design of rectangular water tank (1)

Upload: mumarbsc7244

Post on 03-Jun-2018

684 views

Category:

Documents


30 download

TRANSCRIPT

  • 8/12/2019 Design of Rectangular Water Tank (1)

    1/242

    Capacity 80000 Litres (given)

    Material M20 (given)

    Fe 415 Grade HYSD reinforcement (given)

    80400 Litres

    L / B = 6 / 4 = 1.5 < 2 .

    H / 4 = 3.5 / 4 = 0.875 m

    2.5 x YW= 2.5 x 9.8

    = 24.5 KN / m2

    where Ywis unit weight of water = 9.8 KN / m3

    6 m

    6 m A E

    F

    3.5 m 24.5 KN / m2

    D

    34.3 KN / m2

    Elevation Plan

    MAB =

    = 73.5 KNm

    MAD =

    = -32.66 KNm

    - 32.66 73.5

    0 -12.25 -8.17 0

    0 -12.25 -8.17 0

    D 0 A 0 B

    -57.16 57.16

    Fixed end moments :-

    Design of Rectangular water tank CASE-1 ( L / B < 2 )

    Grade Concrete

    Volume = 6 x 4 x 3.35 x 103

    =

    Water pressure at 3.5 - 1 = 2.5 m height from top =

    Solution :-

    Provide 6 m x 4 m x 3.5 m tank with free board of 150 mm.

    The top portion of side walls will be designed as a continuous frame.

    bottom 1 m or H / 4 whichever is more is designed as cantilever.

    bottom 1 m will be designed as cantilever.

    Rotation factor at Joint A

    To find moment in side walls, moment distribution or kani's method is used. As the

    frame is symmetrical about both the axes, only one joint is solved

    Kani's Method :-

    24.5 x 62/ 12 =

    24.5 x 42/ 12 =

    w x l2/ 12 =

    w x l2/ 12 =

    -3/10 -2/1040.84

    2.5 m

    1 m

  • 8/12/2019 Design of Rectangular Water Tank (1)

    2/242

    Joint Member Relative

    Stiffness( K ) K

    Rotation Factor

    u =(-1/2) k / K

    AB I / 6 - 2 / 10

    AD I / 4 - 3 / 10

    MAF =

    40.84 KNm

    MAB=

    =

    = 57.16

    MAD=

    = (- 32.66 ) + 2 x (- 12.25 ) + 0

    = -57.16

    =

    53.09 KNm

    =

    -8.16 KNm

    = 49 KN

    = 73.5 KN

    M = 57.16 KNm

    T = 49 KN

    Q = 0.306

    D = M / Q x b

    = 57.16 x 106/ 0.306 x 1000

    = 432.2 mm,

    Take D = 450 mm d = 450 - 25 - 8

    = 417 mm

    Direct tension in long wall =

    A 5 * I / 12

    Sum of FEM

    73.5-32.66

    B.M. at centre of long span =

    B.M. at centre of short span =

    MABF+ 2 MAB' + MBA'

    73.5 + 2 x (- 8.17 ) + 0

    MADF+ 2 MAD' + MDA'

    Direct tension in short wall = Yw( H - h ) x L / 2

    24.5 x 6 / 2 =

    Design of Long Walls :-

    24.5 x 4 / 2 =

    w x l2/ 8 - 57.16

    w x l2/ 8 - 57.16

    Yw( H - h ) x B / 2

    24.5 x 42/ 8

    - 57.16

    24.5 x 62/ 8

    - 57.16

    Tension on liquid face.

    Assuming d / D = 0.9

    At support

    From Table 9-6

    From Table 9-5

    Assuming d / D = 0.9

  • 8/12/2019 Design of Rectangular Water Tank (1)

    3/242

    M / stx j x d

    =

    = 1048 mm2

    Ast2for direct tension = T / st

    =

    = 327 mm2

    = 1375 mm2

    =

    = 146.15273 mm

    Provide 16 mm O bar @ 130 mm C/Cmarked(a) = 1546 mm2/ m.

    At centre

    M = 53.09 KNm

    T = 49 KN

    e = M / T =

    = 1.08 m

    E = e + D / 2 - d b

    =

    = 888 mm

    D

    = 49 x 0.888d

    = 43.51 KNm

    d'

    M / stx j x d

    =

    = 617 mm2

    Ast2for direct tension = T / st

    =

    = 327 mm2

    = 944 mm2

    =

    = 212.88136 mm

    Total Ast1+ Ast2 = 617 + 327

    Provide 16 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    200.96 x 1000 / 944

    E = e + D / 2 - d

    1080 + 450 / 2 - 417

    modified moment

    Ast1for moment =

    43.51 x 106

    / 190 x 0.89 x 417

    49 x 103

    / 150

    Larger steel area is provided to match with the steel of short walls.

    49 x 103

    / 150

    Total Ast1+ Ast2 = 1048 + 327

    i.e.tension is small

    Line of action of forces lies outsi

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    57.16 x 106

    / 150 x 0.872 x 417

    Ast1for moment =

    53.09 / 49

    200.96 x 1000 / 1375

    Provide 16 mm O bar

    tension on remote face

  • 8/12/2019 Design of Rectangular Water Tank (1)

    4/242

    Provide 16 mm O bar @ 200 mm C/Cmarked(b) = 1005 mm2

    = 720 mm2

    360 mm2

    =

    = 139.55556 mm

    Provide 8 mm O bar @ 130 mm C/Cmarked(d) = 385 mm2

    =

    = 218.05556 mm

    Provide 10 mm O bar @ 200 mm C/Cmarked(c) = 392 mm2

    Remote face ( b) - Provide 16 mm O @ 200 mm C/C = 1005 mm2

    385 mm2

    mm2

    M = 57.16 KNm

    T = 73.5 KN

    M / stx j x d

    == 1048 mm

    2

    Ast2for direct tension = T / st

    =

    = 490 mm2

    = 1538 mm2

    == 130.6632 mm

    Provide 16 mm O bar @ 130 mm C/Cmarked(b) = 1546 mm2/ m.

    At centre

    M = 8.16 KNm

    T = 73.5 KN

    200.96 x 1000 / 1538

    tension on liquid face

    57.16 x 106

    / 150 x 0.872 x 417

    73.5 x 103

    / 150

    Total Ast1+ Ast2 = 1048 + 490

    Provide 16 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    Vertical Steel ( c) - Provide 10 mm O @ 200 mm C/C both faces = 392

    Design of short walls :-

    At support

    tension on liquid face

    From Table 9-5

    Ast1for moment =

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    50.24 x 1000 /360

    Horizontal steel :-

    Liquid face ( d) - Provide 8 mm O @ 130 mm C/C =

    Provide 10 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    78.50 x 1000 /360

    Vertical Steel ( c)

    Distribution steel =

    From Table 9-3 minimum reinforcement 0.16 %

    0.16 / 100 x 1000 x 450

    On each face =

    Provide 8 mm O bar

  • 8/12/2019 Design of Rectangular Water Tank (1)

    5/242

    M / stx j x d

    =

    = 150 mm2

    Ast2for direct tension = T / st

    =

    = 490 mm2

    = 640 mm2

    =

    = 176.625 mm

    Provide 12 mm O bar @ 130 mm C/Cmarked(e) = 869 mm2/ m.

    = 720 mm2

    360 mm2

    =

    = 139.55556 mm

    Provide 8 mm O bar @ 130 mm C/Cmarked(d) = 385 mm2

    =

    = 218.05556 mm

    Provide 10 mm O bar @ 200 mm C/Cmarked(c) = 392 mm2.

    Remote face ( e) - Provide 12 mm O @ 130 mm C/C = 869 mm2

    385 mm2

    mm2

    M = OR Ywx H / 6 , whichever is greater.

    = = 9.8 x 3.5 / 6

    = 5.72 KNm = 5.72

    78.50 x 1000 /360

    Horizontal steel :-

    Liquid face ( d) - Provide 8 mm O @ 130 mm C/C =

    Vertical Steel ( c) - Provide 10 mm O @ 200 mm C/C both faces = 392

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    50.24 x 1000 /360

    Vertical Steel ( c)

    Provide 10 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    From Table 9-3 minimum reinforcement 0.16 %

    Distribution steel = 0.16 / 100 x 1000 x 450

    On each face =

    Provide 8 mm O bar

    Total Ast1+ Ast2 = 150 + 490

    Provide 12 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    113.04 x 1000 / 640

    From Table 9-5

    Ast1for moment =

    8.16 x 106

    / 150 x 0.872 x 417

    73.5 x 103

    / 150

    Bottom 1 m will be designed as cantilever

    ,tension on liquid face.

    Cantilever moment : -

    Ywx H x h2/ 6

    9.8 x 3.5 x 1 / 6

  • 8/12/2019 Design of Rectangular Water Tank (1)

    6/242

    M / stx j x d

    =

    = 105 mm2

    = 720 mm2

    360 mm2

    =

    = 218 mm

    Provide 10 mm O bar @ 200 mm C/Cmarked(c) = 392 mm2.

    0.229%

    =

    = 344 mm2

    =

    = 292 mm

    Ast = 346 mm2

    lx= 4 + 0.15 = 4.15 say 4.5 m

    ly= 6 + 0.15 = 6.15 say 6.5 m

    3.75 KN / m2

    1.0 KN / m2

    1.5 KN / m2

    6.25 KN / m2

    PU=

    = 9.38 KN / m

    ly/ lx= 6.5 / 4.5

    = 1.4

    From Table 9-3 minimum reinforcement 0.16 %

    From Table 9-5

    Astfor moment =

    5.72 x 106

    / 150 x 0.872 x 417

    spacing of bar = Area of one bar x 1000 / required area in m2/m

    78.50 x 1000 /360

    each face

    Distribution steel = 0.16 / 100 x 1000 x 450

    On each face =

    Provide 10 mm O bar

    Base slab :-

    Base slab is resting on ground. For a water head 3.5 m, provide 150 mm thick slab.

    From table 9-3

    Top slab may be designed as two-way slab as usual for a live load of 1.5 KN / m2

    Minimum steel =

    0.229 / 100 x 1000 x 150

    Provide 8 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    50.24 x 1000 /172

    Dead Load : self 0.15 x 25 =

    floor finish =

    1.5 x 6.25

    ,172 mm2bothway

    Provide 8 mm O bar @ 290 mm C/C both ways, top and bottom.

    Designed section,Elevation etc. are shown in fig.

    Live load =

    consider 1 m wide strip. Assume 150 mm thick slab.

    For 1 m wide strip

    AS Per IS-456-2000,Four Edges Discontinuous,positive moment at mid-span.

    Top slab : -

  • 8/12/2019 Design of Rectangular Water Tank (1)

    7/242

    Table 26 x = 0.085

    y = 0.056

    Mx= My=

    = =

    = 16.15 KNm = 10.64 KNm

    M / Q x b

    = 16.15 x 106/ 2.76 x 1000

    = 76.50 mm

    dshort=

    = 130 > 76.50 mm

    dlong= 130 - 10 = 120 mm

    = 0.96

    Pt=

    fy/ fck

    =

    415 / 20

    =

    = 0.29%

    = 377 mm2

    =

    = 208 mm

    Provide 10 mm O bar @ 210 mm c/c = 374 mm2.

    = 0.74

    Pt=fy/ fck

    =

    415 / 20

    (O.K.)

    Larger depth is provided due to deflection check.

    y x w x lx2

    0.085 x 9.38 x 4.52

    0.056 x 9.38 x 4.52

    x x w x lx2

    From Table 6-3 ,Q = 2.76

    Mu/ b x d2(short) = 16.15 x 10

    6/ 1000 x 130 x 130

    50 1-1-(4.6 / fck) x (Mu / b x d2)

    Mu/ b x d2(long) = 10.64 x 10

    6/ 1000 x 120 x 120

    50 1-1-(4.6 / fck) x (Mu / b x d2

    )

    50 1-1-(4.6 / 20) x (0.74)

    50 1-1-(4.6 / 20) x (0.96)

    50 [(1-0.88) x 20 / 415 ]

    78.50 x 1000 /377

    Ast(short) = 0.29 x 1000 x 130 / 100

    Provide 10 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/m

    drequired=

    150 - 15(cover) - 5

  • 8/12/2019 Design of Rectangular Water Tank (1)

    8/242

    =

    = 0.22%

    = 264 mm2

    =

    = 190 mm

    = 264 mm2.

