designs of single neuron control systems: survey ~陳奇中教授演講投影片

80
1 Direct Adaptive Process Control Based on Using a Single Neuron Controller: Survey and Some New Results 陳奇中 Chyi-Tsong Chen [email protected] Department of Chemical Engineering Feng Chia University Taichung 407, Taiwan 逢甲大學化工系 FCU PSE Lab., C.T. Chen

Upload: chyi-tsong-chen

Post on 22-Nov-2014

529 views

Category:

Technology


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

1

Direct Adaptive Process Control Based on Using a Single Neuron Controller:

Survey and Some New Results

陳奇中

Chyi-Tsong [email protected]

Department of Chemical Engineering Feng Chia UniversityTaichung 407, Taiwan

逢甲大學化工系FCU PSE Lab., C.T. Chen

Page 2: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

2

OutlineIntroduction

The single neuron controller (SNC) and its parameter tuning algorithm

Direct adaptive control schemes for chemical processes using SNCs

Some alternative SNC controllers and their parameter tuning algorithms

Model-based design of SNC control systems

Conclusions

FCU PSE Lab., C.T. Chen

Page 3: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

3

Conventional control strategies and limitationsStructure and design methodologies─ Open-loop control

─ Manual control─ Suitable for process whose mathematical model is hard to

characterize precisely

Introduction

FCU PSE Lab., C.T. Chen

Page 4: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

4

Closed-loop control system

─ Use system output error to generate control signal ─ Automatic control─ Widely used algorithm: PID type controller

FCU PSE Lab., C.T. Chen

Page 5: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

5

⎥⎦

⎤⎢⎣

⎡++= ∫

tD

Ic dt

tdedttetektu 0)()(1)()( τ

τ

⎥⎦

⎤⎢⎣

⎡−−++= ∑

=))1()(()()()(

0keke

TieTkekku

s

Dk

iI

sc

ττ

: proportional gain: integral time constant: derivative time constant: sampling time

ckIτDτST

PID controller for continuous system

PID controller for discrete system

FCU PSE Lab., C.T. Chen

Page 6: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

6

New challenges─ Extremely nonlinearities─ Immeasurable disturbances and uncertainties ─ Unknown or imprecisely known dynamics─ Time-varying parameters─ Multi-objectives

Modeling problem

─ Controller parameter's tuning problem ─ Control performance degradation

Artificial Intelligence (AI)

Motivation: Searching for new approaches for complex process control

FCU PSE Lab., C.T. Chen

Page 7: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

7

Research fields of AI

FCU PSE Lab., C.T. Chen

Page 8: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

8

Structure of neurons

An artificial neuron

Introduction to artificial neural networks

FCU PSE Lab., C.T. Chen

Page 9: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

9

Multilayer feedforward neural network

FCU PSE Lab., C.T. Chen

receive signals from external environment

Signal transmission

transmit output signals to environment

Page 10: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

10

Operations of an artificial neural network

1. Training or learning phase─ use input-output data to update the network parameters

(interconnection weights and thresholds)

2. Recall phase─ given an input to the trained network and then generate an

output

3. Generalization (prediction) phase─ given a new (unknown) input to the trained network and then

gives a prediction

FCU PSE Lab., C.T. Chen

Page 11: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

11

Properties (advantages) of MNN1. It has the ability of approximating any extremely

nonlinear functions.

2. It can adapt and learn the dynamic behavior under uncertainties and disturbances.

3. It has the ability of fault tolerance since the quantity and quality information are distributively stored in the weights and thresholds between neurons.

4. It is suitable to operate in a massive parallel framework.

FCU PSE Lab., C.T. Chen

Page 12: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

12

+

What happen when some neurons of the neural network werebroken down?

