design of experiments - ntuavelos0.ltt.mech.ntua.gr/ercoftac/symp03/poloni_doe.pdf · –...

39
1 ERCOFTAC Munich – 1 st April, 2003 1 Dipartimento di Energetica DOE D.O.E. Design of Experiments Carlo Poloni, Valentino Pediroda, Alberto Clarich Dipartimento di Energetica Universita’ di Trieste Silvia Poles ESTECO Trieste www.esteco.com TU Munich 1 st April 2003 2 ERCOFTAC Munich – 1 st April, 2003 2 Dipartimento di Energetica Why D.O.E.? ! Get the most relevant qualitative information from a data- base of experiments making the smallest possible number of experiments. ! Look for the best data set to build a simplified model ! Look for robust solution that are not influenced by small variation of the design variables.

Upload: ngodat

Post on 04-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

1ERCOFTAC

Munich – 1st April, 20031

Dipartimento di Energetica

DOE

D.O.E.Design of Experiments

Carlo Poloni, Valentino Pediroda, Alberto ClarichDipartimento di Energetica

Universita’ di Trieste

Silvia PolesESTECOTrieste

www.esteco.comTU Munich 1st April 2003

2ERCOFTAC

Munich – 1st April, 20032

Dipartimento di Energetica

Why D.O.E.?

! Get the most relevant qualitative information from a data-base of experiments making the smallest possible number of experiments.

! Look for the best data set to build a simplified model

! Look for robust solution that are not influenced by small variation of the design variables.

3ERCOFTAC

Munich – 1st April, 20033

Dipartimento di Energetica

Why D.O.E.?

! Pro:– Reduced number of experiments, more than one variable is changed

in each new experiment.– Eliminates redundant observation.– Reduce the time and the resources to make the experiments.– Give information on the major interactions between the variables.

! Cons:– The response variables-objectives is pre-defined.– Only “simple” relations are detected (often only linear or quadratic).

4ERCOFTAC

Munich – 1st April, 20034

Dipartimento di Energetica

DOE (Design Of Experiments)

The DOE approach should be used to determine thegeneral behaviour of the objective function that we are examining.

Examples:

! Determining the most important design variables;! Research of the region most favourable for the objective functions;! Creating the data base for the response surface training.

5ERCOFTAC

Munich – 1st April, 20035

Dipartimento di Energetica

Classification

A possible classification of DOE techniques can be classified asfollow:

• Random and Quasi-Random sampling (random points are selected in the design space)

• Factorial DOE (systematic sampling on pre-defined variables intervals)

• Orthogonal Arrays (sampling is done according to orthogonal arrays)

• Adaptive sampling ( DOE and RSA are tightly connected and new points are selected using available dataset)

6ERCOFTAC

Munich – 1st April, 20036

Dipartimento di Energetica

Base DOE (Design Of Experiments)

! The DOE Random & Sobol Sequences are able to cover sufficiently the dominium of the functions.

! The mathematical theory is the Random Number Generation.

– Sequence Random (function with “many” variables)– Sequence Sobol (function with “less” variables < 6)

! Random sequences of experiments allow the sampling of a configuration space with continuous and discrete variables without pre-defined interactions

! The use of random sequences avoids the risk of “correlated sampling” even in the case of limited sampling

7ERCOFTAC

Munich – 1st April, 20037

Dipartimento di Energetica

Base DOE (Design Of Experiments)

Random sequence

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sobol sequence

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

The Sobol algorithm covers better the function’s dominium (2 variables case)

Quasi-RandomSuitable for medium-large sampling

Pseudo-RandomSuitable for small sampling

8ERCOFTAC

Munich – 1st April, 20038

Dipartimento di Energetica

Base DOE (Design Of Experiments)

Es. the accuracy of a Monte Carlo Integration is higher and converges more rapidlywith Sobol sequence

9ERCOFTAC

Munich – 1st April, 20039

Dipartimento di Energetica

Factorial DOE (Design Of Experiments)

Factorial methods for the DOE:

– Full Factorial;– Reduced Factorial.

!Pro:

– They show “all” interactions between the design variables;

!Cons:

– Normally the number of the design is too big.

