design timber structures using eurocode 5

119
Seminar on Sustainable Future through Timber Design UITM, Dec. 16.12.2014 Simon Aicher Design Timber Structures using Eurocode 5

Upload: margitorsi

Post on 26-Jan-2016

130 views

Category:

Documents


15 download

DESCRIPTION

Eurocode 5

TRANSCRIPT

Page 1: Design Timber Structures Using Eurocode 5

Seminar on Sustainable Future through Timber Design UITM, Dec. 16.12.2014

Simon Aicher

Design Timber Structures using

Eurocode 5

Page 2: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia

Contents of lecture

2

Basics of permissible stress and semi-probabilistic partial factor concept Interrelationship of - Eurocodes, - harmonized (timber) product standards, - classification standards, calculation standards and - test test standards Basics of Eurocode 5 structure and contents Design example: straight glulam beam (EC 5 vs. permissible concept) Design example: curved glulam beam (EC 5 vs. permissible concept)

Page 3: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 3

Page 4: Design Timber Structures Using Eurocode 5

100 years old glulam beams, train repair hall, Bellinzona, Italy

Page 5: Design Timber Structures Using Eurocode 5

Olympic Ice rink Hammar, Norway, 1994 glulam truss beams, span:97m

Page 6: Design Timber Structures Using Eurocode 5

Manufacture of timber parasols for Expo 2000, Hannover

Page 7: Design Timber Structures Using Eurocode 5
Page 8: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 8

HESS – Limitless –Verbindung (22)

Page 9: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 9

HESS – Limitless –Verbindung (23)

Page 10: Design Timber Structures Using Eurocode 5

7-storey timber

building, Berlin, 2011

Page 11: Design Timber Structures Using Eurocode 5

10-storey timber

building, Melbourne,

Australia 2013

Page 12: Design Timber Structures Using Eurocode 5

Eurocodes and supporting product and test standards

Eurocodes regulate design of timber, steel, concrete structures in conjunction with national application documents but give no provisions on material properties

Harmonized product standards regulate material properties of harmonized building products (e.g. not adhesives) such as EN 14080 glulam EN 14081-1 solid timber in conjunction with national grading rules and classification standard EN 1912 and strength class standard EN 338 EN 15497 finger jointed lumber EN 16351 cross laminated timber EN 14374 LVL EN 13986 panel products in conjunction with product / production standards, e.g. EN 300 for OSB Test standards, e.g. EN 408, EN 789,….. Calculation standards, e.g. EN 14358 on characteristic values

Page 13: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia

Permissible stress concept

13

σact = σ95 acting loads, hence resulting section forces E and stresses σ represent in general 95% quantiles of the distributions

Design verification

σact ≤ σpermissible where in case of structural timber (roughly) σpermissible = f50 /3 f50 mean value of strength

Page 14: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia

Semiprobabilistic design concept with partial factors

14

σact = σ95 as in permissible stress concept the loads / section forces/ stress distributions represent 95% quantiles of the distributions

Design verification σd ≤ fd

σd design stress fd design strength

σd = σact · γL

γL partial factor for load (1,5 for live load; 1,35 for perm. load)

f d = fk · kmod / γM fk characteristic strength property (5% quantile)

kmod modification factor (time, climate) γM partial factor for strength (material dependant; 1,1 to 1,3)

Page 15: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia

Semiprobabilistic vs. permissible stress design concept

15

σact ≤

σd = σact · γL = σact · 1,5 ≤ fd =

γL = 1,5 partial factor for load f05 = f50 (1 - 1,64 · COV) assuming COV = 0,12 f05 = f50 (1 – 0,2) = f50 / 1,25

f05 · kmod f50 · kmod

γM 1,25 γM

with γM = 1,3 and kmod = 0,8

f05 · kmod f50 · 0,8

γM 1,25 · 1,3

=

= ≈ f50

2 f05 · kmod f50

γM =

f50 2 · 1,5 = f50

3 = σpermissible

2

Page 16: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 16

Graphical illustration of semiprobabilistic design concept

Probability density

ms

fs

ms 95

ms 95· γs kmod · mR 05 / γR

kmod · mR 05

kmod · mR

fR

R, s

=

β · σz = mz = kmod · mR - ms

fz

pf = 10 -6

Page 17: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 17

Eurocode 5: Design of Timber Structures – Part 1-1

Page 18: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 18

Structural Eurocode Program comprises

Page 19: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 19

Scope of EN 1995

Page 20: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 20

Structure of Eurocode 5 ( = EN 1995)