Direct adaptive control using a shape-tunable neural network controller (Chen and Chang, 1996)

single neuron controller

FCU PSE Lab., C.T. Chen

Page 13: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

13

The single neuron controller (SNC) and its parameter tuning algorithm

Single neuron controller

)(te )()()( tytyte d −=p Tba ],,[ θ≡pabθ

process output error, given bycontroller parameter vector, defined ascontrol output levelslope (sensitivity factor) bias

( ) ( ) [ ]{ }[ ])(exp1

)(exp1,θθ

−−+−−−

==ebebaeNLtu p

FCU PSE Lab., C.T. Chen

θ−ee u

Page 14: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

14

The characteristic plots for parameter a

FCU PSE Lab., C.T. Chen

Page 15: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

15

The characteristic plots for parameter b

FCU PSE Lab., C.T. Chen

Page 16: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

16

The characteristic plots for parameter θ

FCU PSE Lab., C.T. Chen

Page 17: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

17

A SNC-based direct adaptive control scheme

kee ku uydy +

FCU PSE Lab., C.T. Chen

Page 18: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

18

SNC parameters tuning algorithm

─ System performance

─ Parameter tuning algorithm (Chen, 2001)

where

and( ) ( ))(,)()()()()()( kkukukykkyk ppz Φ∂∂=∂∂≡

2))((21)( kyykE d −=

)()(1)()()()1(

kkkkekk T zz

zpp+

+=+ η

( )

( ) ⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +⎟⎠⎞

⎜⎝⎛ −−⎟

⎠⎞

⎜⎝⎛ +⎟⎠⎞

⎜⎝⎛ −−=

∂∂≡Φ

au

auab

au

auea

au

uu

1121,11

21,

,

θ

pp

FCU PSE Lab., C.T. Chen

Page 19: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

19

Stability of the SNC parameter learning algorithm

Assume is bounded

Let ;

the controller parameter vector converges to its local optimal asymptotically, where (the desired control input) and .

For the theoretical and rigorous proof, please refer to Chen (2001).

)(kz

20 <<η

p*p ( ) duNL =∗p,0

0*)( =pe

FCU PSE Lab., C.T. Chen

Page 20: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

20

A simplified version of the learning algorithm--- Using system response direction

)()(1)()()()1(

kkkkekk T zz

zpp+

+=+ η

parameter tuning algorithm (Chen, 2001)

where

( ) ( ))(,)()()()()()( kkukukykkyk ppz Φ∂∂=∂∂≡

( ) ( ))(,)()()()( kkukukysignk pz Φ∂∂=

system response direction

( )

( ) ⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +⎟⎠⎞

⎜⎝⎛ −−⎟

⎠⎞

⎜⎝⎛ +⎟⎠⎞

⎜⎝⎛ −−=

∂∂≡Φ

au

auab

au

auea

au

uu

1121,11

21,

,

θ

pp

FCU PSE Lab., C.T. Chen

Page 21: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

21

[ ] [ ]TTba 011)0()0()0()0( == θp

Example :

I.C.

Setpoint : 5=dy

FCU PSE Lab., C.T. Chen

Learning rate : 15.0=η

System response direction: ( ) 1)()( =∂∂ kukysign

Page 22: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

22

FCU PSE Lab., C.T. Chen

Simulation results

Page 23: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

23

FCU PSE Lab., C.T. Chen

SNC shape tuning progress

u

e

Page 24: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

24

Direct adaptive control schemes for chemical processes using SNCs

A SNC-based control scheme for large time-delay processes(Chen, 2001)

FCU PSE Lab., C.T. Chen

Page 25: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

25

A SNC-based control scheme for non-minimum phase processes(Chen, 2001)

)()()( sGsGsG ppp+−=

FCU PSE Lab., C.T. Chen

Page 26: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

26

A decentralized SNC control scheme for multi-input/multi-output processes (Chen and Yen, 1998)

• Consider an multivariable process described by

• In loop , the produces its controller output through the following nonlinear mapping (Assume loop paring results are: )

nn×

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

)(

)()(

)()()(

)()()()()()(

)(

)()(

2

1

21

22221

11211

2

1

su

susu

sGsGsG

sGsGsGsGsGsG

sy

sysy

nnnnn

n

n

n

M

L

MOMM

L

L

M

i iSNC

( ) [ ][ ]{ }[ ][ ]ii

iiiii teb

tebatu

θθ

−−+−−−

=)(exp1)(exp1~

FCU PSE Lab., C.T. Chen

ii uy ↔

Page 27: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

27

A static decoupler for the decentralized SNC control system: the decoupling gain can be given simply by

Parameter tuning algorithm (in continuous form) for

where and

nieti

Ti

iiii ,,2,1,1

)( K& =+

=zz

zp η

( ) ( )iiiii uuysign pz ,~~ Φ∂∂≡

( )

( )T

i

i

i

iii

i

i

i

iiii

i

i

iiii

au

auba

au

auea

au

uu

⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛−−⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛−−=

