh   Lifetime  of  habitat  MTBFH   Habitat  failure  rate  n   Number  of  habitats  

 

Habitats  were  assumed  to  require  repair  four  times  throughout  their  

operational  lifecycle.  Also,  habitats  are  assumed  to  be  full,  and  trips  to  the  habitats  

are  assumed  to  be  full  capacity.  

  40  

Launch  Costs  

  For  this  and  the  subsequent  stepping-­‐stones,  a  launch  cost  reduction  curve,  

seen  in  Fig.  15,  was  developed  to  attempt  to  quantify  the  effect  of  launch  frequency  

on  launch  cost.  Through  reduction  of  overhead  and  taking  advantage  of  economies  

of  scale,  the  same  rocket  technology  can  produce  different  launch  costs  indices  

purely  based  on  frequency  of  launch.  Data  was  not  available  to  properly  quantify  

this  idea,  so  the  graph  remains  notional.  

 

Figure  15:  Launch  Cost  Reduction  

Stepping-­‐Stone  4  

  Stepping-­‐stone  4,  LEO  hub  and  Moon  Base,  models  tourism  from  Earth  to  the  

hub,  and  from  the  hub  to  the  Moon  base.  As  previously  mentioned,  the  hub  and  

  41  

Moon  base  can  be  comprised  of  habitats  from  the  previous  stepping-­‐stone.  An  

input/output  diagram  for  stepping-­‐stone  4  is  depicted  in  Fig.  16.  

 

Figure  16:  Input/Output  Diagram  for  LEO  Hub  and  Moon  Base  

  The  assets  associated  with  this  stepping-­‐stone  are  the  LEO  hub,  the  Moon  

base,  ships  taking  tourists  from  the  Earth  to  the  Hub,  and  space  exclusive  ships  

taking  tourists  from  the  hub  to  the  Moon  base.  The  cost,  launch  cost,  and  

maintenance  cost  of  these  assets,  therefore,  comprise  the  investment  portion  of  this  

profit  equation.  The  revenue  generated  from  this  stepping-­‐stone  the  sum  of  the  

tickets  to  the  Hub,  and  tickets  to  the  Moon  base.  The  equation  and  Table  4  show  the  

equation  and  explanation  of  variables  for  this  stepping-­‐stone.  

 

 

Table  4:  LEO  Hub  &  Moon  Base  Variables  

Variable   Meaning  Th   Ticket  to  LEO  hub  Pth   Price  of  Ticket  to  LEO  hub  TM   Ticket  to  Moon  base  PTM   Price  of  Ticket  to  Moon  base  CH   Cost  of  LEO  hub  CMB   Cost  of  Moon  base  LMB   Lifetime  of  Moon  base  

  42  

MTBFMB   Moon  Base  Failure  Rate  CM,MB   Average  Cost  to  fix  Moon  base  LH   Lifetime  of  LEO  hub  MTBFH   Moon  Base  Failure  Rate  CM,H   Average  Cost  to  fix  LEO  hub  CL,H   Cost  to  Launch  LEO  hub  CL,MB   Cost  to  Launch  Moon  base  x   Number  of  Earth-­‐LEO  hub  ships  y   Number  of  LEO  hub-­‐Moon  base  ships  Cx   Cost  of  Earth-­‐LEO  hub  ship  Cy   Cost  of  LEO  hub-­‐Moon  base  ship  Capx   Capacity  of  Earth-­‐LEO  hub  ship  Capy   Capacity  of  LEO  hub-­‐Moon  base  ship  CLX   Launch  Cost  for  Earth-­‐LEO  hub  ship  CLY   Launch  Cost  for  LEO  hub-­‐Moon  base  ship  Lx   Lifetime  of  Earth-­‐LEO  hub  ship  MTBFx   Earth-­‐LEO  hub  ship  failure  rate  CM,x   Average  Cost  to  fix  Earth-­‐LEO  hub  ship  Ly   Lifetime  of  Earth-­‐LEO  hub  ship  MTBFy   LEO  hub-­‐Moon  base  ship  failure  rate  CM,y   Average  Cost  to  fix  LEO  hub-­‐Moon  base  ship  

 

An  assumption  for  this  model  is  the  travel  time  from  the  Hub  to  the  Moon  

base  is  less  than  72  hours  using  the  space  exclusive  ships.  Apollo  11  took  76  hours  

from  Earth,  so  this  is  feasible.  Also,  a  capacity  of  10  passengers  for  both  types  of  

ships  was  chosen.    