    50 [(1-0.91) x 20 / 415 ]

    Provide 8 mm O bar @ 190 mm c/c

    Provide 8 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    50.24 x 1000 /264

    Ast(long) = 0.22 x 1000 x 120 / 100

  • 8/12/2019 Design of Rectangular Water Tank (1)

    9/242

    B

    4 m

    C

  • 8/12/2019 Design of Rectangular Water Tank (1)

    10/242

    Q = M / bD2

    Pt Q = M / bD2

    Pt

    0.75 0.3 0.4 0.295 0.289

    0.8 0.305 0.37 0.299 0.272

    0.85 0.31 0.355 0.302 0.258

    0.9 0.314 0.335 0.306 0.246

    Balanced Design Factors for members in bending

    For M20 Grade Concrete Mix

    Mild steel HYSD barsd / D

    TABLE 9-5

    TABLE 9-6

    Members in bending ( Cracked condition )

    Coefficients for balanced design

  • 8/12/2019 Design of Rectangular Water Tank (1)

    11/242

    Grade of

    concrete

    Grade of

    steelcbc

    N / mm2

    st

    N / mm2 k j Q

    M20 Fe250 7 115 0.445 0.851 1.33

    Fe415 7 150 0.384 0.872 1.17

    For members more than 225mm thickness and tension away from liquid face

    M20 Fe250 7 125 0.427 0.858 1.28

    Fe415 7 190 0.329 0.89 1.03

    D / 2

    e = M / T

    0.214

    0.24

    0.2290.217

    0.206

    0.194

    0.183

    0.171

    300

    350

    400

    0.3

    0.2860.271

    0.257

    0.243

    0.229

    Thickness, mm

    100

    150200

    250

    TABLE 9-3

    Minimum Reinforcement for Liquid Retaining Structures

    % of reinforcement

    Mild Steel HYSD bars

    ide the section

    For members less than 225mm thickness and tension on liquid face

  • 8/12/2019 Design of Rectangular Water Tank (1)

    12/242

    0.2 0.16450 or more

  • 8/12/2019 Design of Rectangular Water Tank (1)

    13/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    14/242

    3500

    150

    1 : 4 : 8 P.C.C.

    150 450 6000 450 150

    Elevation

    1500

    450

    1000

    4000

    1000

    450

    1500 1500

    6000

    450 450

    Section A-A

    Table 6-3

    A15001500

    150

    150

    8 O @ 290 c/c both ways top and bottom

    10 O @ 200 c/c

    10 O @ 200 c/c - shape

    - shape

    10 O @ 210 c/c 8 O @ 190 c/c

    150 Free board

    1000

    16 O @ 130 c/c (a)

    10 O @ 200 c/c both faces (c)

    12 O @ 130 c/c (e)

    16 O @ 200 c/c (b)

    8 O @ 130 c/c (d)

    ( a ) ( a )( b ) ( d )

    ( c )

    ( d )

  • 8/12/2019 Design of Rectangular Water Tank (1)

    15/242

    250 415 500 550

    15 2.22 2.07 2.00 1.94

    20 2.96 2.76 2.66 2.5825 3.70 3.45 3.33 3.23

    30 4.44 4.14 3.99 3.87

    Limiting Moment of resistance factor Qlim, N / mm2

    fy, N / mm2

    fck N / mm2

  • 8/12/2019 Design of Rectangular Water Tank (1)

    16/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    17/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    18/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    19/242

    Pt,bal

    1.36

    0.98

    1.2

    0.61

  • 8/12/2019 Design of Rectangular Water Tank (1)

    20/242

    (given)

    Material M20 (given)

    Fe 415 (given)

    86400 Litres

    L / B = 8 / 3.6 = 2.22 > 2 .

    H / 4 = 3.0 / 4 = 0.75 m

    =

    =

    = 44.1 KNm.

    =

    =

    = 26.13 KNm.

    ==

    = 19.60 KNm.

    For bottom portion

    M = OR

    = =

    = 4.90 KNm = 4.90 KNm

    =

    = 35.28 KN

    =

    = 19.6 KN

    Volume = 3.6 x 8 x 3.0 x 103

    =

    The short walls are designed as supported on long walls.

    If thickness of long walls is 400 mm, the span of the short wall = 3.6 + 0.4 = 4.0 m.

    The long walls are designed as vertical cantilevers from the base.

    bottom 1 m or H / 4 whichever is more is designed as cantilever.

    bottom h = 1 m will be designed as cantilever.

    Design of Rectangular water tank CASE-2 ( L / B 2 )

    Grade Concrete

    Solution :-

    Size of tank : 3.6 m x 8.0 m x 3.0 m high

    Grade HYSD reinforcement

    Size of tank : 3.6 m x 8.0 m x 3.0 m high

    Maximum B.M. in long walls at the base

    (1 / 6 ) x Ywx H3

    ( 1 / 6 ) x 9.8 x 33

    Moments and tensions :

    Maximum ( - ve ) B.M. in short walls at support

    Ywx ( H - h ) x B2/ 12

    9.8 x ( 3 - 1 ) x 42/ 12

    Maximum ( + ve ) B.M. in short walls at centre

    Direct tension in long wall = Yw x( H - h ) x B / 2

    Direct tension in short wall= Yw( H - h ) x 1

    Ywx ( H - h ) x B2

    / 169.8 x ( 3 - 1 ) x 4

    2/ 16

    Ywx H x h2/ 6

    9.8 x 3.0 x 1 / 6

    Ywx H / 6 , whichever is greater

    9.8 x 3.0 / 6

    9.8 x ( 3 - 1 ) x 1

    9.8 x ( 3 - 1 ) x 3.6 / 2

    It is assumed that end one metre width of long wall gives direct tension to short walls.

  • 8/12/2019 Design of Rectangular Water Tank (1)

    21/242

    M ( - ) = 44.1 KNm

    T = 35.28 KN

    D = M / Q x b

    =

    = 379.6 mm,

    Take D = 400 mm d =

    = 367 mm

    Ast =

    =

    = 918.68 mm2

    =

    = 218.75 mm

    = 1005 mm2.

    As=

    = 684 mm2.

    342 mm2.

    = T / st

    =

    = 235 mm2.

    == 146.9 mm

    = 357 mm2

    Provide 16 mm O bar @ 200 mm c/c

    44.1 x 10 6/ 0.306 x 1000

    400 - 25 - 8

    M / stx j x d

    Design of long walls : -

    ( water face )

    ( perpendicular to moment steel )

    Assume d / D = 0.9 Q = 0.306

    200.96 x 1000 / 918.68

    ( 0.171 / 100 ) x 1000 x 400

    From Table 9-6

    From Table 9-5 ,

    Provide 16 mm O bar

    spacing of bar =

    Astfor Moment

    Provide 8 mm O bar

    Note : The design is made at the base. The moment reduces from base to top.For ec

    reinforcement can be curtailed or the thickness of wall can also be reduced as we hav

    cantilever retaining wall.

    Distribution steel = 0.171 % for 400 mm depth

    From Table 9-3

    Steel required for direct tension

    35.28 x 103/ 150

    ( 2 )

    44.1 x 106

    / 150 x 0.872 x 367

    Area of one bar x 1000 / required area in m2/ m

    From ( 1 ) and ( 2 ) , minimum steel is sufficient for resisting direct tension.

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    50.24 x 1000 / 342

    on each face = ( 1 )

    Provide 8 mm O bar @ 140 mm c/c on each face

    on each face

    Design of short walls :-

  • 8/12/2019 Design of Rectangular Water Tank (1)

    22/242

    M = 26.13 KNm

    T = 19.6 KN

    =

    = 544 mm2

    T / st

    =

    = 131 mm2

    = 675 mm2

    =

    = 167.47 mm= 706 mm

    2.

    1000

    203.56

    400 367

    163.44

    = 13.33

    =

    = 203.56 mm

    D - x = 196.44 mm

    d - x = 163.44 mmAT=

    =

    = 408705 mm2

    Ixx=

    Provide 12 mm O bar@160 mm c/c

    checking :

    At support

    From Table 9-5

    Ast1for moment =

    113.04 x 1000 / 675

    19.6 x 103

    / 150

    M / stx j x d

    26.13 x 106

    / 150 x 0.872 x 367

    Ast2for direct tension =

    Area of one bar x 1000 / required area in m2/ m

    Total Ast1+ Ast2 = 544 + 131

    Provide 12 mm O bar

    spacing of bar =

    ( 1000 x 4002/ 2 ) + ( 706 x ( 13.33 - 1 ) x 367 )

    ( 1000 x 400 ) + ( ( 13.33 - 1 ) x 706 )

    b x D + ( m - 1 ) x Ast

    1000 x 400 + (13.33 - 1 ) x 706

    modular ratio m = 280 / 3 x cbc

    x =b x D

    2/ 2 + Ast( m - 1 ) x d

    b x D + ( m - 1 ) x Ast

    ( 1 / 3 ) x b x ( x3+ ( D - x )

    3) + ( m - 1 ) x Astx ( d - x )

    2

  • 8/12/2019 Design of Rectangular Water Tank (1)

    23/242

    =

    = 5.34E+09 + 2.33E+08

    = 5.57E+09 mm4

    fct = T / AT

    =

    = 0.048 N / mm2

    fcbt =

    =

    = 0.767 N / mm2

    check :

    1

    0.4912 1

    M = 19.6 KNm

    T = 19.6 KN

    =

    = 408 mm2

    T / st

    =

    = 131 mm2

    = 539 mm2

    =

    = 209.72 mm

    = 565 mm2.

    As=

    = 684 mm2.

    342 mm2.

    26.13 x 106x 163.44 / 5.57 x 10

    9

    ( fct/ ct ) + ( fcbt/ cbt )( 0.048 / 1.2 ) + ( 0.767 / 1.7 ) 1

    ( 1 / 3 ) x 1000 x ( 203.563+ 196.44

    3) + ( 13.33 - 1 ) x 706 x 163.44

    2

    19.6 x 10 3/ 408705

    M x ( d - x ) / Ixx

    From Table 9-2

    At centre :

    From Table 9-5

    Ast1for moment = M / stx j x d

    0.04 + 0.4512 1

    .. ( O. K. )

    Provide 12 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    113.04 x 1000 / 539

    19.6 x 106

    / 150 x 0.872 x 367

    Ast2

    for direct tension =

    19.6 x 103

    / 150

    Total Ast1+ Ast2 = 408 + 131

    on each face = ( 1 )

    Provide 12 mm O bar @ 200 mm c/c

    From Table 9-3

    Distribution steel = 0.171 % for 400 mm depth

    ( 0.171 / 100 ) x 1000 x 400

  • 8/12/2019 Design of Rectangular Water Tank (1)

    24/242

    = T / st

    =

    = 131 mm2.

    =

    = 146.9 mm

    = 357 mm2

    M = 4.9 KNm

    Ast =

    =

    = 102 mm2

    = 357 mm2

    0.229%

    =

    = 344 mm

    2

    =

    = 292 mm

    Ast = 346 mm2

    lx= 3.6 + 0.4 = 4 say 4 mly= 8 + 0.15 = 8.15 say 8.5 m

    3.75 KN / m2

    1.0 KN / m2

    1.5 KN / m2

    6.25 KN / m2

    Top slab may be designed as a one-way slab as usual for a live load of 1.5 KN / m2

    Top slab : -

    consider 1 m wide strip. Assume 150 mm thick slab.

    Dead Load : self 0.15 x 25 =

    floor finish =

    Live load =

    Provide 8 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    50.24 x 1000 /172

    Provide 8 mm O bar @ 290 mm C/C both ways, top and bottom.

    Designed section,Elevation etc. are shown in fig.

    Minimum steel =

    0.229 / 100 x 1000 x 150

    ,172 mm

    2

    bothway

    Base slab :-

    Base slab is resting on ground. For a water head 3 m, provide 150 mm thick slab.

    From table 9-3

    Steel required for direct tension

    19.6 x 103/ 150

    50.24 x 1000 / 342

    on each face

    Bottom cantilever

    Provide 8 mm O bar @ 140 mm c/c on each face

    ( 2 )From ( 1 ) and ( 2 ) , minimum steel is sufficient for resisting direct tension.

    Provide 8 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    Provide 8 mm O bar @ 140 mm c/c on each faces

    on each face

    From Table 9-5

    M / stx j x d

    4.9 x 106

    / 150 x 0.872 x 367

    Minimum steel = 342 mm2on each face.

  • 8/12/2019 Design of Rectangular Water Tank (1)

    25/242

    PU=

    = 9.38 KN / m

    = 18.76 KNm

    = 16.88 KN

    drequired= M / Q x b

    = 18.76 x 10 6/ 2.76 x 1000= 82.44 mm

    dprovided=

    =

    = 1.13

    Pt=

    fy/ fck

    =

    415 / 20

    == 0.34%

    = 439 mm2

    =

    = 114 mm

    = 457 mm2.

    = 180 mm2

    =

    Provide 8 mm O bar @ 110 mm c/c

    Provide 6 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    Distribution steel = ( 0.12 / 100 ) x 1000 x 150

    28.26 x 1000 /180

    Maximum moment = 9.38 x 42/ 8

    Maximum shear = 9.38 x 3.6 / 2

    From Table 6-3 ,Q = 2.76

    Minimum steel is 0.15 % for mild steel and 0.12 % for HYSD Fe415 reinforcement

    Provide 8 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/m

    50.24 x 1000 /439

    50 1-1-(4.6 / 20) x (1.13)

    50 [(1-0.86) x 20 / 415 ]

    Ast = 0.34 x 1000 x 129 / 100

    (O.K.)

    Larger depth is provided due to deflection check.