∂∂≡Φ

~1

~1

21,

~1

~1

21,

~

~,~

θ

pp

)( jiDij ≠

ii

ij

ii

ij

sij

KK

sGsG

D

−=

−=→ )(

)(lim

0

iSNC

FCU PSE Lab., C.T. Chen

Page 28: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

28

A decentralized SNC scheme for 2x2 processes

FCU PSE Lab., C.T. Chen

Page 29: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

29

Some alternative SNC controllers and their parameter tuning algorithms

A bounded SNC (Chen and Peng, 1999) For handling with the input constraint of ,a bounded nonlinear controller of the form

where

the parameter tuning algorithm for the bias parameter

maxmin )( utuu ≤≤

( ) ( )( ) ( )( )[ ]minmax~1~1

21 utuututu −++=

( ) ( )( )[ ]( )( )[ ]θ

θ−−+−−−

=tebteb

tuexp1exp1~

( ) ( ) ( )( ) ( )( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+−−=uy

signtututebt ~1~1ηθ&

FCU PSE Lab., C.T. Chen

Page 30: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

30

A SNC for the temperature trajectory control of a batch process (Chen and Peng, 1998)

0)( =tu

( ) ( )( )[ ]θ−−+=

tebtu

exp11

)())(1()()( tetutubt −−= ηθ&

• To achieve tight temperature tracking controlBoth heating and cooling of the processunit are necessary

A parametric variable is used to express the twomanipulated variables simultaneously

1)( =tu

maximum cooling and minimum heating

The simplified SNC

:

: maximum heating and minimum cooling

• Parameter tuning algorithm

FCU PSE Lab., C.T. Chen

Page 31: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

31

Unsolved Problem ?

Fact:System performance depends on the initial SNC controller parameters.

Question: How to start up SNC systematically?

Model-based SNC control systems

Page 32: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

32

θ *e

*e−

du

The typical function

characteristics of the SNC

Model-based design of SNC control systemsSNC control of first-order processes

─ upper/lower limit part

─ linear part

FCU PSE Lab., C.T. Chen

Page 33: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

33

Analysis of the SNC closed-loop control system

Case 1: upper/lower part

Closed-loop dynamics ⎩⎨⎧

−<<−>>

= *

*

,,

)(eea

eeatu

⎪⎩

⎪⎨⎧

−<<−>>

=+ *

*

,,

eeaKeeaK

yyp

p&τ

FCU PSE Lab., C.T. Chen

θ *e

*e−

du

Page 34: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

34

Case 2: linear partsince

,0=e )exp(1)]exp(1[

θθ

bbauu d +

−==

,θ=e 0=u

⎟⎠⎞

⎜⎝⎛ −=

θ)(1)( teutu d

⎟⎟⎠

⎞⎜⎜⎝

⎛+−

=)exp(1))exp(1θθ

bbaud

FCU PSE Lab., C.T. Chen

θ *e

*e−

du

Approximated linear function

Page 35: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

35

The closed-loop system dynamics in this case can be represented by

Let , we arrive at

or

where is the time constant of the closed-loop system and is an index regarding the system performance

The value of can be given by

⎟⎠⎞

⎜⎝⎛ −−=+

θτ yyuKyy d

dp 1&

ddP yuK =

ddd yuKyuKy ⎟⎠⎞

⎜⎝⎛ −=⎟

⎠⎞

⎜⎝⎛ −+

θθτ 11&

dyyy =+&'τ

ταθττ ≡−= )/1/(' dy)/( dy−= θθα

θ

dy1−

=ααθ

FCU PSE Lab., C.T. Chen

Page 36: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

36

Also, from we have

we obtain from the solution of that

Let , then the above equation leads to

ddP yuK = 0)exp(1)exp(1>

−+

=θθ

bb

Kya

p

d

⎪⎩

⎪⎨⎧

−<<−>>

=+ *

*

,,

eeaKeeaK

yyp

p&τ

⎟⎠⎞⎜

⎝⎛ −

−+

=

−=

τ

τ

θθ t

P

d

t

P

ebb

Ky

eaK

ty

1)exp(1)exp(1

)1()(

⎟⎟⎠

⎞⎜⎜⎝

⎛−

=P

d

Kysign

eb

121ln1

4αθ

dt yty == '4)( τ

FCU PSE Lab., C.T. Chen

Page 37: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

37

The SNC parameter value setting procedure is summarized as follows:

• Given a performance factor , , and the desired process’s output value

α 10 <<αdy

one can calculate sequentially the values of , and from θ b a

)exp(1)exp(1

121ln1

1

4

θθ

θ

ααθ

α

bb

Kya

Kysign

eb

y

p

d

P

d

d

−+

=

⎟⎟⎠

⎞⎜⎜⎝

⎛−

=

−=

FCU PSE Lab., C.T. Chen

Page 38: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

38

Hard input constraintset

Thus from

we have and then

Together with and under the condition of ,

we obtain

uu ≤

ua =0

)exp(1)exp(1>

−+

=θθ

bb

Kya

p

d

)exp(1)exp(1

θθ

bb

Kyua

P

d

−+

==

dt yty =′= τ4)(

⎟⎟⎟⎟

⎜⎜⎜⎜

+−

=

P

d

P

d

Kyu

Kyu

b ln1θ

⎟⎠⎞⎜

⎝⎛ −

−+

=−τ

θθ t

P

d

P

ebb

Ky

Kty 1

)exp(1)exp(1)(

dP

d yuK

y1

and1ln41

−=⎟

⎟⎠

⎞⎜⎜⎝

⎛−−=

ααθα

FCU PSE Lab., C.T. Chen

Page 39: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

39

Table 1a. SNC parameter settings for

FCU PSE Lab., C.T. Chen

0≠dy

Page 40: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

40

Table 1b. SNC parameter settings for the case of 0=dy

FCU PSE Lab., C.T. Chen

Page 41: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

41

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.2

0.4

0.6

0.8

1

syst

em o

utpu

t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1

1.5

2

2.5

3

time

cont

rol i

nput

α=0.3

α=0.5α=0.7

Example 1: First-order system Assume CASE 1: Effects of on system performance ( , )

( )1+

=sK

sG pP τ

1=pK 1=τ1=dy

α

FCU PSE Lab., C.T. Chen

Page 42: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

42

0 10 20 30 400

0.2

0.4

0.6

0.8

1

syst

em o

utpu

t

0 10 20 30 400.8

1

1.2

1.4

1.6

1.8

time

cont

rol i

nput

τp=1

τp=5

τp=10

different time constants ( fixed)1=pK

FCU PSE Lab., C.T. Chen

)/'(5.0 ττα =CASE 2:

different process gain ( fixed)

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

syst

em o

utpu

t

0 2 4 6 8 100

0.5

1

1.5

2

time

cont

rol i

nput

kp=1

kp=5

kp=10

1=τ

Page 43: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

43

If the hard input constraint is

one can calculate the performance

index as

for the case of and

SNC controller parameters

2≤u

1733.0=α

1=PK 1=dy

2=a2412.5=b

2096.0−=θ

FCU PSE Lab., C.T. Chen

CASE 3: Hard input constraint

Page 44: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

44

Model-based SNC control of a first-order plus dead-time processes

• First-order plus dead-time (FOPDT) process with transfer function of

where

The feedforward compensator

is designed as

)exp()()( stsGsG dp −=

)1()( += sKsG p

τ

)()(

)(sGsG

sGp

dff −=

FCU PSE Lab., C.T. Chen

Page 45: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

45

Example 2 Process: ,

The feedforward controller :

Setpoint:

Let , the SNC controller parameter vector is set as

The IMC-PID controller is given by (Brosilow and Joseph, 2001 )

( ) sP e

ssG −

+=

11 ( ) s

d es

sG 5.0

141 −

+=

141)(++

−=sssG ff

1=dy5.0=α

[ ] [ ]TTbap 16231.21565.1 −== θ

=)(sGPID ( )]1090.0179.024.111[610.0 +++ sss

FCU PSE Lab., C.T. Chen

Page 46: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

46

0 10 20 30 40 50 60 700

0.5

1

1.5

syst

em o

utpu

t

0 10 20 30 40 50 60 700.5

1

1.5

2

time

cont

rol i

nput

SNCIMC-PID

The performance comparison of SNC with the IMC-PID controller

FCU PSE Lab., C.T. Chen

Page 47: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

47

A direct adaptive model-based SNC control system• The presence of process uncertainties and nonlinearities

plant/model mismatch

In this situation, the associated SNC parameter tuning algorithm should be implemented to update the parameters.