Stepping-­‐Stone  5  

Permanent  Lunar  Habitation,  stepping-­‐stone  5,  models  the  sustainability  of  a  

permanent  lunar  habitat.  This  sustainability  is  obtained  through  lunar  mining  and  

manufacturing.  The  input/output  diagram  for  this  model  is  depicted  in  Fig.  17.    

  43  

 

Figure  17:  Input/Output  Diagram  for  Permanent  Lunar  Habitat  

To  clarify,  initial  investment  for  this  model  includes  the  cost  of  the  Moon  

habitat,  which  could  perhaps  utilize  one  or  more  habitats  from  the  previous  

stepping-­‐stones,  as  well  as  mining  and  manufacturing  equipment  necessary  to  

gather  and  process  regolith.  The  equation  and  explanation  of  variables  can  be  found  

in  equation  and  Table  5  respectively.  

𝑃𝑟𝑜𝑓𝑖𝑡 =   (𝑅 ∗ 𝑛)!"#

− 𝐶!!! − (𝐶! + 𝐶! + 𝐶! ∗ 𝑃 ∗ 𝑇)!"#

 

 

Table  5:  Permanent  Lunar  Habitat  Variables  

Variable   Meaning  R   Average  Regolith  Payload  n   Number  of  Payloads  CB+E   Cost  of  Base  &  Equipment  Co   Operating  Costs/year  Cm   Maintenance  Costs/year  Ct   Travel  Cost  on  Moon/lb  P   Average  Payload  T   Number  of  Trips/year  

 

Assumptions  for  this  model  include  the  limitation  of  mining  to  the  Moon,  that  

water,  oxygen,  and  nitrogen  are  harvested  through  regolith  processing.  

  44  

Results  

Overall  

The  overall  results  for  the  simulations  of  each  stepping-­‐stone  are  shown  in  

Table:  6.    These  values  were  calculated  based  on  inputs  that  were  gathered  from  a  

combination  of  reports  and  documentations  that  were  gathered.    When  data  for  a  

specific  required  input  value  was  not  available,  a  best  guess  was  made  based  on  

common  values  and  sponsor  input.    ROI  calculations  were  then  performed  based  on  

output  data  from  the  models.  

 

Table  6:  Overall  Results  

 

  These  results  show  that  as  each  stepping-­‐stone  reaches  the  investment  

critical  mass,  they  reverse  the  trends  present  in  the  disinvestment  cycle,  thus  

creating  an  investment  cycle,  seen  in  Fig.  18.    This  investment  leads  to  an  increase  in  

space  tourism,  which  in  turn  increases  the  level  of  space  activity  thus  encouraging  

  45  

investment.    As  investment  continues  to  grow,  debris  collection  starts,  and  the  

savings  in  orbital  insurance  rates  increase  space  tourism  which  leads  to  increased  

investment.    Finally,  investment  is  directed  into  space  habitats  which  increases  the  

frequency  of  launch  and  thus  reduces  launch  costs.  

 

Figure  18:  Investment  Cycle  

 

High-­‐Altitude  Tourism  

  Using  model  inputs  of  Table  7,  an  investment  and  revenue  graph  was  created,  

Fig.  19.    Where  possible,  these  values  match  the  published  values  from  Virgin  

Galactic.    The  graph  shows  an  investment  break  even  point  of  4.5  years,  leading  to  a  

  46  

ROI  across  10  years  of  182%.    Finally,  from  this  model,  an  output  of  the  total  

number  of  trips  taken  can  be  seen  in  Fig.  20,  this  number  of  trips  translates  to  total  

passenger  of  630.  