    Mu/ b x d2 = 18.76 x 10

    6/ 1000 x 129 x 129

    50 1-1-(4.6 / fck) x (Mu / b x d2)

    129 > 82.44

    Design for flexure :

    150 - 15(cover) - 6

    1.5 x 6.25

    For 1 m wide strip

  • 8/12/2019 Design of Rectangular Water Tank (1)

    26/242

    = 157 mm

    = 188 mm2.Provide 6 mm O bar @ 150 mm c/c

  • 8/12/2019 Design of Rectangular Water Tank (1)

    27/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    28/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    29/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    30/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    31/242

    nomy, the

    e done for

  • 8/12/2019 Design of Rectangular Water Tank (1)

    32/242

    x

  • 8/12/2019 Design of Rectangular Water Tank (1)

    33/242

    M15 1.1 1.5 1.5

    M20 1.2 1.7 1.7

    M25 1.3 1.8 1.9

    M30 1.5 2.0 2.2

    M35 1.6 2.2 2.5

    M40 1.7 2.4 2.7

    Table 9-2

    Grade of

    concrete

    Permissible stresses in N / mm2

    Direct

    tension ct

    Tension due to

    bending cbtShear stress

    v = V / b j d

    Permissible concrete stresses in calculations relating

    to resistance to cracking

  • 8/12/2019 Design of Rectangular Water Tank (1)

    34/242

    150

    3000

    150

    1 : 4 : 8 P.C.C. 150

    150 400 8000 400

    Section A-A

    2000

    400

    900

    3600

    900

    400

    2000 2000

    8000

    400 Sectional plan 400

    150

    3000

    Base details not

    8 O @ 140 c/c (chipiya)

    20002000

    8 O @ 290 c/c both ways top and bottom

    12 O @ 200 c/c

    - shape

    8 O @ 110 c/c 6 O @ 150 c/c

    900

    12 O @ 160 c/c(chipiya)16 O @ 200 c/c ( chipiya )

    150

    8 O @ 140 mm c/c

    8 O @ 140 c/c

    12 O @ 200 c/c

    B

    B

    8 O @ 140 c/c

    8 O @ 140 c/c

    8 O @ 110 c/c 6 O @ 150 c/c

    16 O @ 200 c/c ( chipiya )

    8 O @ 140 c/c

  • 8/12/2019 Design of Rectangular Water Tank (1)

    35/242

    150

    150

    150 400 3600 400 150

    Section B- B

    shown for clarity900 900

  • 8/12/2019 Design of Rectangular Water Tank (1)

    36/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    37/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    38/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    39/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    40/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    41/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    42/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    43/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    44/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    45/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    46/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    47/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    48/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    49/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    50/242

    ( given )

    2.5 KN / m2 ( given )

    1 KN / m2 ( given )

    ( given )

    ( given )

    = 25.2

    = 158.7 mm

    D =

    = 178.7 mm180 mm

    4.5 KN / m2

    1.0 KN / m2

    2.5 KN / m2

    Total 8.0 KN / m2

    1.5 x 8 = 12 KN / m

    w x l2/ 8

    = 12 x 42/ 8

    = 24 KNm

    w x l / 2

    =

    = 24 KN

    d =

    = 160 mm

    = 0.94

    Pt= 50 1-1-(4.6 / fck) x (Mu/ b x d2)

    fy/ fck

    =

    415 / 15

    =

    = 0.289%

    M15 grade concrete

    HYSD reinforcement grade Fe415

    Design of simply supported one way slab

    effective span = 4 m supported on masonry wall of 230 mm thickness

    Live load =

    ( span / d ) ratio permissible = 1.26 x 20

    IS 456-2000 clause 23.2.1 fig-4 ,for tension reinforcement

    for simply supported, basic span / effective depth ratio = 20

    solution : -

    Assume 0.4 % steel , a trial depth by deflection criteria

    modification factor = 1.26

    Floor finish =

    material

    DL = 0.18 x 25 =

    Floor finish =

    Live load =

    Factored load =

    drequired= 4000 / 25.2

    158.7 + 15 ( cover ) + 5 ( assume 10 O bar )

    Assume an overall depth =

    Mu/ b x d2= 24 x 10

    6/ 1000 x (160)

    2

    50 1-1-(4.6 / 15) x (0.94)

    Maximum moment =

    Maximum shear =

    12 x 4 / 2

    Design for flexure : -

    Consider 1 m length of slab

    50 [(1-0.84) x 15 / 415 ]

    180 - 15 - 5

  • 8/12/2019 Design of Rectangular Water Tank (1)

    51/242

    = 462 mm2

    == 170 mm

    = 462 mm2.

    = 0.128

    = 216 mm2

    =

    = 233 mm

    = 218 mm2.

    Vu= 24 KN

    =

    = 0.150 N / mm2

    d = 160 mm

    As= 231 mm .

    = 0.144

    6 x =

    = 0.8 x 15 / 6.89 x 0.144

    = 12.1

    6 x 12.1

    = 0.277

    N / mm2

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    78.50 x 1000 /462

    Provide 10 mm O bar @ 170 mm c/c

    Ast= 0.289 x 1000 x 160 / 100

    Provide 10 mm O bar

    > 0.12 % ( minimum steel for Fe415)

    i.e. remaining bars provide minimum steel. Thus, half the bars may be bent up.

    Distribution steel = ( 0.12 /100 ) x 1000 x 180

    Half the bars are bent at 0.1 l = 400 mm , and

    remaining bars provide 231 mm2area

    100 x As/ ( b x D ) = 100 x 231 / ( 1000 x 180 )

    spacing of bar =

    50.24 x 1000 /216

    Provide 8 mm O bar @ 230 mm c/c

    Area of one bar x 1000 / required area in m2/m

    Maximum spacing = 5 x 160 = 800 or 450 mm i.e. 450 mm

    Provide 8 mm O bar

    100 x As/ b x d = 100 x 231 / 1000 x 160

    For bars at support

    Check for shear : -

    Actual Shear stress = Vu/ b x d

    24 x 103/ 1000 x 160

    for Pt = 0.144 c= 0.28

    IS 456-2000 Table 19 from table 7-1

    < ( C)N / mm2 ( too small )

    Design shear strength c= 0.85 0.8 x fck( 1 + 5 x - 1 )

    0.8 x fck/ 6.89 Pt , but not less than 1.0

    Design shear strength c= 0.85 0.8 x 15 ( 1 + 5 x 12.1 - 1 )

  • 8/12/2019 Design of Rectangular Water Tank (1)

    52/242

    IS 456-2000 clause 40.2.1.1 -0.05

    k = 1.24 ? -0.04

    = 0.347 N / mm2 .( O.K.)

    8 OAs= 231 mm

    Mu1= OR

    = { 1 - (415 x 231 / 15 x 1000 x 160 ) }

    = 13.34 { 1- 0.0399 }

    = 12.812 KNm

    Vu = 24 KN

    693.875 + 8 O 56 O48 O 693.88

    O 14.46 mm .( O.K.)

    20

    Pt=

    = 0.289IS 456-2000 clause 23.2.1 fig-4 ,for tension reinforcement

    = 28.4

    = 25.00 < 28.4 .( O.K.)

    = 3 x 160 = 480 mm170 mm

    5 x effective depth of slab or

    = 5 x 160

    230 mm

    Check for development length : -

    Assuming L0=

    for 180 mm slab depth

    Design shear strength = 1.24 x 0.28

    0.87 x 415 x 231 x 160

    = 56 O ( from Table 7-6 )

    Check for deflection : -

    Basic ( span / d ) ratio =

    100 x Ast/ b x d = 100 x 462 / 1000 x 160

    modification factor = 1.42

    For tying the bent bars at top , provide 8 mm O @ 230 mm c/c

    ( span / d ) ratio permissible = 1.42 x 20

    Actual (span / d ) ratio = 4000 / 160

    Main bars : maximum spacing permitted =

    Distribution bars : maximum spacing permitted =

    spacing provided =

    25 difference

    20 difference

    (HYSD Fe415 steel ) For continuing bars

    0.87 x fyx Astx d { 1 - ( fyx Ast/ fckx b x d ) }

    The depth could be reduced

    1.3 x ( 12.81 x 106/ 24 x 10

    3) + 8 O 56 O

    which gives

    .( O.

    = 800 mm

    .( O.

    spacing provided = < 300 mm

    3 x effective depth of slab or 300 mm

    or 300 m

    Check for cracking : -

    < 450 mm

    IS 456-2000 , clause 26.3.3

    Development length of bars Ld= O s/ 4 x bd1.3 x ( Mu1/ Vu ) + L0Ld

  • 8/12/2019 Design of Rectangular Water Tank (1)

    53/242

    NOTE : -

    NOTE : -

    If clear span = 3.77 m , effective span = 3.77 + 0.23 = 4 m OR

    effective span = 3.77 + 0.16 ( effective depth ) = 3.93 m

    0.6 % for mild steel reinforcement and 0.3 to 0.4 % for HYSD Fe415 grade

    reinforcement

  • 8/12/2019 Design of Rectangular Water Tank (1)

    54/242

    For mild steel minimum reinforcement 0.15 %

  • 8/12/2019 Design of Rectangular Water Tank (1)

    55/242

    Pt=

    =

    = 0.14

    Pt= 50 1-1-(4.6 / fck) x (Mu/ b x d2)fy/ fck

    we get , 0.49

    Mu1=

    = 12.54 KNm

    160

    180

    450 mm whichever is small

    0.49x 1000 x 1602

    x 10-6

    400

    For checking development lmay be assumed as 8 O for

    bars ( usually end anchorag

    provided ) and 12 O for mild

    U hook is provided usually

    anchorage length is 16 O.

    100 x As/ b x d

    100 x 231 / 1000 x 160

    From equation

    Mu1/ b x d2=

    4000

    400

    .)

    or 450 mm i.e. 450 mm

    .)

    whichever is small

    i.e. 300 mm

    8 O @ 230 c/c10 O @ 170 c/c( alternate bent )

  • 8/12/2019 Design of Rectangular Water Tank (1)

    56/242

    ( c )Cantilever-The effective length of a cantilever

    shall be taken as its length to the face of the

    support plus half the effective depth except

    centre to centre distance shall be used.

    where it forms the end of a continuous beamwhere the length to the centre of support shall

    be taken.

    ( d )Frames-In the analysis of a continuous frame,

    of the beam or slab or the clear span plus

    half the width of the discontinuous support,

    whichever is less;

    3) In the case of spans with roller or rocket

    bearings, the effective span shall always be

    the distance between the centres of bearings.

    other continuous or for intermediate spans,

    the effective span shall be the clear span

    between supports;

    2) For end span with one end free and the other

    continuous, the effective span shall be equal

    to the clear span plus half the effective depth

    shall be taken as under:

    ( b )Continuous Beam or Slab - In the case of

    continuous beam or slab, if the width of the

    support is less than l/12 of the clear span, theeffective span shall be as in (a). If the

    1) For end span with one end fixed and the

    Effective Span

    IS 456-2000 clause 22.2

    ( a ) Simply Supported Beam or Slab -

    The effective span of a member that is not built integrally with its

    supports shall be taken as clear span plus the effective depth of

    slab or beam or centre to centre of supports , whichever is less.

    supports are wider than I/12 of the clear span

    or 600 mm whichever is less, the effective span

    If ly/ lx 2 ,called one way slab provided thatit is supported on all four edges . Note that , if

    all four edge is not supported and ly/ lx< 2 ,

    then also it is one-way slab,If ly/ lx< 2 , called

    two-way slab.provided that it is supported on

    all four edges.

  • 8/12/2019 Design of Rectangular Water Tank (1)

    57/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    58/242

    ngth , l0HYSD

    is not

    steel (

    hose

  • 8/12/2019 Design of Rectangular Water Tank (1)

    59/242

    material ( given )

    ( given )

    ( Balcony slab )

    DL LL

    For S2 3 0 KN / m2

    1 0 KN / m2

    0 2 KN / m2

    Total 4 2 KN / m2

    Pu= ( 6 + 3 ) KN / m2

    DL LL

    For S1 3 0 KN / m2

    1 0 KN / m2

    0 3 KN / m2

    Total 4 3 KN / m2

    Pu= (6 + 4.5) KN / m2

    1.875 KN / m

    Pu= 2.8 KN / m

    9 KN/m 6 KN/m

    A 3m B 1.2m C

    9 KN/m 2.8 KN

    A 3m B 1.2m C

    considering fig (a)

    wx l2/ 2

    = 6 x 1.22/ 2

    mild steel grade Fe250

    1.5 ( 4 + 3 ) =

    Weight of parapet 0.075 x 25 x 1 =

    1.5 x 1.875 =

    Consider 1 m long strip(1) To get maximum positive moment in slab S2only dead load on slab

    S1and total load on slab S2shall be considered

    (b) Loads for maximum negative

    moment,maximum shear for cantilever span

    and maximum reaction at support B

    cantilever moment =

    Solution : -

    For slab S2live load = 2 KN /m2

    For slab S1live load = 3 KN /m2

    Assume 120 mm thick slab

    self load = 0.12 x 25 =

    floor finish =

    live load =

    1.5 ( 4 + 2 ) =

    self load = 0.12 x 25 =

    Live Load As per IS 875

    ly=

    (a) Loads for maximum positive moment

    Design of Cantilever one way slab

    floor finish =

    live load =

    10.5 KN/m

    M15 grade concrete

    used for residential purpose

    at the free end of slab S1,concrete parapet of 75 mm thick and 1 m high.

