design of a transistor operational amplifier...

101
Design of a transistor operational amplifier Item Type text; Thesis-Reproduction (electronic) Authors Ozdes, Demir, 1929 Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/05/2018 16:14:52 Link to Item http://hdl.handle.net/10150/319506

Upload: lytruc

Post on 05-Apr-2018

221 views

Category:

Documents


3 download

TRANSCRIPT

Design of a transistor operational amplifier

Item Type text; Thesis-Reproduction (electronic)

Authors Ozdes, Demir, 1929

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this materialis made possible by the University Libraries, University of Arizona.Further transmission, reproduction or presentation (such aspublic display or performance) of protected items is prohibitedexcept with permission of the author.

Download date 29/05/2018 16:14:52

Link to Item http://hdl.handle.net/10150/319506

DESI GN OF A TRANSISTOR OP E R A T I ON A L

AMPLIFIER

by

D em i r Ozdes

A Thesis Submi t t ed to the Fa c u l t y of the

DEPARTMENT OF ELECTRICAL E N G I N E E R I N G

In Pa r t i a l F u l f i l l m e n t of the Requ i rement s

For the Degree of

MASTER OF SCIENCE

In the Gr a d u a t e C o l l e g e

THE UNI VERSI TY OF A R I Z O N A

1 963

STATEMENT BY AUTHOR

This frhesis has been s u b mi f f e d i n p a r t i a l f u l f i l l m e n t o f t he

r e qu i r e men t s f o r an ad v a n c e d degree a t The U n i v e r s i t y o f

B r i e f q u o t a t i on s f rom t h i s t hesi s are a l l o w a b l e w i t h o u t

s p e c i a l pe r m i s s i o n , p r o v i d e d t h a t a c c u r a t e a c k n o w l e d g m e n t

o f source is made „ Requests f o r pe rmi ss i on f o r e x t e n d ed

q u o t a t i o n f rom or r e p r o d u c t i o n o f t h i s ma n u s c r i p t i n who l e

or i n pa r t may be g r an t ed by the head o f t he ma j o r d e p a r t ”

ment or t he Dean o f t he G r a d u a t e C o l l e g e when in t h e i r

j udgmen t t he proposed use o f t he m a t e r i a l is i n t he i n t e r es t s

o f s c h o l a r s h i p * In a l l o t h e r i n s t a n c e s , h o we v e r , permi ss i on

must be o b t a i n e d f rom the a u t h o r .

A r i z o n a and is de p o s i t e d in t he U n i v e r s i t y L i b r a r y to be

made a v a i l a b l e to bor r ower s under r u l es o f t he L i b r a r y ,

S I GNE D

APPROVAL BY THESIS DIRECTOR

This thes i s has been a pp r o ve d on t he da te shown

b e l o w :

Dr , G r d m n o A , KornDr , G r d m n o A , KornProfessor o f E l e c t r i c a l E n g i n e e r i n g

Date

A C K N O W L E D G E M E N T

The a u t ho r is i n d e b t e d f o r e v e r to his a d v i s o r . Dr .

G r a n i n o A . Kor n , whose t e a c h i n g s , p a t i e n c e , g u i d a n c e ,

and v a l u a b l e c r i t i q u e s made th i s thesi s poss i b l e .

The a u t h o r is g r a t e f u l to M r . Henry Ko e r n e r , whose

i n c o mp a r a b l e e n g i n e e r i n g k n o w l e d g e and s up e r v i s i on was

the i n s p i r a t i o n and f o u n d a t i o n of the d e v e l o p m e n t .

A c k n o w l e d g e m e n t is due to the Bur r - Br own Research

C o r p o r a t i o n and M r . Thomas R. Brown, Pres i dent f or sup­

p o r t i n g th i s p r o j e c t .

The a u t h o r thanks M r . John Vanc za of Bu r r - B r own

Research C o r p o r a t i o n who e n t h u s i a s t i c a l l y assi sted in

t e s t i ng and b r e a d b o a r d i n g .

Much c r e d i t is due to Mrs . L. Ozdes who a b l y

t yped the thesi s and Mr . Howard Ha nd l e r o f The U n i v e r s i t y

of A r i z o n a for his co n t i n uo us suppor t and enco u r a g eme n t .

P a r t i c u l a r a c k n o w l e d g e m e n t should be made to Drs.

R. L . Wa l k e r and G, R . Peterson of the E l e c t r i c a l E n g i n e e r ­

ing F a c u l t y and Dr . R . E . Br iggs of the Agr onomy Depa r t men t

who s u b j ec t ed the e n t i r e manus c r i p t to c l ose s c r u t i n y and

who suggested i n n u me r ab l e ways o f mak i ng the p r e s e n t a t i o n

more u n d e r s t a n d a b l e .

P R E F A C E

O p e r a t i o n a l a m p l i f i e r s f i n d n u m e r o u s a p p l i c a t i o n s i n

b o t h m i l i t a r y a n d c o m m e r c i a l f i e l d s . T h e f l e x i b i l i t y o f

s e l e c t i n g f e e d b a c k c o m p o n e n t s p r o v i d e s a l a r g e v a r i e t y o f

a c c u r a t e , l i n e a r a n d n o n l i n e a r t r a n s f e r c h a r a c t e r i s t i c s . In

t h e i n s t r u m e n t a t i o n f i e l d , w h e r e p r e c i s e g a i n s a r e r e q u i r e d ,

t h e o p e r a t i o n a l a m p l i f i e r b e c o m e s an i n d i s p e n s a b l e t o o l .

M a n y a n a l o g a n d h y b r i d a n a l o g - d i g i t a l c o m p u t e r a p p l i ­

c a t i o n s r e q u i r e o p e r a t i o n a l a m p l i f i e r s w i t h v e r y h i g h g a i n

a n d I ow d r i f t .

T h e l o w p o w e r c o n s u m p t i o n a n d t h e c o n t i n u i n g

i m p r o v e m e n t i n t r a n s i s t o r m a n u f a c t u r i n g t e c h n i q u e s h a v e

e n c o u r a g e d v a r i o u s m a n u f a c t u r e r s t o d e v e l o p v a r i o u s t y p e s

o f t r a n s i s t o r o p e r a t i o n a l a m p l i f i e r s f o r t h e e l e c t r o n i c

m a r k e t . D e s p i t e t h e p r o g r e s s m a d e i n t h e t r a n s i s t o r i z e d

o p e r a t i o n a l a m p l i f i e r s , t h e g a i n - b a n d w i d t h p r o d u c t

re.m a i n e d q u i t e l o w a n d d i d n o t s a t i s f y t h e r e q u i r e m e n t s o f

t h e m o d e r n i t e r a t i v e c o m p u t e r .

To d e v e l o p a n e w o p e r a t i o n a l a m p l i f i e r w i t h v e r y

h i g h g a i n - b a n d w i d t h f a c t o r , u s i n g f e e d f o r w a r d t e c h n i q u e s ,

wa s s u g g e s t e d t o t h e a u t h o r b y D r . G r a n i n o K o r n o f T h e

U n i v e r s i t y o f A r i z o n a i n T u c s o n , A r i z o n a . N u m e r o u s

IV

di scuss i ons w i t h Dr . Korn and e v a l u a t i o n of t he ve r y few

t e c h n i c a l a r t i c l e s w r i t t e n in the f e e d f o r w a r d methods

i n d i c a t e d the p o s s i b i l i t y o f an o r i g i n a l des ign . The au t hor

u n d e r t ook the d e v e l o p me n t and t es t i ng of t h i s a m p l i f i e r as

his Mas t e r ' s Thesis at The U n i v e r s i t y of A r i z o n a at Dr .

Kor n ' s sugges t i on . The a m p l i f i e r was des i gned in a summer

e mp l oy men t at Bu r r - B r own Research C o r p o r a t i o n , Tucson ,

A r i z o n a . In the course of t h i s e mp l o y me n t , t he a u t h o r was

p r i v i l e g e d to work under the gu i d a nc e of Mr . Henry Ko e r n e r ,

V i c e Pres i dent E n g i n e e r i n g , Bu r r - Br own Research C o r p o r ­

a t i o n . The progress made was f r e q u e n t l y r epo r t ed to the

thesi s a d v i s o r . Dr . Ko r n , who p e r s o n a l l y v i s i t e d the a u t h o r

at Bu r r - B r o wn , i n s pe c t e d his progress, and gave v a l u a b l e

a d v i c e .

The thesi s f i r s t deve l ops o n e - c h a n n e l s t ab l e a m p l i ­

f i e r w i t h s u i t a b l e p o l e - z e r o c o mb i n a t i o n s and l a t e r adds a

second channe l to c o mp l e t e the f e e d f o r w a r d a m p l i f i e r .

Demi r Ozdes

The U n i v e r s i t y o f A r i z o n a Tucson, A r i z o n a , 1963

V

C O N T E N T S

Pref ace

Chqp i ’er 8 I n t r o d u c t i o n „

Se c t i o n 1 Des ign S p e c i f i c a t i o n s o

1 o 1 „ 1 G e n e r a l „

1,1 ,2 D e s c r i p t i o n o f t he O v e r a l l De s i g n , 1

Se c t i o n 2 Design Problems and T h e i r S o l u t i o n e 3

1 . 2 . 1 The D i f f e r e n t i a l A m p l i f i e r . 3

1 . 2 . 2 G a i n and Impedance Pr ope r t i es o f

the D i f f e r e n t i a l A m p l i f i e r . 4

1 . 2 . 3 D r i f t S t a b i l i z a t i o n M e t h o d s . 5

1 . 2 . 4 The Ko e r n e r S t a b i l i z a t i o n M e t h o d . 6

1 . 2 . 5 Adva n t a g e s and Di sadvan t ages o f

the Koe r n e r M e t h o d . 1 1

Ch a p t e r 16 O v e r a l l Des i gn , F r equency

Response and S t a b i l i t y . 14

S e c t i o n 1 S i n g l e Channe l A m p . 14

2 . 1 . 1 I n t r o d u c t i o n and Componen t

S e l e c t i o n . 14

2 . 1 . 2 C h o i c e o f O p e r a t i n g Points and

Stage G a i n s . 14

2 . 1 , 3 I npu t Stage D e s i g n .

V I

15

2 „ 1 e4 I n t e r m e d i a t e Stage Des ign,

2 , 1 , 5 F r equency Response and S t a b i l i t y ,

2 o. l«6 O u t p u t Stage De s i g n ,

Se c t i o n 2 Fe e d f o r wa r d A m p l i f i e r ,

2 . 2 . 1 i n t r o d u c t i o n „

2 . 2 . 2 HF Channe l De s i g n ,

2 . 2 . 3 Co n s t a n t C u r r e n t Load C o n c e p t ,

2 . 2 . 4 N o i s e and I ts E l i m i n a t i o n ,

2 . 2 . 5 Some C o n s t r u c t i o n P r e c a u t i o n s ,

Ch a p t e r 6 81 Test Methods and Resul t s ,

Se c t i o n 1 S t a t i c Tests,

3 . 1 . 1 I n t r o d u c t i o n ,

3 . 1 . 2 Zero B a l a n c i n g ,

3 . 1 . 3 Power Supp l y V a r i a t i o n E f f e c t s ,

3 . 1 . 4 Temper a t u r e V a r i a t i o n E f f e c t s ,

3 . 1 . 5 i n p u t and O u t p u t I mpedance

Me a s u r e me n t s ,

3 . 1 . 6 No i s e M e a s u r e me n t s ,

3 . 1 . 7 D -C Measur ements ,

Se c t i o n 2 Dynami c Tests ,

3 . 2 . 1 I n t r o d u c t i o n ,

3 . 2 . 2 S t a b i l i t y Tes t s ,

3 . 2 . 3 Ga i n vs. F r equency Measur emen t s . 39

3 . 2 . 4 Max i mum C u r r e n t and V o l t a g e

O u t p u t s . 40

3 . 2 . 5 Phase S h i f t and Dynami c A c c u r a c y . 40

Co n c l u s i o n 41

A p p e n d i x A The I npu t Impedance of the Cross -

Coup l ed S t a g e . 43

A p p e n d i x B S t a b i l i t y C o n d i t i o n s of the Cr oss -

Co u p l e d S t a g e . 45

A p p e n d i x C D e r i v a t i o n of V . 48

A p p e n d i x D The M i l l e r E f f ec t in Tr ans i s t o r s . 50

A p p e n d i x E D e r i v a t i o n of Co mmon - Mod e G a i n

E q u a t i o n . 53

Bibl i o g r a p h y 55

V I I I

CHAPTER 1

I N T R O D U C T I O N

S E C T I ON ; 1

DESI GN SPECI F I CAT I ONS

1 . 1 . 1 G e n e r a l . The des i gn of an a l l purpose o p e r a t i o n a l

a m p l i f i e r to be used in an a l l - so l i d - s t a t e i t e r a t i v e e l e c t r o n i c

d i f f e r e n t i a l a n a l y z e r ( I D A) c o n s t i t u t e s the main o b j e c t i v e o f

t h i s research . Table 1.1 compares the r e qu i r ed and f i n a l

des i gn s p e c i f i c a t i o n s .

The research r esu l t ed in d e s i g n i n g two d i f f e r e n t

a m p l i f i e r s , w i t h one h a v i n g less g a i n but b e t t e r shor t c i r c u i t

s t a b i l i t y and less noi se than the o t h e r . Fi gures 1.1 and 1 .2

present the Mode l I and Mode l II a m p l i f i e r s .

1 . 1 . 2 D e s c r i p t i o n of the O v e r a l l D e s i g n . Each t ype of

a m p l i f i e r has two c h a n n e l s . The low f r e q u e n c y channe l is

t h o r o u g h l y d - c c o u p l e d . To compensat e f o r t r a n s i s t o r p a r a ­

met er v a r i a t i o n s , d i f f e r e n t i a l stages are u s e d . V o l t a g e d r i f t

cance l l a t i o n is o b t a i n e d by common mode r e j e c t i o n . Cu r r e n t

o f f s e t as a f u n c t i o n of t e mp e r a t u r e is e l i m i n a t e d by using a new

method wh i c h w i l l be p r esented in the f o l l o w i n g c h a p t e r .