Table  7:  High-­‐Altitude  Tourism  Input  Values  

Input   Value  Direct  mission  cost   $400,000  Flights  per  month  (demand)  

2  

Flights  per  maintenance  

2  

Maintenance  Cost   $50,000  Maintenance  time   2  weeks  

 

 

Figure  19:  High-­‐Altitude  Investment/Revenue  

0.00E+00%

2.00E+01%

4.00E+01%

6.00E+01%

8.00E+01%

1.00E+02%

1.20E+02%

1.40E+02%

0% 1% 2% 3% 4% 5%

2012$NPV

$Dollars$

Millions$

Years$

Virgin$Galac6c$Investment/Revenue$

Investment%

Revenue%

  47  

 

Figure  20:  High-­‐Altitude  Total  Trips  

Non-­‐Modeled  Output  

  The  non-­‐modeled  output  of  stepping-­‐stone  1  is  the  implication  that  high-­‐

altitude/space  tourism  increases  interest  in  space  from  the  general  public.    This  

interest  translates  to  increased  investment  towards  subsequent  stepping-­‐

stones.    The  investment  increase  is  modeled  by  a  positive  change  in  performance  

parameters.    If  this  model  output  assumption  does  not  hold  true,  the  single  string  

design  breaks  down;  subsequent  stepping-­‐stones  should  not  be  attempted.  

Debris  Collection  

  The  simulation  of  debris  collection  shows  the  number  of  tons  of  debris  

removed.  It  starts  with  an  initial  value  of  2166  tons  and  fluctuates  near  zero  at  the  

end.    This  fluctuation  is  caused  by  a  continuous  increase  of  debris.    

  When  debris  collection  is  modeled  with  high-­‐altitude  tourism,  a  reduction  of  

the  required  investment  is  shown  in  Fig.  21.    The  10%  insurance  rate  is  based  on  a  

  48  

carry  over  input  from  high-­‐altitude  tourism,  and  the  7%  value  is  a  value  entered  by  

the  user  for  the  percent  of  insurance  due  to  orbital  collision.    This  percentage  is  low  

for  high-­‐altitude  tourism  because  the  probability  of  collision  from  orbital  debris  is  

small.    After  five  years,  the  insurance  premium  drops  roughly  two  thousand  

dollars.      This  small  drop  in  costs  can  be  associated  to  the  small  input  value  for  

insurance  cost  associated  with  orbital  collision:  7%  of  10%  of  the  mission  cost.  

 

Figure  21:  Reduction  in  High-­‐Altitude  Tourism  Insurance  

  Although  the  cost  savings  seen  by  high-­‐altitude  tourism  is  low,  the  savings  

are  enough  to  slowly  reduce  the  yearly  investment,  Fig.  22.    By  the  “end”  of  the  

debris  collection  process,  a  cost  difference  of  $10  million  per  year  is  obtained.  

37000$

37500$

38000$

38500$

39000$

39500$

40000$

40500$

0$ 1$ 2$ 3$ 4$ 5$

2012$NPV

$Dollars$

Years$

Collision$Insurance$Costs$based$on:$7%$of$10%$total$insurance$premium$

Cost$

  49  

 

Figure  22:  High-­‐Altitude  Tourism  Investment  with  and  without  debris  collection  

LEO  Habitats  

  Having  an  increased  interest  in  space  and  improved  conditions  of  LEO,  the  

LEO  habitat  stepping-­‐stone  can  begin.    This  simulation  takes  an  input  values  of  

Table  8,  and  outputs  investment  and  revenue,  Fig.  23.    The  breakeven  point  for  this  

simulation  is  10  years.    The  entire  lifecycle  of  the  habitat  is  considered,  as  reflected  

in  the  inclusion  of  decommissioning  costs  for  the  habitats.  

Table  8:  LEO  Habitat  Input  Values  

Input   Value  Initial  Investment   $200,000,000  Lease  Revenue   120,000,000  over  5  Years,  50%  up  front  Maintenance  Cost   N(800000000,2000000)  Frequency  of  Launch  to  Habitats   3  per  year  per  habitat  Demand   2  Habitats  per  year  Initial  Launch  Cost   $1000/lb  Minimum  Launch  Cost        (after  frequency  benefit)  

$700/lb  

9.40E+07(

9.60E+07(

9.80E+07(

1.00E+08(

1.02E+08(

1.04E+08(

1.06E+08(

1.08E+08(

0( 1( 2( 3( 4( 5(

2012$NPV

$Dollars$

Years$

Tourism's$Investment$

With(Debris(Collec<on(

Without(Debris(Collec<on(

  50  

 

Figure  23:  LEO  Habitat  Investment  &  Revenue  

  Through  simulation,  it  is  possible  to  view  the  total  number  of  LEO  habitats,  

Fig.  24.    Shown  on  this  graph  is  the  steady  growth  of  habitat  quantity  for  10  years  

followed  by  a  more  sporadic  period  as  habitats  are  being  both  launched  and  

decommissioned.  This  is  due  to  the  10  year  lifespan  of  the  habitats.  

