developing chemoinformatics models

37
Developing chemoinformatics models: One can’t embrace unembraceable Igor V. Tetko Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH) Institute of Bioinformatics & Systems Biology Kyiv, 10 August 2009, Summer School

Upload: ssa-kpi

Post on 17-Dec-2014

648 views

Category:

Education


3 download

DESCRIPTION

AACIMP 2009 Summer School lecture by Igor Tetko. "Environmental Chemoinfornatics" course.

TRANSCRIPT

Page 1: Developing Chemoinformatics Models

Developing chemoinformatics models: One can’tembrace unembraceable

Igor V. Tetko

Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH)Institute of Bioinformatics & Systems Biology

Kyiv, 10 August 2009, Summer School

Page 2: Developing Chemoinformatics Models

Representation of Molecules

Can be defined with calculated

properties (logP, quantum-

chemical parameters, etc.)

Can be defined with a set of

structural descriptors

(topological 2D, 3D, etc.).

Goal is to correlate descriptors

with some properties.

One of these sets of descriptors

could be used for determine an

applicability domain of a model.

!

12.3

4.6

M

13.2

10.1

"

#

$ $ $ $ $ $

%

&

' ' ' ' ' ' N

HO

!

13.7

4.8

M

15.8

12.0

"

#

$ $ $ $ $ $

%

&

' ' ' ' ' '

N

HO

Distance to model:

Page 3: Developing Chemoinformatics Models

Kozma Prutkov

"One can not embrace the unembraceable.”

Possible: 1060 - 10100 molecules theoretically exist( > 1080 atoms in the Universe)

Achievable: 1020 - 1024 can be synthesized nowby companies (weight of the Moon is ca 1023 kg)

Available: 2*107 molecules are on the market

Measured: 102 - 104 molecules with data

Problem: To predict these properties of just moleculeson the market we must extrapolate data from one to1,000 - 100,000 molecules!

There is a need for methodsThere is a need for methods

which can estimate which can estimate

the accuracy of predictions!the accuracy of predictions!

NO

OOH

Page 4: Developing Chemoinformatics Models

Models can fail due to chemical diversity

of training & test sets (i.e. outside of applicability

domain)

New data to be estimated

Training set data used

to develop a model

Our model given

the training set

Correct model

Page 5: Developing Chemoinformatics Models

Declining R&D productivity in thepharmaceutical industry

Approved medicine

http://www.frost.com/prod/servlet/market-insight-top.pag?docid=128394740

Page 6: Developing Chemoinformatics Models

Benchmarking data: logP prediction

Public dataset:

N=266 molecules1

• N=233 Star set (supported withexperimental values from CLOGPv5.0 program)

• N=43 Non-Star set (noexperimental logP values inCLOGP v5.0)

1Provided by A. Avdeef, “Absorption

and drug development. Solubility,

permeability and charge state”, ed.

Hoboken, NJ: Wiley–Interscience,

2003.

Industrial datasets:

N=95809 (Pfizer Inc.)2

N=882 (Nycomed GmbH)3

2logP and logD (pH 7.4)

measurements

3logP measurements only

Mannhold, R. et al, J. Pharm. Sci., 2009, 98(3), 861-893.

Page 7: Developing Chemoinformatics Models

AAM = average logP used

as predicted value for all

molecules R2=0

Bootstrap test:

• rank I - similar to “best

model”

• rank II -- better than AAM

• rank III - similar to AAM

1Provided by A. Avdeef,Absorption and drugdevelopment. Solubility,permeability and charge

state, ed. Hoboken, NJ:Wiley–Interscience,2003.

Performance of algorithms for the public dataset Star set (N = 223) Non-Star set (N = 43)

% within error range % within error range Method RMSE rank <0.5 0.5-1 >1 RMSE rank <0.5 0.5-1 >1

