development and application of groundwater flow … and application of groundwater flow and solute...

70
Technische Universität Darmstadt - 30. Mai 2006 Development and Application of Groundwater Flow and Solute Transport Models Randolf Rausch

Upload: doanhanh

Post on 07-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Technische Universität Darmstadt - 30. Mai 2006

Development and Application of Groundwater Flow and Solute Transport Models

Randolf Rausch

Technische Universität Darmstadt - 30. Mai 2006

Overview

• Groundwater Flow Modeling

• Solute Transport Modeling

• Inverse Problem in Groundwater Modeling

Technische Universität Darmstadt - 30. Mai 2006

Groundwater Flow Modeling

Technische Universität Darmstadt - 30. Mai 2006

Flow modeling in fractured and karstified media

Model approaches for fractured / karstified sytems

Double porosity flow models

Parameter identification

Technische Universität Darmstadt - 30. Mai 2006

Problem: Flow in fractures and pipes

Technische Universität Darmstadt - 30. Mai 2006

Large dynamics in head and discharge

Technische Universität Darmstadt - 30. Mai 2006

Matrix and pipe network

Technische Universität Darmstadt - 30. Mai 2006

Matrix and pipe network + observation wells

Technische Universität Darmstadt - 30. Mai 2006

Interpolated head distribution

Technische Universität Darmstadt - 30. Mai 2006

Interpolated head distribution and reality

Technische Universität Darmstadt - 30. Mai 2006

Classification of fractured media

Mesh of fracturesand impermeablematrix

Fractures withpermeablematrix

Fractured systemwith minorkarstification

Conduit systemwith a karstifiedrock matrix

Granite Sandstone Limestone Karstified Limestone

Waste Disposal Water Supply

Technische Universität Darmstadt - 30. Mai 2006

Possible model approaches

Single PorosityModel

Double PorosityModel

Discretemodel

Equivalentcontinuum

Two coupledfracturesystems

Twoequivalentcontinua

Fracturenetwork and continuum

Technische Universität Darmstadt - 30. Mai 2006

Double continuum flow model

Linear exchange depends on:

• head difference• exchange coefficient

Different aquifer parameters:

• Hydraulic conductivity

• low in fissured system• high in conduit system

• Storage coefficient:

• high in fissured system• low in conduit system

Karst system Double continuum system

Technische Universität Darmstadt - 30. Mai 2006

System of coupled flow equations:

( )

( )

)t,z,y,x(fhand)t,z,y,x(fh:Solution

hhWt

hSzhk

zyhk

yxhk

x

hhWt

hSzhk

zyhk

yxhk

x

ba

babb

bb

bzz

bbyy

bbxx

baaa

aa

azz

aayy

aaxx

==

−α−+∂∂

=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

∂∂

+⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

∂∂

+⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

∂∂

−α++∂∂

=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

∂∂

+⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

∂∂

+⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

∂∂

000

000

Technische Universität Darmstadt - 30. Mai 2006

Parameter identification – interpretation of heads

Classification by standard deviation

heads from fracture system:

large standard deviationsame range as continuum b (conduit system)

heads from matrix system:

only one point with same standard deviation as continuum a (fissured system)

Technische Universität Darmstadt - 30. Mai 2006

Double continuum model: “Stubersheimer Alb“

• steady state model calibrationusing measured head and discharge data

⇒ distribution of hydraulicconductivity

• sensitivity study for transientflow: simulate the measuredcharacteristics to investigate theexchange behavior

Technische Universität Darmstadt - 30. Mai 2006

Transient exchange betweenfracture and matrix system

Simulation results

Continuum a: smooth curveContinuum b: large dynamics

Double continuum model showssame characteristics as measureddata

Heads

Discharge

Technische Universität Darmstadt - 30. Mai 2006

Solute Transport Modeling

Technische Universität Darmstadt - 30. Mai 2006

Application of solute transport models

• interpretation of concentration data

• mass balance of contaminants

• predictions of pollutant plumes

• design of pump and treat management

• planning of monitoring strategy

• risk assessment in case of waste disposals

Technische Universität Darmstadt - 30. Mai 2006

Simulation of a contamination plume

Technische Universität Darmstadt - 30. Mai 2006

Relation between groundwater flow and transport models

Technische Universität Darmstadt - 30. Mai 2006

Representation of transport processes

Advection

Advection + Dispersion (+ Diffusion)