10ERCOFTAC

Munich – 1st April, 200310

Dipartimento di Energetica

Factorial DOE (Design Of Experiments)

Full factorial: Number of the designs = mn

m = base of each variablen = number of design variables

It gives all the information related to the influence of each variable at each interaction.The number of experiments is increased of a factor 2 for each added variable.

11ERCOFTAC

Munich – 1st April, 200311

Dipartimento di Energetica

n. design x1 x2 x3 fit

1 + + + f12 + + - f23 + - + f3 4 + - - f45 - + + f56 - + - f67 - - + f78 - - - f8

Factorial DOE Example

Full Factorial 2 levels2n Experiments allows the computation of 1nd order interactions

Function with 3 input variables (x1,x2,x3) 0<xi<1

range [0,0.5] ⇒ -

range [0.5,1] ⇒ +

12ERCOFTAC

Munich – 1st April, 200312

Dipartimento di Energetica

Factorial DOE (Design Of Experiments)

Full Factorial 3 levels3n Experiments allows the computation of 2nd order interactions

3 variables27 experiments

13ERCOFTAC

Munich – 1st April, 200313

Dipartimento di Energetica

Factorial DOE (Design Of Experiments)

Full Factorial advantages:– For every variable we have the same number of designs in

the range + and in the range -;– The DOE will be very large in the space of function’s

definition;– Good reaching of the variables interactions.

Full Factorial disadvantages:– If the number of the variables is high, the number of the

requested designs becomes huge.

14ERCOFTAC

Munich – 1st April, 200314

Dipartimento di Energetica

Factorial DOE (Design Of Experiments)

Reduced Factorial: number of requested design = 2m

m<nn = number of design variables

Example: function with 4 variables

(x1,x2,x3,x4) ⇒ n=4, m=3

Requested design = 8

15ERCOFTAC

Munich – 1st April, 200315

Dipartimento di Energetica

Factorial DOE (Design Of Experiments)

Design computed with Reduced Factorial DOE

n. design x1 x2 x3 x4 (=x1*x2)1 + + + +2 + + - +3 + - + -4 + - - -5 - + + -6 - + - -7 - - + +8 - - - +

16ERCOFTAC

Munich – 1st April, 200316

Dipartimento di Energetica

Factorial DOE(Design Of Experiments)

Experiment with 3 variables (A,B,C) 2 levelsExperiments A B C Y 1 - - - 33 2 + - - 63 3 - + - 41 4 + + - 57 5 - - + 57 6 + - + 51 7 - + + 59 8 + + + 53

A BTot + 224 210Tot - 190 204Diff 34 6

Effect 8,5 1,5

! there is half number of experiments

! the information related to binary interaction between variables is kept and main effects are visible

! the reduction is higher when the number of variables is increased: 10 variables 2 levels, from 1024 to 64 experiments.

A BTot + 108 116Tot - 92 84Diff 16 32

Effect 8 16

Full factorial Reduced factorial

! Compute the mean value of one factor: A- A+Diff=Tot+ - Tot-Effect=Diff / 4

17ERCOFTAC

Munich – 1st April, 200317

Dipartimento di Energetica

Factorial DOE (Design Of Experiments)

Reduced Factorial Advantages:

– The number of requested designs is smaller than the Full Factorial DOE;

Reduced Factorial Disadvantages:

– It is impossible to get all the interactions between the variables;

– There is a limit in the number of variables (with m=3, max 6 variables (x4=x1*x2, x5=x1*x3,x6=x2*x3) ⇒ saturated factorial.

18ERCOFTAC

Munich – 1st April, 200318

Dipartimento di Energetica

Factorial DOE (Design Of Experiments)

Latin Square:– It computes a DOE with more variable levels (not only + and –);– The Requested Design Number is m2 where m is the number of levels.