I npu t i mpedance is i nc r eased by using c r o s s - f e e d b a c k . The

TABLE 1.1REQUIRED and FfN/AL' DE5/QN

SPECIFICATIONS

performanceCHARACTERISTICS

RecjufredD e s ig n e d

Model x Model JT

D -C Gam m too dtb, 124^ /OZ Jb

Input Impedance 2oo k J l(min.J

500 k(abd.-<y ... % tr»)

/o o kuo. loo pP,

Output Impedance 100 5 0 -0- 4-o -Q -

Maxi'mu i diifgrfionle^ Velt"0gf£ IIO V . 5 12V

C(oo kc;± I Z V

( q° kc)Ma*imm current 6to ifig t 20m4 . 1 30mA X 36 oi 4

Band bjic/th [Croteo'j&r] I »s Mc/s 2 0 *49 6 .

D rift ' Stability I Mill,Volfs// t°

| 3 <^mv^o l o yW Vy/_0

47o

6 2 0270K 270 <loo3W

IOK

loo 1002Z0K

27C

ICO3 3 K

-I5V

FIG . 1.1FEFDFOR/MRD -3PER/AT/0N-1L AMR (M o d e u )

All (PNP) s ZN /S 6 I , a » (N P N ji 2 N 2 2 2 2 C x e p t ihe ovfpuf W^i i 's for i vohicVi o r ? 2 W 2 2 M ,

All PNlP^s ; Z N l S 6 (Co+pJt 'tranzkiors : 2NZZH

lOO K /OO•47b

INF

/ \

too

47 < Ol MF

Mo P E L 2 FEEDFORWARD a m p .

2

s i g n i f i c a n c e o f the d e v i c e Is the e l i m i n a t i o n of

c i r c u i t . In o r der to p r o v i d e 6 d b / . a t t her o c t a ve

f r e q u e n c y , f l o a t i n g r o l l - o f f ne t wor ks are used.

the chopper

c rossover

S E C T I O N : 2

D E S I G N P R O B L E M S A N D THEI R S O L U T I O N

1 . 2 . 1 The D i f f e r e n t i a l A m p l i f i e r . T h e r e is l i t t l e d o u b t t h a t

t he bes t w a y to s t a b i l i z e t he d - c o p e r a t i n g p o i n t of a

t r a n s i s t o r is to use a s e c o n d t r a n s i s t o r h a v i n g s i m i l a r c h a r ­

a c t e r i s t i c s in a d i f f e r e n t i a l a m p l i f i e r c i r c u i t .

The c o mmo n mode g a i n e q u a t i o n ^ in a t r a n s i s t o r

d i f f e r e n t i a l a m p l i f i e r is

a R 1

1 3A“ ■ - T T ^ I i T " "

In t he e q u a t i o n a b o v e R R , and R^ a r e c o l l e c t o r l o a d ,

e m i t t e r l o a d and e m i t t e r co mmo n r e s i s t o r s , r e s p e c t i v e l y . The

m a g n i t u d e of A a p p r o a c h e s to z e r o as R 0 b e c o m e s l a r g e r , c c J

S i n c e t h e r e is a p r a c t i c a l l i m i t to t he v a l u e o f R^ o w i n g to

t he f i n i t e p o w e r s u p p l i e s , t he i n c r e m e n t a l c o l l e c t o r r e s i s t a n c e

of a t r a n s i s t o r is used as R . Thi s e m i t t e r l o a d t r a n s i s t o r

s er v es as a c o n s t a n t - c u r r e n t s o u r c e .

M i d d I e b r ook , R. P . , D i f f e r e n t i a l A m p l i f i e r s , p p . 2 5 - 2 9 , W i l e y , 1 9 6 3 . A l s o see A p p e n d i x E .

'W /V

Q1 ^ r Sounce Im p e c h n c e

% Ouip^t lfTip€c/qn£6 £>f

i Input I rm p ^^O ce o - f

FIS . 1.3T h e d i f f e r e n t i a l a m p l i f i e d

<?oMotes !■ (, and ar<? twpz- td a n c e s with Q 2 d*nd q r f Consi­d e r e d a s in c c m f ^ o n - b a s c c o n p ^gurcL^.on / ^

2 . ($2 j ‘fc f tk e enizn'flq S^nal^2 '* C dth tnon-W '^rNc;ljf iV < ? r; in -th is e y o m p |> -= < 9 ,

s »

F I G . 1.4

S i mp l e e q u i v a l e n t c i r c u i t f or Q 1 stage of F i g . 1.3 d e f i n i n g the base c u r r e n t i ^ j .

This e q u i v a l e n t c i r c u i t is d e r i v e d w i t h the f o l l o w i n g assumpt i ons : R , R smal l compared to h . e , Rl arge compared to R g . The i n p u t i mpedance of <3 2, wh i c h appears as a common base stage is

( Z i n ) Q2 = h ib + RB 2 ^ " a ^ [ RE( eq ) ] Q1

Thus the i n p u t i mpedance for Q ] is

( Z : n ) Q) = h ie + P [ h ib + RB2( , ' a ) ] = h ie + h ie + RB2

Since ph . ^ = h . e and ( l - a ) ^ ~ .

Now we can w r i t e the l oop equ a t i o ns .

! b, ( h ie + RB1 + RB2 + h i e ) = ' s RB1R

i b i ‘ ^ '-t N ; ’ ' ' b , rbA j = ( Cu r r e n t G a i n ) = — R + h;

, _ . R , ‘ c 1RL_ BRl3-8___1 c 1 L * v R 7 ^ - ^ b (Rb + h . e)

i e

N o t e : R ^ i s the eq . l oad r e s i s t o r .

4

1 . 2 . 2 G a i n And Impedance Pr oper t i es of the D i f f e r e n t i a l

A m p l i f i e r . Re f e r r i ng to F i g . 1 . 3 the i mpedance at p o i n t (A)

appears as the i n p u t i mpedance of a s i ng l e ended s t age, where

the e q u i v a l e n t e m i t t e r res i s t or R consi s t s o f R^j in

ser ies w i t h the p a r a l l e l c o m b i n a t i o n of the o u t p u t i mpedance

o f Q ^ and the i n p u t Impedance o f Q g , both a p p e a r i n g as

common base stages; the r e s u l t i n g i mpedance is a p p r o x i m a t e d

by R , ,

R R.

w h e r e RE( Eq ) = RE1 + R Q + R. ( ' - 3)

A p o t e n t i o m e t e r is i nse r t ed be t ween the two e m i t t e r s wh i ch

permi t s b a l a n c i n g of the c o l l e c t o r c u r r e n t s . No t e t ha t Rj^ is

abou t t w i c e as l a r ge as t ha t of a s i m i l a r s i n g l e ended stage .

Stage ga i n as shown in F i g . 1.4 is

S i n c e o n l y one h a l f o f t h e i n p u t s i g n a l is used a t Q ,

t he s t a g e g a i n w i l l be f i f t y p e r c e n t less t h a n t h a t o f a

s i m i l a r s i n g l e e n d e d c o mmo n - e m i t t e r s t a g e .

I t is p a r t i c u l a r l y s i m p l e to c o n s t r u c t a m u l t i s t a g e

o p e r a t i o n a l a m p l i f i e r c a s c a d i n g c o m p l e m e n t a r y d i f f e r e n t i a l

- o E .

—■O — £<« 1 1 W ‘-,h

F I G . I. 5High in p u t i*»'pW<,ncc DC, / tm p ,_ i— - -|—i-L* iniiimimi-i- wr --n -n> i •-ir * 1 I L i

E in

b o

in

- 1 % - )

W i u i h ^ ^

2:

C

i A

•f 2 ; ; ^ 2 ift

•Alio k . - L a r

E :in-O E«

c - E.

FIG. 1.6V\ igh in p u t ‘i rn p e d a n c e in b g q n a t o r ,

r t n t a The in te rna i ga in ) $ ( ^ .

-E,

FIG. 1.7Different!a I Amotfjrit~r in_opj rob«tm!

c o n n e c t i o n ,

in z in

, For i n t e g r a t o r a p p l i c a t i o n the e q u a t i o n w i l l become

/E;n d t

NOTE: This i n t e g r a t o r , due to the low i npu t i mpedanceof the t r ans i s t o r s , may have a t i me con s t an t i n a d e q u a t e f or c o mpu t i n g a p p l i c a t i o n s . Most s u i t a b l e i n t e g r a t o r c i r c u i t is p r esented in F i g . 1 . 6 .

a m p l i f i e r s tages, thus zero i n p u t and zero o u t p u t can be

o b t a i n e d .

I f two ou t - o f - ph as e p u s h - p u l l vo l t a g e s are unequal

at any s t age , the d i f f e r e n c e appears d i f f e r e n t i a l l y at the

f o l l o w i n g stage and w i l l t end to e q u a l i z e two c o l l e c t o r

v o l t a g e s . Some t y p i c a l exampl es of the o p e r a t i o n a l a m p l i ­

f i e r s e mp l o y i n g d i f f e r e n t i a l stages are shown in Fi gures

1 . 5 , 1 . 6 , and 1 . 7 .

1 . 2 . 3 D r i f t S t a b i l i z a t i o n M e t h o d s . Chopper s t a b i l i z a t i o n2 Q

methods due to G o l d b e r g : and F. H. B l echer were f i r s t

a p p l i e d to vacuum tube c i r c u i t s . S i nce these c i r c u i t s

ope r a t e at h i gh v o l t a g e s , the m e c h a n i c a l chopper noi se

appears r e l a t i v e l y s m a l l . Ho we v e r , t h i s noi se is l a r ge when

me c h a n i c a l choppers are used in t r a n s i s t o r c i r c u i t s . To

c omp l y w i t h the need, new t ypes of choppers were dev e l o p ed

( i e . p h o t o e l e c t r i c , t r a n s i s t o r e t c . ) . A l t h o u g h t r a n s i s t o r

choppers are l i g h t , compac t and have low power c o ns u mp t i o n ,

some i m p o r t a n t c h a r a c t e r i s t i c s l i m i t t h e i r usage:

^ G o l d b e r g , E. A . , " S t a b i l i z a t i o n of d - c A m p l i f i e r s , " RCA Rev. I I , p. 296 , 1 950.

^ B l e c h e r , F . H . , " T r a n s i s t o r C i r c u i t s f or A n a l o g and D i g i t a l Sys t ems , " Bel l Sys. Tech . J . 35, pp. 2 9 5 - 3 3 2 , M a r c h , 1956.

1. The v o l t a g e drop across the t r a n s i s t o r , even in

s a t u r a t i o n is never e x a c t l y z e r o . T y p i c a l

s a t u r a t i o n v o l t a g e is less than 1 m v „ , and the

s a t u r a t i o n r es i s t ance is 5 0 - 1 0 0 ohms .

2 . J u n c t i o n c a p a c i t a n c e w i l l p r oduce spi kes at the

o u t p u t w h i c h may range f rom m i l l i v o l t s to t en ths

of a v o l t .

Advances in the c hoppe r t e c h n o l o g y have p r oduced

ve r y c ompa c t e l e c t r o m e c h a n i c a l choppers w i t h o u t the

l i m i t a t i o n s o f t r a n s i s t o r c h o p p e r s .

In f a c t , many m e c h a n i c a l ch o p p e r ma n u f a c t u r e r s c l a i m

as noi se l i m i t a t i o n s t he t he r ma l or s o - c a l l e d Johnson no i se .

Ho we v e r , m e c h a n i c a l modu l a t o r s do s u f f e r c o n t a c t we a r , w h i c h

f i xes the l i f e o f a d e v i c e at 1000 to 9000 hours; f o r h i g he r

l i f e e x p e c t a n c y t he s i ze of t he m o d u l a t o r i nc r eases .

The noi se p resent i n m e c h a n i c a l choppers is not more

t han 100 pv and some s u p e r i o r d ev i ces go as low as 4 pv „ In

c o n c l u s i o n one observes t h a t m e c h a n i c a l c h o p p e r s , In t he

present s t a t e of a r t , are p r e f e r a b l e in t he use o f c o mp u t i n g

a m p l i f i e r s ; howe ve r s i z e , cost and the presence o f noi se are

s t i l l l i m i t i n g f a c t o r s .

1 . 2 . 4 The Ko e r n e r S t a b i l i z a t i o n M e t h o d . A new and

i n g e n i o u s d r i f t s t a b i l i z i n g method was dev i sed by H. Koe r ne r

7

and a p p l i e d by the au t ho r to va r i ous a m p l i f i e r c i r c u i t s w i t h

very s a t i s f a c t o r y r esu l t s . The method does not r e qu i r e

a d d i t i o n a l componen t s , n e i t h e r a c t i v e nor pass i ve , but c a l l s

for ma t ch i n g as c l ose as one p e r c e n t of the t rans i s t o r s based

on a c c u r a t e measurements of V g and (3 . ^

The Koer ne r s t a b i l i z i n g method works w i t h a d i f ­

f e r e n t i a l - a m p l i f i e r e m p l o y i n g a cons t an t c u r r e n t source .

Cons i de r the a m p l i f i e r shown in F i g . 1 . 8 c o ns i s t i ng of

c o mp l e me n t a r y d i f f e r e n t i a l stages des i gned for zero o u t p u t

per zero i npu t . The f i r s t stage is d i r e c t - b i a s e d t h rough the

res i s tors R g and Rgg. The a m p l i f i e r is c o mmi t t e d to ope r a t e

as an i n v e r t e r ; the res i s tors used for thi s purpose are shown in

do t t ed l i n e s .

A t e mpe r a t u r e i nc r ease w i l l cause pa r amet e r v a r i a t i o n s

wh i c h w i l l be co ns i d e r e d on l y at the i n p u t s t age . The I

and V g , 5 v a r i a t i o n s are p a r t i a l l y compensat ed by the second

t r an s i s t o r in the d i f f e r e n t i a l stage as e x p l a i n e d e a r l i e r . A t

the i n p u t stage a v a r i a t i o n of t emper a t u r e w i l l cause the f o l ­

l o w i n g even t s :

1. Let us assume a q u i e s c e n t c o n d i t i o n , such t ha t

1 I Q ]1B1 = *B1' where = p 0 * 5 )

4 / 5 D u r i n g the a c t ua l measurements we had I q = 8 Ma ,V C E = 15V.

8

Si nce (3 has a p o s i t i v e t e mp e r a t u r e c o e f f i c i e n t , in

h i g h e r t emper a t u r es I ^ w i l l be less than i ts

q u i e s c e n t v a l u e . C o n s e q u e n t l y , an excess c u r r e n t

o f I g j w i l l f l ow t h r ough Rp and w i l l appear as an

o f f se t at the a m p l i f i e r o u t p u t .