AB/LogP 0.41 I 84 12 4 1.00 I 42 23 35 S+logP 0.45 I 76 22 3 0.87 I 40 35 26 ACD/logP 0.50 I 75 17 7 1.00 I 44 33 23 Consensus log P 0.50 I 74 18 8 0.80 I 47 28 26 CLOGP 0.52 II 74 20 6 0.91 I 47 28 26 VLOGP OPS 0.52 II 64 21 7 1.07 I 33 28 26 ALOGPS 0.53 II 71 23 6 0.82 I 42 30 28 MiLogP 0.57 II 69 22 9 0.86 I 49 30 21 XLOGP 0.62 II 60 30 10 0.89 I 47 23 30 KowWIN 0.64 II 68 21 11 1.05 I 40 30 30 CSlogP 0.65 II 66 22 12 0.93 I 58 19 23 ALOGP (Dragon) 0.69 II 60 25 16 0.92 I 28 40 33 MolLogP 0.69 II 61 25 14 0.93 I 40 35 26 ALOGP98 0.70 II 61 26 13 1.00 I 30 37 33 OsirisP 0.71 II 59 26 16 0.94 I 42 26 33 VLOGP 0.72 II 65 22 14 1.13 I 40 28 33 TLOGP 0.74 II 67 16 13 1.12 I 30 37 30 ABSOLV 0.75 II 53 30 17 1.02 I 49 28 23 QikProp 0.77 II 53 30 17 1.24 II 40 26 35 QuantlogP 0.80 II 47 30 22 1.17 II 35 26 40 SLIPPER-2002 0.80 II 62 22 15 1.16 II 35 23 42 COSMOFrag 0.84 II 48 26 19 1.23 II 26 40 33 XLOGP2 0.87 II 57 22 20 1.16 II 35 23 42 QLOGP 0.96 II 48 26 25 1.42 II 21 26 53 VEGA 1.04 II 47 27 26 1.24 II 28 30 42 CLIP 1.05 II 41 25 30 1.54 III 33 9 49 LSER 1.07 II 44 26 30 1.26 II 35 16 49 MLOGP (Sim+) 1.26 II 38 30 33 1.56 III 26 28 47 NC+NHET 1.35 III 29 26 45 1.71 III 19 16 65 SPARC 1.36 III 45 22 32 1.70 III 28 21 49 MLOGP(Dragon) 1.52 III 39 26 35 2.45 III 23 30 47 LSER UFZ 1.60 III 36 23 41 2.79 III 19 12 67 AAM 1.62 III 22 24 53 2.10 III 19 28 53 VLOGP-NOPS 1.76 III 1 1 7 1.39 III 7 0 7 HINT 1.80 III 34 22 44 2.72 III 30 5 65 GBLOGP 1.98 III 32 26 42 1.75 III 19 16 65

Page 8: Developing Chemoinformatics Models

Benchmarking of logPmethods for in-housedata of Pfizer & Nycomed

• Large number of methods could notperform better than AAM model

• Best results are calculated usingConsensus logP model

• log P = 1.46 + 0.11 (NC - NHET)N=95 809, RMSE=1.04, R2=0.2

Mannhold, R. et al, J. Pharm. Sci., 2009, 98(3), 861-893.

Different MlogP implementationsdemonstrate very differentperformances for both sets

N.B! Do we really comparemethods or their implementations?

Performance of algorithms for in-house datasets Pfizer set (N = 95 809) Nycomed set (N = 882)