0"

200000000"

400000000"

600000000"

800000000"

1E+09"

1.2E+09"

1.4E+09"

1.6E+09"

1.8E+09"

2E+09"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12"

NPV

$Dollars$

Years$

LEO$Habaits$Investment$&$Revenue$

Revenue"

Investment"

  51  

 

Figure  24:  Total  #  of  LEO  Habitats  

Non-­‐Modeled  Output  

  Interest  generation  from  LEO  habitats  is  continued  from  high-­‐altitude  

tourism.    This  interest  generates  a  growing  demand  in  subsequent  stepping-­‐

stones.    Without  the  increase  in  demand,  the  time  required  to  reach  breakeven  is  

increased.    Also,  the  focus  of  these  stepping-­‐stones  begins  to  shift  from  purely  

reducing  launch  costs  to  developing  life  sustainability  capabilities.  

LEO  Hub  &  Moon  Base  

  Utilizing  the  benefits  of  reduced  launch  costs  through  increased  frequency,  

and  developed  LEO  infrastructure  facilitates  life  sustainability,  the  LEO  hub  and  

Moon  base  stepping-­‐stone  can  occur.    Table  9  shows  the  input  assumptions  for  the  

model  and  Fig.  25  shows  the  expected  investment  and  revenue.    The  graph  

illustrates  that  a  breakeven  point  of  8  years  is  achieved  at  a  total  revenue  of  roughly  

  52  

3  billion  dollars.    The  simulation  continues  to  increase  the  number  of  LEO  habitats.  

Also,  initial  investment  encompasses  the  costs  to  establish  the  temporary  Moon  

base.    

Table  9:  Hub  &  Moon  Base  Input  Values  

Input   Value  Initial  Investment   $200,000,000  Initial  Habitat  count  (hub)   8  Ticket  price  to  LEO  hub   $50,000  Ticket  price  to  Moon  base   $200,000  Cost  of  Space-­‐only  Ship   $100,000,000  Launch  cost/lb  for  Space-­‐only  Ships   $100/lb  Initial  Launch  Cost/lb  for  Earth-­‐Hub  Ships   $750/lb  Min  Launch  Cost/lb  for  Hub-­‐Moon  base  Ships   $500/lb  Launches  to  LEO  hub  per  time  period   150/yr  (average)  Launches  to  Moon  base  from  LEO  hub     60/year  (average)  

 

 

Figure  25:  Hub  &  Moon  Base  Investment  &  Revenue  

  The  total  number  of  LEO  habitats  is  shown  in  Fig.  26.  This  model  utilizes  8  

habitats  from  the  previous  stepping-­‐stone.    The  simulation  continues  to  

decommission  and  launch  habitats  based  on  demand  values  entered  at  the  end  of  

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9"

2012$NPV

$in$M

illions$

Time$in$yrs$

Stepping7Stone$4:$Investment$&$Revenue$

Investment"

Revenue"

  53  

each  simulated  year.    Revenue  of  this  simulation  is  generated  by  ticket  sales  to  both  

the  LEO  hub  and  to  the  Moon.    Fig.  27,  illustrates  that,  across  a  9  year  period,  the  

total  number  of  trips  to  LEO  is  1,600  and  to  the  Moon  is  700.    The  model  assumes  

that  only  40%  of  people  who  go  to  the  LEO  hub  continue  onto  the  moon.  

 

Figure  26:  Number  of  LEO  Habitats  for  SS  4  

 

Figure  27:  Trips  to  LEO  Hub  &  Moon  Base  

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9"

#"of"Hab

itats"

Time"in"yrs"

LEO"Habitats"

LEO"Habitats"

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9"

#"of"trips"

Time"in"yrs"

LEO"&"Moon"Trips"

to"LEO"

to"Moon"

  54  

Non-­‐Modeled  Output  

  The  first  assumption  for  this  model  is  that  by  the  breakeven  point  of  8  years,  

a  complete  LEO  infrastructure  is  built.    This  infrastructure  is  necessary  to  provide  

continued  support  and  cost  reductions  for  stepping-­‐stone  4.    The  second  

assumption  is  that  a  “pure”  space  vehicle  is  developed.    This  vehicle  does  not  enter  

Earth’s  atmosphere,  and  is  presumably  built  in  space,  thus  removing  major  costs  

and  reducing  necessary  shielding.    In  addition,  operational  costs  are  reduced  by  

utilizing  non-­‐chemical  propulsion  such  as  nuclear  power  or  solar  winds.  