Advection + Dispersion + Adsorption

Advection + Dispersion + Adsorption + Decay

Transport in 1-D-aquifer

Technische Universität Darmstadt - 30. Mai 2006

( ) )( inf

ccnquccD

tc

−−+−∇⋅∇=∂∂ σ

Transport equation

The temporal change of pollutant mass for every volumeelement is given by the in- / outflows from

• Dispersion

• Advection

• Reaction

• Sources / Sinks

( )cD∇⋅∇

( )uc⋅∇−

)( inf

ccnq

−−

σ

Technische Universität Darmstadt - 30. Mai 2006

1-D transport equation

Measure for the relation advective / dispersive transport is given by the PECLET-number:

xcu

xcD

tc

∂∂

−∂∂

=∂∂

2

2

uuL

DuLP

LL

==

L: typical length scale of transport problem

Pe = 0 pure dispersive transport

Pe = pure advective transport∞

Technische Universität Darmstadt - 30. Mai 2006

Solution methods for transport equation

- Analytical solutionsSimple flow conditions / simple initial and boundary conditions, homogeneity

- Neglecting Diffusion / DispersionPath lines, travel times, concentration along path lines

- Numerical SolutionsGrid methods: FD, FV, FE

Particle-Tracking Methods: MOC, Random-Walk

Technische Universität Darmstadt - 30. Mai 2006

Numerical solution methods

Grid Methods:Finite Differences Finite Elements

Finite Volumes

Particle-Tracking Methods:Method of Characteristics

Random-Walk-Method

Technische Universität Darmstadt - 30. Mai 2006

Problems with grid methods

- Numerical dispersion

- Oscillations

Possible solution: grid refinement

Technische Universität Darmstadt - 30. Mai 2006

Possible solution: adaptive grid

Adaptive gridding methods consists in dynamically refining the grid size to eliminate numerical dispersion

Example of grid refinement

Technische Universität Darmstadt - 30. Mai 2006

Adaptive refinement: nested iteration

Technische Universität Darmstadt - 30. Mai 2006

Typical error indicators are

• The gradient of the solution ,

• Concentration variation between neighbor elements.

The selection of elements for refinement and coarsening is basedon an error indicator.

c∇

In case of time step methods the solution of the proceeding time step is considered.

Error indicator for adaptive griding

Technische Universität Darmstadt - 30. Mai 2006

Example of an adaptive refined grid from a simulation

Technische Universität Darmstadt - 30. Mai 2006

The Inverse Problem in Groundwater Modeling

Technische Universität Darmstadt - 30. Mai 2006

Direct problem

Given: parameters, boundary and initial conditions

Wanted: head / flow distribution (or concentration)

Usually parameters are not known completely!

Therefore:

Calibration (i.e. completion of parameters) using measurements of heads / flows (or concentration) is required.

Technische Universität Darmstadt - 30. Mai 2006

Inverse problem

Given: heads / flows, (concentrations)

Wanted: parameter distribution

Problem: ill-posednessNo unique solution may existMeasurement errors make result unreliable

Ways out: Reduction of degrees of freedom and regressionIntroduction of “a priori” knowledgeJoint use of head, flow and / or concentration measurementsEstimate of uncertainty

Technische Universität Darmstadt - 30. Mai 2006

Example for non uniqueness of the inverse problem

Q = B T (h1-h2)/L

Where:

Q: dischargeB: widthT: transmissivityh: headL: length

Identification problem of steady state calibration. Every T leads to the same head distribution, only Q varies!

Technische Universität Darmstadt - 30. Mai 2006

Criterion for goodness of fit (maximum likelihood)

Without prior knowledge minimize

or with „a priori“ knowledge

Minimization can be done manually („trial and error“) or byautomatic methods: e.g. MARQUARDT-LEVENBERG algorithm

ikcomputed

ii

measuredim wpffppS 2

1 ))((),...,( −=∑

jj

priorjjik

computedi

i

measuredim wppwpffppS ′−+−= ∑∑ 22

1 )())((),...,(

(pj parameter, fi heads or flow, wi weights)

Technische Universität Darmstadt - 30. Mai 2006

Concepts for parameterization of spatial structures

Reduction of degreesof freedom by:

Zonation (N zones)

Interpolation and pivotpoints

Technische Universität Darmstadt - 30. Mai 2006

Spatial transmissivity distribution (Jurassic karst aquifer)