Example:– Latin Square for 3 variables (X1,X2,X3)

with 3 levels :

– X1(1,2,3), – X2(A,B,C),– X3(a,b,c)

213132

321ACBBAC

CBAbacacb

cba

b2Aa1Cc3B

a1Bc3Ab2C

c3Cb2Ba1A

19ERCOFTAC

Munich – 1st April, 200319

Dipartimento di Energetica

Factorial DOE (Design Of Experiments)

Latin Square advantages:– The number of computed designs does not depend on the

variables number;– It can be used in the Significance Analysis (e.g. t-Student);

Latin Square disadvantages:– The DOE is not representative of the entire design space.

20ERCOFTAC

Munich – 1st April, 200320

Dipartimento di Energetica

Cubic Face Centred (Design Of Experiments)

Cubic Face Centred

! 2n + 2*n +1 Experiments! allows the computation of

2nd order interactions! Less expensive than a 3

levels full factorial

Full Factorial 3 levels

!3n Experiments!allows the computation of 2nd order interactions

3 variables15 experiments

3 variables27 experiments

21ERCOFTAC

Munich – 1st April, 200321

Dipartimento di Energetica

Box-Behnken (Design Of Experiments)

The Box-Behnken algorithm is similar in intent to a Cubic Face Centered algorithm, but with the difference that no corners or extreme points are used. The Box-Behnken experiments fill out a polyhedron, approximating a sphere.The experiments are placed in the design variables hyper-cube as follows:

On the mid-points of each edge On the hyper-cube's centre.

22ERCOFTAC

Munich – 1st April, 200322

Dipartimento di Energetica

Orthogonal DOE (Design Of Experiments) <<<

Taguchi• Taguchi experiments are controlled by

published orthogonal arrays.• very efficient in experimental testing• similar to other methods in case of

deterministic numerical analysis

• Example :

• effect of three design variables with two levels FRONTIER uses the L4 orthogonal array as follows:

• DOE ID Columns • 1 0 0 0 • 2 0 1 1 • 3 1 0 1 • 4 1 1 0

!L(n) is a (n)x(n-1) matrix containing integer between 0 and (levels-1)!If L(n) is the right orthogonal array for the problem, n experiments will be generated.

23ERCOFTAC

Munich – 1st April, 200323

Dipartimento di Energetica

FRONTIER OPT-ADVANCED MACK (1/3)

MACK® (Multivariate Adaptive Crossvalidating Kriging) algorithm that automatically sample the design space where the interpolation is less accurate.

Motivation:• In many circumstances the designer is initially more interested in the exploration of the design space more than in the search for the optimum.• None of traditional DOE algorithms have an iterative behaviour while it would be desirable to sample the design space in order to maximize the extraction of information.

Idea:• Starting from an initial set of points each new experiment is placed in the design space region where the interpolation error of a Kriging Geographic Model is larger for each of the responses being analysed.

24ERCOFTAC

Munich – 1st April, 200324

Dipartimento di Energetica

FRONTIER OPT-ADVANCED MACK (2/3)

The performance of this algorithm are shown in the following with the help of the mathematical function:

[ ]a b=

=

− −− −

=

0 5 1 01 5 2 0

2 0 1 51 0 0 5

1 0 2 0. .. .

. .

. .. .α

F x y A B A B1 1 12

2 221( , ) [ ( ) ( ) ]= − + + + +

A a sin b

B a sin b

i i j j i j jj

i i j j i j jj

= ⋅ + ⋅

= ⋅ + ⋅

=

=

( ( ) cos( ))

( ( ) cos( ))

, ,

, ,

α α

β β

1

2

1

2

Big absolute values of the function and therefore where the absoluteerrors of an interpolator are higher.

Small absolute values of the function and therefore where the relative errors of an interpolator are higher.

25ERCOFTAC

Munich – 1st April, 200325

Dipartimento di Energetica

FRONTIER OPT-ADVANCED MACK (3/3)

Plain Crossvalidation Relative Error Crossvalidation

Absolute Error Crossvalidation

26ERCOFTAC

Munich – 1st April, 200326

Dipartimento di Energetica

Statistical analysis

Statistical analysis

27ERCOFTAC

Munich – 1st April, 200327

Dipartimento di Energetica

Statistical Analysis

After the DOE table is evaluated, we can post-process the results extracting important information about problem:

! Which are the most important design variables?! Can we reduce the variables space?! What is the best design space region to address for the

optimisation process?! What is the reasonable number of objectives or

constraints to define?