% in error range % in error range

Method

RMSE Failed1 rank <0.5 0.5-

1 >1

RMSE,

zwitterions

excluded2

RMSE rank <0.5 0.5-

1 >1

Consensus log P 0.95 I 48 29 24 0.94 0.58 I 61 32 7

ALOGPS 1.02 I 41 30 29 1.01 0.68 I 51 34 15

S+logP 1.02 I 44 29 27 1.00 0.69 I 58 27 15

NC+NHET 1.04 II 38 30 32 1.04 0.88 III 42 32 26

MLOGP(S+) 1.05 II 40 29 31 1.05 1.17 III 32 26 41

XLOGP3 1.07 II 43 28 29 1.06 0.65 I 55 34 12

MiLogP 1.10 27 II 41 28 30 1.09 0.67 I 60 26 14

AB/LogP 1.12 24 II 39 29 33 1.11 0.88 III 45 28 27

ALOGP 1.12 II 39 29 32 1.12 0.72 II 52 33 15

ALOGP98 1.12 II 40 28 32 1.10 0.73 II 52 31 17

OsirisP 1.13 6 II 39 28 33 1.12 0.85 II 43 33 24

AAM 1.16 III 33 29 38 1.16 0.94 III 42 31 27

CLOGP 1.23 III 37 28 35 1.21 1.01 III 46 28 22

ACD/logP 1.28 III 35 27 38 1.28 0.87 III 46 34 21

CSlogP 1.29 20 III 37 27 36 1.28 1.06 III 38 29 33

COSMOFrag 1.30 10883 III 32 27 40 1.30 1.06 III 29 31 40

QikProp 1.32 103 III 31 26 43 1.32 1.17 III 27 24 49

KowWIN 1.32 16 III 33 26 41 1.31 1.20 III 29 27 44

QLogP 1.33 24 III 34 27 39 1.32 0.80 II 50 33 17

XLOGP2 1.80 III 15 17 68 1.80 0.94 III 39 31 29

MLOGP(Dragon) 2.03 III 34 24 42 2.03 0.90 III 45 30 25

1Nr of molecu les with ca lculations failures due to errors or crash of programs. All methods predicted all molecules for the Nycomed dataset. 2RMSE calculated after excluding of 769 zwitterionic compounds from the Pfizer dataset. 3Most molecules failed by COSMOFrag are zwitterions.

Page 9: Developing Chemoinformatics Models

Optimization of a drug: we need to find a road in

multidimensional space

Page 10: Developing Chemoinformatics Models

…and to arrive to a good result as

soon as possible!

Page 11: Developing Chemoinformatics Models

We need to optimize our road: we can’t see mountains!

Page 12: Developing Chemoinformatics Models

Examples of distances to models

Jaworska et al,

ATLA, 33, 445-

459, 2005.

Glende et al,

Mutation Res.,

2001.

Euclidian Mahalanobis

City-block Probability-density

Page 13: Developing Chemoinformatics Models

Distances to a model in descriptor space

Jaworska et al, ATLA, 33, 445-459, 2005.

Page 14: Developing Chemoinformatics Models

Nearest neighbors in the input space

-4

-2

0

2

4

-3 -2 -1 0 1 2 3

x

x2

x1

Page 15: Developing Chemoinformatics Models

Nearest neighbors and activity

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

x

y

-4

-2

0

2

4

-3 -2 -1 0 1 2 3

x

x2

x1

y=exp(-(x1+x2)2)

x=x1+x2 !

The nearest

neighbors in

descriptor space

are not the

neighbors in

property!

Page 16: Developing Chemoinformatics Models

Ensemble methods

Hansen, L.K.; Salamon, P. IEEE Trans. Pattern. Anal. Mach. Learn., 1990, 12, 993.

Tetko, I. V.; Luik, A. I.; Poda, G. I. J. Med. Chem., 1993, 36, 811.

Tetko, I.V.; Livingstone, D. J.; Luik, A. I. Neural Network Studies. 1. Comparison of

Overfitting and Overtraining. J. Chem. Inf. Comput. Sci. 1995, 35(5), 826.

Page 17: Developing Chemoinformatics Models

Who of them would be elected in 1904?

G.W. Bush

republican

A. Gore

democrat

2000

Page 18: Developing Chemoinformatics Models

Elections results in 1904

T. Rooseveltrepublican

A. Parker

democrat

1904

Page 19: Developing Chemoinformatics Models

President elections in the USA by states

The distribution of votes in states creates a typical fingerprint,

which is invisible when we use just average values

Democrats of 2000 == Republicans of 1904

Page 20: Developing Chemoinformatics Models

Ensemble Based Distance

!

12.3

4.6

M

13.2

10.1

"

#

$ $ $ $ $ $

%

&

' ' ' ' ' '

!

net 1

net 2

M

net 63

net 64

"

#

$ $ $ $ $ $

%

&

' ' ' ' ' '

!

13.7

4.8

M

15.8

12.0

"

#

$ $ $ $ $ $

%

&

' ' ' ' ' '

!

net 1

net 2

M

net 63

net 64

"

#

$ $ $ $ $ $

%

&

' ' ' ' ' '

N

HO

N

HO

logP=3.11

logP=3.48

Morphinan-3-ol, 17-methyl-

Levallorphan

CORREL -- correlation

between model vectors

for any two molecules

Page 21: Developing Chemoinformatics Models

Nearest neighbors and activity

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

A B

-4

-2

0

2

4

-3 -2 -1 0 1 2 3

C

x

x x

x2

x1

y y

x=x1+x2

CORREL measure

correctly detect the

nearest neighbors!

Page 22: Developing Chemoinformatics Models

Tetko et al, J. Inorg. Biochem, 2008, 102, 1424-37.