2 . The base v o l t a g e V ^ anc base c u r r e n t I g of Q

r emai n p r a c t i c a l I y c o n s t a n t , but due to the

n e g a t i v e t emp e r a t u r e c o e f f i c i e n t of Vggg the

v o l t a g e drop across R g i nc reases w i t h the t e m ­

p e r a t u r e . C o n s e q u e n t l y , the t o t a l c o l l e c t o r

c u r r e n t l C ( T o t a | ) = 2 I C ) = 21^% i n c r eases ,

caus i ng the base- c u r re n ts I g and I ^ i nc r ease

a l s o . Si nce the base c u r r e n t e q u a t i o n I ^ = 1 ^ = I

has to be s a t i s f i e d , an excess c u r r e n t must be

s u p p l i e d to the bases of Q j and Q g . The base of

Q is a l so c o n n e c t e d to Rp. Hence the excess

c u r r e n t is s u p p l i e d f rom the c o l l e c t o r o f Q ^ , wh i ch

o b v i o u s l y w i l l appear as a v o l t a g e d r i f t at the o u t ­

p u t .

F o r t u n a t e l y , h o we v e r , the two phenomena d esc r i bed

above have oppos i ng e f f e c t s on the a m p l i f i e r o u t p u t . Thus,

i f these r e s u l t i n g v o l t a g e changes are ma t c h e d , no c u r r e n t

w i l l f l ow across Rp and Eo u j. w i l l r emain c ons t an t w i t h

i n c r e a s i ng t e mp e r a t u r e . The s e l e c t i o n of res i s tors is a

r o u t i n e design p r o b l e m . As a h y p o t h e t i c a l e x a mp l e , assume

the t e mpe r a t u r e range of the a m p l i f i e r be i ng T1 to T2 . We

can present a set of equ a t i ons wh i c h d e f i n e one and o n l y one

va l ue of Vgg wh i c h is the key of the p r o b l e m.

Si nce the ma t c h i n g of the v o l t a g e changes , desc r i bed

?n the p r e c e d i n g pa r ag r aphs , is r e q u i r e d , we can w r i t e the

f o l l o w i n g e q u a t i o n :

[■' E ( T o t a l ) _ T2 _ V B3 ~ (v BE3) l 2 %T2

T 1 V B3 - ( V BE3 ) T1 %TtP E ( T o t a l )

wher e P is the c u r r e n t ga i n of the matched p a i r Q , Q ^ . The

parameters PT 2 , P , (V B£) j 2 ' (V B£) T1 are known; e q u a t i o n

( 1 . 6 ) de t e r mi nes V ^ ^ . R g and R ^ must , h o w e v e r , be s u f ­

f i c i e n t l y low to secure a l arge va l u e o f I g^ wh i c h w i l l keep

V B3 c o n s f a n t - N o f e t h a t V B3 = ' s RS1 and VTetal " V B3 = V S

v _ ( v B E 3 h ) %T2 ■ ( V BE 3 ) T 2 %TI

" (S,T2" - " ■ 71

V B3 " ^V BE3^T1 = ^V ER3^T) ( ' - S )

VTotal V CC + V EE

C22 czl 0 8

07

B30 3 OUTPUT\ / \ / \

8E3

V v

FIG. 1.0 Threfi dtrezi -bibs inYtfrtcr

10

V EE " ^V ER3^T1= R „ ( 1 . 9 )

* C 1 + 1C2 E3

A c c o r d i n g to the equa t i ons abo v e , and r e f e r r i n g to F i g . 1 . 8

the s e l e c t i o n of the component s w i l l be in the f o l l o w i n g

sequence:

1 . S e l e c t p r oper c o l l e c t o r v o l t a g e and c u r r e n t for

each s t age . These w i l l de t e r mi ne the c o l l e c t o r

res i s tors .V c c - v c

R = _ £ £ _ ^ E ( 1 .10)' c

2. Using eq u a t i o n ( 1 . 7 ) f i nd V ^ .

3 . Se l ec t ( I r i + I r «)l s > 100 — — p— — ( i . n )

4. Se l ec t res i s tors R g and R ^ •

RS 1 - - i f (K12)

and R = - 2 l = Vb3 + ( 1 . 1 3 )52

5. Se l e c t R ^ using e q u a t i o n ( 1 . 9 ) .

I f the pa r amet e r v a r i a t i o n s are known , the Koer ner

method becomes a ve r y speedy process . The Koe r ne r method

permi t s a maximum of ( 1 - 2 ) n^ / cj e g q d r i f t g r a d i e n t

11

and c l ose r ( i e . one p e r c e n t ) ma t c h i n g of the t r ans i s t o r s , w i t h

n e g l i g i b l e I cQ, m i gh t r educe th i s number by a f a c t o r o f f i v e .

The best chopper s t a b i l i z e d a m p l i f i e r a v a i l a b l e has a d r i f t

g r a d i e n t va l u e of ( . 0 1 - . 1 ) n A / j Q f thus the Koer ne r

method appears co mpa r a b l e and s i nce i t does away w i t h c h o p ­

pers and chopper no i se , i t is p r e f e r r e d by the a u t h o r .

A m o d i f i e d ve r s i on of t he Koer ne r s t a b i l i z a t i o n method

as d ev e l o pe d by the a u t h o r ^ has some o t h e r supe r i o r

q u a l i f i e s and w i l l be i n t r o d u c e d in the second c h a p t e r .

1 . 2 . 5 Adv an t ages And Di sadvan t ages of the Koe r ne r M e t h o d s .

The most o u t s t a n d i n g f ea t u res of t he Koer ne r methods are

l i s t e d be I ow :

1. Ve r y l ow d r i f t g r a d i e n t , c o m p a t i b l e w i t h the

choppe r s t a b i l i z e d a m p l i f i e r s .

2. Si nce the con s t an t c u r r e n t source is a l r e a d y used in

d i f f e r e n t i a l s tages, no a d d i t i o n a l components w i l l

be r e q u i r e d , thus d r i f t s t a b i l i t y is a c h i e v e d w i t h a

mi n i mum number of component s .

3. No chopper noi se is present .

^ Th i s method was suggested to the a u t ho r by M r . T. R. Brown, Pr es i den t , Bu r r - B r own Research C o r p o r a t i o n .

12

L i m i t a t i o n s of t he Koe me r methods may be s t a t ed as

fol I ows:

1. Tr ans i s t o r t ypes used must have co ns t a n t t e m ­

pe r a t u r e c o e f f i c i e n t s f or (3 and V ^ g o v e r the

o p e r a t i n g - t emp e r a t u r e r ange .

2. In a d d i t i o n to c I ose (I e . one p e r c e n t ) ma t c h i n g o f

the t r a n s i s t o r s , h i gh and low l i m i t va l ues of |3 and

V g £ in the w o r k i n g - t e m p e r a t u r e range must be

measured.

3. An a d j u s t me n t o f R ^ is necessary to p r o v i d e zero

I npu t and ze r o o u t p u t c o n d i t i o n .

4 . At t h i s t i m e , i t is not poss i b l e to p r e d i c t the

d i r e c t i o n and s i ze of the d r i f t due to t r a n s i s t o r

a g i n g . ^

5. The Koe r ne r method a p p l i e s o n l y to d i f f e r e n t i a l

amp I i f i ers .

6. S l i g h t t emp e r a t u r e d i f f e r e n c e s in the matched

t r a n s i s t o r s , such as due to bad c o n d u c t i o n in the

common heat s i n k , may upset the m a t c h i n g in the

or der o f mi l I i v o l fs .

7 The f i r s t model a m p l i f i e r us ing the Ko e r n e r method was mar ke t ed in Sep t ember , 1962. I f is e x p e c t e d to have the resu l t s o f the componen t a g i n g i n abou t No v e m b e r , 1963.

1 3

The m a t c h i n g and pa r ame t e r measurements r e q u i r e d f or

the Koe r ne r method i n t r o d u c e a d d i t i o n a l costs, bu t w i t h the

adv anc e o f t he t r a n s i s t o r m a n u f a c t u r i n g t e c h n i q u e s , t h i s cost

may be r e d u c e d .

CHAPTER H

OVERALL D E S I G N , FREQUENCY RESPONSE

A N D STABI L I TY

SE CTI ON: 1

S I N GL E C H A N N E L AMPLIFIER

2 . 1 . 1 I n t r o d u c t i o n and Componen t S e l e c t i o n . This s e c t i o n

presents a s i n g l e - c h a n n e l a m p l i f i e r des i gn p r o c e d u r e . I t is

c l e a r t ha t many o t h e r approaches can be used i n s t e a d ,

depend i ng to the p a r t i c u l a r i t i e s o f a s p e c i f i c des i gn p rob l em

or the d e s i g n e r s p r e f e r e n c e .

S e l e c t i o n o f t r ans i s t o r s is d i c t a t e d by t he f r e q u e n c y

r ange , ( V CE) ma x , C8c ) max# and ( Pc ) m a x ®’ The s p e c i f i c a t i o n s

o f t he t r ans i s t o r s s e l e c t e d by the w r i t e r are l i s t e d in Tab l e

2 . 1 . The s e l e c t e d NPN t r a n s i s t o r 2 N 2222 has a (3 c u t o f f

f r e q u e n c y of over 2 0 me ga cyc l es per second and V(] g of

3 0 V ; c o n s e q u e n t l y t he des i gn p r ob l em has r educed to the

s e l e c t i o n o f o p e r a t i n g p o i n t s .

2 . 1 . 2 C h o i c e o f O p e r a t i n g Points and Stage G a i n s . A ve r y

8 No t e t ha t t h i s permi t s a f a v o r a b l e c o m b i n a t i o n be t ween noi se and HF response, s i nce HF channe l does not c o n t r i b u t e LF n o i s e . N o n - f e e d f o r w a r d a m p l i f i e r must compromi se i n p u t - stage P to ge t l ow n o i s e .

T A B L E 2.1T R A N S IS T O R C H A R A C T E R I S T I C S

TRAUSISTOR c/-C j$ £ c .b Pw 4(25'%C)

2N2222fW PN)

30 V. 60 4 o o M cs. 5 PT.

.

1.8 VV. 60 V.

2N86I

(PUP) 25 V. 35 4oMcs. S p .f 150 mW. 55 V.

1 5

genera l r u l e f or e s t i m a t i n g d i f f e r e n t i a l - a m p l i f i e r ga i n is to

assume be t ween 20 and 30 d b c ga i n per s t a g e . On th i s basis

i t was d e c i d e d to use t h r ee v o l t a g e - a m p l i f i e r stages and a

h i gh c u r r e n t o u t p u t stage . The o p e r a t i n g po i n t s are s e l e c t e d

as + 6 V for the f i r s t s t a g e , + 12V for the second stage and 0V

at the c o mp l e me n t a r y t h i r d s t age . The s e l e c t i o n o f the f i r s t

and second stages as NPN t r ans i s t o r s is not a r b i t r a r y ; the h i gh

P c u t o f f and low noi se q u a l i t y a v a i l a b l e f rom NPN dev i ces

d i c t a t e d th i s p r e f e r e n c e . Fu r t he r mo r e , to ensure l ow no i se ,

the i n p u t stage was des i gned to o p e r a t e w i t h lOOpA c u r r e n t ,

2 . 1 , 3 I npu t Stage De s i g n , Re f e r r i n g to F i g . 1 . 8 where the

o p e r a t i n g p o i n t is s e l e c t e d to be abou t V q g = 6 V ,

the c o l l e c t o r res i s tors are compu t ed as;

_ V c c - VC,

^ ' c i

V C 1 = V C2 ' * 01 = * 0 2 / RC 1 = RC 2 ( 2 . 2 )

For l ^ i = 90p A , Rq i =: 1 0 0 K

We s e l e c t R £ j = ^£2 = 470 SL- and p o t e n t i o m e t e r

R g £ = 1 00 _OL , The e m i t t e r r es i s tors R £ and R p r o v i d e

b I as s t a b i l i z a t i o n t h rough e m i t t e r d e g e n e r a t i o n , a l t h o u g h t hey

do decrease the s tage g a i n .

F I G . 2 . IDerflonstrcttfon of the comma0-(oQS€ C6O06ctiOr)

3R f

To

To&

Second and th/rdstaoes t be. same

Fig. /• 8as /o

-J Eo

F I G . Z Z

Cross feed sb alolhzed fnput st«3^e fo r athree stage Inverter. Note tlia't stalpiiemlton currents a r t sbcDf) any «> 0 ! ;^trk.e Q2 ba:e i? ptr- monenttu Grounded , j? ^ mvsi b*deleted;Ty : Total bias Current ,

- Ba e current z = Offset (error) current.

16

9Q g acts as a c o n s t a n t - c u r r e n t s i n k . F i g . 2 .1 shows

a s i m p l i f i e d c i r c u i t f or Q ^ , wh i c h appears as a common-

base c o n n e c t i o n . Thus, the e f f e c t i v e i n c r e m e n t a l i mpedance

of Q w i l l be r (5 Megohms) . Hi gh i mpedance at the e m i t t e r 3 c

c i r c u i t w i l l p r o v i d e a h igh common- mode r e j e c t i o n r a t i o . ^

In the last se c t i o n the base is b i ased d i r e c t l y .

A l t h o u g h d i r e c t - b i a s is a w i d e l y used c o n c e p t , a new method

w i l l be i n t r o d u c e d and i ts e f f e c t s w i l l be i n v e s t i g a t e d . As

shown in F i g . 2 . 2 the bias res i s tors R ^ and R ^ are c ross-

c o u p l e d to the c o l l e c t o r s of Q g and Q , r e s p e c t i v e l y . The

res i s tors R and R are very l a r g e . ^ C o n s e q u e n t l y , t hey B 1 B 2

w i l l not s i g n i f i c a n t l y a l t e r the s t andard ga i n e q u a t i o n of a

d i r e c t - b i a s e d d i f f e r e n t ! a I - a m p l i f i e r s t age . Ho we v e r , thei

i n p u t i mpedance R j n w i l l have a d i f f e r e n t a p p e a r a n c e ,

R. RR: _ j. n d. n I ITT ( 2 . 3 )

1 i n ” Bin RB + R j p O - K )

V c 2K = ~~rf thus K ^ 0

V B 1

o 'In a PNP stage Q ^ wou l d be p r o p e r l y c a l l e d a

c o n s t a n t - c u r r e n t source .

^ M i d d l e b r o o k , R. D . , O p . C i t .

^ S t a b i l i t y c o n d i t i o n s r e q u i r e bias r es i s t o r magn i t udes to be in the Megohm range; thi s w i l l be shown in the f o l ­l o w i n g c h a p t e r s .