28ERCOFTAC

Munich – 1st April, 200328

Dipartimento di Energetica

Statistical Analysis

With the DOE’s design:• Medium value of the function for

every variables (range + or -): A- A+

• The same for the interactions between the variables: AB++ - - AB+- -+

Diff=Tot+ - Tot-Effect=Diff / 4

A B C D OBJ1 - - - - 65,62 - - + + 79,33 - + - + 51,34 - + + - 69,65 + - - + 59,86 + - + - 77,77 + + - - 74,28 + + + + 87,9

A B C DTot + 300 283 315 278Tot - 266 282 251 287Diff 34 0,6 64 -9

Effect 8,5 0,2 16 -2

AB307

258,448,612,5

AC231,2282,9-51,7

-12,925

AD282,9282,50,40,1

Simple statistical analysis :

29ERCOFTAC

Munich – 1st April, 200329

Dipartimento di Energetica

Statistical Analysis

!To obtain better information from the DOE table we can use different statistical methods like thet-Student parameter.

!The t-Student theory shows how to calculate acorrelation index between a design variable and a design objective.

30ERCOFTAC

Munich – 1st April, 200330

Dipartimento di Energetica

Statistical Analysis

• T-Student parameter:1

11

1x

xx

x

yyt

σ−+

−=

+

+

+

+

=

=

=

=

1

1

1

1

1

1

1

1

1,

1,

x

n

ini

x

x

n

ini

x

n

yy

n

yy

x

x

x

x

Objective’s mean values in the two ranges + and -

( ) ( )( )( ) ( )

−+

−+−+

+ −

−−++

+⋅−+

−+−=∑ ∑

= =

11

1111

1,1

1,1

1111

1 ,1,1,1,1,1,1

1 1

2,

2,

2 xxxxxx

n

i

n

ixixxix

x nnnnnn

yyyyx x

σ

Mean standard deviation:

31ERCOFTAC

Munich – 1st April, 200331

Dipartimento di Energetica

Statistical Analysis

High t-Student Low t-Student

32ERCOFTAC

Munich – 1st April, 200332

Dipartimento di Energetica

Statistical Analysis

!High t-Student value:

" This variable is probably important (there is a large difference between the range + and - in the objective values );

" The design variable’s range can be limited to either the + or – range, reducing the searching path for the optimisation phase.

! Low t-Student value:

" This variable is probably NOT so important (the difference between the objective values in the two ranges + and – is small );

" The optimisation phase could ignore the variable.

33ERCOFTAC

Munich – 1st April, 200333

Dipartimento di Energetica

Statistical Analysis

34ERCOFTAC

Munich – 1st April, 200334

Dipartimento di Energetica

Statistical Analysis

!An accurate assessment of the DOE data (t-Student, ANOVA, etc.) speeds up the optimisation phase reducing the complexity order of our problem limiting the number of variables and the variables definition range.

!Be aware: the statistical tools need DOE tables able to represent correctly all the design space.

35ERCOFTAC

Munich – 1st April, 200335

Dipartimento di Energetica

DOE

D.O.E.Examples

36ERCOFTAC

Munich – 1st April, 200336

Dipartimento di Energetica

DOE

Examples 1

How to use modeFRONTIER to get the most relevant qualitativeinformation from a data-base of experiments making the

smallest possible number of experiments.

37ERCOFTAC

Munich – 1st April, 200337

Dipartimento di Energetica

Mathematical functions

Two different mathematical

functions

[ ]a b=

=

− −− −

=

0 5 1015 20

2 0 1510 0 5

10 2 0. .. .

. .