    S S2

    S2 S1

    S1

  • 8/12/2019 Design of Rectangular Water Tank (1)

    60/242

    = 4.32 KNm

    shear =

    =

    = 12.06 KN

    = 1.34 m

    =

    = 8.08 KNm

    =

    = 10.92 KNm

    Vu,BA=

    == 17.14 KN

    Vu,BC=

    =

    = 15.4 KN

    10.92 KNm

    Q = 2.22

    =

    = 70.14 mm,

    = 99 mm,

    = 0.82

    Pt= 50 1-1-(4.6 / fck) x (Mu/ b x d2)fy/ fck

    =

    250 / 15

    =

    = 0.405%

    = 401 mm2

    Moment steel :

    50 1-1-(4.6 / 15) x (0.82)

    50 [(1-0.865) x 15 / 250 ]

    10.5 x 1.2 + 2.8

    Maximum moment =

    Mu/ b x d2( + ) =

    120 - 15 - 6 ( assume 12 O bar )

    Ast( + ) = 0.405 x 1000 x 99 / 100

    .( O.K.)8.08 x 10

    6/ 1000 x (99)

    2

    From Table 6-3

    dprovided=

    10.92 x 10 6/ 2.22 x 1000

    Maximum shear at B

    9 x 3 / 2 + 10.92 / 3

    w x l / 2 + Moment @ B at distance 3 m

    w x l + 2.8

    the slab is loaded with full loads as shown in fig (b)

    Maximum positive moment = 12.06 x 1.34 - W x l2/ 2

    12.06 x 1.34 - 9 x 1.342/ 2

    M / Q x b

    9 x 3 / 2 - 4.32 / 3

    w x l / 2 - Moment @ B at distance 3 mReaction at A =

    2.8 x 1.2 + 10.5 x 1.22/ 2

    Maximum negative moment = w x l + w x l2/ 2

    (2) To get maximum negative moment and maximum shear at B,

    Point of zero shear from A = 12.06 ( KN ) / 9 ( KN / m )

    drequired=

  • 8/12/2019 Design of Rectangular Water Tank (1)

    61/242

    =

    = 195.76 mm

    = 462 mm2.

    = 1.11

    Pt= 50 1-1-(4.6 / fck) x (Mu/ b x d2)fy/ fck

    =

    250 / 15

    =

    = 0.564%

    = 558 mm2

    = 231 mm2. ( bent bars extended )

    =

    = 231 mm2

    remaining area = 558 - 231

    = 327 mm2

    =

    = 346 mm

    = 332 mm2. ( Extra )

    = 180 mm2.

    =

    = 157 mm

    = 188 mm2.

    For negative moment reinforcement

    Total 231 + 332 mm2= 563 mm

    2steel provided

    ( from Table 7-6 )

    28.26 x 1000 / 180

    Provide 6 mm O bar@150 mm c/c

    Development length of bars Ld= O s/ 4 x bd

    Distribution steel = ( 0.15 /100 ) x 1000 x 120

    Provide 6 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    For mild steel minimum reinforcement 0.15 %

    Provide 12 mm O bar

    Provide 12 mm O bar@340 mm c/c

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    Area provided = Area of one bar x 1000 / spacing of bar in m

    Provide 10 mm O bar

    Mu/ b x d2( - ) = 10.92 x 106

    / 1000 x (99)2

    78.5 x 1000 / 401

    113.04 x 1000 / 327

    Note that at simple support , the bars are bent at 0.1 l whereas at continuity of slab it

    is bent at 0.2 l

    ( alternate bent up )

    78.5 x 1000 / 340

    Provide 10 mm O bar@340 mm c/c

    50 [(1-0.812) x 15 / 250 ]

    Ast( - ) = 0.564 x 1000 x 99 / 100

    Provide 10 mm O bar@170 mm c/c

    Provide 10 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    50 1-1-(4.6 / 15) x (1.11)

  • 8/12/2019 Design of Rectangular Water Tank (1)

    62/242

    =

    = 54.4 O

    Ld= 54.4 x ( 10 + 12 ) / 2

    = 598 mm.

    12 O (mild steel )

    At A , Pt=

    =

    = 0.233

    OR

    Pt= 50 1-1-(4.6 / fck) x (Mu/ b x d2) Mu1=fy/ fck =

    we get , 0.487 = 4.974

    Mu1= = 4.78= 4.77 KNm

    Vu = 12.06 KN

    =54.4 O

    514.18 + 12 O 54.4 O42.4 O 514.18

    O 12.13 mm

    At B , Pt=

    == 0.233

    OR

    Pt= 50 1-1-(4.6 / fck) x (Mu/ b x d2) Mu1=fy/ fck =

    we get , 0.487 = 4.974

    Mu1= = 4.78

    = 4.77 KNm

    Vu = 13.09 KN

    =54.4 O

    473.72 + 12 O 54.4 O42.4 O 473.72

    O 11.2 mmwhich gives

    Mu1/ b x d2=

    .( O.K.)

    0.487 x 1000 x 992

    x 10-6

    Development length of bars Ld= O s/ 4 x bd = O x 0.87 x 250 / 4 x 1

    Near point of contraflexure i.e. 0.15 x l from B

    1.3 x ( Mu1/ Vu ) + L0Ld

    1.3 x ( 4.77 x 106/ 13.09 x 10

    3) + 12 O 54.4 O

    100 x As/ b x d Half bars bent = 462 / 2 = 231 mm2)

    100 x 231 / 1000 x 99

    From equation

    0.87 x fy

    0.87 x 25

    which gives .( O.K.)

    Half bars bent = 462 / 2 = 231 mm2)

    0.87 x fy

    0.87 x 25

    Development length of bars Ld= O s/ 4 x bd = O x 0.87 x 250 / 4 x 1

    1.3 x ( Mu1/ Vu ) + L0Ld

    100 x 231 / 1000 x 99

    From equation

    Mu1/ b x d2=

    0.487 x 1000 x 992

    x 10-6

    1.3 x ( 4.77 x 106/ 12.06 x 10

    3) + 12 O 54.4 O

    Check for development length : -

    Assuming L0=

    100 x As/ b x d

    O x 0.87 x 250 / 4 x 1

    say 600 mmAs a thumb rule, a bar shall be given an anchorage equal to the length of

    the cantilever.

    17.14 - ( 0.15 x 3 ) x 9 =

  • 8/12/2019 Design of Rectangular Water Tank (1)

    63/242

    13.09 KN

    =

    = 0.132 N / mm < c

    Pt=

    = 0.233

    6 x =

    =

    = 7.47

    6 x 7.47

    = 0.34

    N / mm2

    IS 456-2000 clause 40.2.1.1 0.07

    k = 1.3 ? 0.014

    = 0.442 N / mm2

    > v

    Vu=

    =

    = 0.173 N / mm2

    < c

    Pt=

    = 0.569

    6 x =

    =

    = 3.06

    6 x 3.06

    = 0.487

    N / mm2

    Span AB :

    Check for shear : -

    Use Vu= 13.09 KN

    Shear stress v= Vu/ b x d

    At A , Vu,AB= 12.06 KN ( for maximum loading )

    At B , shear at point of contraflexure =

    0.8 x fck/ 6.89 Pt , but not less than 1.0

    Design shear strength c= 0.85 0.8 x 15 ( 1 + 5 x 7.47 - 1 )

    IS 456-2000 Table 19 from table 7-1

    13.09 x 103/ 1000 x 99

    100 x As/ b x d = 100 x 231 / 1000 x 99

    Design shear strength c= 0.85 0.8 x fck( 1 + 5 x - 1 )

    .( O.K.)

    0.8 x 15 / 6.89 x 0.233

    .( O.K.)

    for Pt = 0.233 c= 0.34

    0.1 difference

    for 120 mm slab depth 0.02 difference

    Span BC :

    17.14 KNShear stress v= Vu/ b x d

    Design shear strength = 1.3 x 0.34

    Design shear strength c= 0.85 0.8 x fck( 1 + 5 x - 1 )

    0.8 x fck/ 6.89 Pt , but not less than 1.0

    0.8 x 15 / 6.89 x 0.569

    17.14 x 103/ 1000 x 99

    .( O.K.)

    100 x As/ b x d = 100 x 563 / 1000 x 99

    Design shear strength c= 0.85 0.8 x 15 ( 1 + 5 x 3.06 - 1 )

    IS 456-2000 Table 19 from table 7-1

    for Pt = 0.569 c= 0.48

  • 8/12/2019 Design of Rectangular Water Tank (1)

    64/242

    IS 456-2000 clause 40.2.1.1 0.08

    k = 1.3 ? 0.0579

    = 0.624 N / mm2

    > v

    20

    Pt=

    = 0.467

    IS 456-2000 clause 23.2.1 fig-4 ,for tension reinforcement

    = 40

    = 30.30 < 40 .( O.K.)

    7

    Pt=

    = 0.569

    IS 456-2000 clause 23.2.1 fig-4 ,for tension reinforcement

    = 12.6

    = 12.12 < 12.6 .( O.K.)

    = 3 x 99 = 297 mm170 mm

    5 x effective depth of slab or

    = 5 x 99

    150 mm

    0.25 difference

    for 120 mm slab depth 0.181 difference

    Design shear strength = 1.3 x 0.48

    modification factor = 2

    ( span / d ) ratio permissible = 2 x 20

    Actual (span / d ) ratio = 3000 / 99

    .( O.K.)Check for deflection : -

    Basic ( span / d ) ratio =

    100 x Ast/ b x d = 100 x 462 / 1000 x 99

    For span AB :

    (1) Main bars : maximum spacing permitted = 3 x effective depth of slab or 300 mm

    ( span / d ) ratio permissible = 1.8 x 7

    Actual (span / d ) ratio = 1200 / 99

    For span BC :

    Basic ( span / d ) ratio =

    100 x Ast/ b x d = 100 x 563 / 1000 x 99

    modification factor = 1.8

    spacing provided = < 450 mm .( O.K

    or 300 mspacing provided = < 297 mm .( O.K

    (2 )Distribution bars : maximum spacing permitted == 495 mm

    Check for cracking : -

    IS 456-2000 , clause 26.3.3

  • 8/12/2019 Design of Rectangular Water Tank (1)

    65/242

    1.2m

    0.15m

    0.15m

    0.15m 0.15m

    1.2mlx= 3m

    6m S2 S1

    S3

    B1B2

    B3

    B4

    1m high parapet

    Column 300 x 300

  • 8/12/2019 Design of Rectangular Water Tank (1)

    66/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    67/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    68/242

    KNm

    KNm

    ( 1 - 0.0389 )

    Astx d ( 1 - fyx Ast/ b x d x fck)

    0 x 231 x 99 ( 1 - 250 x 231 / 1000 x 99 x 15 ) x 10-6

    Astx d ( 1 - fyx Ast/ b x d x fck)

    0 x 231 x 99 ( 1 - 250 x 231 / 1000 x 99 x 15 ) x 10-6

    ( 1 - 0.0389 )

  • 8/12/2019 Design of Rectangular Water Tank (1)

    69/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    70/242

    1200 1200

    150 3000 150 1200

    450 mm whichever is small

    hichever is small

    .)

    i.e. 297 mm .)

    120 125

    600300

    or 450 mm i.e. 450 mm

    10 O @ 340 c/c (bent)+ 12 O @ 340 c/c (extra)

    10 O @ 170 c/c

    6 O @ 150 c/c

    6 O @ 150 c/c

  • 8/12/2019 Design of Rectangular Water Tank (1)

    71/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    72/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    73/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    74/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    75/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    76/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    77/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    78/242

    = 250 mm2

    =

    = 200.96 mm

    = 251 mm2.

    = 0.81

    Pt= 50 1-1-(4.6 / fck) x (Mu/ b x d2)fy/ fck

    =

    415 / 15

    == 0.240%

    = 312 mm2

    =

    = 161 mm

    = 335 mm2.

    For HYSD Fe415

    = 180 mm2

    =

    = 126 mm2

    =

    = 279.11 mm

    = 193 mm

    2

    .

    = 188 mm2.

    Provide 8 mm O bar@ 260 mm c/cMore steel is provided to match with the torsion reinforcement.

    In edge strip , minimum reinforcement is provided equal to 8 mm O @ 260 mm c/c.

    Torsion steel :-

    At corner A , steel required = ( 3/4 ) x 250

    Provide 8 mm O bar

    At discontinuous edges 4 and 5 , 50 % of the positive steel is required at top

    This is less than minimum , therefore , use minimum steel at location 4 and 5 .

