developing a phenomenological model of infrared … · developing a phenomenological model of...

17
Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C. Gross, Glen P. Perram, Ronald F. Tuttle Air Force Institute of Technology Riverside Research Institute Ninth Biennial HITRAN Conference Harvard-Smithsonian Center for Astrophysics Cambridge MA 26 June 2006

Upload: ngodang

Post on 17-Sep-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs

for Explosives Identification

Kevin C. Gross, Glen P. Perram, Ronald F. Tuttle

Air Force Institute of TechnologyRiverside Research Institute

Ninth Biennial HITRAN Conference

Harvard-Smithsonian Center for Astrophysics

Cambridge MA

26 June 2006

Page 2: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

3

Introduction• Traditional battle space characterization• Classification of transient, infrared events

• Bomb detonations, muzzle flashes, rocket and missile plumes

• Classifying explosives is difficult• No simple model exists for describing emissions from

detonation fireballs

• High-explosive detonations are non-reproducible

• Inherent irreproducibility (age, mixture tolerances, casing design, impact angle, etc.)

• Environmental interaction (soil type, atmospheric conditions, etc.)

• Cost and safety concerns lead to small-scale tests with limited reproducibility

• Broadband absolute radiometric signatures not apparently useful for classification

• Roughly, variance within explosive class same size as variance between classes

Page 3: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

4

Introduction

Framework for solving the explosives classification problem

• Collect data using spectrometers, radiometers, and several banded imagers

• Develop a low-dimensional phenomenological model for fireball emissions

• Spectrometers: Chemistry

• Imagers: Fluid dynamics

• Extract key features (fit model to data)

• Reproducible within the same explosive class (small within-class scatter)

• Distinguishing for different explosive classes (large variance between classes)

• Invariant to uncontrollable factors

• Constrained by physics

• Quantify classification potential of extracted features using pattern-recognition codes

Page 4: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

5

Field Tests• Radiant Brass III: Conventional Bomb

• Brilliant Flash II: Enhanced Novel Explosives (ENEs)

• Bronze Scorpio: IEDs

• ABB/Bomem MR Series FTS• RB3: 16 cm

-1 / 21 Hz (InSb: 1800–7100 cm-1, MCT 500-6000 cm-1)

• BF2: 4 cm-1 / 8 Hz (InSb: 1800–7100 cm-1, MCT 500-6000 cm-1)

• BS: 4 cm-1 / 38 Hz (InSb: 1800–7100 cm-1,InGaAs 6000-11000 cm-1)

• Radiometers (4 MWIR bands)

• Banded Imagers (Vis, NIR, MWIR)

RB3 BF2 BS

56 Events 44 Events 58 Events

3 distinct compositions

5 distinct compositions

3 distinct compositions

4 sizes 4 sizes 2 sizes

Half delivered by aircraft

Uncased charges

Cased artillerary shell

Page 5: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

RIVERSIDE RESEARCH INSTITUTE Temporal Profile

7

˜ 2100 cm 1

˜ 5500 cm 1

t (s)

I obs˜,t(W/sr-cm

1 )

0 0.5 1 1.5 2 2.5 30

500

1000

1500

2000

1.5 N2 2.5 H2O3.5 CO 3.5 C HD

C7H5N3O6

Detonation (µs)

3.5 CO 3.5 C 5.25 O27 CO2 HAB

Afterburn (s)

1.0

0.0

0.5

1.5 2000

3000

4000

5000

6000

0.0

1.0

2.0

3.0

0.5

I obs˜,t

Wk/srcm

1

˜ cm 1

t s

Fast-scanning FTS collects time-resolved spectra

Temporal profiles reveal detonation and afterburn timescales

Spectral re

solutio

n degraded

Page 6: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000!0.04!0.02

00.020.04

Uncased Explosive, 4 cm!1, 8Hz

I obs"#,t$[nounits]

t ! 0.000 s

Im!I obs"

