design rcc 2 storey building

Click here to load reader

Upload: neetesh-sharma

Post on 28-Oct-2014

11.780 views

Category:

Documents


13 download

TRANSCRIPT

INFRASTUCTURE DEVELOPMENT(A presentation on DOJ training at TA - Civil, NTPC Singrauli)

Under the guidance of Mr. G.G. BardhanB Tech. Civil (spl. Structures), NIT Jamshedpur

Senior Manager (TA- Civil)Presented By: Neetesh Sharma 102228 Munish Garg

The Following Works were assigned to us during DOJ training in TA-Civil at NTPC SingrauliInfrastructure work in townshipStructural design for physiotherapy department and conference hall in Sanjeevani hospital, township NTPC singrauli. Pilot project: structural design of multi-storey residential apartments.

1.

2. 3.

CSR work Construction/ execution work in township, including FQA.

Infrastructure work in township Structural design and development of

construction drawings for physiotherapy department and conference hall in Sanjeevani hospital, township NTPC singrauli.

Type of structure: RCC frame Type of foundation: shallow (footings) Column sizes 0.3 x 0.45 0.45 x 0.45 Beam sizes 0.3 x 0.5(main first floor) 0.3 x 0.45(main roof) 0.3 x 0.4(secondary first floor) 0.3 x 0.3(secondary roof)

A

Plan (typical)

A

Elevation

Side view

Section A-A

Load Definition : Seismic LoadParameter Zone Importance factor Response Reduction factor Rock and soil site factor Damping ratio Time Period in x direction Time Period in z direction Value III (0.16) 1.5 3 1 0.05 0.29 0.46

Basic load case details Dead Load Live load Earthquake load in x direction Earthquake load in z direction

Load Combinations1.2(DL+LL+EQZ+0. 3EQX) 1.5(DL+LL) 1.5(DL+EQX) 1.5(DL+EQZ) 1.2(DL+LL+EQX) 1.2(DL+LL+EQZ) 0.9DL+1.5EQX 1.5EQZ+0.9DL 1.5(DL+EQZ+0.3E QX) 1.5(DL+EQX+0.3E QZ) 1.2(DL+LL+EQX+0. 3EQZ) 0.9DL+1.5(EQX+0. 3EQZ) -1.5EQZ+0.9DL 1.5(DL-EQZ0.3EQX) 1.5(DL-EQX0.3EQZ) 1.2(DL+LL+EQZ0.3EQX) 1.2(DL+LL+EQX0.3EQZ) 0.9DL+1.5(EQX0.3EQZ)

0.9DL+1.5(EQZ+0. 3EQX)1.5(DL-EQX) 1.5(DL-EQZ) 1.2(DL+LL-EQX) 1.2(DL+LL-EQZ) 0.9DL-1.5EQX

1.2(DL+LL-EQZ0.3EQX)1.2(DL+LL-EQX0.3EQZ) 0.9DL1.5(EQX+0.3EQZ) 0.9DL1.5(EQZ+0.3EQX) 1.5(DL+EQZ0.3EQX) 1.5(DL+EQX0.3EQZ)

0.9DL+1.5(EQZ0.3EQX)1.5(DLEQZ+0.3EQX) 1.5(DL-EQX0.3EQZ) 1.2(DL+LLEQZ+0.3EQX) 1.2(DL+LLEQX+0.3EQZ) 0.9DL+1.5(EQX+0.3EQZ)

AnalysisStaad Pro was used to analyze the structure for the previously listed load combinations. The steps involved in the analysis of the structure using the computer package are as follows: Modelling the structure Defining Loadings Performing analysis and interpreting results.

1. 2. 3.

Design and DetailingRCC design and detailing of reinforcement bars was done manually according to the indian standards using the analysis results from the computer package. Sampled design results for the structure are follows.

DETAIL OF REINFORCEMENT FOR FIRST FLOOR BEAMS

1 2 3 A B C D E F

Beam Name n#dia B1AE spans(5,5,5,2 .3) 0.3x0.5 B2AF spans(17.3,2. 7) 0.3x0.4 B3AF spans(5,5,5,5 ) 0.3x0.5