    Provide 8 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    50.24 x 1000 / 180

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    50.24 x 1000 / 312

    Provide 8 mm O bar@ 150 mm c/c

    Minimum steel = ( 0.12 / 100 ) x 1000 x 150

    50.24 x 1000 / 250

    Provide 8 mm O bar@ 200 mm c/c

    Mu/ b x d2( - ) = 13.66 x 10

    6/ 1000 x (130)

    2

    ( 1 / 2 ) x 251

    50 1-1-(4.6 / 15) x (0.81)

    50 [(1-0.867) x 15 / 415 ]

    Ast = 0.24 x 1000 x 130 / 100

    Provide 8 mm O bar

    Provide 8 mm O bar

    Ast = 0.208 x 1000 x 120 / 100

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

  • 8/12/2019 Design of Rectangular Water Tank (1)

    79/242

    =

    = 267.23 mm

    = 193 mm2.

    = 94 mm2.

    =

    = 279.11 mm

    = 193 mm2.

    S.F. =

    =

    = 31.795 KN

    = 0.258

    N / mm2

    0.25 differen 0.11

    IS 456-2000 clause 40.2.1.1 0.242 differe ? -0.1065

    k = 1.3

    = 0.460 N / mm2

    OR

    6 x =

    = 6.75

    6 x 6.75

    = 0.356

    IS 456-2000 clause 40.2.1.1

    k = 1.3

    = 0.463 N / mm2

    =

    = 0.245 N / mm2

    < c .( O.K.)

    Design shear strength = 1.3 x 0.356

    .( O.K.)Actual shear stress = Vu/ b x d

    31.795 x 103/ ( 1000 x 130 )

    Design shear strength c= 0.85 0.8 x fck( 1 + 5 x - 1 )

    0.8 x fck/ 6.89 Pt , but not less than 1.0

    Design shear strength c= 0.85 0.8 x 15 ( 1 + 5 x 6.75 - 1 )

    for 150 mm slab depth

    from table 7-1

    for Pt= 0.258 , c= 0.354

    for 150 mm slab depth

    Design shear strength = 1.3 x 0.354

    .( O.K.)

    Note that positive reinforcements are not curtailed because if they are curtailed , the

    remaining bars do not provide minimum steel.

    Check for shear : -

    At point 1 or 3w x l / 2 + Moment @ point 1 or 3 in that span

    11.625 x 5 / 2 + 13.66 / 5

    100 x As/ b x d = 100 x 335 / ( 1000 x 130 )

    Provide 8 mm O bar

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    50.24 x 1000 / 180

    Provide 8 mm O bar@ 260 mm c/c

    This will be provided by minimum steel .

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    50.24 x 1000 / 188

    Provide 8 mm O bar@ 260 mm c/c

    This will be provided by minimum steel of edge strip,

    At corner B , steel required = ( 1/2 ) x 188

  • 8/12/2019 Design of Rectangular Water Tank (1)

    80/242

    S.F. = w x l / 2

    =

    = 29.06 KN

    = 0.209

    N / mm2

    0.1 differenc 0.07

    IS 456-2000 clause 40.2.1.1 0.041 differe ? -0.0287

    k = 1.3

    = 0.417 N / mm2

    OR

    6 x =

    = 8.33

    6 x 8.33

    = 0.326

    IS 456-2000 clause 40.2.1.1

    k = 1.3

    = 0.424 N / mm2

    =

    = 0.242 N / mm < c

    Vu= 29.06 KN

    8 O (HYSD Fe415 steel )

    Pt=

    =

    = 0.209

    OR

    Pt= 50 1-1-(4.6 / fck) x (Mu/ b x d2) Mu1=

    fy/ fck =

    we get , 0.711 = 10.875

    Mu1= = 10.246

    = 10.24 KNm

    =54.3 O

    This is critical at point 4 or 5.

    No bar is curtailed or bent up.

    Mu1/ b x d2=

    0.711 x 1000 x 1202

    x 10-6

    Development length of bars Ld= O s/ 4 x bd (From Table 7-6 )

    Assuming L0=

    0.87 x fy

    Actual shear stress = Vu/ b x d

    29.06 x 103/ ( 1000 x 120 )

    .( O.K.)

    0.87 x 41

    0.85 0.8 x 15 ( 1 + 5 x 8.33 - 1 )

    for 150 mm slab depth

    Design shear strength = 1.3 x 0.326

    100 x As/ b x d

    100 x 251 / 1000 x 120

    From equation

    Check for development length : -

    At point 4 or 5 ,

    1.3 x 0.321

    Design shear strength c= 0.85 0.8 x fck( 1 + 5 x - 1 )

    0.8 x fck/ 6.89 Pt , but not less than 1.0

    Design shear strength c=

    At point 4 or 5

    11.625 x 5 / 2

    100 x As/ b x d = 100 x 251 / ( 1000 x 120 )

    from table 7-1

    for Pt= 0.209 , c= 0.321

    for 150 mm slab depth

    Design shear strength =

  • 8/12/2019 Design of Rectangular Water Tank (1)

    81/242

    458.36 + 8 O 54.3 O46.3 O 458.36

    O 9.90 mm

    Vu= = 25.31 KN

    8 O (HYSD Fe415 steel )

    Pt=

    =

    = 0.289

    OR

    Pt= 50 1-1-(4.6 / fck) x (Mu/ b x d2) Mu1=fy/ fck =

    we get , 0.9595 = 26.689

    Mu1

    = = 24.554

    = 24.56 KNm

    =56 O

    1261.5 + 8 O 56 O48 O 1261.5

    O 26.28 mm

    26

    251 mm2.

    = 123 mm.

    Pt= 240.7

    = 0.204

    IS 456-2000 clause 23.2.1 fig-4 ,for tension reinforcement

    = 42.9

    = 40.65 < 42.9

    = 3 x 130 = 390 mm

    200 mm

    = 5 x 120 = 600 mm

    < 300 mm .( O.(2) Distribu. bars : maximum spacing permitted = 5 x effective depth of slab or 4

    .( O.K.)

    IS 456-2000 , clause 26.3.3Check for cracking : -

    3 x effective depth of slab or 3(1) Main bars : maximum spacing permitted =

    spacing provided =

    1.3 x ( Mu1/ Vu ) + L0Ld

    1.3 x ( 24.56 x 106/ 25.31 x 10

    3) + 8 O 56 O

    which gives

    Note that the bond is usually critical along long direction.

    Actual (span / d ) ratio = 5000 / 123

    .( O.K.)

    0.9595 x 1000 x 1602

    x 10-6

    Development length of bars Ld= (From Table 7-6 )

    .( O.K.)

    Short span 11.25 x ( 4.5 / 2 )

    0.87 x fy

    0.87 x 41

    1.3 x ( Mu1/ Vu ) + L0Ld

    1.3 x ( 10.246 x 106/ 29.06 x 10

    3) + 8 O 54.3 O

    which gives

    O s/ 4 x bd

    ( span / d ) ratio permissible = 1.65 x 26

    Basic ( span / d ) ratio =

    Mu1/ b x d2=

    Assuming L0=

    100 x As/ b x d

    100 x 462 / 1000 x 160

    From equation

    Check for deflection : -

    100 x Ast/ b x d = 100 x 251 / 1000 x 123

    positive moment steel =actual d = 150 - 15 -8 - 4

    modification factor = 1.65

  • 8/12/2019 Design of Rectangular Water Tank (1)

    82/242

    260 mm

    This is 180 mm2

    =

    = 279.11 mm

    = 193 mm2.

    625 3750 625

    150

    625 3750 625

    Section A-A

    50.24 x 1000 / 180

    Provide 8 mm O bar@ 260 mm c/c for uniformity in spacing.

    For clarity , top and bottom reinforcements are shown separately.

    3750

    625

    Note that the bottom reinforcements are both ways and therefore there is no

    necessity of secondary reinforcements.However , top reinforcement in edge strip

    requires the secondary steel for tying the bars.

    minimum (0.12 / 100) x 150 x 1000 =

    Provide 8 mm O barspacing of bar = Area of one bar x 1000 / required area in m

    2/ m

    spacing provided = < 450 mm .( O.

    625

    MiddleStrip

    S1

    Edgestrip

    Edgestrip

    Edge strip Edge stripMiddle Strip

    8O@2

    60c/c

    8O@2

    60c/c

    8O@200c/c

    8 O @ 260 c/c8 O @ 260 c/c8 O @ 200 c/c

    A A

    B

    B

    500

    1500 1500

    8 O @ 260 c/c

    8 O @ 150 c/c

    8 O @ 260 c/c

    8 O @ 200 c/c

  • 8/12/2019 Design of Rectangular Water Tank (1)

    83/242

    5 m

    625 3750 625 5 m

    ly/8 (3/4)ly ly/8

    5 m

    5 m

    Middle Strip

    S1

    S1

    Edgestrip

    Edgestrip

    A B

    B

    1

    2

    3

    4

    50.0

    35

    -0.0

    47

    -

    0.035

  • 8/12/2019 Design of Rectangular Water Tank (1)

    84/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    85/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    86/242

    KNm

    ( 1 - 0.0579 )

    Astx d ( 1 - fyx Ast/ b x d x fck)

    5 x 251 x 120 ( 1 - 415 x 251 / 1000 x 120 x 15 ) x 10-6

  • 8/12/2019 Design of Rectangular Water Tank (1)

    87/242

    KNm

    or 300 mm i.e. 300 mm

    or 450 mm i.e. 450 mm

    .) 50 mm whichever is small

    00 mm whichever is small

    ( 1 - 0.0799 )

    Astx d ( 1 - fyx Ast/ b x d x fck)

    5 x 462 x 160 ( 1 - 415 x 46

  • 8/12/2019 Design of Rectangular Water Tank (1)

    88/242

    1000

    625 3750 625

    150

    625 3750 625

    1000

    .)

    625

    3750

    625

    MiddleStrip

    S1

    Edgestrip

    Edgestrip

    Edge strip Edge stripMiddle Strip

    8O@2

    40c/c

    8O@2

    40c/c

    8O@140c/c

    8 O @ 240 c/c8 O @ 240 c/c8 O @ 140 c/c

    500

    1500 1500

    8 O @ 240 c/c

    8 O @ 140 c/c

    8 O @ 240 c/c

    8 O @ 240 c/c

    500

    1500

    1500

    1500 1500

    8 O @ 180 c/c

  • 8/12/2019 Design of Rectangular Water Tank (1)

    89/242

    0.047

  • 8/12/2019 Design of Rectangular Water Tank (1)

    90/242

    given

    Material

    DL LL

    3 0 KN / m2

    1 0 KN / m2

    0 3 KN / m2

    Total 4 3 KN / m2

    =

    3m 3m 3m 3m 3m

    =

    = 4.5 + 4.05

    = 8.55 KNm

    =

    = 3.38 + 3.38

    = 6.75 KNm

    =

    = 5.4 + 4.5

    = 9.9 KNm

    =

    = 4.50 + 4.50

    = 9 KNm

    =

    = 18.9 KN

    KNm

    Q = 2.07

    0.6 x 6 x 3 + 0.6 x 4.5 x 3

    Maximum moment is Mu3( - ) = 9.9

    From Table 6-3

    ( 1 / 10 ) x 6 x 32+ ( 1 / 9 ) x 4.5 x 3

    2

    Mu4( - ) = ( 1 / 12 ) x w ( DL ) x l2+ ( 1 / 9 ) x w ( LL ) x l

    2

    ( 1 / 12 ) x 6 x 32+ ( 1 / 9 ) x 4.5 x 3

    2

    Maximum shear is Vu(BA)= 0.6 x w x l + 0.6 x w x l

    Mu3( - ) = ( 1 / 10 ) x w ( DL ) x l2+ ( 1 / 9 ) x w ( LL ) x l

    2

    ( 1 / 12 ) x 6 x 32+ ( 1 / 10 ) x 4.5 x 3

    2

    Mu2( + ) = ( 1 / 16 ) x w ( DL ) x l2+ ( 1 / 12 ) x w ( LL ) x l

    2

    ( 1 / 16 ) x 6 x 32+ ( 1 / 12 ) x 4.5 x 3

    2

    Design of Continuous One-way slab

    A five span continuous one-way slab used as an office floor.

    The centre-to-centre distance of supporting beams is 3 m

    Live load 3 KN / m2and floor finish 1 KN / m

    2

    The factored moments at different points using the coefficients are as follows :

    Mu1( + ) = ( 1 / 12 ) x w ( DL ) x l2+ ( 1 / 10 ) x w ( LL ) x l

    2

    Dead load 0.12 x 25 =

    floor finish =

    live load =

    factored load =

    HYSD reinforcement of grade Fe415

    M15 grade concrete

    Solution : -

    Try 120 mm thick slab

    1.5 ( 4 + 3 )

    ( 6 + 4.5 ) KN / m2

    Consider 1 m wide strip of the slab.