# #cm!1$

Typical Spectra

8

Page 7: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

Typical Spectra

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000!0.02

0

0.02

Uncased Explosive, 4 cm!1, 8Hz

I obs"#,t$[nounits]

t ! 0.362 s

Im!I obs"

# #cm!1$ 9

Page 8: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

Scene-Change Artifacts

10

At each frequency, assume spectrum’s temporal evolution is quadratic over the scan time of the interferometer

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 70000

0.2

0.4

0.6

0.8

1

1.2

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

!505

x 10!3

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000!2

0

2 x 10!4

Re !I obs

"[nounits]

Simulation - Cooling Planckian

IobsI1/!I2/!I3/!

Im!I obs"

I 2!Re !I obs

"

" #cm!1$

!t " 0.1 s, !# " 8 cm$1T ! !T

H" T

L" e"k t # T

L TH! 2000K, T

L! 300K, k ! 1 s"1

Iobs!"# $ I

2%

1

4&2L2'2 !2I

1% 4I

2( 2I

3"

'"2

!i1

2"L# !I

3$ I

1"

#%

I3! Iobs"#, x ! L$I

2! Iobs"#, x ! L/2$I

1! Iobs"#, x ! 0$

Y YzpdYzpdYY

kT/kI

Error

Page 9: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

Conventional (Cased) Munition

12

Transmittance

0

0.2

0.4

0.6

0.8

1

H2OCO2O3N2OCOCH4O2

˜ (cm 1)

I obs˜,t(W/sr-cm

1 )

2000 2500 3000 3500 4000 4500 5000 5500 60000

500

1000

1500

2000 t 0.000 st 0.247 st 0.493 s

t 0.740 st 0.986 st 1.233 st 1.479 s

I obs!",t#$arb. %

Page 10: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

t 0 st 0.25 st 0.5 s

˜ ( cm 1)

I obs˜,t(W/sr-cm

1 )

2500 2550 2600 2650 2700 2750 2800 2850 29001200

1400

1600

1800

2000

2200

2400

Iobs ! Iobs"#i, t j$/ Iobs"#i % k&#, t j$

Atmospheric Compensation

13

Iobs!", t# $ %!"# Isrc!", t#

! " c/cold

Iobs ! "#

m "r Isrc

!"#$ % e!i !i"#$ ci l

Iobs!", t# $ %i!"#&% j'i!"# Isrc!", t#

Find single set of absorber concentrations for entire data cube

Page 11: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

Weighted linear regression to estimate δ

Atmospheric Compensation

log!"m#

log!I obs/"rIsrc#

!2 !1.5 !1 !0.5 0 0.5 1 1.5 2

!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

14

Iobs!", t# $ %!"# Isrc!", t#

! " c/cold

Iobs ! "#

m "r Isrc

log ! Iobs!r Isrc

" " # log$!m%

!"#$ % e!i !i"#$ ci l

Iobs!", t# $ %i!"#&% j'i!"# Isrc!", t#

Iteratively recompute τm with new concentration until δ = 1

Estimate of log(τm)which varies with time

Beer’s Law not strictly appropriate for moderate resolution spectra

Find single set of absorber concentrations for entire data cube

!" !"#$ ILS"# % #&$ d #&#' ( " !"#$' ILS"# % #&$ d #&

Page 12: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

Atmospheric Compensation

15

Test Number

H2O

(ppm)

5 10 15

2500

3000

3500

4000

4500

Test Number

CO2(ppm)

5 10 15

360

370

380

Test Number

N2O

(ppm)

5 10 150.295

0.3

0.305

0.31

0.315

0.32

Test Number

CH4(ppm)

5 10 15

1.55

1.6

1.65

371±9 ppm366 ppm

1.59±0.04 ppm1.70 ppm

305±7 ppb310 ppb

Rad

iant

Bra

ss II

I Fie

ld T

est

Page 13: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

Radiative Transfer

17

(Over-) Simplified RT for fireball

No sources except fireball

No gradients (uniform T, ρ)