17

where K is the s tage ga i n and R. ^ is the i n p u t i mpedance of12

a d i r e c t - b i a s e d d i f f e r e n t i a l - a m p l i f i e r stage 0 Equat i oni

( 2 . 3 ) i mp l i e s t ha t R. n is a l ways g r e a t e r t han R. n , i . e . ,

c r o s s - c o u p l i n g i ncreases the i n p u t i mpedance „ The s t a b i l i t y

1 3c o n d i t i o n o f the stage is ensured by t he I n e q u a l i t y

R * n R i /R < R;n + RB ( 2 . 4 )eq

Let us app l y t h i s c o n d i t i o n to our p r ob l em:

V B = OV , V C2 = +6V , I C1 = 90p A , p = 80

RB = I c 7 7 r ' " = ( 9 0 ) ( , 0 ) - 6 7 — = SMegohms

For R^ = 1 00 K , the s t a b i l i t y c o n d i t i o n is s a t i s f i e d w i t h a

marg i n f a c t o r o f 6 .

We now t urn to the ques t i on o f t e m p e r a t u r e - e f f e c t

compensa t i on w i t h the c r o s s - c o u p l e d i n p u t s t a g e . In the

case o f the c r o s s - c o u p l e d a m p l i f i e r , h i gh c o l l e c t o r c u r r e n t

w i l l l owe r the c o l l e c t o r v o l t a g e thus caus i ng the base-

c u r r e n t to d ec r ea s e . We sha l l a t t e mp t to match t h i s decrease

1 2 The d e r i v a t i o n o f the I np u t i mpedance of a c ross - co u p l e d stage is shown In A p p e n d i x A e

The i n e q u a l i t y ensur i ng the s t a b i l i t y o f t he stage is a r e s u l t o f a l o o p - g a i n a n a l y s i s . The cons t an t s a p pe a r i n g in e q u a t i o n ( 2 . 4 ) and the ana l ys i s are p resen t ed in A p p e n d i x B.

1 8

to a b a s e - c u r r e n t i nc r ease due to the cons t an t c u r r e n t s i nk in

the e m i t t e r c i r c u i t . For the sake o f s i m p l i c i t y , assume an

NPN stage and n e g l i g i b l e base-c u r re n ts to the f o l l o w i n g stage

The f i r s t step Is to f i n d the va l ue of the c o u p l i n g res i s t or R^ .

For = 0 we have

, , • v c c " i c r l•ft = ' b = ----------6 - ---------- ( 2 . 5 )

Al so s i nce 1 - is known I d ~ . C o n s e q u e n t l y ,P

- p l _ RRB . CC 1 £ _ L }

‘ b

Equat i on ( 2 . 6 ) g i ves an a c c u r a t e v a l u e f or R ^ . Howev e r ,

t h i s va l ue must sa t i s f y the s t a b i l i t y f o r mu l a ( 2 . 4 ) . A t the

h i gh t emp e r a t u r e Equa t i on ( 2 . 5 ) becomes

v c c - ( ' c + I,c ) r l _ ‘ c + ' crb p + | f ( 2 . 7 )

where

(■c + ) = ( *0^72 ancl (P + P" ) = P72

C o m b i n i n g Equat i ons ( 2 . 6 ) and ( 2 . 7 ) , we f i nd

, * _ ' c ^ c c 13 " l C R l P ■ V C C p 7 2 + ' c R kP 72 ^' c t l c P R L - l c P T 2 R L - P V C C ) ( 2 - 8)

Equa t i on ( 2 . 8 ) is e x t r e m e l y i m p o r t a n t . I t g i ves one h a l f of

the c o l l e c t o r c u r r e n t i n c r e a s e , necessary to match the (3

i nc r ease in h i gh t e mp e r a t u r e . The nex t step is to des ign a

19

14 *c u r r e n t s i nk wh i c h w i l l p r oduce 2 1q at the s e l e c t e d h i gh*

t e mp e r a t u r e . Using t he known va l ues o f V g ^ , V g £, I q and# ' ] 5

I q we c a n f i n d a s p e c i f i c v a l u e f o r V g g .

V BEV B3 = 1 * - ' C + V BE ( 2 . 9 )

The last step is to c a l c u l a t e the values of R g ^ , R g g and RE3

Si nce V r r + V FF , V RF

' T T a ' l f 'c * < » • ' • >

Rear rang i n g g i ves

" s i _ ‘ c < V C C * V EE - V » i ) ' V l i i l C .

" S2 " I J V SE . I c v j £ | 2 - " )

Also we can d e f i n e

V d c qRE3 = - j r f (2 « 12)

The des ign sequence for the i n p u t s tage Is as f o l l o w s :

1. Se l e c t o p e r a t i n g p o i n t s .

^ No t e t h a t f o r PNP stage des i gn , the s i nk is r e p l a c e d by a s o u r c e .

^ D e r i v a t i o n o f V gg is shown I n A p p e n d i x C .

20

2 . Se l e c t c o l l e c t o r res i s tors using E q . ( 2 . 1 ) .

3 0 Se l e c t c r o s s - c o u p l e d res i s tors using E q . ( 2 . 6 ) and

Eq . ( 2 . 4 ) .*

4. C a l c u l a t e 1 . using Eq . ( 2 . 8 ) .

5 0 Se l e c t us ing E q . ( 2 . 1 2 ) ._ /

6 o Se l e c t I <- 1 0S / ' B3 'Vee ” Y l + v cjc

•sS e l e c t R g g us i ng Eq. 2 . 11

S e l e c t RS1 = —^ ------ r 5 — ( 2 . 1 3 )/

8

9. R e c a l c u l a t e the o p e r a t i n g p o i n t s .

There are two ver y i m p o r t a n t p rob l ems wh i c h must be

cons i de r ed in the process p r esent ed above*

1. Somet i mes, in o r der to m i n i m i z e no i se , ve r y smal l

q u i e s c e n t cu r r en t s as l ow as 3 Op A may be us e d .

In cases l i k e t h i s , or in the case where the base

cu r r en t s o f t he f o l l o w i n g stages are not n e g l i g i b l e ,

a more e x t e n s i v e ana l ys i s is r e q u i r e d . In a case

l i k e t h i s , the c o l l e c t o r c u r r e n t I ^ is p resent ed as,

ER3 ± ( 1 . , ) ^ ( 2 . 1 4 )Cl 2 R £3 B1 Q 2

In some s p e c i f i c cases, where the base c u r r e n t

IQ3 of Q g may also not be n e g l i g i b l e , t he n , e q u a t i o n

21

(2 «, 1 4 ) w i l l be s l i g h t l y a l t e r e d :

■ c . ■ " Y " " ' " 1 , 3 > C . , » Q , ( « . > . )

I n c l u d i n g the e x t r a c t i o n o f base c u r r e n t I ^ ,

e q u a t i o n ( 2 . 1 5 ) can be expressed as a f u n c t i o n o f

t e mp e r a t u r e ,

V ( 9 ) RE3 l ( 0 ) B3, <0 ) C 1 - '2 R ™ - - ' ( e ) B M . ( 6 ) B1) Q2

( 2 . 1 6 )

I t shou l d be p o i n t e d out t ha t the l as t term of

e q u a t i o n ( 2 , 16) may al so i n c l u d e the I e f f e c t , I f

any , o f the f o l l o w i n g s t a g e .

2 . 1 . 4 I n t e r m e d i a t e Stage Des i g n . The c h o i c e of the

q u i e s c e n t o p e r a t i n g po i n t s f or t he second and t h i r d stages

p r ov i des the necessary constant s to c a l c u l a t e the c o l l e c t o r

l oad and e m i t t e r res i s tors A f t e r the r es i s t o r va l ues

c l oses t to those c a l c u l a t e d have been s e l e c t e d , the p r ob l em Is

wor ked backwar ds and the new q u i e s c e n t va l ues are c a l c u l a t e d .

2 . 1 . 5 Frequency Response and S t a b i l i t y . A t t h i s p o i n t we

t urn to the p r ob l em o f shap i ng the o p e n - l o o p response of the

^ T h i s s i mp l e a p p l i c a t i o n o f bas i c c i r c u i t l aws are not r epea t ed in t h i s s e c t i o n . The necessary e qua t i ons are shown in Sec . 2 .1 . 3 «,

GAIN

IN

db

0 0

6 0

d e c o d e

\ Uncompensated

10 Kcs FREQUENCY

F I G . 2 , 3

T h e f requency response corves of the three sfcctge ampl i f i e r .

N o t e i The. b r d o k p g ,'n t o f 4h-d uncom pen-s a t e d curve includes tuJo poltis ^W, and W , y c/ue to th ird omd Second stages , respectively.

22

a m p l i f i e r to y i e l d a s t ab l e c l o s e d - l o o p o p e r a t i o n . In o r de r

to s a t i s f y the N y q u i s t c o n d i t i o n f or s t ab l e o p e r a t i o n , the

a m p l i f i e r o p e n - l o o p response must go t h rough u n i t y w i t h a

20 d b / s l ope* This ensures the a m p l i f i e r p h a s e - s h i f to c t a v e ■ r rto be no more than 90 - d e g *

The shap i ng is o b t a i n e d by using r o l l - o f f or l a g - l e a d

ne t wo r k S o ^

The response cu r ve o f t he o p e n - l o o p uncompensat ed

t h r e e - s t a g e a m p l i f i e r Is shown in F i g , 2 . 3 , The doub l e po l e

a pp e a r i ng at w ^ = 12 K c ps , is due to the f o l l o w i n g reasons:

1, The 3 db p o i n t due to t he f i r s t stage w i l l be at a

r e l a t i v e l y h i gh f r e q u e n c y ( i e . I Me) s i nce the

s i gna l source i mpedances are u s u a l l y v e r y l ow . * ^

2 , The second and t h i r d stages are d r i v e n f rom c o mmo n -

e m i t t e r stages . Si nce the c o m m o n - e m i t t e r o u t p u t

i mpedances are h i g h , t he t i me cons t an t s f ormed by

the o u t p u t i mpedance and the M i l l e r c a p a c i t a n c e ^

. . '

Huskey , H . D . and K o r n , G . A , , Comp u t e r Handb o o k , Se c t i on 2, pp . 4 9-51 , M c G r a w - H i l l , 1 962 .

^ T y p i c a l s i gna l g e n e r a t o r o u t p u t i mpedanc e is less t han I K

19 The M i l l e r e f f e c t is d e r i v e d in A p p e n d i x D ,

C l

C2

^H A A A / 1 [= ^liu

F | G, . 2 O . - O 's i ' - I ' ( - r e r d i Q t * f , r r

C2

2 C

u W V

«V f G , 2 >4 bfC\ 16 r.t Load u i s i n i J ; CYl

»f I o f 2

F j(= i, 2 z)it c i r c u U o j " I k e T' l£ gui falent circuU o f 'ike

de\/dcfifl& We ho^s fe r (l/nHton c f r&ll -offf)£i

23

o f t h e f o l l o w i n g s t a g e w i l l b e l a r g e , c a u s i n g a

l o w f r e q u e n c y 3 d b p o i n t s

H o w e v e r , t h e w o r s t s i t u a t i o n w i l l a p p e a r d u e t o t h e s i m i l a r

v a l u e s o f t i m e c o n s t a n t s . S i m u l t a n e o u s o r v e r y c l o s e b r e a k

p o i n t s w i l l i n t r o d u c e 1 2 d b / o c f a v e s l o p e . S i n c e t h e

c o r r e s p o n d i n g z e r o s o f t h e p o l e s w i l l a p p e a r c o n s i d e r a b l y

b e l o w u n i t y g a i n , t h e s l o p e a t c r o s s o v e r w i l l n o t s a t i s f y t h e

s t a b i l i t y c r i t e r i o n .

T h e t r a n s f e r f u n c t i o n o f t h e r o l l - o f f n e t w o r k , s h o w n

I n F i g . 2 . 4 a

S i m i l a r l y , a r o l l - o f f n e t w o r k f o r t h e s e c o n d s t a g e c a n a l s o

b e d e s i g n e d h a v i n g a t r a n s f e r f u n c t i o n o f

T h e w r i t e r h a s u s e d f l o a t i n g r o l l - o f f n e t w o r k s w h i c h

/ p r o v i d e f o r m o r e f l e x i b l e c o n t r o l o f p o l e - z e r o c o n f i g u r a t i o n .

Z(s)

w h e r e a n dR + R

S L

W b C ( R s R l + R R s + R R l )

/ wd

( 2 . 1 9 )

0

TT2

_1T

r -7 - x I I \ I

..... 1---------11X]

___ i . X\aZ w/. .

1| Crtnsoier ------ 1---------- fr&l~

w,

A ( s ) : A(o) r s t w j , . F o r ff3 .2.3 tie have A ft ) , _355_opis.t£ Trxio4j f ftu jbj (i+LOj) Cs+zmio)(uzirx£3o)

I = B t j C - For F y . ^ 3 , $ - 2 2 0 KC (CrosboJei^

0 f r a d ) = A rc ta n _ Arc "tan J& . - Arc ton Wt s' gW2. tV b ^

Phase Mangif) ; l e o L 8 8 : 2 y. PM ^ > 4 5 °

F i g . 2 . 5S ta b if / iy equations and th e yd

24

R e f e r r i n g to F i g . 2 . 3 , we see t h a t on e o f t he p o l e s a t w^ is

r e p l a c e d by t h e t wo z e r o s w q and w c o f t h e c o m p e n s a t i n g

n e t w o r k s . The a p p e a r a n c e o f t h e p o l e s at w^ and w^ has

c a u s e d t he p o l e due to t he t h i r d s t a g e to mo v e b e l o w u n i t y

g a i n . A g a i n r e f e r r i n g to F i g . 2 , 3 , we o b s e r v e t h a t a f t e r t h e

s e c o n d b r e a k p o i n t w ^ , we h a v e a s l o p e of 12 OCf a v e °

The p r e s e n c e o f t wo z e r o s and o n e p o l e a t t h e t h i r d b r e a k

p o i n t w i l l r e s u l t in a 6 ^ b / o c t a v e c u r v e up and b e y o n d t h e

c r o s s o v e r f r e q u e n c y .

S i n c e t h e b r e a k f r e q u e n c i e s a r e k n o w n , t h e a c t u a l

c r o s s o v e r f r e q u e n c y ca n be c a l c u l a t e d . W i t h t he c r o s s o v e r

f r e q u e n c y , one may c o m p u t e t h e ph a s e a n g l e w h i c h is to

s a t i s f y t he s t a b i l i t y c r i t e r i o n . Thi s is shown in F i g . 2 . 5 .