Local models: Instant learning of logP for Pt(II) molecules

Prediction of new classes of compounds can be extremely difficult as

exemplified by an absence of correlations between predicted and experimental

values using developed by us ALOGPS program.

NH2

NH2

Pt

Cl

Cl

NH2

NH2

Pt

Cl

Cl

NH2

NH2

Pt

Cl

Cl

Cl

Cl

N

N

Pt

Cl

Cl

N

N

Pt

Cl

Cl

Pt

O

O

O

O

N

N

NH2

NH2

Pt

Cl

Cl

ClPt

H3N

H3N Cl

Page 23: Developing Chemoinformatics Models

Tetko et al, J. Inorg. Biochem, 2008, 102, 1424-37.

Local models: Instant learning by knowledge transfer

The use of LIBRARY mode (local correction of the global model)

dramatically (5 times!) decreased logP errors,

Page 24: Developing Chemoinformatics Models

Mannhold, R. et al, J. Pharm. Sci., 2009, 98(3), 861-893.

Performance of algorithms for in-house datasets Pfizer set (N = 95 809) Nycomed set (N = 882)

% in error range % in error range

Method

RMSE Failed1 rank <0.5 0.5-

1 >1

RMSE,

zwitterions

excluded2

RMSE rank <0.5 0.5-

1 >1

Consensus log P 0.95 I 48 29 24 0.94 0.58 I 61 32 7

ALOGPS 1.02 I 41 30 29 1.01 0.68 I 51 34 15

S+logP 1.02 I 44 29 27 1.00 0.69 I 58 27 15

NC+NHET 1.04 II 38 30 32 1.04 0.88 III 42 32 26

MLOGP(S+) 1.05 II 40 29 31 1.05 1.17 III 32 26 41

XLOGP3 1.07 II 43 28 29 1.06 0.65 I 55 34 12

MiLogP 1.10 27 II 41 28 30 1.09 0.67 I 60 26 14

AB/LogP 1.12 24 II 39 29 33 1.11 0.88 III 45 28 27

ALOGP 1.12 II 39 29 32 1.12 0.72 II 52 33 15

ALOGP98 1.12 II 40 28 32 1.10 0.73 II 52 31 17

OsirisP 1.13 6 II 39 28 33 1.12 0.85 II 43 33 24

AAM 1.16 III 33 29 38 1.16 0.94 III 42 31 27

CLOGP 1.23 III 37 28 35 1.21 1.01 III 46 28 22

ACD/logP 1.28 III 35 27 38 1.28 0.87 III 46 34 21

CSlogP 1.29 20 III 37 27 36 1.28 1.06 III 38 29 33

COSMOFrag 1.30 10883 III 32 27 40 1.30 1.06 III 29 31 40

QikProp 1.32 103 III 31 26 43 1.32 1.17 III 27 24 49

KowWIN 1.32 16 III 33 26 41 1.31 1.20 III 29 27 44

QLogP 1.33 24 III 34 27 39 1.32 0.80 II 50 33 17

XLOGP2 1.80 III 15 17 68 1.80 0.94 III 39 31 29

MLOGP(Dragon) 2.03 III 34 24 42 2.03 0.90 III 45 30 25

1Nr of molecu les with ca lculations failures due to errors or crash of programs. All methods predicted all molecules for the Nycomed dataset. 2RMSE calculated after excluding of 769 zwitterionic compounds from the Pfizer dataset. 3Most molecules failed by COSMOFrag are zwitterions.

Page 25: Developing Chemoinformatics Models

Local models: Instant learning of in-house data(Pfizer Inc.), N=95809

in less than 30 minutes of calculations on a notebook!

RMSE=1.02 RMSE=0.59

ALOGPS Blind prediction ALOGPS LIBRARY

Tetko, Poda, Ostermann, Mannhold, QSAR Comb. Sci, 2009, in press.

Page 26: Developing Chemoinformatics Models

REACH and QSAR (Quantitative StructureActivity Relationship) models

> 140,000 chemicals to be registered … is a lot!