Permanent  Lunar  Habitat  

  Building  off  of  stepping-­‐stone  4,  the  permanent  lunar  habitat  creates  the  

necessary  environment  for  human  life  on  the  Moon.    With  input  parameters  shown  

in  Table  10  investment  and  revenue  graph  is  created,  Fig.  28.    With  these  input  

parameters,  the  simulation  fails  to  achieve  a  positive  ROI  within  13  years.    The  main  

reason  for  this  prolonged  positive  ROI  is  the  high  initial  investment  and  the  high  

cost  of  operations.  

Table  10:  Permanent  Lunar  Habitat  Input  Variables  

Input   Value  Initial  Investment   $800,000,000  Regolith  Harvested   160k  Tons/year  Maintenance  Cost  for  Equipment   $50,000,000  Time  between  Maintenance   2.5  Years  Operational  cost  for  Base   N(100000000,25000000)/year  Travel  Cost  on  Moon  Number  of  Initial  people  at  Lunar  Base  Number  of  people  increase  per  year  

$100/lb  50  20  (average)  

  55  

 

Figure  28:  Permanent  Lunar  Habitat  Investment  &  Revenue  

  The  profit  for  this  stepping-­‐stone  is  created  by  selling  regolith  back  to  the  

people  on  the  lunar  surface.    The  amount  of  regolith  removed  is  shown  in  Fig.  

29.    The  quantity  removed  during  the  first  two  years  is  lower  because  the  mining  

operation  is  still  in  its  infancy.  

 

Figure  29:  Amount  of  Regolith  Removed

0"

500"

1000"

1500"

2000"

2500"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13"

2012$NPV

$USD

$in$M

illions$

Time$in$yrs$

Stepping9Stone$5:$Investment$&$Revenue$

Investment"

Revenue"

  56  

Trade-­‐off  Analysis  

Stepping-­‐Stone  5  Cost  Reduction  

In  order  to  make  stepping-­‐stone  5  achieve  a  breakeven  point  of  10  years,  a  

20%  cost  reduction  is  necessary.    In  order  to  find  the  level  of  reduction,  single  

parameter  sensitivity  analysis  was  performed  until  the  20%  cost  reduction  was  

achieved.    Table:  11  has  a  breakdown  of  the  initial  input  value,  and  a  value  that  

would  result  in  20%  cost  reduction.    Each  alternative  is  capable  of  obtaining  the  

necessary  20%  reduction.  

Table  11:  Permanent  Lunar  Habit  Cost  Reduction  Methods  

Capability   Initial  Value   Improved  Value  Travel  Costs   $100/lb   $45/lb  Removed  Regolith   160,000  tons   248,000  tons  People                Start   50   25            Growth   20   5  Operational  Costs   $100  million   $65  million    

Debris  Collection  

  The  design  of  the  stepping-­‐stones  placed  debris  collection  before  LEO  

habitats.    Utilizing  the  same  input  parameters,  a  simulation  was  executed  where  

debris  collection  did  not  occur.    Fig.  30  shows  the  investment  for  both  with  and  

without  debris  collection.    Without  debris  collection,  the  required  investment  slowly  

builds  relative  to  with  debris  collection.    At  year  9,  a  collision  occurs  thus  greatly  

increasing  the  orbital  insurance  costs.    The  total  cost  savings  for  LEO  habitats  by  

performing  debris  collection  is  roughly  1  billion  dollars.  