The s e l e c t i o n o f t h e b r e a k f r e q u e n c i e s d e p e n d s on t he

p a r t i c u l a r a p p l i c a t i o n . In ma n y c a s e s , t h e f i r s t s t a g e n e t ­

w o r k may h a v e e n s u r e d s t a b i l i t y , so t h a t t h e s e c o n d s t a ge

r o l l - o f f n e t w o r k b e c o me s q u i t e u n n e c e s s a r y . F i g . 2 . 3 shows

t ha t be t ween w , and w_ the s l ope is 12 d b / . ; i f thed 2 o c t a v e

l o o p is c l o s e d f o r a g a i n of b e t w e e n A ( w ^ ) and A ( w ^ ) , t he

a m p l i f i e r w i l l be m a r g i n a l l y s t a b l e . C o n s e q u e n t l y , i f h i g h e ri

g a i n is n e c e s s a r y , b r e a k p o i n t s may be a d j u s t e d a t some

e x p e n s e o f ope n l o o p g a i n and a c c u r a c y . S e l e c t i o n o f b r e a k

25

po i n t s f rom the e q u a t i o n is a s i mp l e ma t t e r w i t h Smi th char t s

or a Shu r e - Ru l e . In p r a c t i c a l a p p l i c a t i o n s , h o we v e r , a r o l l ­

o f f decade box is used. One f i r s t t r i es f or c l osed l oop

s t a b i l i t y w i t h maximum c a p a c i t a n c e by s e l e c t i n g a p p r o p r i a t e

r es i s t ance R , t hen a c a p a c i t a n c e co r r es p o nd i n g to the

a t t e n u a t o r and des i r ed break f r e q u e n c y is c a l c u l a t e d or

o b t a i n e d e x p e r i m e n t a l l y .

2 . 1 . 6 O u t p u t Stage Des i gn . The most common l y used ou t pu t

stage is the emi t t e r - f o l l owe r due to i t s l ow i mpedance

c h a r a c t e r i s t i c s . O u t p u t i mpedance is a p p r o x i m a t e d as,

Z Q = Rs ( l - a ) ( 2 . 2 0 )

where R g is the source i mpedance . In our a m p l i f i e r , s i nce

the source i mpedance is a c o m m o n - e m i t t e r o u t p u t s t age , the

o u t p u t i mpedance is somewhat l i m i t e d . Low f r e q u e n c y o u t ­

put i mpedance c o u l d be r educed by cas cad i ng t wo emi t t e r -

fol l owers ( D a r l i n g t o n c o n n e c t i o n ) . The D a r l i n g t o n c o n n e c t i o n ,

h o w e v e r , w i l l p r esent a d o u b l e - p o l e and is ve r y usefu l on l y in

r e l a t i v e l y nar row band a m p l i f i e r s , s i nce p r ope r zeros may be

i ns e r t ed to the d e v i c e . I t was d e c i d e d to use an emi t t e r -

f o l l owe r w i t h h i gh « thus ensur i ng a low o u t p u t i mpedanc e ;

a l so , a c o n s t a n t - c u r r e n t s i nk w i l l p r o v i d e h i gh d ynami c

i mpedance at the e m i t t e r , ye t w i l l p resent con s t a n t c u r r e n t .

cc

A T Y P I C A L OUTPUT S T A G E "

26

The des i gn equa t i ons are present ed be l ow ( F i g . 2 . 6 ) :

RS ™ RS 1 + RS2 ( 2 . 2 1 )

l s = V_ C C ^ E ( 2 . 2 2 )

V RS2 = I SRS2 ( 2 . 2 3)

V ER2 V R52 ~ V BE ( 2 . 2 4 )

| = l i i l ( 2 . 25 )E E2

The des i gn p r ocedur e is so s i mpl e and f l e x i b l e t h a t one may

s t a r t f rom any of the eq u a t i o ns present ed a b o v e . The on l y

i m p o r t a n t p o i n t is to s e l e c t a l a rge va l ue f or I g in o r der to

keep V Q g c o ns t a n t . As a t y p i c a l exampl e , a mi n i mum of

±2 0 MA d e v i c e w i l l be d e s i g n e d . No t e t ha t the p o s i t i v e swing

is ensured by the l ow c o l l e c t o r r e s i s t o r .

Rs = 8 . 2 K + 680 = 8 . 8 8 K

' s - STFSTK - 3 , 3 7 M A -

All (PNP)s : 2N86f , oil (WPtf)s •. 2N2222 , tke output(NPNy 5 : 2N22i9

-f* 15 o • -

3 3 0100 K

----------------R»i

- — / \ / ' ^------------220

i ►■■ - 1 j-- ■ — — W vy i N .01 / 'k y r

K005

% 4 7 K470!

220 220

470 S 4 7 0

t o o

15 K

Sing 12 channel op, amp . stabfiizcc/ with roll-oft

l o o v3 W

OUTPUT— c

6S

27

V RS2 = 2 * 3V ' V =

V ER2 = 2 . 3 - 0 . 7 = 1 . 6 V

1 . 668

= 2 3 . 5 MA

0 . 7 V

wh i c h sa t i s f i e s our r equ i r ement , ,

A t h ree stage o p e r a t i o n a l a m p l i f i e r des i gned w i t h the

p r i n c i p l e s di scussed up to t h i s p o i n t is p r esented in F i g . 2 . 7 .

<A >a

FIG- Z .8 aBasic {eeJf ciuJord Ck

A,(-s)

FIG - <2.8bF eedforward ^MPuiFfER c o MVEc t e D

A S O P E R A T I O N A L A M P L I F I E R

28

S E C T I O N : 2

F E E D F O R W A R D A M P L I F I E R

2 . 2 . 1 I n t r o d u c t i o n . U t i l i z i n g a m e d i u m ba n d w i d t h , h i gh

g a i n a m p l i f i e r and a l a r g e b a n d w i d t h , s ma l l g a i n a m p l i f i e r

2 oc o n s t i t u t e s a t wo c h a n n e l f e e d f o r w a r d s y s t e m .

R e f e r r i n g to F i g . 2 . 8 a , t h e LF c h a n n e l c o n s i s t s o f

A j ( s ) and A^ ( s ) , w h e r e a s in h i g h e r f r e q u e n c i e s t he s i g n a l I s

a m p l i f i e d o n l y by A^ ( s ) w i t h t he c l o s i n g o f t he s w i t c h ( S )

w h i c h r e p r e s e n t s t he f o r w a r d c o u p l i n g c i r c u i t . In F i g . 2 . 8 b

t he f e e d f o r w a r d sys t em is c o n n e c t e d as an o p e r a t i o n a l

a m p l i f i e r and s w i t c h ( S ) o f F i g . 2 . 8a is r e p l a c e d by a t r a n s ­

f e r i m p e d a n c e Z ^ ( s ) ; t he l o o p g a i n is

- Z F ( S) G (s) = Z F ( s ) A , ( s ) A 2 ( s) + Z f ( s ) Z c ( s ) A 2 ( s) ( 2 . 2 7 )

The s i g n a l s a r e a d d e d t h r o u g h a d i f f e r e n t i a l a m p l i f i e r .

In F i g . 2 . 1 3 , G a i n v s . R a d - F r e q c u r v e s f or v a r i o u s

A j ( s ) and A^ ( s ) a m p l i f i e r s a r e p r e s e n t e d . In e a c h case

t h e r e e x i s t s a f r e q u e n c y f w h e r e t wo g a i n s a r e e q u a l .

Th i s e q u a l g a i n f r e q u e n c y ( f 0 g) * $ a l m o s t t h e same f r e q u e n c y

2 ]( f Q) w h i c h is p r e s e n t e d by S c o t t D e e r i n g as t h e c h a n n e l

^ ^ D e e r i n g , S . C . , 11A W i d e Band D i r e c t C o u p l e d O p e r a t i o n a l A m p l i f i e r , " P r o c . N a t . S i m . Co n f . , J a n u a r y 1 9 , 1 9 5 6 .

2 , ibld„

-H 5 V

1003 m A

47 K lo o lo o

O V

-1 2 v

I 0 O

Amplifier k- is should in Fig. I.<?

F IG . 2 . 9

gyPEeiMCMTAL FEEDF0PN4PO AMPLIFIED

NOTE: Th/5 is the -first owplifier configc.fcJ CtS fe^c/(t>riOotrtl.

29

" 1 " ga i n be i ng equal to channe l " 2 " ga i n in e q u a t i o n ( 2 . 2 7 ) .

B e l o w ( f ) t h e g a i n o f c h a n n e l " 1 " is g r e a t e r , a b o v e ( f )

channe l " 2 " is d o m i n a n t . The same s ta tement s can be a p p l i e d

f o r ( f ) w i t h no l oss o f a c c u r a c y . S i n c e Bo d e p l o t s f o r eg 7 r

gain and phase s h i f t response curves are c l o s e l y assoc i a t e d ,

each channe l w i l l have a do mi n a n t phase s h i f t c h a r a c t e r i s t i c

be l ow or above the f r e q u e n c y (f ) . C o n s e q u e n t l y , the moste g

l o g i c a l c h o i c e in des i gn i n g the a m p l i f i e r Agts) is to have a

s i n g l e t ime c o n s t a n t , t hus, ensur i ng 6 d b / oc f a ve s l ope at

the c r ossover f r e q u e n c y . Howe ve r , the e f f e c t of the phase

r e l a t i o n s h i p s at f r e q u e n c y ( f q ^ ) on s t a b i l i t y have yet to be

c o n s i d e r e d . S t a b i l i t y is ensured by k e e p i n g the phase lag of

A j ( s ) a m p l i f i e r at less than 1 80° at the f r e q u e n c y ( f ) . A

c o n s e r v a t i v e des i gn , h o we v e r , d i c t a t e s a phase lag of not

more than 90° ; s i nce in Chap t e r 1, methods of p o l e - z e r o

o p e r a t i on s ensur i ng slopes at des i r ed f r e q u e n c i e s were i n t r o ­

d uced , t h i s is not much of a p r ob l em . To c o mp l e t e the

p r ob l em, the c o u p l i n g n e t wo r k Z^, (s) is des i gned to i n t r o d u c e

l i t t l e or no phase s h i f t at h i gh f r e q u e n c i e s .

2 . 2 . 2 HF Channe l Design . An e x p e r i m e n t a l f e e d f o r w a r d

a m p l i f i e r is p r esented in F i g . 2 . 9 . This d e v i c e uses the

s i ng l e channe l a m p l i f i e r des i gned in the f i r s t c h a p t e r as the

GAIN

IN cib

I oo

60 - GO ..

Ao .. 4o ..

2o -

100 IKC \OKc 100 u I Me

BOTTOMfLF) AMP.

IKC tore idOkc imc

T O P ( H F ) AMP.F I G . 2.10b

Frequency r e s p o n s e c u n t s of t "fop cmj boffon? ar>f\ ' i ft€r<> o f i k e H*f>er<fr'i-ji1al -(eecl-fof^arJ

a m p l ip e r thouon in F ig 2 , 9

131 1 5 V

loo

IM P U T?N2ZZ& 2 7 K

I6 K

I C O

^ ^ v F i g . i 5 . HTOi f f l Qe ^ t i Al A M P L in t iQ %TAa>e vo i i r t - i CCKji -TAkJr C u < K t U r L o A b A Mb

30

L F a m p l i f i e r and a d i f f e r e n t i a I - a m p l i f i e r w i t h an e m i t t e r -

f o I l owe r o u t pu t wh i c h compr i ses the H F channe l . F i g . 2 . 1 0

shows the ga i n vs. f r e q u e n c y curves . Si nce both channe l s

have e m i t t e r - f o l l o w e r ou t pu t s , we can e l i m i n a t e the low

f r e q ue n c y a m p l i f i e r o u t p u t s t age, and c o n n e c t i t d i r e c t l y to

the h i gh f r e q u en cy a m p l i f i e r . Si nce the i n p u t stage o f the

second channe l is a d i f f e r e n t i a l a m p l i f i e r , the f i r s t t r a n ­

s i s t o r acts as a common c o l l e c t o r s t age; c o n s e q u e n t l y , the

second t r a n s i s t o r o f the d i f f e r e n t i a l - a m p l i f i e r is d r i v e n f rom

a low i mpedance sour ce , thus a h i gh f r e q u e n c y break p o i n t

is ensured .

2 . 2 . 3 Cons t an t C u r r e n t Load C o n c e p t . The presence of the

s t ray c a p a c i t a n c e in the i np u t stage of the h i gh f r e q ue n cy

a m p l i f i e r causes rate l i m i t i n g , and a sine wave i n p u t appears

t r i a n g u l a t e d at the o u t p u t .

The rate l i m i t i n g can be e l i m i n a t e d by using a

cons t an t c u r r e n t l oad , v i z . a c o mp l e me n t a r y t r a n s i s t o r

co n n e c t e d in a common base c o n f i g u r a t i o n ( F i g . 2 . 1 1 ) . The

design cons i s t s o f the f o l l o w i n g steps:

1. Se l e c t o p e r a t i n g po i n t s for Q and Q ^ •

2 . Se l ec t a c ons t an t l oad c u r r e n t (1 ^ ) •

3. Se l ec t the maximum c o l l e c t o r s w i n g i n g v o l t a g e of

Q 2 and set i t at the e m i t t e r o f .

31

4. C a l c u l a t e R _ . asE4V - V V

R = — ^ ------- — = — 111 ( 2 . 2 8 )E4 C2 C2

5. Find base v o l t a g e of Q ^

V = V - V ( 2 . 2 9 )B4 RE4 BE4

6 . C a l c u l a t e the r es i s t or va l ues w i t h r espec t to Vd 4

< 2 - 3 0 )4 5 4

where V ^ and V ^ are abso l u t e v a l u e s .

S i m p l i f y i n g Eq . ( 2 . 3 0 ) g i ves

R4 <V CC + V EE) = R4 V B4 + R5V B4 02 ' 3 1 )

_ V B4R5 " <V CC + V EE - V B4) ( }

The va l ues of R and R ^ must be a d e q u a t e l y low to

ensure a l a rge I g ; s i nce V and as a r esu l t I ^

are the f u n c t i o n s of t e m p e r a t u r e , a l a rge va l ue of

I g w i l l keep V ^ cons t an t .

7 . Se l e c t the c o l l e c t o r c u r r e n t I ^ of Q and c a l ­

c u l a t e the t o t a l c o l l e c t o r cur ren t s .