    A B C D E F

    1 2 2 2 1

    ( 6 + 4.5 ) KN / m

  • 8/12/2019 Design of Rectangular Water Tank (1)

    91/242

    =

    = 69.2 mm,

    = 90 mm,

    Pt= 50 1-1-(4.6 / fck) x (Mu/ b x d2)fy/ fck

    = 132 mm2

    = 165 mm2

    =

    = 171

    =

    = 344

    306

    Table

    8 mm O @ 220 c/c

    = 228 mm2

    10 mm O @ 220 c/c

    = 357 mm2

    10 mm O @ 220 c/c

    = 357 mm24 ( - ) 9.0 1.11 0.34

    223

    3 ( - ) 9.9 1.22 0.38 342

    2 ( + ) 6.75

    10 mm O @ 440 c/c + 8 mm O @ 440 c/c

    = 178 +114 = 292 mm2(Half 10 O+half 8 O)290

    0.83 0.248

    1 ( + ) 8.55 1.06 0.322

    Factored

    moment

    KNmpoint Mu/(b x d2) Pt

    Ast

    mm2

    Steel Provided

    dprovided= 110 - 15 - 5 ( assume 10 O bar ).( O.K.)

    Try 110 mm overall depth

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    Ast = Ptx b x d / 100

    drequired= M / Q x b9.9 x 10 6/ 2.07 x 1000

    For Main steel ,HYSD Fe415 reinforcement

    minimum steel area = ( 0.12 / 100 ) x 1000 x 110

    For Distribution steel , mild steel Fe250 reinforcement

    minimum steel area = ( 0.15 / 100 ) x 1000 x 110

    Use 6 mm O @ 160 mm c/c = 177 mm2.

    Note that the positive bars cannot be curtailed as the remaining bars in the internal

    spans ( + ve moment ) will not provide minimum area.

    Provide 50 % Ast at end support top bars i.e. 292 / 2 = 146 mm2.

    Use 8 mm O

    Use 6 mm O

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    28.26 x 1000 /165

    Check for shear : -

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    50.24 x 1000 /146

    Use 8 mm O @ 340 mm c/c = 148 mm2.

    Maximum shear = 18.9 KN

  • 8/12/2019 Design of Rectangular Water Tank (1)

    92/242

    =

    = 0.210 N / mm2

    d = 90 mm

    As= 357 mm2.

    = 0.397

    6 x =

    =

    = 4.4

    6 x 4.4

    = 0.42

    N / mm2

    IS 456-2000 clause 40.2.1.1 0.11

    k = 1.3 ? 0.0453

    = 0.546 N / mm2

    At point of contraflexure i.e. 0.15 x l from B

    Vu=

    = 14.18 KN

    =

    = 0.158 N / mm2

    d = 90 mm

    As= 292 mm2.

    = 0.324

    6 x =

    =

    = 5.4

    Actual Shear stress = Vu/ b x d

    18.9 x 103/ 1000 x 90

    for 110 mm slab depth 0.103 difference

    Design shear strength c= 0.85 0.8 x fck( 1 + 5 x - 1 )

    0.8 x fck/ 6.89 Pt , but not less than 1.0

    Design shear strength c=0.85 0.8 x 15 ( 1 + 5 x 4.4 - 1 )

    0.8 x 15 / 6.89 x 0.397

    IS 456-2000 Table 19 from table 7-1

    for Pt= 0.397 c= 0.42

    < ( C)N / mm2

    0.25 difference

    ( too small )

    For bars at support

    100 x As/ b x d = 100 x 357 / 1000 x 90

    .( O.K.)

    18.9 - 0.15 x 3 x 10.5

    Actual Shear stress = Vu/ b x d

    Design shear strength = 1.3 x 0.42

    100 x As/ b x d = 100 x 292 / 1000 x 90

    Design shear strength c= 0.85 0.8 x fck( 1 + 5 x - 1 )

    14.18 x 103/ 1000 x 90

    < ( C)N / mm2 ( too small )

    For bars at support

    with positive moment reinforcement ( 29

    0.8 x fck/ 6.89 Pt , but not less than 1.0

    0.8 x 15 / 6.89 x 0.324

  • 8/12/2019 Design of Rectangular Water Tank (1)

    93/242

    6 x 5.4

    OR = 0.39

    N / mm2

    IS 456-2000 clause 40.2.1.1 0.11k = 1.3 ? 0.0774

    = 0.494 N / mm2

    Vu=

    = 13.28 KN

    At A , Pt=

    =

    = 0.324

    OR

    Pt= 50 1-1-(4.6 / fck) x (Mu/ b x d2) Mu1=fy/ fck =

    we get , 1.064 = 9.4884

    Mu1= = 8.64

    = 8.62 KNm

    8 O (HYSD Fe415 steel )

    =56.4 O

    845.783 + 8 O 56.4 O48.4 O 845.78

    O 17.47 mmAt support B, point of contraflexure is assumed at 0.15 x l from B

    Vu=

    = 14.18 KN

    Mu1= 8.64 KNm

    L0= 12 O

    792.102 + 12 O 56.4 O44.4 O 792.1

    O 17.84 mm

    IS 456-2000 Table 19 from table 7-1

    for Pt= 0.324 c= 0.38

    0.25 differencefor 110 mm slab depth 0.176 difference

    Design shear strength c= 0.85 0.8 x 15 ( 1 + 5 x 5.4 - 1 )

    0.4 x 6 x 3 + 0.45 x 4.5 x 3 =

    100 x 292 / 1000 x 90

    From equation

    1.064 x 1000 x 902

    x 10-6

    Design shear strength = 1.3 x 0.38

    .( O.K.)

    0.87 x fy

    0.87 x 41

    Mu1/ b x d2=

    Check for development length : -

    Assuming L0=

    100 x As/ b x d

    Span AB is critical for checking this requirement

    At support A

    0.4 x w x l + 0.45 x w x l

    as before

    ( actual anchorage is more than 12 O but L0is limited to 12 O or d

    , i.e. 90 mm whichever is greater )

    1.3 x ( Mu1/ Vu ) + L0Ld

    Development length of bars Ld= O s/ 4 x bd = O x 0.67 x 415 / 4 x 1

    1.3 x ( Mu1/ Vu ) + L0Ld1.3 x ( 8.64 x 10

    6/ 13.28 x 10

    3) + 8 O 56.4 O

    which gives .( O.K.)

    1.3 x ( 8.64 x 106/ 14.18 x 10

    3) + 12 O 56.4 O

    18.9 - 0.15 x 3 x 10.5

    which gives .( O.K.)Check for deflection : -

  • 8/12/2019 Design of Rectangular Water Tank (1)

    94/242

    26

    Pt=

    = 0.324

    IS 456-2000 clause 23.2.1 fig-4 ,for tension reinforcement

    = 34.84

    = 33.33 < 34.84 .( O.K.)

    26

    Pt=

    = 0.253

    IS 456-2000 clause 23.2.1 fig-4 ,for tension reinforcement

    = 41.6

    = 33.33 < 41.6 .( O.K.)

    = 3 x 90 = 270 mm

    220 mm

    5 x effective depth of slab or

    = 5 x 90

    160 mm

    .( O.

    Basic ( span / d ) ratio =

    modification factor = 1.34( span / d ) ratio permissible = 1.34 x 26

    or 300 m

    IS 456-2000 , clause 26.3.3

    (1) Main bars : maximum spacing permitted = 3 x effective depth of slab or 300 mm

    100 x Ast/ b x d = 100 x 292 / 1000 x 90

    Maximum positive moment occurs in span AB. Therefore, this check is critical in span

    Check for cracking : -

    100 x Ast/ b x d = 100 x 228 / 1000 x 90

    modification factor = 1.6

    ( span / d ) ratio permissible = 1.6 x 26

    Actual (span / d ) ratio = 3000 / 90

    For span BC :

    Basic ( span / d ) ratio =

    spacing provided = < 450 mm .( O.

    Actual (span / d ) ratio = 3000 / 90

    (2 )Distribution bars : maximum spacing permitted == 450 mm

    spacing provided = < 270 mm

  • 8/12/2019 Design of Rectangular Water Tank (1)

    95/242

    Outer side Inner side

    IS 456-2000 Clause -22.5

    ( 22.5.1 ) Unless more exact estimates are made, for

    beams of uniform cross-section which support

    substantially uniformly distributed loads over three or

    more spans which do not differ by more than 15 percent

    of the longest, the bending moments and shear forcesused in design may be obtained using the coefficients

    Where coefficients given in Table 12 are used for

    calculation of bending moments, redistribution referred

    to in 22.7 shall not be permitted.

    (22.5.2 ) Beams and Slabs Over Free End Supports

    given in Table 12 and Table 13 respectively.

    For moments at supports where two unequal spans

    the average of the two values for the negative moment

    at the support may be taken for design.

    meet or in case where the spans are not equally loaded,

    and I is the effective span, or such other restraining

    moment as may be shown to be applicable. For such a

    condition shear coefficient given in Table 13 at the

    end support may be increased by 0.05.

    Where a member is built into a masonry wall whichdevelops only partial restraint, the member shall be

    designed to resist a negative moment at the face of the

    support of Wl / 24 where W is the total design load

    + 1 / 12

    + 1 / 10

    Table 12 Bending Moment coefficients

    Near middle

    of end span

    At middle of

    interior span

    Support m

    At support next to

    the end support

    Type of load

    Span moments

    NOTE -For obtaining the bending moment, the coefficient shall be multiplie

    design load and effective span.

    Table 13 Shear Force coefficients

    + 1 / 16

    + 1 / 12

    -1 / 10

    -1 / 9

    Dead load and imposed

    load ( fixed )

    imposed load (

    not fixed )

    Type of load

    Dead load and imposed

    load ( fixed )

    imposed load (

    not fixed )

    At support next to the end supportAt end

    support

    0.45 0.6 0.6

    0.4 0.6 0.55

  • 8/12/2019 Design of Rectangular Water Tank (1)

    96/242

    90110

    450 900 900 900

    3000 3000

    10 O @ 220 c/c8 O @ 340 c/c

    6 O @ 160 c/c8 O @ 220 c/c8 O @ 440 c/c

    + 10 O @ 440 c/c

    ( 0.3 l1 ) ( 0.3 l1 ) ( 0.3 l1 )( 0.15 l1 )

  • 8/12/2019 Design of Rectangular Water Tank (1)

    97/242

    2 mm2)

  • 8/12/2019 Design of Rectangular Water Tank (1)

    98/242

    KNm

    Astx d ( 1 - fyx Ast/ b x d x fck)

    5 x 292 x 90 ( 1 - 415 x 292 / 1000 x 90 x 15 ) x 10-6

    ( 1 - 0.0898 )

  • 8/12/2019 Design of Rectangular Water Tank (1)

    99/242

    450 mm whichever is small

    .) i.e. 270 mm

    hichever is small

    B

    .)or 450 mm i.e. 450 mm

  • 8/12/2019 Design of Rectangular Water Tank (1)

    100/242

    oments

    At other interior

    supports

    -1 / 12

    -1 / 9

    by the total

    0.6

    At all other

    interior

    supports

    0.5

  • 8/12/2019 Design of Rectangular Water Tank (1)

    101/242

    900

    3000

    10 O @ 220 c/c

    ( 0.3 l1 )

  • 8/12/2019 Design of Rectangular Water Tank (1)

    102/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    103/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    104/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    105/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    106/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    107/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    108/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    109/242

    material

    lx= say 4.5 m

    ly = say 6.75 m

    4.5 KN / m2

    1.0 KN / m2

    2.0 KN / m2

    Total 7.5 KN / m

    2

    Pu= 1.5 x 7.5

    = 11.25 KN / m

    ly/ lx=

    = 1.5

    Mux = 23.7 KNm

    Muy= 10.48 KNm

    Q = 2.07

    =

    = 107 mm,

    = 160 mm,

    160 - 10

    = 150 mm,

    = 0.926

    Pt= 50 1- 1-(4.6 / fck) x (Mu/ b x d2)

    fy/ fck

    =

    Solution :

    Consider 1 m wide strip. Assume 180 mm thick slab.

    Design of Simply supported two way slab

    residential building drawing room 4.3 m x 6.55 m

    It is supported on 350 mm thick walls on all four sides.

    M15 grade concrete

    6.75 / 4.5

    4.3 + 0.18 = 4.48

    6.55+0.18 = 6.73

    Live load ( residence ) =

    For 1 m wide strip

    Dead load : self 0.18 x 25 =

    floor finish =

    HYSD reinforcement of grade Fe415

    given

    IS 456-2000 Table -27

    dshortprovided= 180 - 15 - 5 ( assume 10 O bar )

    .( O.K.)> 107 mm

    dlongprovided=

    > 107 mm

    xx w x lx2

    =

    yx w x lx2

    = 0.046 x 11.25 x 4.52 =

    0.104 x 11.25 x 4.52

    =

    From Table 6-3

    drequired= M / Q x b23.7 x 10 6/ 2.07 x 1000

    Larger depth is provided due to deflection check.

    Mu/ b x d2( short ) = 23.7 x 10

    6/ 1000 x (160)

    2

    50 1-1-(4.6 / 15) x (0.926)

  • 8/12/2019 Design of Rectangular Water Tank (1)

    110/242

    415 / 15

    =

    = 0.28%

    = 448 mm2

    =

    = 175.22 mm

    = 462 mm2.