1 Bar len n#dia

2 Bar len n#dia

3 Bar len n#dia

4 Bar len n#dia

5 Bar len Shear (2 legged stirrups) 5m x 3 2.3m 10 @130 2.7m 8 @250

2#16

17.54

2#16

23.15

2#20

2.83

2#20

7.73

2#16

18 8 @300 17.3m

2#12

20.24

2#20

24.95

2#20

2.93

2#20

2.23

3#20

20.7 8 @250

5m x 5 2#16 20.24 2#16 26.65 2#20 3.5 2#20 8.4 2#16 20.7

Continued

8 @300

12 3 A B C D E F

Beam Name n#dia BA13 spans(4.35,3. 65) 0.3x0.5 BF1*3 spans(4.35,3. 65) 0.3x0.5

1 Bar len n#dia

2 Bar len n#dia

3 Bar len n#dia

4 Bar len n#dia

5 Bar len Shear (2 legged stirrups) 4.35m 3.65m 8 @300 3.65m 8 @300

2#12

8.3

2#12

10.12

2#20

3

3#12

8.7

2#20 2#12

2.458 @300 4.35m

2#12

9.8

2#12

10.12

2#20

3

3#12

9.7

2#20 2#12

2.45 8 @300

Beam Name n#dia BE21* spans(4.35,1. 5) 0.3x0.5

1 Bar len 6.15 4.65 n#dia

2 Bar len n#dia

3 Bar len Shear (2 legged stirrups) 4.35m 1.5m 8 @300

2#12 2#20

3#12

6.35

2#20

3.188 @170

12 3 A B C D E F

Beam Name n#dia BB13/BD13 spans(8) 0.3x0.5 BC13 spans(8) 0.3x0.5

1 Bar len 8.6 n#dia

2 Bar len 10.12 n#dia

3 Bar len 3 n#dia

4 Bar len 8.7 8 @300 8 @300 3.65m 8 @300 4.35m Shear (2 legged stirrups) 4.35m 3.65m

2#25

2#25

2#20

3#12

2#25 1#20

8.6

2#25

10.12

2#16

3

2#25

8.7 8 @300

SLAB REINFORCEMENT0.5m 10 @ 300 c/c 2#10 1.305m 10 @ 300 c/c

1.1m

10 @ 300 c/c

4.35m

3.65m

0.5m 10 @ 300 c/c 2#10

1.5m 10 @ 300 c/c

1.5m

10 @ 300 c/c

5m

5m

1

COLUMN REINFORCEMENT

2 3 A B C D E F

location

Size

Reinforcement

Location

Size

Reinforcement

A1, A3A2 B1,C1

0.3 m x 0.45m0.45 x 0.45m 0.3 m x 0.45m 0.3 m x 0.45m

8 # 208 # 20 16 # 20 16 # 16 8 # 25

D1E1,E2 F1,F3

0.3 m x 0.45m0.3 m x 0.45m 0.3 m x 0.45m 0.45m x0.45m

16 # 208 # 20 8 # 16 8 # 20 8 # 16 8 # 20 8 # 16

B3,C3,D3

F2

Column reinforcement distributed equally on four edges. Transverse reinforcement 8 @ 250mm lateral ties

1

23 A B C D E F

location

Size

Depth

Reinforceme nt 12 @180mm both ways 12 @150mm both ways 12 @140mm both ways

Location

Size

Depth

Reinforcement

A1, A3, F3 A2, F2

2m x 2m 2.4m x 2.4m 2.2m x 2.2m

0.45m 0.6m

D1,D3 E1,E2

2.4m x 2.4m 2.2m x 2.2m 2.1m x 2.1m

0.6 0.6

12 @140mm both ways 12 @140mm both ways 12 @150mm both ways

B1, B3, C1, C3

0.6m

F1

0.6

Pilot Project : Structural analysis and design of multi-storey residential apartments.Details of structure are as follows: Total no. of floors 18. above ground level: 16 below ground level: 2 (parking) Building dimensions and other details Plan: 47.5m x 42.5m Height above GL: 57m Below GL: 8m Storey height above GL: 3.5m (c/c) Storey height below GL: 4.0m (c/c) Area of one flat: 1054 sq ft No. of flats in one floor: 10 Total no. of flats in the building: 150 Type of structure: RCC frame (M35) Type of foundation: Pile foundation

Typical stuctural plan of building

ELEVATOR

STAIRS

CORRIDOOR

Load Definition : 1. Seismic LoadParameter Zone Importance factor Response Reduction factor Rock and soil site factor Damping ratio Time Period in x direction Time Period in z direction Value IV (0.24) 1 5 1 0.05 1.08 1.09

2.

Wind LoadParameter Basic wind speed (Risk coefficient) K1 (Terrain , height and structure size factor) K2 (Topography) K3 Value 47 m/s 1.0 Category-4, class- C, value height dependent. 1.0

Basic load case details Dead Load

Live load Wind Load x direction Wind Load -x direction Wind Load z direction Wind Load -z direction Earthquake load in x direction Earthquake load in z direction

Load combinations1.5(DL+LL) 1.5(DL+EQX) 1.5(DL+EQZ) 1.2(DL+LL+EQX) 1.2(DL+LL+EQZ) 0.9DL+1.5EQX 1.5EQZ+0.9DL 1.5(DL+EQZ+0.3EQX) 1.5(DL+EQX+0.3EQZ) -1.5EQZ+0.9DL 1.5(DL-EQZ-0.3EQX) 1.5(DL-EQX-0.3EQZ) 1.2(DL+LL-EQZ-0.3EQX) 1.2(DL+LL-EQX-0.3EQZ) 0.9DL-1.5(EQX+0.3EQZ) 0.9DL-1.5(EQZ+0.3EQX) 1.5(DL+EQZ-0.3EQX) 1.5(DL+EQX-0.3EQZ) 0.9DL+1.5(-EQZ+0.3EQX) 1.5(DL+WLX) 1.5(DL+WLZ) 1.2(DL+LL+WLX) 1.2(DL+LL+WLZ) 0.9DL+1.5WLX 1.5WLZ+0.9DL 1.5(DL+WLZ+0.3WLX) 1.5(DL+WLX+0.3WLZ) -1.5WLZ+0.9DL 1.5(DL-WLZ-0.3WLX) 1.5(DL-WLX-0.3WLZ) 1.2(DL+LL-WLZ-0.3WLX) 1.2(DL+LL-WLX-0.3WLZ) 0.9DL-1.5(WLX+0.3WLZ) 0.9DL-1.5(WLZ+0.3WLX) 1.5(DL+WLZ-0.3WLX) 1.5(DL+WLX-0.3WLZ)