8 . Se l e c t a p r oper c u r r e n t s i nk n e t wo r k to p r ov i de the

t o t a l c o l l e c t o r c u r r e n t I y ; th i s process is p r esented

in Cha p t e r 1. R q may be ad j us t ed to p r ov i d e the

p roper o p e r a t i n g p o i n t o f Q j .

Wi t h the cons t an t c u r r e n t l oad co n n e c t ed in a common -base

c o n f i g u r a t i o n , the i mpedance r , in the o r der o f o n e - t o - t w o

Megohms, w i l l appear as the c o l l e c t o r r es i s t ance o f Q g , and

the ga i n of the stage w i l l be i nc r eased to more t han 1 0 0 .

U n f o r t u n a t e l y , t h i s h i gh ga i n al so i ncreases the M i l l e r

c a p a c i t a n c e . The p a r a l l e l c o m b i n a t i o n o f the o u t p u t

i mpedance o f c ons t an t c u r r e n t l oad Q ^ and the o u t p u t

i mpedance of t r a n s i s t o r Q 2 appear as an e q u i v a l e n t source

impedance for the o u t p u t e m i t t e r - f o l l o w e r . Th e r e f o r e , the

o u t p u t i mpedance of the e m i t t e r - f o l l owe r is i n c r e a s e d .

An a m p l i f i e r d e v e l o p e d w i t h p r i n c i p l e s p r esented

above gave ver y s a t i s f a c t o r y r esu l t s . A s t a t i c noise t es t ,

h o we v e r , r e v e a l e d t ha t an e q u i v a l e n t no i se , i n the or der of

12 Op V , is p resent at the i n p u t . The source o f t he noi se and

a method of e l i m i n a t i o n of i t w i l l be p r esented in the

F"- N

oi se

fqctor

in

oit>

6 0

loo 10 KC 00 KCkro

n ^ - 2 . i 2

Transistor noi'sC V.s, {reoventy

f o l l o w i n g s u b s e c t i o n .

2 . 2 . 4 N o i s e a n d I t s E l i m i n a t i o n . N o i s e is a n y s p u r i o u s

or u n d e s i r e d s i g n a l t h a t t e n d s t o o b s c u r e t h e s i g n a l t o be

22a m p l i f i e d . T r a n s i s t o r n o i s e a p p e a r s d u e to t h r e e s o u r c e s :

1 . T h e r m a l or J o h n s o n n o i s e o f t h e b a s e r e s i s t a n c e .

2 . F l u c t u a t i o n s i n t h e d i f f u s i o n o f t h e m i n o r i t y

c a r r i e r s .2 3

3 . R e c o m b i n a t i o n f l u c t u a t i o n s i n t h e b a s e r e g i o n .

T h e t r a n s i s t o r n o i s e f a c t o r ^ F is d e f i n e d as

N O I S E P O W E R O U T P U T _______________________________F — /2 3 5 )

N O I S E P O W E R O U T P U T O F A N O I S E L E S S S Y S T E M *

T h e f r e q u e n c y d e p e n d e n c y ^ o f t h e t r a n s i s t o r n o i s e v s .

f r e q u e n c y is s h o w n i n F i g . 2 . 1 2 . In t h e n o i s e f a c t o r F p r e ­

s e n t e d a b o v e , o u t p u t n o i s e is a l w a y s r e f e r r e d t o t h e i n p u t ;

t h e n o i s e g e n e r a t e d in t h e f i r s t s t a g e is c r i t i c a l . In t h e

22S c h w a r t z , M . , I n f o r m a t i o n T r a n s m i s s i o n , M o d u l a t i o n ,

A n d N o i s e , M c G r a w - H i l l , 1 9 5 9 .

100

80Uncom pensated boitcm am p *Bottom amp * ooi^h q

sfmplg d o m i n a n t po le

\ \ d v e to the f i l te r .

60

o p am p.

20

K/lkf Un<ty-gam response

Wfc Me100 1KC

Response cones o f the feedforward amjo.

W o T E r I t is noi necesiQfy /& compert Sa.te ktith <\mp1i Cr$ t f ^ f i f t e r is used. Hoioevtrj necessery <xdjosttne*)+$ <hoo/d be m ade & $ s /c .b ////y c o n d /t.aya dem and.

34f

i n p u t stage des i gn , i t was s t i p u l a t e d t ha t the q u i e s c e n t

c o l l e c t o r cu r r en t s shou l d be no more than 1 OOpA, and i n p u t

stages w i t h 3 Op A c o l l e c t o r cu r r en t s are not unusual » These

low va l ues ensure a low noise f a c t o r .

The noise o f the h igh and low f r e q u e n c y a m p l i f i e r s of

the f e e d f o r w a r d system, measured i n d e p e n d e n t l y , are ve r y

l o w . Ho we v e r , when two a m p l i f i e r s are c o n n e c t e d in f e e d ­

f o r war d f a s h i o n , the f i r s t a m p l i f i e r noi se is a m p l i f i e d by the

second and appears as a l arge e q u i v a l e n t noi se source at the

i n p u t .

A s i mp l e way to e l i m i n a t e t h i s noi se is to use a f i l t e r

at the o u t p u t o f the f i r s t a m p l i f i e r . The f i l t e r is f ormed by

using the o u t p u t i mpedance o f t he l ow f r e q u e n c y a m p l i f i e r

and a c a p a c i t a n c e to g r o u n d . This method has r educed the

noi se by a f a c t o r o f 12. Using a f i l t e r makes the p o l e - z e r o

m a n i p u l a t i o n s unnecessar y , s i nce the po l e due to the f i l t e r

w i l l have a d o mi nan t e f f e c t ; as a con se qu enc e , t he r o l l - o f f

ne t works are not used. The f r e q u e n c y of the f i l t e r po l e is

s e l e c t e d as low as l O c p s . , thus ensur i ng a 6 ^ ^ / o c j.ave

s l ope f rom l Ocps . to the c rossover f r e q u e n c y . Si nce the zero

o f the f i l t e r may o c c u r be l ow the u n i t y g a i n , i t p r ov i des an

a d d i t i o n a l marg i n of s t a b i l i t y . The F i g . 2 . 1 3 is the ga i n vs.

f r e q u e n c y curves o f the l ow and h i gh f r e q u e n c y a m p l i f i e r s .

35

I t shou l d be noted t ha t thi s f i n a l des i gn f u l f i l l s the

s t a b i l i t y r equ i r emen t s of the f e e d f o r w a r d a m p l i f i e r .

2 . 2 . 5 Some C o n s t r u c t i o n P r e c a u t i o n s . T r a n s f e r r i n g bread

board model i n t o a mar ke t i t em is not a s u b j e c t o f thi s paper .

Howev e r , to ensure a p r oper o p e r a t i o n , some i m p o r t a n t po i n t s

have to be p o i n t e d out as f o l l o w s :

1 . Trans i s tors must be s e l e c t e d in pai r s and matched .

2 . Heat sinks must be common for each s t a g e .

3 . For h i g h e r c u r r e n t o u t p u t stages ( i . e . 50 MA or

more) the power t r ans i s t o r s must have c o n v e c t i o n

c o o l e r s , separa t e f rom the o t h e r t r a n s i s t o r s .

I C O A lOK-O.----- v w — <1-----/WXy-

lCO.il iv / ' • / - k___AAA,__\2.

F I G - 3 . la

A Coarse h a la r C - t r y c_j

IMj l

/ V W

P"/£> - 3 * I lo

Av o t e if. *thr

A 4* i C tx t lo f Ci,^j ^

Tin C P o t . 7 ’ I - ^ ' vi

f*, i h e t-Trsf locJccnzio* p o t , ind icatedsj f ( 5 Ji n ~ H i e / a r / c u i t ' i w r e s o r c h a p t e r s I a r d £ , C tfz . See 7 , )

' f ig u re s a b c v s

CHAPTER i l l

TEST METHODS A N D RESULTS

SE CT I ON: 1

STATIC TESTS

3 . 1 . 1 I n t r o d u c t i o n . A l t h o u g h d i f f e r e n t ma nu f a c t u r e r s use

d i f f e r e n t test p r ocedu r es , the a m p l i f i e r t es t i ng methods used

at Bu r r - B r own Research C o r p o r a t i o n , p r esented in the f o l ­

l o w i n g subsec t i ons , appear to p e r m i t a ver y c a r e f u l

e v a l u a t i o n of a m p l i f i e r s ,

3 . 1 .2 Zero B a l a n c i n g . The o f f s e t p resent at the a m p l i f i e r

o u t p u t is due to two componen t s , v i z . v o l t a g e and c u r r e n t .

A d i f f e r e n t c a l i b r a t i o n setup is used in each case.

1 . V o l t a g e o f f s e t c a l i b r a t i o n : The a m p l i f i e r is

c a l i b r a t e d f o r zer o v o l t o f f s e t using the test setup

shown in F i g . 3 . 1 a . No t e t ha t i n p u t is

e s s e n t i a l l y g r ou n d e d . C a l i b r a t i o n must be

a c c o mp l i s h e d to an a c c u r a c y of ± 5 M V , by a d j u s t ­

i ng the p o t e n t i o m e t e r T^ .

2 . C u r r e n t o f f s e t b a l a n c i n g : The a m p l i f i e r is

c a l i b r a t e d f o r c u r r e n t o f f s e t by using t he test s e t ­

up shown in F i g . 3 . 1 b . In t h i s setup the o u t p u t

T A B L E 3.1E F FE C TS o f POWER-SUPPLY-VOLT4CE

C H A N C ES

B U o B M ib ) E ^ i iu / k )

15 15 _2

12 15 + 150

1 8 15 - 1 5 0

18 18 - 3 3

12 12 + 2 5

15 12 - l 3 0

IZkle 3 . 1.a

G> f Vo Its,) B o i t s ) E mii/iVolto)

15 15 - 2

12 15 - 2 5 0

18 15 - 6 0

18 16 + 2 2 0

15 IS + 6 4

12 12 - 2 2 0

AN/ALY5/5 :C i r c u i t 1' t t o n a e c t e d a s in

Rj* 2 .b and I K-O. resis­to r i s r e m o v e d .

A L = 5 0 x: id " 3 V / y AB^ / V

A l f =. 50 n A Z .A 6t / v

A & = 26O A I0~ ! 4 . .^ 7 y ir tZu /. A 6 " 6 ^

A C g _ £ 8 o x i o f - 4 ^ „ 7 n A /^ g ' * 6X1X lo 6 * V

Cor»mo/i Supplif dhafac: ^ (03 A 8t j‘ " 6

o .s .c - q .6 7 x 10 w ,

= 9 . 6 7 x i o ^A 8V

Kioto circuit is connected c-5 fn Rg.z?.aFor 6L _AE, .

100x40%

-3

For 6 *. AEcIOOx4o%

Common C b a n c j i ^Same direcFioiJ

. 6 0 x IQ'S_ 3o/ f ^ 100x20 % Zo

“Table 3 .1 .b

Table 3.2 d r i f t Melas u f t E M t w r s

WOT&: AmplT-er j s rcn/lfctaj (^r Tesi yt . Ter \etf # 2 ref lace J$- <a icc< r^s/Vcr.

O U T P U TUN .Mill vtoLTAGE.iV/ilh.) l^ rrn o .

vIn c^CTest * 1 Test #3

c 2 2 6

2 0 4 5 5

D r i f t C u r r m f :

‘Te.sf a- |

D r i f t Vblfac^: 'J 4 T ' R p

est f<2.

37

o f f s e t is d u e t o t h e c u r r e n t c o m p o n e n t . O n e c a n

r e d u c e t h i s o f f s e t by c h a n g i n g t h e c r o s s f e e d

r e s i s t o r s R a n d R ; a p r a c t i c a l c a l i b r a t i o n d I B2

l e v e l i s a b o u t ( 1 - 2 ) M V .

A f t e r b o t h c a l i b r a t i o n s a r e o b t a i n e d t o t h e r e q u i r e d a c c u r a c y ,

c o m p l e t e d - c m e a s u r e m e n t s m u s t be m a d e a n d w i t h t h e k n o w n

q u i e s c e n t v a l u e s , t h e c u r r e n t s i n k n e t w o r k m u s t be r e c a l ­

c u l a t e d U s i n g t h e e q u a t i o n s g i v e n i n S e c . 2 . 1 . 3 .

I f t h e a m p l i f i e r is g o i n g t o be m o l d e d , t h e t e s t s mu s t

be r e p e a t e d b e f o r e a n d a f t e . r m o l d i n g .

3 . 1 . 3 P o w e r S u p p l y V a r i a t i o n E f f e c t s . T a b l e 3 . 1 p r e s e n t s

t h e o f f s e t c u r r e n t a n d o f f s e t v o l t a g e v a l u e s p r o d u c e d b y t h e

p o w e r s u p p l y v a r i a t i o n s .

3 . 1 . 4 T e m p e r a t u r e V a r i a t i o n E f f e c t s . T h e i n c r e a s e a n d

d e c r e a s e i n t e m p e r a t u r e w i l l c a u s e o f f s e t s a t t h e o u t p u t o f

t h e a m p l i f i e r ( T a b l e 3 . 2 ) .

T h e s e t u p w i t h 1 M e g o h m f e e d b a c k m e a s u r e s t h e

c u r r e n t o f f s e t , b n d t h e o n e w i t h 1 0 0 K _j"L. f e e d b a c k d e t e r ­

m i n e s t h e v o l t a g e c o m p o n e n t o f t h e o f f s e t .

3 . 1 . 5 i n p u t a n d O u t p u t I m p e d a n c e M e a s u r e m e n t s . The

i n p u t i m p e d a n c e i s m e a s u r e d s e p a r a t e l y f o r t h e t o p a n d b o t t o m

a m p l i f i e r s ( F i g . 3 . 2 a ) . Th e c a p a c i t o r a t t h e f e e d b a c k p a t h

lo o kA A /V

D e c . Box

Z:m -

I M e go h m D C

i O K J L ( 5 ) i ^ c p s .

db-Met<?Cr

O

™T~F I (o . 3 • 2 Q

Input Impedance meosunem£/it s e tu p ,

I OCX^ v w

I

S I C ' ^ ^ N

13 se / So x cj.fa«. M f*

? o u t : 2 5 - f i ­

n s • 3.2 la

Outpui I f f t p e d a n c c f t .easurerr ien j S e tu p

- • £>2. Mill/volt's

Vi VM

F IS . 3 . 3fVOlS’b M E A U S U £ £ M E S J T

SETUP

TABLE 3.3D 4 _ V O L T A G E S

X^5TA6E5

Volta^es^.STAGE I stage i r STAGE M STAGE JjE

Coutput)

V c , + 4 eqvo\t$ t i 0 .9 Vo its 095 Volts —

X a ^ Volts «b 10.9 Veits « |4.7 V lts -e“w”‘

vE -5,1 \4fe +4.^5 Volts *!■ i 1.3 Veits ~~A25 V,

S p e c ia l V o lta g e s :

Vgg* s 6 52 Volts.