    = 0.466

    Pt= 50 1- 1-(4.6 / fck) x (Mu/ b x d2)

    fy/ fck

    =

    415 / 15

    =

    = 0.134%

    = 201 mm2

    = 216 mm2.

    =

    = 232.59 mm

    = 218 mm2.

    Vu= = 25.31 KN

    8 O (HYSD Fe415 steel )

    50 [(1-0.846) x 15 / 415 ]

    Ast( short ) = 0.28 x 1000 x 160 / 100

    Provide 10 mm O bar

    Mu/ b x d2( long ) = 10.48 x 10

    6/ 1000 x (150)

    2

    50 1-1-(4.6 / 15) x (0.466

    50 [(1-0.926) x 15 / 415 ]

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    78.5 x 1000 / 448

    Provide 10 mm O bar@170 mm c/c ( short span )

    Ast( long ) = 0.134 x 1000 x 150 / 100

    For HYSD Fe415 minimum reinforcement 0.12 %

    Provide 8 mm O bar

    Minimum steel = ( 0.12 /100 ) x 1000 x 180

    spacing of bar = Area of one bar x 1000 / required area in m2/ m

    Provide 8 mm O bar@ 230 mm c/c ( long span )

    50.24 x 1000 / 216

    The bars cannot be bent or curtailed because if 50 % of long span bars are curtailed ,the remaining bars will be less than minimum

    At top on support , provide 50 % of bars of respective span to take into account

    negative moment due to slab nature.

    Check for development length : -

    Assuming L0=

    Long span 11.25 x ( 4.5 / 2 )

  • 8/12/2019 Design of Rectangular Water Tank (1)

    111/242

    Pt=

    =

    = 0.145

    OR

    Pt= 50 1- 1-(4.6 / fck) x (M

    u/ b x d

    2) M

    u1=

    fy/ fck =

    we get , 0.5023 = 11.806

    Mu1= = 11.331

    = 11.30 KNm

    =56 O

    580.4 + 8 O 56 O

    48 O 580.403O 12.09 mm

    Vu= = 25.31 KN

    8 O (HYSD Fe415 steel )

    Pt=

    =

    = 0.289

    OR

    Pt= 50 1- 1-(4.6 / fck) x (Mu/ b x d2) Mu1=

    fy/ fck =

    we get , 0.9595 = 26.689

    Mu1= = 24.554

    = 24.56 KNm

    =56 O

    1261.5 + 8 O 56 O48 O 1261.48

    O 26.28 mm

    Vu= 25.31 KN

    =

    From equation

    0.87 x fy

    1.3 x ( Mu1/ Vu ) + L0Ld

    0.9595 x 1000 x 1602x 10

    -6

    Check for shear : -

    Shear stress = Vu/ b x d

    Note that the bond is usually critical along long direction.

    Development length of bars Ld= O s/ 4 x bd (From Table 7-6 )

    Mu1/ b x d2=

    0.87 x 41

    Mu1/ b x d2=

    0.5023 x 1000 x 1502x 10

    -6

    1.3 x ( 24.56 x 106/ 25.31 x 10

    3) + 8 O 56 O

    which gives .( O.K.)

    From equation

    0.87 x fy

    0.87 x 41

    100 x 462 / 1000 x 160

    Short span 11.25 x ( 4.5 / 2 )

    (From Table 7-6 )

    100 x As/ b x d

    100 x 218 / 1000 x 150

    Development length of bars Ld= O s/ 4 x bd1.3 x ( Mu1/ Vu ) + L0Ld

    1.3 x ( 11.30 x 106/ 25.31 x 10

    3) + 8 O 56 O

    which gives .( O.K.)

    Assuming L0=

    100 x As/ b x d

    25.31 x 103/ 1000 x 150

    This is critical along long span

  • 8/12/2019 Design of Rectangular Water Tank (1)

    112/242

    = 0.169 N / mm2

    = 0.145

    N / mm 25 difference -0.05IS 456-2000 clause 40.2.1.1 20 difference ? -0.04

    k = 1.24

    = 0.347 N / mm2

    OR

    6 x =

    = 12.011

    6 x 12.011

    = 0.278

    IS 456-2000 clause 40.2.1.1 25 difference -0.05

    k = 1.24 20 difference ? -0.04

    = 0.345 N / mm2

    20

    Pt=

    = 0.289

    IS 456-2000 clause 23.2.1 fig-4 ,for tension reinforcement

    = 28.8

    = 28.00 < 28.8

    = 3 x 160 = 480

    170 mm

    = 5 x 150 = 750

    230 mm

    for 180 mm slab depth

    Design shear strength = 1.24 x 0.28

    < ( C)N / mm2 ( too small )100 x As/ b x d = 100 x 218 / 1000 x 150

    0.8 x fck/ 6.89 Pt , but not less than 1.0

    Design shear strength c= 0.85 0.8 x 15 ( 1 + 5 x 12.01 - 1 )

    for 180 mm slab depth

    .( O.K.)

    Design shear strength c= 0.85 0.8 x fck( 1 + 5 x - 1 )

    from table 7-1

    for Pt= 0.145 c= 0.28

    IS 456-2000 , clause 26.3.3

    Basic ( span / d ) ratio =

    100 x Ast/ b x d = 100 x 462 / 1000 x 160

    modification factor = 1.44

    Design shear strength = 1.24 x 0.278

    .( O.K.)Check for deflection : -

    This check shall be done along short span

    ( span / d ) ratio permissible = 1.44 x 20

    Check for cracking : -

    Actual (span / d ) ratio = 4480 / 160

    .( O.K.)

    .( O.

    3 x effective depth

    spacing provided = < 300 mm .( O.

    (1) Main bars : maximum spacing permitted for short span steel =

    (2) Distribu. bars : maximum spacing permitted for long span steel = 5 x effective depth

    spacing provided = < 450 mm

  • 8/12/2019 Design of Rectangular Water Tank (1)

    113/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    114/242

    1.0 1.1 1.2 1.3Interior Panels:

    Negative moment at continuous edge 0.032 0.037 0.043 0.047

    Positive moment at mid-span 0.024 0.028 0.032 0.036

    One Short Edge Discontinuous:

    Negative moment at continuous edge 0.037 0.043 0.048 0.051

    Positive moment at mid-span 0.028 0.032 0.036 0.039

    One long Edge Discontinuous:

    Negative moment at continuous edge 0.037 0.044 0.052 0.057

    Positive moment at mid-span 0.028 0.033 0.039 0.044Two Adjacent Edges Discontinuous:

    Negative moment at continuous edge 0.047 0.053 0.060 0.065

    Positive moment at mid-span 0.035 0.040 0.045 0.049

    Two Short Edges Discontinuous:

    Negative moment at continuous edge 0.045 0.049 0.052 0.056

    Positive moment at mid-span 0.035 0.037 0.040 0.043

    Two Long Edges Discontinuous:

    Negative moment at continuous edge - - - -

    Positive moment at mid-span 0.035 0.043 0.051 0.057

    Three Edges Discontinuous

    (One Long Edge Continuous):

    Negative moment at continuous edge 0.057 0.064 0.071 0.076

    Positive moment at mid-span 0.043 0.048 0.053 0.057

    Three Edges Discrmntinuous

    (One Short Edge Continuous) :

    Negative moment at continuous edge - - - -

    Positive moment at mid-span 0.043 0.051 0.059 0.065

    Four-Edges Discontinuous:

    Positive moment at mid-span 0.056 0.064 0.072 0.079

    ly/ lx 1.0 1.1 1.2 1.3 1.4

    Table - 26 Bending moment coefficients for rectangular panels supported on four sid

    short span c

    ( Values

    3

    4

    5

    Type of Panel and Moments

    consideredCase No.

    1

    2

    6

    7

    8

    9

    Table - 27 Bending moment coefficients for slabs spanning in two directions at right a

  • 8/12/2019 Design of Rectangular Water Tank (1)

    115/242

    x 0.062 0.074 0.084 0.093 0.099

    y 0.062 0.061 0.059 0.055 0.051

  • 8/12/2019 Design of Rectangular Water Tank (1)

    116/242

    KNm

    KNm

    350 6550 350

    350

    4300 4650

    Astx d ( 1 - fyx Ast/ b x d x fck)

    ( 1 - 0.0799 )

    5 x 462 x 160 ( 1 - 415 x 462 / 1000 x 160 x 15 ) x 10-6

    Astx d ( 1 - f

    yx A

    st/ b x d x f

    ck)

    5 x 218 x 150 ( 1 - 415 x 218 / 1000 x 150 x 15 ) x 10-6

    ( 1 - 0.0402 )

    460

    690 690

    A

    8 O @ 230 c/c

    10 O @ 170 c/c

    10 O @ 340 c/c

  • 8/12/2019 Design of Rectangular Water Tank (1)

    117/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    118/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    119/242

    1.4 1.5 1.75 2.0

    0.051 0.053 0.060 0.065 0.032

    0.039 0.041 0.045 0.049 0.024

    0.055 0.057 0.064 0.068 0.037

    0.041 0.044 0.048 0.052 0.028

    0.063 0.067 0.077 0.085 0.037

    0.047 0.051 0.059 0.065 0.028

    0.071 0.075 0.084 0.091 0.047

    0.053 0.056 0.063 0.069 0.035

    0.059 0.060 0.065 0.069 -

    0.044 0.045 0.049 0.052 0.035

    - - - - 0.045

    0.063 0.068 0.080 0.088 0.035

    0.080 0.084 0.091 0.097 -

    0.060 0.064 0.069 0.073 0.043

    - - - - 0.057

    0.071 0.076 0.087 0.096 0.043

    0.085 0.089 0.100 0.107 0.056

    1.5 1.75 2.0 2.5 3.0

    s with provision for torsion at corners

    oefficient x

    of ly/ lx)

    Long span

    coefficient yfor

    all values of ly/ lx

    ngles , simply supported on Four sides

  • 8/12/2019 Design of Rectangular Water Tank (1)

    120/242

    0.104 0.113 0.118 0.122 0.124

    0.046 0.037 0.029 0.020 0.014

  • 8/12/2019 Design of Rectangular Water Tank (1)

    121/242

    Material

    say

    = == 648 = 648

    ( 2 / 3 ) x 6 x 162 ( 2 / 3 ) x 6 x 162

    6MA+ 24MB+ 6MC= - [ 1944 ] - [ 1944 ]

    MA( 6 / I ) + 2MB( 6 / I + 6 / I ) + MC( 6 / I ) = - [ 6 x 648 x 3 / ( Ix 6 ) ] - [ 6 x 648 x 3 / ( Ix

    4MB+ MC= - 648 As MA= 0 .( 1 )

    Using three moment equation for span ABC

    MA( L1/ I1) + 2MB( L1/ I1+ L2/ I2) + MC( L2/ I2) = - 6 A1a1/ ( I1L1) -6 A2a2/ ( I2L2)

    A1= ( 2 / 3 ) x Base x h1

    a1= 3 m

    A2= ( 2 / 3 ) x Base x h1

    a2= 3 m

    Live load = 3 KN / m2

    Floor finish = 1 KN / m2

    Rib size = 230 mm x 450 mm

    Main beams = 300 mm x 570 mm overall .

    Design of Continuous Beam

    An R.C.C. floor is used as a banking hall

    Design the beams B10-B11-B12.

    The Slab thickness is 120 mm .

    Floor finish = 1 + 0 KN /m2

    Total 4 + 3 KN / m2

    Load on beam = 3 ( 4 + 3 ) = 12 + 9 KN / m

    (Given )

    M15 grade concrete

    Slab 120 mm thick 0.12 x 25 = 3 + 0 KN / m2

    HYSD reinforcement of grade Fe415 .

    Column = 300 mm x 300 mm

    Solution : -

    ( a ) Load calculations and analysis :

    Self wt. = 0.23 x 0.45 x 25 = 2.58 + 0 KN / m

    Total 14.58 + 9 KN / m

    Factored Load = 1.5 ( 14.58 + 9 )

    = 21.87 + 13.5

    Live load = 0 + 3 KN / m2

    ( 22 + 14 ) KN /m .