Page 21: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 21

Subjects / Topics of EN 1995-1-1

Page 22: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 22

Normative References

Page 23: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 23

Normative References (continued)

Page 24: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 24

Normative References (continued)

Page 25: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 25

Page 26: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 26

Section 2 of EC 5: Basis of design

Page 27: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 27

Section 2.2 of EC 5: Principles of limit state design

Page 28: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 28

2.2.2 Ultimate limit states

Page 29: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 29

2.2.3 Serviceability limit states

Page 30: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 30

2.2.3 Serviceability limit states

Page 31: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 31

2.3 Basic variables

Page 32: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 32

2.3.1.2 Load-duration classes

Page 33: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 33

2.3.1.2 Load-duration classes

Page 34: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 34

2.3.1.3 Service classes

Page 35: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 35

2.3.2 Materials and product properties

Page 36: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 36

2.3.2 Materials and product properties

Page 37: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 37

2.4 Verification by the partial factor method

5%- quantile value (lognormal dist.)

Page 38: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 38

Recommended partial factors γM for material properties

EC 5 – Table 2.3

Page 39: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 39

2.4.2 Design values of geometrical data

Page 40: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 40

2.4.2 Design value of a resistance

Example: Rk = Xk · relevant cross-sectional quantity

Page 41: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 41

EC 5 –Section 3 – Materials properties

Page 42: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 42

3.1.3/4 Strength and deformation modification factors

Page 43: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 43

EC 5 – Table 3.1 Strength modification values kmod

Page 44: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 44

EC 5 – Table 3.1 Strength modification values kmod

(continued)

Page 45: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 45

Accumulated duration of load [hours]

Stre

ngth

mod

ifica

tion

fact

or

kmod

0

0.2

0.4

0.6

0.8

1

1.2

0.0010.01 0.1 1 10 100

100010000

100000

1000000

1 min 1 Woche 6 Monate 10 Jahre 50 Jahre

sehr kurz kurz mittel lang ständig

Nutzungsklasse 1/2

Nutzungsklasse 3

Madison-Kurve

Strength modification values kmod = f( time; moisture)

Service class 1 and2

Service class 3

short very short

medium long permanent

short 1 week 6 months 10 years 10 years

Page 46: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 46

EC 5 – Table 3.2 Deformation modification values kdef

Page 47: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 47

EC 5 – Table 3.2 Deformation modification values kdef

(continued)

Page 48: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 48

EC 5 – 3.2: Solid timber

EN 15497

Page 49: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 49

EC 5 – 3.3: Glued laminated timber

Page 50: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 50

EC 5 – 3.3: Glued laminated timber

EN 14080 Now large finger joints are directly regulated in the harmonized product standard for glulam,

Page 51: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 51

Example of large finger joint (single joint line)

Page 52: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 52

Example of large finger joint (two joint lines)

Page 53: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 53

Example of large finger joint (two joint lines)

Page 54: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 54

EC 5 – 3.3: Glued laminated timber

Page 55: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 55

EC 5 – 3.4: Laminated veneer lumber (LVL)

Page 56: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 56

EC 5 – 3.4: Laminated veneer lumber (LVL)

Page 57: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 57

EC 5 – 3.5: Wood-based panels

Page 58: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 58

EC 5 – 3.6: Adhesives

Note: As permissible structural adhesive families and respective classifications have been profoundly changed in conjunction with introduction of one-component Polyurethane (1K-PU) and polymer isocyanate (EPI) adhesives according to EN 15425 and EN 16351 principle P (2) is no more throughout valid because of EPI definitions.