Veits. ) F<y. ^ c ^ t s«t.

C - 4 .8 Volts J

38

e n s u r e s DC s t a b i l i t y 0 A l t h o u g h I t Is no t s h o wn in t h e c i r c u i t *

t h e o u t p u t f i l t e r Is d i s c o n n e c t e d 0 S i g n a l f r e q u e n c y I n use Is

s e l e c t e d in t h e f l a t r e g i o n o f t h e o p e n l o op f r e q u e n c y

r e s p o n s e « T h e d e c a d e b o x is a d j u s t e d f o r a s p e c i f i e d out put ™

v o l t a g e d r o p ; f o r e x a m p l e . I f 1 db d r o p is m e a s u r e d , t h e

i n p u t I m p e d a n c e is f e n t i m e s t h e v a l u e se t a t t h e d e c a d e b o x „

For t h e o u t p u t I m p e d a n c e , a s i m i l a r p r o c e d u r e is a p p l i e d w i t h

t h e d e c a d e b o x c o n n e c t e d t o t h e o u t p u t ( F i g „ 3 . 2 b ) .

3 P I 06 N o i s e M e a s u r e m e n t s o N o i s e m e a s u r e m e n t is ma d e i n

t h e f e e d f o r w a r d a m p l i f i e r w i t h t e s t s e t u p p r e s e n t e d I n F i g .

3 o3 . A l t h o u g h v a r i o u s n o i s e m e a s u r e m e n t me t h o d s a r e

a v a i l a b l e , t h e o n e p r e s e n t e d g i v e s a d e q u a t e i n f o r m a t i o n .

3 . 1 . 7 D—C M e a s u r e m e n t s o Th e d =c m e a s u r e m e n t s a r e

M lu s t .ra te d , in T a b l e 3 . 3 . Of has t o be p o i n t e d o u t t h a t t h e s e

d - c m e a s u r e m e n t s a r e m a d e I n t h e b r e a d b o a r d m o d e l o f t h e

s i n g l e c h a n n e l a m p l i f i e r ; n e v e r t h e l e s s , t h e t op a m p l i f i e r o f

t h e f e e d f o r w a r d sys t em has s i m i l a r o p e r a t i n g p o i n t s . The t o p

a m p l i f i e r o p e r a t i n g p o i n t s a r e s h o wn i n F i g . 2 . 4 .

Safe CapocitiVe Loadircj: 25oopf 3 > d b h f e a k / n j : S O Q ^ - f

F i g - 3 A a . S T A B I L I T Y TESTsb<?ri rJ\rc\ jW C c n d . ' )

I k _n_

‘5 o fc Ccap a a h w LoacL'ncj •, bdOOpf. 3>db : ( 5 0 0 p f.

F 1G . 3 A L STABILITY t e s t( A/Th urn'^j fe e d b a c k )

l o o K-C.AA/V---------

F/ G. 3 . 5O PEN LOOP R E S P O N S E

TEST SETUP

5 0 - a

F I G . 2 .4,MoximU/Tt VcltQQZ a n d cu T ren t o v i p o t

rr<sctivre w e n t t s s f

4 Q2Sokc. h o \ / c l h )

39

S E C T I O N : 2

D Y N A M I C T E S T S

3 . 2 . 1 I n t r o d u c t i o n . T h e d y n a m i c t es t s p r o v i d e i n f o r m a t i o n

on s t a b i l i t y a n d f r e q u e n c y r e s p o n s e o f t h e a m p l i f i e r . I f

r o l l - o f f n e t w o r k s a r e p r e s e n t , t h e p o l e - z e r o c o n f i g u r a t i o n

m a y be r e a d j u s t e d t o e n s u r e s t a b l e o p e r a t i o n w i t h v a r i o u s

c a p a c i t i v e l o a d s .

3 . 2 . 2 S t a b i l i t y T e s t s : A m p l i f i e r is c o n n e c t e d as i n F i g .

3 . 4 a . T h e c a p a c i t i v e l o a d is i n c r e a s e d a n d 3 db p e a k i n g

a n d o s c i l l a t i n g v a l u e s a r e o b s e r v e d . F i g . 3 . 4 b s h o ws a s e t ­

up t o o b t a i n n o m i n a l 1 db a n d 3 db p e a k i n g v a l u e s .

S q u a r e w a v e r e s p o n s e is a l s o a m e a s u r e o f s t a b i l i t y ;

i f r o l l - o f f n e t w o r k s a r e p r e s e n t , w e c a n r e d u c e t h e r i n g i n g

a n d / o r o v e r s h o o t .

3 . 2 . 3 G a i n v s . F r e q u e n c y M e a s u r e m e n t s . F i g . 3 . 5 s hows a

2s e t u p t o o b t a i n o p e n l o o p r e s p o n s e o f t h e b o t t o m a m p l i f i e r .

T h e t o p a n d b o t t o m a m p l i f i e r o p e n l o o p a n d t h e f o r w a r d

a m p l i f i e r u n i t y g a i n r e s p o n s e c u r v e s a r e p r e s e n t e d i n F i g .

2 . 1 1 . F o r t h e t o t a l o p e n l o o p , t w o g a i n s mu s t be a d d e d .

T h i s s e t u p wa s d e v i s e d by M r . T . R . B r o w n , P r e s i d e n t B u r r - B r o w n R e s e a r c h C o r p o r a t i o n .

IO K w v ^w v > —#

Und'eriesIOOKV \ A / V

l Y . 1Vertical

SIGNAL! 21C; 2 5 ruroCarbon pot,

I AII resistors I 9^ ,

C a l i b r a t e the scope and the power s u p p l i e s , s e t Amp. I for zer o o u t p u t .Compensat e Amp. 2 for the test f r e q u e n c i e s , and ad j us t i t for zer o o u t p u t .Set the h o r i z o n t a l s e n s i t i v i t y at 2 V / ^ m . , set the v e r t i c a l s e n s i t i v i t y at 1 0 M V / ^ m .

4 . ) A p p l y a 20 V . p - p sine wave i n p u t .5 . ) O b t a i n mi n i mum v e r t i c a l d e v i a t i o n by a d j u s t i n g the

p o t e n t i omete r .6 . ) Cond u c t tests at ( lOcps , IK C , 1 0KC) . For each

f r e q u e n c y decade observe the v e r t i c a l and h o r i z o n t a l b a l a n c e . Er ror of the a m p l i f i e r under test is the

. v e r t i c a l d e v i a t i o n d i v i d e d by the " G a i n " of the er ro r a m p l i f i e r .Dynami c Resul ts:

ACCURACY : 2% at 10 KC .PHASE SHIFT: 0.1 Degrees at 10 KC.D i s t o r t i o n : 1% at 1 MC .

FIG . 3 . 7

Dynami c A c c u r a c y Me a s . Setup

NOTE: The Dynami c A c c u r a c y is d e f i n e d as thel i n e a r i t y of the a m p l i f i e r as a f u n c t i o n of f r e q u e n c y .

40

In F i g . 2 . 1 1 t h e g a i n a t u n i t y f e e d b a c k is 3 db d o w n

a t 9 M C z w h e r e a s , t h e t o p a m p l i f i e r o p e n l o o p r e s p o n s e is

3 db b e l o w u n i t y g a i n a t I S M C . T h i s r e s u l t j u s t i f i e s t h e

r e a s o n i n g o f t h e p r e c e d i n g p a r a g r a p h .

3 . 2 . 4 M a x i m u m C u r r e n t a n d V o l t a g e O u t p u t s . Th e a m p l i f i e r

i s c o n n e c t e d i n u n i t y g a i n w i t h a 50 ohm l o a d as s h o w n i n

F i g . 3 . 6 .

3 . 2 . 5 Phase S h i f t a n d D y n a m i c A c c u r a c y . Th e p h a s e s h i f t

is m e a s u r e d by s t a n d a r d m e t h o d s .

The d y n a m i c a c c u r a c y o f t h e a m p l i f i e r is m e a s u r e d

w i t h t h e t e s t s e t u p p r e s e n t e d i n F i g . 3 . 7 .

41

C O N C L U S I O N

1 o C o n c l u d i n g Remarks . This t hesi s is the r esu l t o f the

d e v e l o p me n t of two types of f e e d f o r w a r d a m p l i f i e r s . I f is

the a u t h o r ' s b e l i e f t ha t the c o m p l e t i o n of the des i gn is

m a i n l y due to the l a t e model test i ns t r ument s a v a i l a b l e in

Bu r r - B r own Research C o r p o r a t i o n . The design has u t i l i z e d

the c a p a b i l i t i e s of t he t r ans i s t o r s w h i c h are used in the

a m p l i f i e r to the f u l l e x t e n t . I f seems t ha t t he f r e q u e n c y

response is l i m i t e d due to C ^ o f the t r a n s i s t o r . I f an

advance in the t r a n s i s t o r t e c h n o l o g y p r ov i des n e g l i g i b l e

C ob/ t o g e t h e r w i t h a h i gh (3 c u t o f f f r e q u e n c y , o p e r a t i o n a l

a m p l i f i e r response can be ex t e n d ed to the 500MC r eg i on .

The c h a r a c t e r i s t i c s o f the t r ans i s t o r s used in the

a m p l i f i e r were pr esent ed in Tab l e 2 . 1 .

2 . Suggest i ons f or Future Work . Va r i ous and v e r y i n t e r e s t ­

ing methods to i mpr ove the HF channe l are suggested to the

a u t h o r ; f or e x a mp l e , t he Mi 11 e r - e f f e c t c a p a c i t a n c e o f Q ^

may be e l i m i n a t e d by i n s e r t i n g an NPN t r a n s i s t o r be t ween 2 7

Q l 0 and Q ^ • A l s o , i f Q ^ were d r i v e n by an a d d i t i o n a l

2 7 This p o w e r f u l method was suggested to the au t ho r by Dr . G . A . Korn of The U n i v e r s i t y o f A r i z o n a . No t e t ha t the r e s u l t i n g c i r c u i t is a cascode t ype c o n n e c t i o n .

42

e m i t t e r - f o l lower, , t he a m p l i f i e r o u t p u t i mpedance wou l d be

l o w e r .

The response t i me to w i t h i n 0.1 p e r c e n t of the 6 Kc

i n pu t pul se was measured to be about 2 m i l l i s e c o n d s , wh i ch

2 8is r a t h e r l o n g . Cas cad i ng an e m i t t e r - f o I l o we r to the

t r a n s i s t o r Q in F i g . 1.1 has r educed the response t i me to 1 0

2 9w i t h i n 0 .01 pe r c e n t of t he i n p u t pul se to less than 6 p.sec.

A n o t h e r i dea is to decrease the common -mode ga i n by

3 0a com mon -mode n e g a t i v e f e e d b a c k . This o l d method isO I

now be i ng used in t r a n s i s t o r d i f f e r e n t i a I - a m p l i f i e r s .

F i n a l l y one may s ta te t h a t the approach to the design

prob l em may s t a r t f rom a c o m p l e t e l y d i f f e r e n t p o i n t o f v i e w ;

in p a r t i c u l a r , s i n g l e ended stages or class B a m p l i f i c a t i o n

may ve r y w e l l p r o v i d e l arge f r e q u e n c y response w i t h f ewer

component s .

2 8 This phenomena was shown to the a u t ho r by M r . T. Br u b ak e r . M r . Br ubaker was using the a m p l i f i e r i n a s a mp l e - ho l d a p p l i c a t i o n .

2 9This method was t augh t to the a u t ho r by M r . H .K o e r n e r .

^ O f f n e r , F. F . , " P u s h - P u l l Re s i s t a n c e - C o u p l e d A m p . " , Rev. Sc i . I n s t . , V o l . 8 , pp . 2 0 - 2 1 , J anuar y 1937.

^ Mi dd I e b r o o k , R. D. op . c i t .

SI 01 ^6 + ^S2 ^

r</

FIG. A .IEquivalent cfrci^rt o f a crots-

coupled s t a g e .

Thv

Thv

K E f _ H i , •)»n

R «e.

^fn + H B

1 =f i n

R i n t R f

F I G . A . Z

TM ^ VE NlM vi VaIerl t o f ^ / G . z4.|rfs^eet to KE/ , uJifh E f source a p p e a r f f t j Q5 a l o a d .

43

A P P E N D I X A

THE I N P U T I M P E D A N C E OF THE

C R O S S - C O U P L E D S T A G E

R e f e r r i n g to F i g . A . 1 t h e b r a n c h I m p e d a n c e R j n is

t h e I n p u t I m p e d a n c e o f a s t a n d a r d ( I . e . n o n - c r o s s - c o u p l e d )

di f f e r e n t i a i - a m p I i f l e r as shown I n Eq . ( 2 . 3 ) . S i n c e t h e

base o f 0 2 I n p u t Is g r o u n d e d , R is no t s h o w n . K Is t h eb2

g a i n a t t h e c o l l e c t o r o f 0 2 f o r an i n p u t s i g n a l a t t h e base

of O l . R Is t he s o u r c e I m p e d a n c e , w h i c h is u s u a l l y so

s m a l l t h a t i t w i l l be n e g l e c t e d . W e w r i t e t h e T h e v e n I n

e q u i v a l e n t v o l t a g e and r e s i s t a n c e s w i t h r e s p e c t t o K E j

s o u r c e ( F i g . A . 2 )

ET h v = EB1 * T r i K E 1 ( A ' l )In B1

R , R n i

" T h v " R - ...... . < A „ 2 ,

w h e r e R, = -%■ ^ f l )i n 1 - a

T h e T h e v e n I n c i r c u i t sho wn I n F i g . A . 2 d e f i n e s t h e I n p u t

I m p e d a n c e o f t h e c r o s s - c o u p l e d a m p l i f i e r ,

Eq . ( A . 4 ) I m p l i e s t h a t Rj Is a l w a y s l a r g e r t h a n R ^ , I , e e ,

cross c o u p l i n g I n c r e a s e s t h e i n p u t I m p e d a n c e . H o w e v e r ,

as t h e r e g e n e r a t i o n t h r o u g h R e x c e e d s a c r i t i c a l v a l u e ,

R|n b e c o m e s n e g a t i v e . T h e s t a b i l i t y c o n d i t i o n s a r e shown

I n A p p e n d i x B.