direct adaptive SNC control system

FCU PSE Lab., C.T. Chen

Page 48: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

48

Example 3: SNC control of a nonlinear process

A bioreactor

XXDX μ+−=&

( ) XY

SSDSSX

f μ1−−=&

( )XPDP βμγ ++−=&

im

mm

KSSK

SPP

2

1

++

⎟⎟⎠

⎞⎜⎜⎝

⎛−

μ

μ is the specific growth rate

FCU PSE Lab., C.T. Chen

Page 49: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

49

From open loop test, we have the process model

and the disturbance model

The feedforward controller

The control objective is to regulate the concentration of cell mass at its desired value by manipulating the dilution rate

( ) sP e

ssG −

+−

=14.2

576.20

( ) sd e

ssG −

+=

1325.51092.0

( )576.2056.109

1092.0262.0++

=s

ssGff

FCU PSE Lab., C.T. Chen

Page 50: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

50

Based on the identified model and let

We have the initial controller parameter as

Learning rate:

The PI controller set as and

(Henson and Seborg, 1991 )

,1.0=α

hgLKc ⋅−= 07.0 hI 5.4=τ

1.0=η

[ ] [ ]TTba 111.01644.61474.0)0()0()0()0( −−== θp

FCU PSE Lab., C.T. Chen

Page 51: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

51

0 50 100 150 200 250 300 350 400 4506

6.5

7

7.5

8

X

0 50 100 150 200 250 300 350 400 4500

0.05

0.1

0.15

0.2

0.25

time (hr)

D

SNCPI

FCU PSE Lab., C.T. Chen

Substrate concentration: +25% variation (150 hr)-25% variation (300 hr)

Page 52: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

52

The parameter tuning progress

FCU PSE Lab., C.T. Chen

Page 53: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

53

─ Model : ( ) ( )∑=

−+=+N

iim ikuhky

111

─ Predictive model : ( ) ( ) ( ) ( )[ ]kykykyky mm −++=+ 11ˆ

( ) ( ) ( ) ( )kuhkqkyky Δ++=+ 11ˆ

where ( ) ( )∑=

−+= ΔN

ii ikuhkq

21

Since

( ) ( ) ( )kekku eΔΔ += φpφpΔ and ( ) ( ) ( )kykrke −=

Model-based SNC predictive control system

FCU PSE Lab., C.T. Chen

Impulse response model

( ) ( ) [ ]{ }[ ])(exp1

)(exp1,θθ

−−+−−−

==ebebaeNLtu p

Page 54: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

54

Then

( ) ( ) ( ) ( ) ( )[ 11

11ˆ 111

+++++

=+ Δ krhkhkqkrh

ky ee

φφ

pφp

( ) ( )]keh eφ11+−Objective function

( ) ( )[ ] ( ) ( )kkkykrwJ T pWp ΔΔ++−+= 22

1 211ˆ1

21

( ) 0=∂∂Δ k

Jp ( )

( ) ee

T

hhw

hhw

kφφ 1

11

1

221

211

11 +⎥⎥⎦

⎢⎢⎣

⎡+

+=

Δppp φ

Wφφ

p

( ) ( ) ( )⎥⎦

⎤⎢⎣

⎡+

+−−+

+kekq

hkrkr

h ee φφ 11 11)()1(

11

FCU PSE Lab., C.T. Chen

“One-step ahead MPC learning algorithm”

Page 55: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

55

Model-based SNC predictive control of large time-delay processes

FCU PSE Lab., C.T. Chen

Page 56: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

56

• Actual process( ) s

p es

sG 9

15.11 −

+−

=

• Process model

( ) ( ) stm

desGsG −=

and ( ) sd e

ssG 30

155.0 −

+=

( )12

25.1+

−=

ssG 10=dtwhere ,

[ ] [ ]TTba 08318.09618.0)0()0()0()0( −== θp

• CASE 1: Disturbance rejection d(s)=1/s

Simulation studies (large time delay + plant/model mismatch)