    Case ( a ) Maximum moment at B

    B10

    6 m

    6 m

    36 KN / m 36 KN / m 22 KN / m

    6 m 6 m 6 mA B C D

    36 KN / m

    162

    36 KN / m

    162

    A B B C

  • 8/12/2019 Design of Rectangular Water Tank (1)

    122/242

    = =

    = 648 = 396

    6 m Distance 138 KNm3 m Distance ( ? ) 69

    6 m Distance 96 KNm

    3 m Distance ( ? ) 48

    6 m Distance 42 KNm

    3 m Distance ( ? ) 21

    - 2088 - 16 MC+ MC= - 648

    15 MC= - 1440

    MC= - 96 KNm

    4MB+ ( - 96 ) = - 648

    4 MB= - 552MB= - 138 KNm

    By putting Value of MCinto Equation ( 1 )

    4MB+ MC = - 648MB+ 4MC = - 522

    .( 1 ).( 2 )

    By putting Value of MBfrom Equation ( 2 ) into Equation ( 1 )

    4(- 522 - 4MC) + MC= - 648

    MB+ 4MC= - 522 As MD= 0 .( 2 )

    ( 2 / 3 ) x 6 x 162 ( 2 / 3 ) x 6 x 99

    a2= 3 m a3= 3 m

    MB( 6 / I ) + 2MC( 6 / I + 6 / I ) + MD( 6 / I ) = - [ 6 x 648 x 3 / ( Ix 6 ) ] - [ 6 x 396 x 3 / ( Ix

    6MB+ 24MC+ 6MD= - [ 1944 ] - [ 1188 ]

    Using three moment equation for span BCD

    MB( L2/ I2) + 2MC( L2/ I2+ L3/ I3) + MD( L3/ I3) = - 6 A2a2/ ( I2L2) -6 A3a3/ ( I3L3)

    A2= ( 2 / 3 ) x Base x h2 A3= ( 2 / 3 ) x Base x h3

    36 KN / m

    162

    22 KN / m

    99B

    CC D

    36 KN / m 36 KN / m 22 KN / m

    6 m 6 m 6 mA B C D138

    96162

    162 99( - )

    ( + )( - ) ( + )

    96

    ( - ) ( - )

    ( + ) ( + ) ( + )

    93 5145

    138

  • 8/12/2019 Design of Rectangular Water Tank (1)

    123/242

    X dist.

    6 - X dist.

    Span AB or CD

    = 1650 mm > 3000 mm

    BC ( + ) = 58 KNmBC ( minimum - ve ) = 5 KNm

    Factored maximum moments :

    B or C , negative moment = 138 KNm

    AB ( + ) = CD ( + ) = 110 KNm

    Three cases are considered for getting maximum values of moments. Case ( a ) gives ma

    negative moment at B.The same moment shall be used at C also because of symmetry. C

    gives the maximum positive moment in span BC while the case ( c ) gives maximum positi

    moments in span AB and CD.

    85 x 12 + VBx 6 - 36 x 6 x 9 - 36 x 6 x 3 = - 96

    VC= 101 KN

    50 x 12 + VCx 6 - 36 x 6 x 3 - 22 x 6 x 9 = -138

    VB= 246 KN

    VB+ 131 = 246

    VB= 115 KN

    VC= 132 - 50

    VC= 82 KN MC= - 96 KNm

    VDx 6 -22 x 6 x 3 = -96

    VD= 50 KN

    VC+ VD= 22 x 6

    VB= 216 - 85VB= 131 KN

    MB= - 138 KNm

    Vc= 183 KN

    VC+ 82 = 183

    MB= - 138 KNm

    VAx 6 -36 x 6 x 3 = -138

    VA= 85 KN

    MC= - 96 KNm

    VA+ VB= 36 x 6 131 X =8

    216 X =X = 2.36

    BC ( - ) = 11.6 KNm

    BC ( + ) = 51.6 KNm > 0.7 x 58 KNm.

    The moment redistribution shall be now carried out. Maximum negative moment = 138 KN

    reduce it by 20 % . Then Mu = 0.8 x 138 = 110.4 KNm. For all the cases , redistribute ( inc

    decrease ) the moment at B or C = 110.4 KNm ( Hogging ).

    Maximum design moments :

    The beam acts as a flanged beamFor T-beams , bf= ( l0/ 6 ) + bw+ 6 Dfbf= ( 0.7 x 6000 / 6 ) + 230 + 6 x 120

    ( As per I

    ( As per IS456-2000 ,Clause 23.1.2 , Note

    Note that after redistribution , the design positive moments also have been reduced.

    ( b ) Design for flexure :

    Mu( + ) = 111.6 KNm.

    Support B or C = 110.4 KNm > 0.7 x 138 KNm ( O.K.)AB or CD ( + ) = 111.6 KNm > 0.7 x 110 KNm

    85

    131

    2.36 m50

    82

    115

    101

  • 8/12/2019 Design of Rectangular Water Tank (1)

    124/242

    For bf /bw = 7

    0.01 diff. 0.014 0.016

    0.006 diff. ? ?

    -0.0084 -0.0096

    = 662.6 For 0.224 0.6566 0.743

    1 diff 0.0864

    0.83 diff ? 0.0717

    = 651 mm2.

    Span BC :

    = 301 mm .

    fy/ fck

    415 / 15

    = 0.549

    Ast= 603 135

    Assuming one layer of 20 mm diameter bars

    d = 450 + 120 -25 - 10 = 535 mm .

    Minimum Ast= ( 0.205 / 100 ) x 230 x 535 = 252 mm2

    ( As per IS456-2000 ,Cl

    If Mu< Mu,lim : design as under-reinforced section (singly reinforced beam) as explaine

    Ast= Mu/ 0.87 x fyx lever arm

    KNm > 111.6 KNm

    bf/ bw= 1650 / 230 = 7.17

    Df/ d = 120 / 535 = 0.224

    Mu,lim/ fckbwd2= 0.671 ( As per SP:16 ,Table 58 )

    For bf /

    Mu.lim= 0.671 x 15 x 230 x 5352x 10

    -6

    Mu( + ) = 51.6 KNm

    Ast= 51.6 x 106/ 0.87 x 415 x ( 535 - 60 )

    Provide 3 - 12 mm O = 339 mm2.

    In span AB , curtail 3 - 12 O at 300 mm ( 0.05 ) from A and at 900 mm ( 0.15 ) from B.

    where lever arm = d - D f/ 2 = 535 - 120 / 2 = 535 - 60

    Ast= 111.6 x 106/ 0.87 x 415 x ( 535 - 60 )

    Provide 6 - 12 mm O = 678 mm2.

    Continue 3 - 12 O in span BC as required for flexure.

    Support B or C :Mu( - ) = 110.4 KNm

    Mu/ bd2= 110.4 x 10

    6/ 230 x 535

    2= 1.68 < 2.07. ( From Table 6-3 )

    The section is under-reinforced.

    Pt= 501 - 1 - ( 4.6 / fck) x ( Mu / bd2 )

    Provide 2- 10 mm O anchor bars = 157 mm2. At support , provide 3 - 16 mm O extra at to

    one of which may be curtailed at 0.15 = 900 mm from centre of support B and remainingat 0.25 = 1500 mm from B .

    Pt= 501 - 1 - ( 4.6 / 15 ) x ( 1.68)

    ( 0.549 / 100 ) x 230 x 535 = 676 mm

    2

    20 % of steel should be carried through the span = 0.2 x 676 = 135 mm2

  • 8/12/2019 Design of Rectangular Water Tank (1)

    125/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    126/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    127/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    128/242

    = == 396 = 648

    6MA+ 24MB+ 6MC= - [ 1188 ] - [ 1944 ]

    4MB+ MC= - 522 As MA= 0

    A2= ( 2 / 3 ) x Bas

    ( 2 / 3 ) x 6 x 99 ( 2 / 3 ) x

    a1= 3 m a2= 3 m

    MA( 6 / I ) + 2MB( 6 / I + 6 / I ) + MC( 6 / I ) = -6) ]

    Using three moment equation for span ABC

    MA( L1/ I1) + 2MB( L1/ I1+ L2/ I2) + MC( L2/ I

    A1= ( 2 / 3 ) x Base x h1

    Case ( b ) Maximum positive moment in span B

    B11 B12

    6 m 6 m

    3 m

    3 m

    22 KN / m 36 KN / m 22 KN / m

    6 m 6 m 6 mA B C D

    22 KN / m

    99

    36 K

    162

    A B B

  • 8/12/2019 Design of Rectangular Water Tank (1)

    129/242

    = =

    = 648 = 396

    MB= - 104 KNm

    MC= - 104 KNm

    MB+ 4MC = - 522 .

    By putting Value of MCinto Equation ( 1 )

    4MB+ ( - 104 ) = - 522

    4 MB= - 418

    By putting Value of MBfrom Equation ( 2 ) into

    4(- 522 - 4MC) + MC = - 522

    - 2088 - 16 MC+ MC= - 522

    15 MC= - 1566

    MB( 6 / I ) + 2MC( 6 / I + 6 / I ) + MD( 6 / I ) = -

    6MB+ 24MC+ 6MD= - [ 1944 ] - [ 1188 ]

    MB+ 4MC= - 522 As MD= 0

    4MB+ MC = - 522 .

    A2= ( 2 / 3 ) x Base x h2 A3= ( 2 / 3 ) x Bas

    ( 2 / 3 ) x 6 x 162 ( 2 / 3 ) x

    a2= 3 m a3= 3 m

    Using three moment equation for span BCD

    MB( L2/ I2) + 2MC( L2/ I2+ L3/ I3) + MD( L3/ I

    ( 162 - ( 96 + 21 ) = 45 KNm )

    ( 99 - 48 = 51 KNm )

    ( 162 - 69 = 93 KNm )

    6) ]

    36 KN / m

    162

    22 K

    99B

    CC

    22 KN / m 36 KN / m 22 KN / m

    6 m 6 m 6 mA B C D104 104

    99162

    99( - )

    ( - ) ( + )

    ( - ) ( - )

    ( + ) ( + ) ( + )

    47 4758

    104 104

  • 8/12/2019 Design of Rectangular Water Tank (1)

    130/242

    85

    131

    imum

    ase ( b )

    ve

    VC= 132 - 48.67 VC= 108 KN

    VC= 83.33 KN MC= - 104 KNm

    VD= 48.67 KN Vc= 191.33 KN

    VB= 191.33 KN

    VB= 108 KN

    48.67 x 12 + VBx

    VB+ 83.33 = 191.3

    VC+ VD= 22 x 6 VC+ 83.33 = 191.

    MC= - 104 KNm MB= - 104 KNm

    VDx 6 -22 x 6 x 3 = -104 48.67 x 12 + VCx

    5 ( 6 - X )

    10 m

    m.

    rease or

    appropriate combinations of loads.

    ( c ) The elastic moment at any sec

    particular combination of loads shallthan 30 % of the numerically largest

    the elastic maximum moments di

    member , covering all appropriate co

    IS 456-2000 ,Clause 23.1.2 EffectiveIn the absence of more accurate dete

    width of flange may be taken as the f

    IS 456-2000 ,Clause 37.1.1 Redistri

    Continuous Beams and Frames -

    ( b ) The ultimate moment of resistan

    member is not less than 70 percent of

    obtained from an elastic maximum m

    S 456-2000 , Clause 37.1.1 )

    )

    48.67

    83.33

    2.21 m48.67

    83.33

    108

    108

  • 8/12/2019 Design of Rectangular Water Tank (1)

    131/242

    Where ,

    0.671

    26.5.1 Beams

    26.5.1.1 Tension Reinforcement

    where ,

    For mild steel

    greater than the breadth of the web pl

    distances to the adjacent beams on ei

    ( a ) For T-beams , bf= ( l0/ 6 ) + bw+

    ( b ) For L-beams , bf= ( l0/ 12 ) + bw

    NOTE - For continuous beams and fr

    assumed as 0.7 times the effective sp

    bf= effective width of flange ,

    l0= distance between points of zero

    bw= breadth of the web ,

    Df= thickness of flange , and

    b = actual width of the flange.

    a ) Minimum reinforcement -The mi

    shall not be less than that given by th

    As/ b d = 0.85 / fy

    lause 26.5( a ) )

    IS 456-2000 Clause 26.5 Requireme

    below.

    b ) Maximum reinforcement -The m

    reinforcement shall not exceed 0.04 b

    Minimum steel %

    100 As/ b d = 100 x 0.85 / 250 = 0.34

    For HYSD steel , Fe415 grade

    As= minimum area of tension reinforc

    b = breadth of the beam or the breadt

    d = effective depth , andfy= characteristic strength of reinforce

    Structural Members

    bw = 8

    For singly reinforced rectangular sections

    100 As/ b d = 100 x 0.85 / 415 = 0.20

    For HYSD steel , Fe500 grade100 As/ b d = 100 x 0.85 / 500 = 0.17

    Table 6-3

    Limiting Moment of resistance factor Q lim, N /

    p = 603 mm2,

    2 - 16 mm O

  • 8/12/2019 Design of Rectangular Water Tank (1)

    132/242

    250 415 500

    15 2.22 2.07 2.00

    20 2.96 2.76 2.66

    25 3.70 3.45 3.33

    30 4.44 4.14 3.99

    fck

    N / mm2

    fy, N / mm2

  • 8/12/2019 Design of Rectangular Water Tank (1)

    133/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    134/242

  • 8/12/2019 Design of Rectangular Water Tank (1)

    135/242

    == 648

    Using three mome

    MA( L1/ I1) + 2MB

    A1= ( 2 / 3 ) x Bas

    ( 2 / 3 ) x

    .( 1 )

    x h1

    6 x 162

    [ 6 x 396 x 3 / ( Ix 6 ) ] - [ 6 x 648 x 3 / ( Ix 6) ]

    Case ( c ) Maximu

    2) = - 6 A1a1/ ( I1L1) -6 A2a2/ ( I2L2)

    6MA+ 24MB+ 6MC

    4MB+ MC = - 522

    MA( 6 / I ) + 2MB(

    C

    a1= 3 m

    N / m

    C

    36 KN