. .. .α

F x y A B A B1 1 12

2 221( , ) [ ( ) ( ) ]= − + + + +

A a sin b

B a sin b

i i j j i j jj

i i j j i j jj

= ⋅ + ⋅

= ⋅ + ⋅

=

=

( ( ) cos( ))

( ( ) cos( ))

, ,

, ,

α α

β β

1

2

1

2x y, [ , ]∈ −π π

F x y x y22 23 1( , ) [( ) ( ) ]= − + + +

38ERCOFTAC

Munich – 1st April, 200338

Dipartimento di Energetica

Factorial DOE (Design Of Experiments)

16 Designs computed with Full Factorial<ID> y x dummy1 dummy2 out1 out2

0 -3.14 -3.14 -100.0 -10.0 -9.458044 -4.59921 -3.14 -3.14 -100.0 10.00 -9.458044 -4.59922 -3.14 -3.14 100.00.00 -10.0 -9.458044 -4.59923 -3.14 -3.14 100.00.00 10.00 -9.458044 -4.59924 -3.14 3.14 -100.0 -10.0 -9.454443 -42.27925 -3.14 3.14 -100.0 10.00 -9.454443 -42.27926 -3.14 3.14 100.00.00 -10.0 -9.454443 -42.27927 -3.14 3.14 100.00.00 10.00 -9.454443 -42.27928 3.14 -3.14 -100.0 -10.0 -9.458832 -17.15929 3.14 -3.14 -100.0 10.00 -9.458832 -17.1592

10 3.14 -3.14 100.00.00 -10.0 -9.458832 -17.159211 3.14 -3.14 100.00.00 10.00 -9.458832 -17.159212 3.14 3.14 -100.0 -10.0 -9.455302 -54.839213 3.14 3.14 -100.0 10.00 -9.455302 -54.839214 3.14 3.14 100.00.00 -10.0 -9.455302 -54.839215 3.14 3.14 100.00.00 10.00 -9.455302 -54.8392

2 more variables are added

Initial inputvariables

Added inputvariables

Results

39ERCOFTAC

Munich – 1st April, 200339

Dipartimento di Energetica

Factorial DOE

dummy1 and dummy2 have significance 0 in both functions.

Hint: “The number of design variables can be reduced.”

Full Factorial gives all theinformation related to theinfluence of each variable.

40ERCOFTAC

Munich – 1st April, 200340

Dipartimento di Energetica

Reduced Factorial DOE

Reduced Factorial provides reasonable coverage of the experiments space, while requiring fewer experiments

dummy1 and dummy2 have significance close to 0 in both functions

Hint: “The number of design variables can probably be reduced.”

41ERCOFTAC

Munich – 1st April, 200341

Dipartimento di Energetica

Random DOE (Design Of Experiments)

16 Designs computed with Random DOE<ID> y x dummy1 dummy2 out1 out2

0 1.44995 -0.5647 -59.0 -3.34566 -11.181237 -11.9329411 2.93755 -3.1016 93.0 8.79731 -9.543931 -15.5146232 2.8084 2.7449 -21.0 -3.04964 -9.475473 -47.5077873 -1.29335 0.0407 -77.0 5.41072 -51.874394 -9.3319114 1.00415 -2.15565 -24.0 -7.20475 -5.135367 -4.7295445 1.2243 1.91685 -99.0 0.4627 -2.007196 -29.1229246 1.53225 -2.2481 -4.0 0.8911 -3.587914 -6.9776447 0.4842 -1.85315 25.0 -6.30586 -15.461887 -3.5181158 -3.07295 -2.12865 -65.0 0.80794 -12.21101 -5.0563739 2.9757 -1.59875 -21.0 -5.64796 -12.64405 -17.769692

10 -0.427 -1.6758 78.0 -9.23347 -39.012283 -2.08183511 0.58015 0.9745 -76.0 3.04954 -8.176557 -18.29352412 3.04155 -1.8417 -25.0 -0.733 -12.022765 -17.67578513 -1.04495 -0.35665 1.0 9.97962 -59.930812 -6.9893214 0.81895 2.5722 2.0 -0.17098 -1.618762 -34.35799215 -0.44725 -1.2052 44.0 9.2483 -49.654233 -3.52684

42ERCOFTAC

Munich – 1st April, 200342

Dipartimento di Energetica

Random DOE

Random DOE does not provide reasonable coverage of the experiments space.

The variable significances are not correct.