  57  

 

Figure  30:  Debris  Collection  Effect  on  LEO  Habitats  

Launch  Costs  

Throughout  the  simulation  models,  launch  costs  were  reduced  via  an  

assumed  increase  in  technology  or  from  the  frequency  of  launches.    A  trade-­‐off  

analysis  was  performed  looking  at  effects  of  launch  cost  on  stepping-­‐stone  4,  the  

Hub  and  Moon  Base.    Fig.  31  shows  the  3  potential  investments  curves  when  the  

parameter  of  launch  costs  is  varied.  The  variations  of  launch  costs  are:  a  pessimistic  

trend  where  launch  costs  remain  at  a  $1000/lb  cost,  expected  cost  generated  

through  proposed  cost  reduction,  and  technological  breakthrough  trend  where  

launch  costs  are  at  $1/lb.    By  varying  this  parameter,  breakeven  times  range  from  5  

years  at  optimistic  launch  costs  to  10  years  assuming  the  pessimistic  trend.  

0"

500000000"

1E+09"

1.5E+09"

2E+09"

2.5E+09"

3E+09"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12"

2012$NPV

$USD

$

Years$

Effect$of$No$Debris$Removal$on$SS$3$

Revenue"

Investment"without"Debris"

Investment"with"Debris"

  58  

 

Figure  31:  Launch  Costs  on  LEO  Hub  

Lunar  Mining  &  Manufacturing  

  An  assumption  of  the  model  was  that  performing  mining  and  manufacturing  

on  the  lunar  surface  would  decrease  cost  by  providing  necessary  life  supporting  

minerals  such  as  oxygen,  and  also  utilizing  the  regolith  to  construct  habitats.    Fig.  32  

shows  the  required  investment  if,  instead,  all  minerals  necessary  to  sustain  life  and  

habitats  had  to  be  sent  from  earth.    The  driving  factor  for  the  high  costs  is  that  it  is  

assumed  that  each  person  requires  6.5  lbs  of  oxygen  per  day.    This  constraint  

becomes  costly  as  the  total  number  of  people  living  on  the  Moon  continues  to  

increase.  

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9"

2012$NPV

$USD

$in$M

illions$

Time$in$yrs$

Effect$of$Launch$cost$on$SS$4$

$1000"Launch"Cost"

Revenue"

Expected"(Curve)"

$1"Launch"Cost"

  59  

 

Figure  32:  Lunar  Habitat  Investment  With  and  Without  Mining  &  Manufacturing  

 

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13"

2012$NPV

$USD

$in$M

illions$

Time$in$yrs$

Stepping9Stone$5:$Mining$vs$No$Mining$

Mining"Investment"

No"Mining"Investment"

  60  

Recommendations  

Capability  Rank-­‐List  

  This  analysis  produces  a  capability  rank-­‐list,  Table  12.    This  rank-­‐list  

identifies  the  recommended  investment  order.    The  list  is  based  on  the  estimated  

amount  saved  by  developing  a  particular  capability  and  how  beneficial  that  

capability  is  to  other  stepping-­‐stones.    Debris  collection  is  ranked  number  one.  Not  

only  does  it  potentially  save  the  largest  amount;  it  also  addresses  the  trend  of  

declining  conditions  in  LEO,  which  could  eventually  result  in  an  uninhabitable  and  

inescapable  low  Earth  orbit.    The  next  highest  ranked  capability  is  space  exclusive  

ships.  If  Earth-­‐based  launch  costs  exceed  launch  costs  achievable  by  space  exclusive  

ships  that  do  not  return  to  Earth,  space  exclusive  ships  are  beneficial  for  traveling  

through  space.  Ranked  third  is  habitats.  Habitats  are  a  necessary  asset  to  the  

development  of  space  tourism,  and,  moreover,  a  lunar  habitat.  Their  value  isn’t  

quantifiable;  if  habitats  are  not  developed,  sustaining  life  in  space  is  not  feasible.  

Ranked  fourth  is  launch  costs.  Launch  costs  have  presented  the  biggest  hurdle  to  the  

development  of  space,  and  the  proposed  launch  cost  reduction  through  increased  

launch  frequency  results  in  savings  of  $800M.    Lastly,  developing  life  sustainability  

in  space  is  also  a  necessary  element  to  establishing  a  lunar  habitat.  Without  it,  even  

LEO  habitation  is  infeasible.  