Local thermodynamic equilibrium

No scattering

Fireball parameters: ρ(H2O, CO2, CO,Tg), Tc

Rough approximation to full RT solutionIgnore geometry

Include continuum emitters additively

Iap ! ta !Ac B"Tc# $ Ag "1 % tg#B "Tg#$ $ "1 % ta#B "Ta#tg ! tg !Tg, "H2O# , "CO2# , "CO#$tg ! exp

"####$%L &!

i

Ni 'i(),Tg*+,,,,-

H2O & CO: HITEMP (HITRAN) databaseCO2: CDSD

!""" !#"" $""" $#"" %""" %#"" #""" ##"" &""" &#"" '"""

"

"()

"(!

"($

"(%

"(#

"(&

"('

"(*

"(+

)

!""" !#"" $""" $#"" %""" %#"" #""" ##"" &""" &#"" '"""!"("!

"

"("!

Uncased Explosive, 4 cm!1, 8Hz

I obs"#,t$[nounits]

t ! ".$&! ,

Im!I obs"

# #cm!1$

I!"si# $ I!"si%1# e% ! si

si%1&!"s

'# ds'( " s

i

si%1

&!"s'#B! #T"s'#$ e% ! s'si%1 &!"s''# ds'' ds'

AtmosphereFireball FTS

t! " e#$s

i#s

i#1%&!t! I!"si#1$ % "1 # t!$B !Ti"

Page 14: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 70000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000!0.1

!0.05

0

0.05

p = [1.96E-01 2.01E+00 1.31E+03 1.90E+04 7.04E+04 9.16E+02]I obs!t," #$arb. %

SE = 4.20, RMS Err = 14.4%, Median |Rel Err| = 7.2%

" !cm&1"

I obs&I mdl

164DAT40-06

Model (FBM1)

2550 2600 2650 2700 2750 2800 2850

!5

0

5

10

15

20

x 10!3

Modeling Results

18

TNT (H2O/CO2 ~ 0.4)

Page 15: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 70000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

!0.1

0

0.1

p = [3.20E-01 1.73E+00 1.91E+03 3.41E+04 3.24E+04 3.49E+03]I obs!t," #$arb. %

SE = 9.25, RMS Err = 10.0%, Median |Rel Err| = 6.5%

" !cm&1"

I obs&I mdl

164DAT43-02

Model (FBM1)ENE (H2O/CO2 ~ 9.5)

Modeling Results

19

Page 16: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

Feature Extraction

20

TNT (L) vs ENE (R)

TK

Conc.[arb.]

H2O

/CO2

PNR(6592cm

1 )

t s t s

1000

1500

2000

2500

TK

0

1

2

3

4

Conc.[arb.]

1

1.5

2

2.5

3

3.5

H2O

/CO2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

5

10

15

PNR(6592cm

1 )

CO2

H2O

CO2

H2O

TNT (H2O/CO2 ~ 0.4)

ENE (H2O/CO2 ~ 9.5)

Page 17: Developing a Phenomenological Model of Infrared … · Developing a Phenomenological Model of Infrared Emissions from Detonation Fireballs for Explosives Identification Kevin C

Conclusions

21

• Conventional munitions

• Fireball emission well represented by a single-temperature Planckian distribution over most of the MWIR

• Non-Planckian emission observed in 2000-2200 cm-1 is likely due to hot CO2

• Accurate atmospheric correction key to connecting this residual to fireball phenomenology

• Temperature decays exponentially (some fireballs exhibit secondary maxima)

• Area dynamics can be determined without imagery (awaiting confirmation from MWIR camera)

• Enhanced novel explosives

• Substantial non-Planckian component is a function of H2O and CO2 concentrations

• Extracted concentration ratio [H2O]/[CO2] connected to explosive stoichiometry

• Simple model enables the study of fireball kinetics

• Explosives classification from optical signatures promising