43ERCOFTAC

Munich – 1st April, 200343

Dipartimento di Energetica

Conclusion <<<

!The use of experiments plan allows the analysis of macro-effects

!An accurate assessment of the DOE data (t-Student, ANOVA, etc.) speeds up the optimisation phase reducing the complexity order of our problem limiting the number of variables and the variables definition range.

44ERCOFTAC

Munich – 1st April, 200344

Dipartimento di Energetica

DOE

Examples 2

How to use modeFRONTIER to get the most relevant qualitativeinformation from a data-base of experiments making the

smallest possible number of experiments.

45ERCOFTAC

Munich – 1st April, 200345

Dipartimento di Energetica

j

outlet

i

i

j

Deflector 1

Deflector 2

Deflector 4

T=791 KV=40 m/s

T=591 KV=40 m/s

δTδV

Example: Fluid Dynamic Mixing

• Simplified problem:– 2D geometry– adiabatic mixing of two gases

• 2 objectives:– min temperature variation at

outlet δT – min velocity variation at

outlet δV

• 6 variables:– position and height of three

deflectors

• 1 constraint:– pressure losses ∆p<3000 Pa

46ERCOFTAC

Munich – 1st April, 200346

Dipartimento di Energetica

Example: Fluid Dynamic Mixing

• DOE• Full factorial 2 levels (64 experiments)

• Results analysis• Computation of influences using a 2nd order

interpolation polynomial• Elimination of one deflector

• New DOE• Box Behnken 3 levels (57 experiments) on 4 variables

remaining• New interpolation and minimisation

47ERCOFTAC

Munich – 1st April, 200347

Dipartimento di Energetica

Example: Fluid Dynamic Mixing

The Deflector 4 has a lower influence both in size and position

Can Be Eliminated ?

48ERCOFTAC

Munich – 1st April, 200348

Dipartimento di Energetica

Example: Fluid Dynamic Mixing

RMS T 1.9 DP 2700

49ERCOFTAC

Munich – 1st April, 200349

Dipartimento di Energetica

Conclusion <<<

!The use of experiments plan allows the analysis of macro-effects

! It is very efficient in case of linear phenomenaor when the linear component is dominant

!Not suitable for non-linear phenomena (Ex. Kinematics/dynamic problems, multimodalfunctions)

50ERCOFTAC

Munich – 1st April, 200350

Dipartimento di Energetica

DOE

Examples 3

How to use modeFRONTIER to research the most favourable region for the objective functions.

51ERCOFTAC

Munich – 1st April, 200351

Dipartimento di Energetica

Maximise a Mathematical function

[ ]a b=

=− −− −

=0 5 1015 2 0

2 0 1510 0 5

10 2 0. .. .

. .

. .. .α

F x y A B A B1 1 12

2 221( , ) [ ( ) ( ) ]= − + + + +

A a sin b

B a sin b

i i j j i j jj

i i j j i j jj

= ⋅ + ⋅

= ⋅ + ⋅

=

=

( ( ) cos( ))

( ( ) cos( ))

, ,

, ,

α α

β β

1

2

1

2

x y, [ , ]∈ −π π

Maximise:

52ERCOFTAC

Munich – 1st April, 200352

Dipartimento di Energetica

Factorial DOE (Design Of Experiments)

16 Designs computed with Full Factorial(4 levels)

<ID> x y out1 obj10 -3.14 -3.14 -9.458044 -9.4580441 -3.14 -1.0467 -15.174235 -15.1742352 -3.14 1.04665 -2.611807 -2.6118073 -3.14 3.14 -9.458832 -9.4588324 -1.0467 -3.14 -18.063888 -18.0638885 -1.0467 -1.0467 -59.029914 -59.0299146 -1.0467 1.04665 -15.209256 -15.2092567 -1.0467 3.14 -18.007172 -18.0071728 1.04665 -3.14 -3.116181 -3.1161819 1.04665 -1.0467 -25.814344 -25.814344

10 1.04665 1.04665 -2.980187 -2.98018711 1.04665 3.14 -3.098072 -3.09807212 3.14 -3.14 -9.454443 -9.45444313 3.14 -1.0467 -15.137027 -15.13702714 3.14 1.04665 -2.613207 -2.61320715 3.14 3.14 -9.455302 -9.455302

53ERCOFTAC

Munich – 1st April, 200353

Dipartimento di Energetica

Factorial DOE

Variable XThe design variable’s range can be limited to either the + or – range, reducing the searching path for the optimisation phase.