1.2(DL+LL+EQZ+0.3EQX)1.2(DL+LL+EQX+0.3EQZ) 0.9DL+1.5(EQX+0.3EQZ) 0.9DL+1.5(EQZ+0.3EQX) 1.5(DL-EQX) 1.5(DL-EQZ) 1.2(DL+LL-EQX) 1.2(DL+LL-EQZ) 0.9DL-1.5EQX

1.2(DL+LL+EQZ-0.3EQX)1.2(DL+LL+EQX-0.3EQZ) 0.9DL+1.5(EQX-0.3EQZ) 0.9DL+1.5(EQZ-0.3EQX) 1.5(DL-EQZ+0.3EQX) 1.5(DL-EQX-0.3EQZ) 1.2(DL+LL-EQZ+0.3EQX) 1.2(DL+LL-EQX+0.3EQZ) 0.9DL+1.5(-EQX+0.3EQZ)

1.2(DL+LL+WLZ+0.3WLX)1.2(DL+LL+WLX+0.3WLZ) 0.9DL+1.5(WLX+0.3WLZ) 0.9DL+1.5(WLZ+0.3WLX) 1.5(DL-WLX) 1.5(DL-WLZ) 1.2(DL+LL-WLX) 1.2(DL+LL-WLZ) 0.9DL-1.5WLX

1.2(DL+LL+WLZ-0.3WLX)1.2(DL+LL+WLX-0.3WLZ) 0.9DL+1.5(WLX-0.3WLZ) 0.9DL+1.5(WLZ-0.3WLX) 1.5(DL-WLZ+0.3WLX) 1.5(DL-WLX-0.3WLZ) 1.2(DL+LL-WLZ+0.3WLX) 1.2(DL+LL-WLX+0.3WLZ) 0.9DL+1.5(-WLX+0.3WLZ) 0.9DL+1.5(-WLZ+0.3WLX)

Models

SP 22(explainatory handbook to - IS1983)

Design Foundation Design: Type of foundation for this

structure is pile foundation. Also the design and detailing for the foundation is done manually. this included deciding the depth of pile and calculating the load bearing capacity. Grouping of piles as per support reactions derived from Staad analysis. Thus deciding the different types of pile caps required. Structural design and detailing of pile and pile caps.

LOAD CARRYING CAPACITY OF BORED CAST-IN-SITU PILE STATIC FORMULA

-IS 2911 Part1- sec2

PILES IN GRANULAR SOILS

The ultimate bearing capacity ( Qu ) of piles in granular soils is given by the following formula:

whereAp = cross-sectional area of pile toe in cm2; D = stem diameter in cm; = effective unit weight of soil at pile toe in kgf/cm3; PD = effective overburden pressure at pile toe in kgf/cm2; Nr and Nq = bearing capacity factors depending upon the angle of internal friction at toe; K = coefficient of earth pressure; PDi = effective overburden pressure in kg/cm2 for the ith layer where i varies from 1 to n; = angle of wall friction between pile and soil, in degrees (may be taken equal to ); and Asi = surface area of pile stem in cm2 in the ith layer where I varies from 1 to n. NOTE 1 Nr factor can be taken for general shear failure as per IS : 6403-1981*. NOTE 2 Nq factor will depend, apart from nature of soil on the type of pile and its method of construction, for bored piles, the value of Nq corresponding to angle of shearing resistance are given in Fig. 1. This is based on Berezantseus curve for D/B of 20 up to = 35 and Vesics curves beyond = 35. NOTE 3 The earth pressure coefficient K depends on the nature of soil strata, type of pile and its method of construction. For bored piles in loose medium sands, K values between 1 and 2 should be used.

Pile properties: Dia of pile: 0.5m Length of pile: 25m Vertical load carrying capacity: 2500KN Pullout load capacity:1750KN Lateral load carrying capacity: 108.7KN Depth of fixity: 3.87m below cutoff. Maximum moment in pile shaft:170.2KNm Distance btw two piles: 3 times dia=1.5m RCC design of Pile: P=2500KN M=170.2KNm fck=30KN/m2 Ast required=4712mm2 Provide 10# 20 dia Provide 8mm @ 300c/c lateral ties.

Sample calculation for design of a pile capFrom load data maximum reaction in the pile I & II are:RI+RII=4681 kN Bending Moment = 4681(0.85-0.6) =1700KNm Ast required=3632mm2 Provide 20dia @190c/c both ways Check for one way shear: Vu=0.0425x4081/0.5=347kN v=Vu/bd=347000/915x2200=0.17