Page 59: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 59

EC 5 – 3.7: Metal fasteners

Page 60: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 60

EC 5 – Section 4: Durability

Page 61: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 61

EC 5 – Section 4: Durability

Page 62: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 62

EC 5 – Section 4: Durability

Page 63: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 63

EC 5 – Table 4.1 Corrosion protection of fasteners

Page 64: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 64

EC 5 - Section 5: Basis of structural analysis

Page 65: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 65

5.2 Members

Page 66: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 66

5.4 Assemblies

Page 67: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 67

5.4 Assemblies

Page 68: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 68

5.4.2 Frame structures

Page 69: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 69

5.4.4 Plane frames and arches

Page 70: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 70

Examples of assumed initial geometry deviations

geometry of frames

initial geometry deviation corresponding to symmetrical load

initial geometry deviation corresponding to non-symmetrical load

Page 71: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 71

EC 5 - Section 6: Ultimate limit states

Page 72: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 72

Tension 6.1.2 Tension parallel to the grain

6.1.2 Tension perpendicular to the grain

Page 73: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 73

Compression 6.1.4 Compression parallel to the grain

Page 74: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 74

Compression 6.1.4 Compression perpendicular to the grain

σc,90,d is the design compressive stress in the effective contact area perpendicular to the grain;

Fc,90,d is the design compressive load perpendicular to the grain;

Aef is the effective contact area in compression perpendicular to the grain;

Fc,90,d is the design compressive strength perpendicular to the grain;

kc,90 is a factor taking into account the load configuration, the possibility of splitting and the degree of compressive deformation.

where

Page 75: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 75

Compression 6.1.4 Compression perpendicular to the grain

The effective contact area perpendicular to the grain, Aef, should be determined taking into account an effective contact length parallel to the grain, where the actual contact length, ℓ, at each side is increased by 30 mm, but not more than a, ℓ or ℓ1/2, see Figure 6.2. 2. The value of kc,90 should be taken as 1,0 unless the conditions in the following paragraphs apply. In these cases the higher value of kc,90 specified may be taken, with a limiting value of kc,90 = 1,75. 3. For members on continuous supports, provided that ℓ1 ≥ 2h, see Figure 6.2a, the value of kc,90 should be taken as: – kc,90 = 1,25 for solid softwood timber – kc,90 = 1,5 for glued laminated softwood timber where h is the depth of the member and ℓ is the contact length.

Page 76: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 76

Compression 6.1.4 Compression perpendicular to the grain

4. For members on discrete supports, provided that ℓ1 ≥ 2h, see Figure 6.2b, the value of kc,90 should be taken as: – kc,90 = 1,5 for solid softwood timber – kc,90 = 1,75 for glued laminated softwood timber provided that I ℓ ≤ 400 mm where h is the depth of the member and ℓ is the contact length.

Page 77: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 77

6.1.6 Bending

Page 78: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 78

6.1.6 Bending

Page 79: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 79

6.1.7 Shear

Page 80: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 80

6.1.7 Shear (crack factor issue)

kcr = 0,67 for solid timber

kcr = 0,67 for glued laminated timber

kcr = 1,0 for other wood-based products in accordance with EN 13986 and EN 14374.

2. For the verification of shear resistance of members in bending, the influence of cracks should be taken into account using an effective width of the member given as: bef = kcr b where b is the width of the relevant section of the member. NOTE: The recommended value for kcr is given as

Page 81: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 81

6.1.7 Shear

Page 82: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 82

6.1.8 Torsion

Page 83: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 83

6.2.2 Compression stresses at an angle to grain

Page 84: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 84

6.2.3 Combined bending and axial tension

Page 85: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 85

6.2.3 Combined bending and axial compression

Page 86: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 86

6.4 Members with varying cross-section or curved shape

Page 87: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 87

6.4 Members with varying cross-section or curved shape

Figure 6.8 Single tapered beam

Page 88: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 88

6.4 Members with varying cross-section or curved shape

Page 89: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 89

6.4 Members with varying cross-section or curved shape

Page 90: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 90

6.4 Members with varying cross-section or curved shape

Page 91: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 91

6.4 Members with varying cross-section or curved shape

(a)

Figure 6.9 – Double tapered (a) and curved (b) beams with the fibre direction parallel to the lower edge of the beam