• CASE 2: Setpoint change

5.0=α,

[ ] [ ]TTba 18318.00332.2)0()0()0()0( −−== θp 5.0=α,

1−=dyto

FCU PSE Lab., C.T. Chen

1=dy

Sampling time = 0.5

Page 57: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

57

FCU PSE Lab., C.T. Chen

Disturbance rejection

Page 58: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

58

FCU PSE Lab., C.T. Chen

Page 59: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

59

FCU PSE Lab., C.T. Chen

Setpoint tracking

Page 60: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

60

FCU PSE Lab., C.T. Chen

Page 61: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

61

Direct Nonlinear Control Using SNC

Consider the SNC control of integrating process of order n

)exp(1)]exp(1[)(

φφ

bbay n

−+−−

= θφ −−= yyd,

and let ( generator )

∑−

=

−− =+++=

1

1

)()1(1

''2

'1

n

i

ii

nn yyyy λλλλθ L

where

dyy

ba,θ

: setpoint

: process output

: controller parameters

: designed variable

φ

FCU PSE Lab., C.T. Chen

θ

Page 62: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

62

• Case 1

When is largeφ

ay n ±=)(

⎩⎨⎧

<>

00

φφ

natn

y!

1±=

0)0( =y, if

φ

FCU PSE Lab., C.T. Chen

Page 63: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

63

• Case 2

When is smallφ

φ2

)( aby n ≅ ( )θ−−= yyabd2

⎟⎠

⎞⎜⎝

⎛−−= ∑

=

1

1

)(

2

n

i

iid yyyab λ

φTaking Laplace transformation

121

)()(

11

1 ++++=

−− sss

absYsY

nn

nd λλ L

( )ns 11+

=ε n

ab2

=ε,

FCU PSE Lab., C.T. Chen

Page 64: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

64

• Implementation

)exp(1)]exp(1[

φφ

bba

−+−−

ns1

θgenerator

dy φ

y

)(ny y

Nonlinear controller called NLC

FCU PSE Lab., C.T. Chen

SNC control of integrating process of order n

Page 65: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

65

⎥⎦

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛−−−

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−−−

=

=

=

2

0

)(

2

0

)(

'''

exp1

exp1

i

iid

i

iid

yyb

yybay

λ

λ

( )⎪⎪

⎪⎪

+=

+++=

±=

3

012

23

2

11

21

)()(

!31

ssssab

sYsY

aty

d ελλλ

''2

'1 yyyyd λλφ −−−=

Example: SNC control of integrating process of order 3

,

ab

23 =ε 22 3ελ = ελ 31 =

large & positive

,,

FCU PSE Lab., C.T. Chen

Page 66: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

66

• SNC control of integrating process3

1s

Stepoint change has been made at t=1

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1a=10, b=1 ( ε = 0.5848)a=100, b=1 ( ε = 0.2714)a=1000, b=1 ( ε = 0.1260)

FCU PSE Lab., C.T. Chen

Page 67: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

67

01

01)(asasabsbsbsG n

n

mm

p ++++++

=L

Lmn ≥,

• Implementation to general linear processes

01

011bsbsbasasa

s mm

nn

mn ++++++

− L

L

01

01

++++++

sasabsbsb

nn

mm

L

Ldy ye )( mny − u

( ) mnd ssY

sY−+

=11

)()(

ε

Controller

FCU PSE Lab., C.T. Chen

Page 68: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

68

245035106)( 234 ++++

+=

ssssssG

Example: no modeling error

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

a=10, b=1 ( ε = 0.5848)a=10, b=2 ( ε = 0.4642)

FCU PSE Lab., C.T. Chen

Page 69: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

690 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tim e

a= 10, b= 1 ( ε = 0.5848)a= 10, b= 1 ( ε = 0.5848)

Example: modeling error (plant/model mismatch)

0625.59935.511212)( 234 ++++

+=

ssssssGp

modeling error

no modeling error

245035106)( 234 ++++

+=

ssssssGActual process :

Process model :

FCU PSE Lab., C.T. Chen

Page 70: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

70

• Application to Nonlinear Process Control

( ) ( )( )⎩

⎨⎧

=+=

xhyuxgxfx&

[ ]Trnrfff hLhLhLhT −−= ηηη LML 2112

System :