54ERCOFTAC

Munich – 1st April, 200354

Dipartimento di Energetica

Factorial DOE

Variable YThe design variable’s range can be limited to either the + or – range, reducing the searching path for the optimisation phase.

55ERCOFTAC

Munich – 1st April, 200355

Dipartimento di Energetica

Conclusion <<<

!The use of a factorial experiments plan allows the analysis of macro-effects

!The design variable’s range can be limited to either the + or – range

!The searching path can be reduced for the optimisation phase.

56ERCOFTAC

Munich – 1st April, 200356

Dipartimento di Energetica

DOE

Examples 4

How to use modeFRONTIER to create a good data base for the response surface training

57ERCOFTAC

Munich – 1st April, 200357

Dipartimento di Energetica

Mathematical functions

x y, [ , ]∈ −π π

F x y x y22 23 1( , ) [( ) ( ) ]= − + + +

58ERCOFTAC

Munich – 1st April, 200358

Dipartimento di Energetica

Sobol versus Random

Random sequence

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sobol sequence

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

The Random sequence can generate clusters.The Sobol algorithm covers better the dominium of the function The experiments in Sobol sequence are maximally avoiding of each other, filling in a uniform way the design space.

59ERCOFTAC

Munich – 1st April, 200359

Dipartimento di Energetica

Sobol DOE (Design Of Experiments)

10 Designs computed with Sobol DOE(well distributed in the range [-π,π]x[-π,π])

<ID> x y out20 0 0 -101 -1.57 -1.57 -2.36982 1.57 1.57 -27.48983 -0.785 0.785 -8.092454 2.355 -2.355 -30.512055 -2.355 2.355 -11.672056 0.785 -0.785 -14.372457 -1.1775 2.7475 -17.36526258 1.9625 -0.3925 -24.99546259 -2.7475 1.1775 -4.8052625

60ERCOFTAC

Munich – 1st April, 200360

Dipartimento di Energetica

Residual Chart

Residual ChartLeast sum of square technique has been used to fit the points. The residual errors are very low. Any other point in the range can be estimate with low error.

61ERCOFTAC

Munich – 1st April, 200361

Dipartimento di Energetica

Random DOE (Design Of Experiments)

11 Designs computed Randomly(badly distributed in the range [-π,π]x[-π,π])

<ID> x y out20 -0.9153 1.35405 -9.8875254931 -0.7303 0.215 -6.627763092 0.4435 -0.55075 -12.059517813 -1.26485 1.1714 -7.7257234834 0.1629 0.9111 -13.656239625 0.4287 0.8602 -15.216327736 0.35735 0.83125 -14.625275597 2.5042 -1.68275 -30.76236528 1.8801 -1.1282 -23.831811259 -1.41465 -0.41745 -2.852699125

10 -2.9272 -1.3828 -0.15183568

Points used for training

62ERCOFTAC

Munich – 1st April, 200362

Dipartimento di Energetica

Residual Chart

Residual ChartLeast sum of square technique has been used to fit the first 10 points (all in the range [-1,1]x[-1,1]). The residual errors seem very low.

63ERCOFTAC

Munich – 1st April, 200363

Dipartimento di Energetica

Residual Chart

Residual ChartResidual error for the 11th point (outside of the range [-1,1]x[-1,1]).The residual error is high.

64ERCOFTAC

Munich – 1st April, 200364

Dipartimento di Energetica

Conclusion <<<

!DOE can be used to create the data base for theresponse surfacetraining.

!The use of a correct DOE minimises the interpolation errors.

65ERCOFTAC

Munich – 1st April, 200365

Dipartimento di Energetica

DOE

Examples 5

How to use modeFRONTIER to create a good data base for optimisation

66ERCOFTAC

Munich – 1st April, 200366

Dipartimento di Energetica

Maximise a Mathematical function

[ ]a b=

=− −− −

=0 5 1015 2 0

2 0 1510 0 5

10 2 0. .. .