Note: In curved beams the apex zone extends over the curved parts of the beam

Page 92: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 92

Figure 6.9 – Pitched cambered beam (c) beam with the fibre direction parallel to the lower edge of the beam

Note: In pitched cambered beams the apex zone extends over the curved parts of the beam

6.4 Members with varying cross-section or curved shape

Page 93: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 93

6.4 Members with varying cross-section or curved shape

Page 94: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 94

6.4 Members with varying cross-section or curved shape

Page 95: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 95

6.4 Members with varying cross-section or curved shape

Page 96: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 96

6.4 Members with varying cross-section or curved shape

Page 97: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 97

6.4 Members with varying cross-section or curved shape

or

Page 98: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 98

6.4 Members with varying cross-section or curved shape

Page 99: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 99

Design of straight glulam member

- comparison of Eurocode 5 vs. DIN 1052

Design examples

Page 100: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 100

GL 24 / BS 11

q = 9 kN/m, g = 6 kN/m

10 m

16x8

0 cm

Geometry: l = 10 m b = 160 mm h = 800 mm S = b h²/6 = 17 ⋅ 10-6 mm³ I = b h³/12 = 6.8 ⋅ 10-9 mm4

Straight beam design comparison – EC 5 vs. perm. stress concept

Page 101: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 101

Property permissible concept semi-probabilistic concept

Bending strength σm,perm = 11 N/mm² fm,k = 24 N/mm²

Shear strength τv,perm = 1.2 N/mm² fv,k = 3.5 N/mm²

MOE Em = 11000 N/mm² Em,mean = 11000 N/mm²

crack factor - kcr = 0.67

modification factor for duration of load and moisture content

kmod = 0.6 (Service Class I/II, medium-term)

Partial factor for material properties

γM = 1.25 (glulam, EC 5)

Deformation factor kdef = 0.8 (Service Class I)

Partial factor for permanent actions

γG = 1.35

Partial factor for variable actions

γG = 1.5

Factor for quasi-permanent value of a variable action

ψ2,1 = 0.3

Design comparison – EC 5 vs. perm. stress concept

Page 102: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 102

Result permissible concept semi-probabilistic concept

distributed load F = g + q = 15 kN/m Fd = γG g + γQ q = 21.6 kN/m

bending moment M M = F l² / 8 = 188 kNm Md = Fd ⋅ l² / 8 = 270 kNm

bending stress σm = M/S = 11 N/mm² σm = Md/S = 15.8 N/mm²

utilization (bending)

11 / 11 = 1.00

fm,d = fm,k ⋅kmod /γM = 15.4 N/mm² 15.8 / fm,d = 1.03

shear force V V = F l/2 = 75 kN Vd = Fd l/2 = 108 kN

shear stress τv 1.5 V / (b h) = 0.88 N/mm² 1.5 Vd / (b h) = 1.89 N/mm²

utilization (shear)

1.2 / 0.88 = 0.73

fv,d = fv,k ⋅kmod /γM = 2.24 N/mm² 1.89 / fv,d = 0.84

Design comparison – EC 5 vs. perm. stress concept

Page 103: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 103

deflection 𝑢 =

5 𝐹 𝑙4

384𝐸𝐸 = 26𝑚𝑚 𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑖𝑖𝑖𝑖,𝑔 + 𝑢𝑖𝑖𝑖𝑖,𝑞=

5𝑔𝑙4

384𝐸𝐸 +5𝑞𝑙4

384𝐸𝐸 = 10.4 + 15.6= 26𝑚𝑚

𝑢𝑓𝑖𝑖 = 𝑢𝑖𝑖𝑖𝑖,𝑔(1 + 𝑘𝑑𝑑𝑓) +𝑢𝑖𝑖𝑖𝑖,𝑞(1 +ψ2,1 𝑘𝑑𝑑𝑓)= 16.7 + 18.4 = 35.1mm

utilitization (deflection) 𝑢𝑙/300 = 0.78

𝑢𝑖𝑖𝑖𝑖𝑙/300 = 0.78 𝑢𝑓𝑖𝑖𝑙/150 = 0.53

Design comparison – EC 5 vs. perm. stress concept

Page 104: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 104

Design of curved glulam beam

- comparison of Eurocode 5 vs. DIN 1052

Design examples

Page 105: Design Timber Structures Using Eurocode 5
Page 106: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 106