/ N /

f 0 , \

q :in

E |

F I G . B . l

Cross-coupled Pfffe-renifal Am p .

N0TE.: Cgorft) Qt op ^ . ( B A )

IS (n ^asurdd a t p o i n t A ,

^ - 4- Rg .

R5 (i not eir<tu)n , if inc/vJsc/ m K

F I G , 6 . 2

S s r/o Model o f F / G . B . L

45

ii n

APPENDI X B

STABI L I TY C O N D I T I O N S OF THE

CROSS- COUPLED STAGE

We note t ha t the c r o s s - c o u p l e d d i f f e r e n t i a l -

a m p l i f i e r resembles a m u l t i v i b r a t o r . In o t he r words ,

p o s i t i v e f e ed b ack is p r esen t . Si nce the s w i t c h i n g p h e n o ­

mena takes p l a c e when the l o o p - g a i n exceeds u n i t y , to

ensure the s t a b i l i t y of the c r o s s - c o u p l e d a m p l i f i e r l oop

ga i n must be kep t be l ow u n i t y .

Re f e r r i ng to F i g . B . l the e q u i v a l e n t i mpedance R.

is the p a r a l l e l c o m b i n a t i o n of i n p u t i mpedance R. ^ and

source i mpedance R ^ . The i mpedance R^j is the e q u i v a l e n t

o u t p u t i mpedance o f the c o n s t a n t - c u r r e n t - s i nk and is

r e t u r ned to ground . Si nce the base o f Q 2 is g r ou n d ed , the

d e v i c e opera t es as a common- base a m p l i f i e r .

F i g . B.2 Is the servo model o f F i g . B . l where the

l oop ga i n is A (3 = A A 2 (3 ; these f ac t o r s are d e f i n e d be l ow

1. Tr ans i s t o r Q 1 opera tes as a c o mmo n - c o l I e c t o r

a m p l i f i e r ha v i n g a v o l t a g e ga i n o f ,

A ' = 1 + ( r e + r b - a r b ) / R L ^ ^

46

2 . T r a n s i s t o r Q 2 o p e r a t e s as a c o m m o n - b a s e a m p l i f i e r

h a v i n g a v o l t a g e g a i n o f ,

A2 r e + Req + r b ( l ' a ) ( B * 2 )

w

( Ro u t ) Q l = RS ( ' - ” ) + R E1 ( B ' 4 )

S i n c e e q u i v a l e n t T p a r a m e t e r s (r, , r ) a r e s ma l lb e

c o m p a r e d t o c i r c u i t r e s i s t a n c e s a n d a is c l o s e t o

u n i t y , E q , (B . 2 ) c a n be a p p r o x i m a t e d as

r l

2 = ( B . 5 )

3 o T h e f e e d b a c k f a c t o r |3 Is e x p r e s s e d as

(B „ 6 )Rln + RB

Thu s , we c a n c o m b i n e t he l o o p g a i n by I ts f a c t o r s

LG = A A - p ' - ( 1 ) ( ~ ) -------------) (B . 7 )Req R, n + K

47

For s t a b i l i t y , l oop g a i n must be less t h a n o n e , t hus I t

f o l l o w s t h a t ,

R ' RI n L ^

\ R + R ( B . 8 )Re q ' I n B

Vcc

F I G . C. lpiicsr ZTAZE e Mi t t ES. TRXWSisrof?

8l45 SETTINGS .

48

APPENDI X C

D E R I V A T I ON OF VB 3

* -*■The measured and c a l c u l a t e d va l ues V ^ , V g g , I ^ , I ^

d e f i n e a s p e c i f i c va l ue for the base v o l t a g e of the f i r s t

stage e m i t t e r t r a n s i s t o r . The f o l l o w i n g equa t i ons ho l d in the

c u r r e n t c i r c u i t ( F i g . C . 1 ) ,

V RE3 = V B3 " V BE ( c • 1)

V , E 3 * V R E3 ‘ V B , - | V , E ‘ V K ^

where the as t e r i sked va l ues are the i ncreases in the

co r r es po n d i ng v o l t a g e s . S u b s t i t u t i n g (C . 1 ) i n t o (C . 2) g i ves

V RE3 = V BE ( c - 3 )

We can al so w r i t e

VRE3

2 RE3

( C . 4 )

(V + V )

' c + ' c =

The f a c t o r of 2 is due to the o t he r c o l l e c t o r c u r r e n t .

S u b s t i t u t i n g ( C . 4 ) i n t o ( C . 5 ) g i ves

VRE3

2 RE3( C . 6 )

A I so w r i t i n g the pe r c e n t i nc r ease of I ^ , we w i l l have

'c v mV

RE3

S u b s t i t u t i n g (C . 3) i n t o (C . 7) g i ves*

Vv BE

RE3 I » C

Eq . (C . 8 ) is a ver y i m p o r t a n t r esu l t , s t a t i n g t ha t f or a

g i ven V ^ change , g i v e n I ^ and c a l c u l a t e d 1 . change ,

ex i s t s o n l y one va l ue for V . A l so we can f i n d VK 13 B 3

V = v + V B3 RE3 BE

S u b s t i t u t i n g (C . 8 ) i n t o ( C . 9 ) resul t s

( C . 7 )

( C . 8 )

there

a s

( C . 9 )

FIG . D . I

A n d ysis:

>I| Z ( r — € q

-A .e :

X = §i z £ l » ( I + A )’ z , 2 /A » I j A = I4 A

r , - . i i . - e '2 ;

i . « 6 , 2 . « 2

c l4

VO

FI G. 0 . 2 Shunt capacitance in cx

Tro.niis.t6r Am p(if,'e.r,

N o 'T E : For simplicity J and f)[e (^re e.xcludc2from the Input c irc u it. The Fyure a.Love is a. K'^h-fre^uenc^ fhode/.

50

A P P E N D I X D

THE M I L L E R E F F EC T I N T R A N S I S T O R S

F i g . D o 1 p r e s e n t s a s i m p l i f i e d v e r s i o n o f t h e M i l l e r

I m p e d a n c e . Ac r oss P N j u n c t i o n s o f t r a n s i s t o r s a c a p a c i t a n c e

e x i s t s . Th i s Is d e f i n e d as,

1

C =

2(1

P n B

2f a r a d / 2 ( D . l )m

w h e r e

n^ = The d e n s i t y o f n e g a t i v e c a r r i e r s w h i c h h a v e c r oss ed

t h e j u n c t i o n I n t o t h e P r e g i o n ,

q = C h a r g e o f t h e c a r r i e r s .

p = T h e d e n s i t y o f p o s i t i v e c a r r i e r s w h i c h h a v e c r oss edn

t h e j u n c t i o n I n t o t h e N r e g i o n .

V g = The v o l t a g e acr oss t he j u n c t i o n .

€ = D i e l e c t r i c c o n s t a n t o f t h e m e d i u m .

B a s e - e m l t t e r a n d b a s e - c o l l e c t o r c a p a c i t a n c e s , h o w ­

e v e r , a r e p r e v e n t e d f r om b e i n g p u r e s h u nt c a p a c i t a n c e s du e

to t h e e f f e c t i v e base r e s i s t a n c e , r ^ . S i n c e t h e base

Al I e y , C . L . a n d A t w o o d , K . W . , EI e c t r o n l c E n g i n e e r i n g , p p . 6 7 - 7 0 , W i l e y , 1 9 6 3 .

51

r es i s t ance is d i s t r i b u t e d t h r o u g h o u t the t h i n wa f e r of base

m a t e r i a l , and a d i f f e r e n t r es i s t ance wou l d ex i s t be t ween

each p o i n t on e i t h e r j u n c t i o n and the base e l e c t r o d e .

F i g . D . 2 shows the h i gh f r eq u e nc y e q u i v a l e n t c i r c u i t o f a

c o m m o n - e m i t t e r s t age . At l ow and m i dd l e f r eq u en c i e s the

e f f e c t s o f s t ray c a p a c i t a n c e s and I nduc t anc es are n e g l i g i b l e ,

but at h i gh f r eq u e nc i e s t h e i r e f f e c t s must be t aken I nto

a c c o u n t . R e f e r r i n g to F i g . D . 2

' i = b + ' s = sCn V i + sC) 2 ( V i - V (D'2)V G = AV. ( D . 3)

S, + C,2(1 - A) v. (D . 4)i

Si nce a m p l i f i e r is i n v e r t i n g .

C i n = C l l + C , 2 (1 + A) ( D - 5)

Equat i on D . 5 r evea l s t ha t the second term w i l l be the

d omi na n t f a c t o r due to the h i gh ga i n A . I f the l oad

i mpedance is not p u r e l y r e s i s t i v e the e f f e c t o f C ^ i nc l udes

3 3 i b i d .

3 4 i b i d .

P/6. E. ISIMPLE PfFFEREkJriA. /IMP.

oVb e ^ O

R ;« ; ^ 8 - ' ^

* iA e ,6 =

RlA

4I

«?,A♦ - A A Z V

— O"

F i g - E..Z

B

'/8 *

£"'«I6

i?,* R , )K|g "h R

‘ ( f )^1814

^ ib R

NB

Eouifajzni Circuit of FlG / £.1 frcrr pO'OT A 'f'o pcif's'/ B t/itW E-2_-*Q <tnd C, ci pplleo/

A

R IA

L RlB

R |6- W \ A —

l

e 'RIB5E

PiA’t

FIG. t . 3EtjuiVtilffrH ( ircuiI cf F16 -E. / r<?f' pci<i+ 3 To pc'irif AjW i i k £ { z 0 a n d E , a p p h f a . _ _

IN jctF' 4 -h o .r ^ , n ce r e ; s k J I^ CF?2Br - '

"n.btrt k3 |'& ihe C c l i e c f c r t r - s t f a r m 'd t< “ ic - . e - i „

E *ju -t" HU HZ

52

a p o s i t i v e or n e g a t i v e c o n d u c t a n c e term d ep end i ng on the

35phase ang l e of the l o a d . N o t e t ha t the ou t pu t i mpedance

o f the d e v i c e w i l l be p a r a l l e l w i t h the l o a d , and w i l l not

e n t e r to the d e r i v a t i o n of Eq. D . 5 .

3 5 i b i d .

53

APPENDI X E

THE C O M M O N - M O D E G A I N E Q U A T I O N

OF THE DI FFERENTIAL AMPLIFIER

The common -mode ga i n e q u a t i o n of the s i ng l e stage

d i f f e r e n t i a l a m p l i f i e r , shown in F i g . E . 1, is d e r i v e d by

a p p l y i n g the s u p e r p o s i t i o n t heorem .

Re f e r r i ng to F i g . E . 2 and w i t h n e g l e c t i n g b a s e - t o -

e m i t t e r v o l t a g e drops, the c u r r e n t t h rough R isI B

R!BR3

RIB + R3 i( t t t ) <e - ' )

RIB R +Vi__ 16R | A + R |B + R 3

Al soI = a : ( E . 2 )R2B RIB

' R2B

E

= a —

R R IB 3

. IB 3

Re f e r r i ng to F i g . E.3 and w i t h n e g l e c t i n g the b a s e - t o -

54

e m i t t e r v o l t a g e drops the c u r r e n t t h rough R is2 B

R 2 B = a

0 ,E. R._ + R I A R3( E . 4 )

16 RI A + R 3

Now w i t h Ej and E^ both a p p l i e d and assuming

R|B = R | A = R| ' R2B = R2 A = R2 ' EI = E2 we o b t a i n f he resu l t

R2= a E

E, ' E2

r R - (R + R ) 1 3 I 3

Rl + 2R, R3

( E . 5 )

R EV = i R = a ------- -------- ( E . 6 )

2 R2 2 R + 2R

V cR2 2

Common -mode gain = A ^ = = --------------- ( E . 7)CC E R + 2 R

I 3

55

BI BL I OGRAPHY

A l l e y , L „ A . and A t w o o d , K „ W . , E l e c t r o n i c E n g i n e e r i n g , W i l e y , 1963. ------------------------------------------

Bene t eau , P. J . , B l aser , L. and Lane, R. O . , T r ans i s t o r O p . A m p . , IRE Co n v . R e c . , Mar ch 29, 1962.

B l e c h e r , F. H . , " T r a n s i s t o r C i r c u i t s f or An a l o g and D i g i t a l Systems, " Bel l Sys. Tech . J . 35, pp . 2 91 =332 . , March 1 956.

D e e r i n g , S. C . , " A Wi de Band D i r e c t Cou p l e d O p e r a t i o n a l A m p l i f i e r , " Proc . N a t . Si m. C o n f . , J a n . 1 9, 1956.

G i l l e , J . C , , P e l e g r i n , M. J . and D e c a u l n e , P . , Feedback C o n t r o l Systems, M c G r a w - H i l l , 1 959.

G o l d b e r g , E . A . , " S t a b i l i z a t i o n of d - c A m p l i f i e r s , " RCA Rev. I I , p. 296 , 1950.

H i l b i b e r , D . F . , " A New D- C Tr ans i s t o r D i f f e r e n t i a l A m p . , " TP - 1 6 , F a i r c h i l d P u b . , 1961.

H u s k e y , H . D . and Ko r n , G . A . , Comput e r Handbook , M c G r a w - H i l l , 1 962 . :

Ko r n , G . A . and Ko r n , T. M . , E l e c t r o n i c An a l og Co mp u t e r s , M c G r a w - H i l l , Four th E d . , Ch . 5, To be p r i n t e d in 1 964.

Mi dd I e b r o o k , R. D . , D i f f e r e n t i a l A m p l i f i e r s , W i l e y , 1 963 .

P e t t i t , J . M, and M c W h o r t e r , M . M . , E l e c t r o n i c A m p l i f i e r C i r c u i t s , M c G r a w - H i l l , 1961.

P o l o n n i k o v , D . E . , " W i d e Band De c i s i on A m p . , " A u t o m a t i c a T e l e m e k h a n i c a , V o l . 2 , N o . 12, pp. 1 6 1 3 - 1 6 2 2 , D e c . , 1960.

S c h w a r t z , M . , I n f o r m a t i o n Tr ansmi ss i on , M o d u l a t i o n , And N o i s e , M c G r a w - H i l l , 1 959.

St ewar t , John L . , C i r c u i t Theory and Des i gn , Ch . 10 ,W i l e y , 1958. --------------------------------------------------