  61  

Table  12:  Capability  Rank-­‐List  

 

Timeline  

Combining  simulation  output  and  the  stepping-­‐stones,  a  timeline  of  

recommended  starting  points  for  each  stepping-­‐stone  is  constructed,  Fig.  33.    The  

timeline  is  built  so  that  when  one  stepping-­‐stone  reaches  an  80%  ROI,  the  next  

stepping-­‐stone  begins.    High-­‐altitude  tourism  is  expected  to  begin  in  2013,  and  was  

used  as  the  initial  point  for  the  timeline.  

  62  

 

Figure  33:  Recommended  Stepping-­‐Stone  Timeline  

Potential  User  

Any  authority  in  the  space  industry,  such  as  the  president  of  NASA,  who  is  

capable  of  coordinating  the  activities  of  these  space  markets  will  find  this  decision  

support  tool  useful.  With  the  inclusion  of  private  sector  data  from  the  companies  

represented  in  the  capability  stepping-­‐stones,  the  tool  will  provide  insight  towards  

quantifying  the  investment  required  to  establish  a  space  market.  This  decision  

  63  

support  tool  also  serves  to  quantify  the  impact  these  capability  stepping-­‐stones  

have  on  one  another:  a  lack  of  debris  collection  makes  LEO  habitats  infeasible,  for  

example.  

 

  64  

Management  

WBS  

 

 

 

 

 

0.0Space Project

1.0Research

2.0Define

3.0Design

4.0Model

5.0Analysis

6.0Deliverables

1.0Research

1.1Capture Related

Artifacts1.2

Stakeholders

1.2.1Major

1.2.2Minor

1.1.1Space

Tourism

1.1.2Debris

Collection

1.1.3Solar Powered

Satellites

1.1.4Asteroid Defense

1.1.5Asteroid Mining

1.1.6Space

Manufacturing

1.1.7Space

Colonies

1.1.8100yr

Starship

2.0Define

2.1Customer

Expectations2.2

Scope2.3

Context2.4

Stakeholders2.5

Problem Statement

2.6Need

Statement

2.7Proposed Solution

2.8Assumptions

2.3.1Advantages

2.3.2Planned Systems

2.3.3Limitations

  65  

 

 

 

 

 

 

2.3.3Limitations

2.3.3.1Technology

2.3.3.2Laws

2.3.3.3Design

2.3.3.1.1Launch

2.3.3.1.2Robotics

2.3.3.1.3Sustainability

2.4Stakeholders

2.4.1Major

2.4.2Minor

2.4.1.1Acceptance Criteria

2.4.1.2Current

Involvement

2.4.1.3Potential Impact

3.0Design

3.1SS 1

3.2SS 2

3.3SS 3

3.4SS 4

3.5SS 5

3.5.1IO Diagram

3.5.2 Equation

3.4.1IO Diagram

3.4.2 Equation

3.3.1IO Diagram

3.3.2 Equation

3.2.1IO Diagram

3.2.2 Equation

3.1.1IO Diagram

3.1.2 Equation

5.0Analysis

5.1Cost

5.2Schedule

5.3 Performance

5.4ROI

  66  

 

 

 

4.0Model

4.1Build

4.2 Simulate

4.3 Validate

4.2.1SS 1

4.2.2SS 2

4.2.3SS 3

4.2.4SS 4

4.2.5SS 5

4.1.1SS 1

4.1.2SS 2

4.1.3SS 3

4.1.4SS 4

4.1.5SS 5

7.0Deliverables

7.1Prelim

Project Plan

7.2Final Project

Plan

7.3Final

Proposal

7.4Conferences

7.5Final

7.5.1Report

7.5.2Presentation

6.5.3Poster

7.4.1Draft

7.4.2Abstract

7.4.3Paper

7.4.4Poster

7.4.5Presentation

7.4.1.1Paper

7.4.1.2Poster

7.3.1Report

7.3.2Presentation

7.2.1 Report

7.2.1 Presentation

7.1.1 Report

7.1.2Presentation

  67  

 

Budget  

  Table  13  shows  the  values  for  the  project  budget.    The  budget  was  developed  

using  12  hours  per  person  per  week,  or  48  hours  per  week.  