HESS – Limitless –Verbindung (7)

Page 107: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 107

WM

RH,max, 250=σ⊥

R H

R2 / H = 11

R1 / H = 2,5

R H

H/R2 = 0,09

H/R1 = 0,4

WM

RH,

RH,II

++=σ

2

603501

+

-

H/R2 = 0,09

H/R1 = 0,4

tension stresses perpendicular to grain

Stress distributions in curved beams with const. moment

bending stresses parallel to grain

R1 < R2

R1 < R2

Page 108: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 108

h

stress perp. to grain

- +

h

- +

Stress σt,90 of curved and tapered beams with line loads

stress perp. to grain

Page 109: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 109

Page 110: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 110

Page 111: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 111

Curved beam design comparison – EC 5 vs. perm. stress concept

Geometry, dimensions and quality /strength class of example beam

EN 14080 GL 28: fm,k = 28 N/mm2

DIN 1052 BS 14: σm,permissible = 14 N/mm2

Page 112: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 112

Design for bending:

kr = 0,96

hap / r = 0,118

EC5 F = 23,31 kN

Curved beam design comparison – EC 5 vs. perm. stress concept

rin/t = 200,

kl = 1,05

k1 = 1; k2 = 0,35, k3 = 0,6

Page 113: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 113

Design for bending:

kr = 0,96

kl = 1,05

EC5

fm,d = fm,k × kmod /γm

GL28: fm,k = 28 N/mm2

load duration: „medium“, kmod = 0,8

glulam: γm = 1,25

σm,d = 6,85 N/mm2 Map,d = γf × Map

combined loading: γf = 1,4

fm,d = 17,92 N/mm2

ratio = 0,38

F = 23,31 kN

Curved beam design comparison – EC 5 vs. perm. stress concept

Page 114: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 114

Design for tension perp.:

kdis = 1,4 kVol = (V0/V)0,2 = 0,43

EC5

glulam: V0 = 0,01 m3 V = 0,691 m3

curved beam design comparison – EC 5 vs. perm. stress concept

kp = 0,0294

k5 = 0; k6 = 0,25, k7 = 0

hap / r = 0,118

Page 115: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 115

Example: Curved Beam with pure moment loading

kp = 0,0294

EC5

ft,90,d = ft,90,k × kmod /γm

glulam: ft,90,k = 0,5 N/mm2

load duration: „medium“, kmod = 0,8

glulam: γm = 1,25

σt,90,d = 0,19 N/mm2 Map,d = γf × Map

combined loading: γf = 1,4

ft,90,d = 0,32 N/mm2

ratio = 1,0

F = 23,31 kN

kdis = 1,4 , kVol = 0,43,

1,4 x 0,43 x 0,32 = 0,19 N/mm2

Design for tension perp.:

Page 116: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 116

Design for bending:

hap / r = 0,118, kl = 1,05

DIN 1052

F = 23,31 kN

σm ≤ σm,permissible

σm = kl × 6 Map/b h2

σm,permissible = 14 N/mm2

σm = 4,66 N/mm2

ratio = 0,33

Curved beam design comparison – EC 5 vs. perm. stress concept

Page 117: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 117

Design für tension perp.:

DIN 1052

F = 23,31 kN

σt,90 ≤ σt,90,permissible

σt,90 = kp× 6 Map/b h2

σt,90,permissible = 0,2 N/mm2

σt,90 = 0,14 N/mm2

ratio = 0,69

hap / r = 0,118, kp = 0,0294

curved beam design comparison – EC 5 vs. perm. stress concept

Page 118: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 118

DIN 1052

F = 23,31 kN

EC5

bending tension perp.

1,00

0,69

0,40

0,33

no pre-stress effect no size effect

curved beam design comparison – EC 5 vs. perm. stress concept

Page 119: Design Timber Structures Using Eurocode 5

Aicher Eurocode 5 Timber Structures UITM 2014, Malaysia 119

Now ist time to finish!

Thank you very much for your patient listening!