It is expensive to measure all of them ($200,000 per compound), a lot ofanimal testing

QSAR models can be used to prioritize compounds

• Compound is predicted to be toxic

• Biological testing will be done to prove/disprove the models

• Compound is predicted to be not toxic

• tests can be avoided, saving money, animals

• but ... only if we are confident in the predictions

• FP7 project CADASTER http://www.cadaster.eu hasgoals to develop a strategy for use of in silico methodsin REACH

Page 27: Developing Chemoinformatics Models

Estimation toxicity of T. pyriformis

Initial Dataset1,2

n=983 molecules

n=644 training set

n=339 test set 1

Test set 2:

n=110 molecules1,2

1Zhu et al, J. Chem. Inf. Comput. Sci, 2008, 48(4), 766-784.

2Schultz et al, QSAR Comb Sci, 2007, 26(2), 238-254.

The overall goal is to predict and to assess the reliability of predictions

toxicity against T. pyriformis for chemicals directly from their structure.

Page 28: Developing Chemoinformatics Models

Overview of analyzed distances to models (DMs)

CORREL

CORREL(a) =maxj CORREL(a,j)=R2(Yacalc,Y

jcalc)

Ya=(y1,…,yN) is vector of predictions of molecule i

STD

yi is value calculated with model i and is average

value

PLSEU (DModX)

Error in approximation (restoration) of the

vector of input variables from the latent

variables and PLS weights.

LEVERAGE

LEVERAGE=xT(XTX)-1x

TANIMOTO

xa,i and xb,i are fragment counts

EUCLID

EUm= k is number of nearest

neighbors, m index of

model

!

d j

j=1

k

"

k

!

EUCLID = EU m

!

Tanimoto(a,b) =xa,ixb,i"

xa,ixa,i

+" xb,ixb,i# x

a,ixb,i""

!

STD =1

N "1yi " y ( )#

2

!

y

Page 29: Developing Chemoinformatics Models

Mixture of GaussianDistributions (MGD)

Idea is to find a MGD,

which maximize

likelihood (probability)

! N(0,!2(ei))

of the observed

distribution of errors

Page 30: Developing Chemoinformatics Models

MGDs for the simulated datasets

A) No significant

MGD was found

B) A MGD composed

of 3 Gaussian

distributions was

found

Page 31: Developing Chemoinformatics Models

Distance does not work: Neural Network model

Page 32: Developing Chemoinformatics Models

Distance works: Neural Network model

Page 33: Developing Chemoinformatics Models

Estimations based on training set errors

Tetko et al, J Chem Inf Model, 2008, 48(9):1733-46.

Page 34: Developing Chemoinformatics Models

Estimations of errors using MGD and 5-foldcross-validation

Tetko et al, J Chem Inf Model, 2008, 48(9):1733-46.

Page 35: Developing Chemoinformatics Models

Prediction accuracy for training and two external sets

Estimated experimentalaccuracy is aboutSE = 0.38

HPV (High ProductionVolume): 3182EINECS (REACH): 48774

Challenge to predict toxicity organized in collaboration with European Neural Network Society

at http://www.cadaster.eu

Tetko et al, J Chem Inf Model, 2008, 48(9):1733-46.

Page 36: Developing Chemoinformatics Models

Challenges and solutions

Our methodology allows confident navigation in a defined molecular space.

! It can be used to develop targeted (local) models covering specific series.

! It can be used to reliably estimate which compounds can/can’t be reliably predicted.

! It can be used to guide experimental design and to minimize costs of new measurements.

reliable predictions

N

O O

new measurement

N O

O OH

N O

O

new series to predict

Page 37: Developing Chemoinformatics Models

Acknowledgements

Collaborators:

Dr. C. Höfer (DMPKore)

Dr. G. Poda (Pfizer)

Dr. C. Ostermann (Nycomed)

Prof. R. Mannhold (Düsseldorf

University)

Prof. A. Tropsha (NC, USA)

Prof. T. Oprea (New Mexico, USA)

+ many other colleagues & co-authors

My group

Mr I. Sushko

Mr S. Novotarskyi

Mr A.K. Pandey

Mr R. Körner

Mr S. Brandmaier

Dr M. Rupp

Visiting Scientists

Dr. V. Kovalishyn

Dr. V. Prokopenko

Prof. J. Emmersen

GO-Bio BMBF http://qspr.eu

Germany-Ukraine grant UKR 08/006

DFG TE 380/1-1

FP7 MC ITN ECO

FP7 CADASTER http://www.cadaster.ue

FP6 INTAS VCCLAB http://www.vcclab.org

Funding