Table  13:  Project  Budget  

  Value  Expected  Budget   1308  Current  Cost   1461  Earned  Value   1280  

 

 

Figure  34:  Project  Budget  

Due  to  the  complexity  of  the  project,  the  loss  of  a  project  member  during  the  

first  semester,  and  a  second  semester  re-­‐scoping  of  the  project,  the  project  SPI  and  

CPI  are  somewhat  sporadic,  and  have  trended  towards  values  less  than  1.  This  

indicates  that  the  project  is  over-­‐budget  and  slightly  behind  schedule.  The  initial  

  68  

spikes  in  SPI  and  CPI  during  the  first  three  weeks  represent  issues  narrowing  down  

the  problem  definition.  The  plateau  during  weeks  14  through  18  represents  winter  

break.  

 

Figure  35:  Project  CPI  &  SPI  

Gantt  Chart  

  The  gantt  chart  for  the  entire  project  is  shown  on  the  next  pages.    The  critical  

paths  are  highlighted  in  red,  and  driven  by  the  milestones  of  the  project.  

 

   

  69  

Gantt  1    

  70  

Gantt  2  

   

  71  

Breakdown  of  Hours  Worked  

  Table  14  has  a  breakdown  of  hours  worked  per  person.    A  detailed  

breakdown  of  hours  worked  can  be  found  on  the  next  pages.  

Table  14:  Breakdown  of  Hours  Worked  

  Hours  Anh  Quach   200  Bobby  Taylor   312  Daniel  Hettema   453  Sami  Dajani   62  Scott  Neal   416  

   

 

  72  

References  

[1]  NASA,  "NASA  Budget  Statistics,"  in  The  World  Almanac  and  Book  of  Facts  2012,  Sarah  Jenssen,  Ed.  USA:  World  Almanac,  2011,  vol.  1,  p.  1008.  

[2]  Virgin  Galactic,  "Aabar  Investments  and  Virgin  Group  Agree  Equity  Investment  Partnership  in  Virgin  Galactic,"  Press  Release  2009.  

[3]  NASA.  (2011,  January)  Solar  System  Exploration.  [Online].  http://solarsystem.nasa.gov/planets/profile.cfm?Object=Moon&Display=Facts&System=Metric  

[4]  John  Merline.  (2011,  July)  Investors.com.  [Online].  http://news.investors.com/article/578923/201107201854/majority-­‐opposes-­‐shuttle-­‐shutdown.htm  

[5]  NASA.  (2011,  September)  nasa.gov.  [Online].  http://www.nasa.gov/news/debris_faq.html  

[6]  Michael  Hoffman.  (2009,  April)  The  Show  Scout.  [Online].  http://blogs.defensenews.com/space-­‐symposium/2009/04/03/its-­‐getting-­‐crowded-­‐up-­‐there/#more-­‐155  

[8]  NASA.  (2010,  October)  nasa.gov.  [Online].  http://www.nasa.gov/mission_pages/station/news/orbital_debris.html  

[7]  NASA.  (2009,  September)  NASA  Earth  Observatory.  [Online].  http://earthobservatory.nasa.gov/IOTD/view.php?id=40173  

[9]  Leonard  David.  (2011,  August)  Space.com.  [Online].  http://www.space.com/12602-­‐space-­‐junk-­‐cleanup-­‐grand-­‐challenge-­‐21st-­‐century.html  

[10]  Kate  Kelland.  (2009,  November)  The  Washngton  Post.  [Online].  http://www.washingtonpost.com/wp-­‐dyn/content/article/2009/11/06/AR2009110603555.html?wprss=rss_nation/science  

[11]  J  Pearson,  E  Levin,  and  J  Carroll,  "Active  Removal  of  LEO  Space  Debris:  The  ElectroDynamic  Debris  Eliminator  (EDDE),"  2011.  

[12]  SpaceX.  (2012,  January)  Spacex.com.  [Online].  http://www.spacex.com/falcon_heavy.php  

[13]  Futron,  "Space  Transportation  Costs:  Trends  in  Price  Per  Pound  to  Orbit  1990-­‐2000,"  2002.  

[14]  Star,  INC.  (2011,  January)  Star  Technology  and  Research.  [Online].  http://www.star-­‐tech-­‐inc.com/index.html  

[15]  John  Strickland.  (2011,  November)  The  Space  Review.  [Online].  http://www.thespacereview.com/article/1979/1  

[16]  NASA.  (2011,  April)  science.nasa.gov.  [Online].  http://science.nasa.gov/science-­‐news/science-­‐at-­‐nasa/1998/notebook/msad22jul98_1/  

  73