Let

1

32

21

),()()(

ξηξη

ξ

ξξ

ξξ

==

+=

=

=

yq

uxaxbr

&

&

M

&

&

⎪⎪⎩

⎪⎪⎨

=

=

=

+

irfi

rf

rfg

TLq

hLb

hLLa 1

rni −= ,,2,1 L

,

,

relative degree = r

FCU PSE Lab., C.T. Chen

Page 71: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

71

Let ( )[ ]( )φ

φbbavuxaxb

−+−−

==+exp1exp1)()(

)(

)(),(

),(1 hhLL

xhLva

bvu rfg

rf−

−=

−=

ηξηξ

( )[ ]( )φ

φξbbay r

r −+−−

==exp1exp1)(&

( )rd ssYsY

11

)()(

+=

ε

( ) 111

++ rsε

Better than input-output linearization technique (A. Henson and E. Seborg, Nonlinear process control, 1997) by one order

i.e. ,

i.e. ,

FCU PSE Lab., C.T. Chen

Page 72: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

72

Example: Nonlinear Bioreactor

( )

[ ]Xy

XDPP

Xy

SsDS

XDXX

sxf

=++−=

−−=

+−=

βγμ

μ

μ

&

&

&

1

im

mm

KSSK

SPP

2

01

++

⎟⎟⎠

⎞⎜⎜⎝

⎛−

μ

System :

where

FCU PSE Lab., C.T. Chen

Page 73: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

73

[ ]TPSXx = Du = sxyy =~, ,

ux

xsx

x

xy

x

xxx

f

⎥⎥⎥

⎢⎢⎢

−−

−+

⎥⎥⎥⎥

⎢⎢⎢⎢

+

−=⎥⎥⎥

⎢⎢⎢

3

2

1

1

1

1

3

2

1

][~1

βγμ

μ

μ

&

&

&

1xhy ==

( )( )( )φ

φbbav

−+−−

=exp1exp1

Soθφ −−= yyd

yyd −=

( since , )1=r 0=θ

1

1

xxv

hLhLv

ug

f

−−

=−

11

)()(

+=

ssYsY

d ε ab2

=ε,

,

FCU PSE Lab., C.T. Chen

Page 74: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

74

FCU PSE Lab., C.T. Chen

0 1 2 3 4 5 6 7 8 9 104.5

5

5.5

6

6.5closed-loop response for setpoint change

time (hr)

x1 (b

iom

ass

conc

.)

0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

1.2

time (hr)

dilu

tion

rate

the proposedIONIMC

Page 75: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

75

FCU PSE Lab., C.T. Chen

0 10 20 30 40 50 60 70 805.9

5.95

6

6.05Closed-loop response for -20% Y disturbance

time (hr)

x1 (b

iom

ass

conc

.)

0 10 20 30 40 50 60 70 800.12

0.14

0.16

0.18

0.2

0.22

time (hr)

dilu

tion

rate

the proposedIONIMC

Page 76: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

76

0 5 10 15 20 25 30 35 40 45 505.8

5.9

6

Closed-loop response in the presence of measurement noise

x1 (b

iom

ass

conc

.)

0 5 10 15 20 25 30 35 40 45 500.05

0.15

0.25

0.35

dilu

tion

rate

0 5 10 15 20 25 30 35 40 45 50

-0.01

0

0.01

time (hr)

nois

e si

gnal

FCU PSE Lab., C.T. Chen

Page 77: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

77

ConclusionsWe have surveyed the recent direct adaptive control strategies developed based on using the SNCs.

Some alternative SNC-based control schemes as well as the associated convergence properties have been addressed for the purpose of dealing with diversified process dynamics.

New results on how to start up the SNC systematically have

been presented.

─ No input constraint: the SNC parameter values can be given by

simply assigning a performance index.

─ on the other hand, a SNC parameter settling formula is provided for the

case that there is a hard input constraint involved.

FCU PSE Lab., C.T. Chen

Page 78: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

78

Extensive simulation results reveal that, with the systematic parameter setting formula, the pre-specified performance of the SNC control system can be ensured if the model is perfect.

Under the situation of plant/model mismatch, the SNC parameter

tuning algorithm can provide a more satisfactory control performance

as compared with conventional linear controllers.

Alternative model-based SNC control systems are also developed.

--- one-step ahead predictive SNC control

--- nonlinear SNC direct control

FCU PSE Lab., C.T. Chen

Page 79: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

79

Based on its simple structure and effective algorithms, the proposed SNC-based control systems present to be a promising approaches to the direct adaptive control of chemical processes.

FCU PSE Lab., C.T. Chen

Page 80: Designs of Single Neuron Control Systems: Survey ~陳奇中教授演講投影片

80

Thanks for your attention.

FCU PSE Lab., C.T. Chen