. .

. .. .α

F x y A B A B1 1 12

2 221( , ) [ ( ) ( ) ]= − + + + +

A a sin b

B a sin b

i i j j i j jj

i i j j i j jj

= ⋅ + ⋅

= ⋅ + ⋅

=

=

( ( ) cos( ))

( ( ) cos( ))

, ,

, ,

α α

β β

1

2

1

2

x y, [ , ]∈ −π π

Maximise:

67ERCOFTAC

Munich – 1st April, 200367

Dipartimento di Energetica

Example 5:

• DOE Algorithm• Latin Square of 4 levels (16 experiments)

• Optimisation Algorithm• Multi Objective Genetic Algorithm (MOGA)

• 10 Generations• Probability of Directional Cross-Over 70%• Probability of Selection 5%• Probability of Mutation 10%

• Results• 160 designs• Maximum value reached –1.080 (x=1.018 y=2.281)

68ERCOFTAC

Munich – 1st April, 200368

Dipartimento di Energetica

Example 5:

• DOE Algorithm• Sobol sequence (16 experiments)

• Optimisation Algorithm• Multi Objective Genetic Algorithm (MOGA)

• 10 Generations• Probability of Directional Cross-Over 70%• Probability of Selection 5%• Probability of Mutation 10%

• Results• 160 designs• Maximum value reached –1.001 (x=2.031 y=7.172e-1)

69ERCOFTAC

Munich – 1st April, 200369

Dipartimento di Energetica

Example Conclusion

Starting from different initial population, Genetic Algorithm evolutions are different.

MOGA with Sobol initial population reaches faster the best point.

70ERCOFTAC

Munich – 1st April, 200370

Dipartimento di Energetica

DOE

Examples 6

How to use modeFRONTIER for robust design

71ERCOFTAC

Munich – 1st April, 200371

Dipartimento di Energetica

Maximise a Mathematical function

Maximise:

( )

( ) ( )[ ]0.5,0.5,

5.25.2

4.020),(

22

222 2

−∈−++=

=+−⋅= ⋅

yxyx

yxeyxF

ασ

σα

72ERCOFTAC

Munich – 1st April, 200372

Dipartimento di Energetica

Robust Design

• In many real world optimisation problems, the design parameters are not fixed, normally we identify the mean value and the standard deviation of those parameters.

0 5 10 15 20X

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P(X

) Mean Value

Standard deviationExample:

X=10 mm ± σ (=1.25 mm)

73ERCOFTAC

Munich – 1st April, 200373

Dipartimento di Energetica

Robust Design

• Maximisation problem where the design parameters are defined by the mean and the deviation.

x

F(x)

x1 x2

Point Value

Average Value

x1 x2

74ERCOFTAC

Munich – 1st April, 200374

Dipartimento di Energetica

Monte Carlo D.O.E.

Monte Carlo perturbations around a point look for robust solution that are not influenced by small variation of the design variables.

Example:Var1=2.5 mm ± σ (=0.1 mm)Var2=-2.5 mm ± σ (=0.1 mm)

75ERCOFTAC

Munich – 1st April, 200375

Dipartimento di Energetica

Monte Carlo DOE

Frequency Histogram. The output variable is not influenced by small variation of the design variables.

Monte Carlo Perturbation for input variables.

76ERCOFTAC

Munich – 1st April, 200376

Dipartimento di Energetica

Monte Carlo DOE

Frequency Histogram. The output variable isinfluenced by small variation of the design variables.

Monte Carlo Perturbation for input variables.

77ERCOFTAC

Munich – 1st April, 200377

Dipartimento di Energetica

There is no single solution to design optimisation tasks. Many techniques are available and most of them have pro and cons. While in the well established world of “simulation” the principles are clear (build a model able to reproduce numerically the physics of a phenomena), in the optimisation arena the driving force should become “improve your available design”

Contact us:[email protected]@esteco.itwww.esteco.com