Frequency distributions:all data

valleys

plateau

Technische Universität Darmstadt - 30. Mai 2006

Umm Er Radhuma aquifer system in Saudi Arabia

Technische Universität Darmstadt - 30. Mai 2006

Geological and hydrogeological units of the Umm Er Radhuma aquifer system

I R A Q

I R A N

ARABIAN GULF

QATAR

K U W A I T

Euphrates

Tigris

BAHRAIN

U. A. E.

AS SULAYYIL

AZ ZULFI

RIYADH

BURAYDAH

HAFAR AL BATIN

AN NUYRIYAH

AL KHAFJI

AD DAMMAM

AL HUFUF

BUQAYQ

SALWAH

HARAD

LAYLA

YABRIN

AL KHARJ

AL KHUBAR

AL JUBAYL

Kilometers

0 100 20050

Legend

Umm Er Radhuma

Quaternary

Neogene

Dammam

Rus

Aruma

Tdm

Tsm

Tr

Ka

Q

Tu

Ka

Ka

Tu

Tu

Tr

Tdm

Tsm

Tsm

Q

Q

Tdm

Technische Universität Darmstadt - 30. Mai 2006

Geological structure and stratification

Geological Cross Sections

Technische Universität Darmstadt - 30. Mai 2006

Geological structure and tectonic features

Main Anticlinal Structures and Faults

Colored sub crop surface:

base of Umm Er Radhuma

Technische Universität Darmstadt - 30. Mai 2006

Vertical hydraulic conductivity distribution

Rus aquitard Dammam / Neogene

Technische Universität Darmstadt - 30. Mai 2006

Muschelkalk lithology

Technische Universität Darmstadt - 30. Mai 2006

Time needed for the change of rocks within an aquiferdepends on rock type

Important features for the Muschelkalk are:

- the dissolution of evaporites, - and the karstification of carbonate rocks.

The processes depend on the exposition to theground surface.

Technische Universität Darmstadt - 30. Mai 2006

Thickness reduction of the Mittlerer Muschelkalk by saltand sulphate dissolution

Technische Universität Darmstadt - 30. Mai 2006

Consequence:

• 50 m thickness reduction within a relative short time

• Cracking of rocks• Intensification of fractures• Acceleration of karstification

Technische Universität Darmstadt - 30. Mai 2006

What are the major processes for dissolution?

• The main factor is the exposition to the ground surface.

• The exposition to the ground surface depends on the cuesta development.

Technische Universität Darmstadt - 30. Mai 2006

“Cuesta“ development in Baden-Württemberg

Location of cuestas and rivers during Oligocene and Late Miocene (34 – 20 Ma)

Technische Universität Darmstadt - 30. Mai 2006

“Cuesta“ development in Baden-Württemberg

Location of cuestas and rivers during Upper Miocene(11 – 5 Ma)

Technische Universität Darmstadt - 30. Mai 2006

“Cuesta“ development in Baden-Württemberg

Location of cuestas and rivers during Lower Pleistocene(0.8 – 1.8 Ma)

Technische Universität Darmstadt - 30. Mai 2006

“Cuesta“ development in northern Baden-Württemberg

Cuesta development and location of Muschelkalk aquifers from Oligocene - Quarternary

Technische Universität Darmstadt - 30. Mai 2006

Consequence

• Adjacent areas within the cuesta landscape developed successively over a long time and represent different states of karstification.

Technische Universität Darmstadt - 30. Mai 2006

Present Muschelkalk aquifer systems

1 - 3: present areas of Muschelkalk aquifers

Technische Universität Darmstadt - 30. Mai 2006

Development of karstification

mo: raremu: existing

mo: existing (wide areas)mm + mu: none

nonePerched aquifers

mo: very rare (sealing)mm: nonemu: existing

mo: manynoneCaves

mo + mm: rare (sealing)mu: existing

mo: manynoneAreas with no surface runoff

mo: numerous, but sealed

mm + mu: existing

mo: numerous

mm + mu: many

noneDolines, sinkholes

Salt completely dissoluted,Sulphates mostly dissoluted

Salt mostly dissoluted,Sulphates start of dissolution

nodissolution

Salinar in MittlerenMuschelkalk

OligoceneMioceneNot yetstarted

Start of karstification

321Area / Stage of Development

Technische Universität Darmstadt - 30. Mai 2006

Palaeo-climatology

Recharge Estimation

0

10

20

30

40

50

60

10000 8000 6000 4000 2000 0

Years Before Present

Rec

harg

e [m

m/y

]

Precipitation Fluctuations

0

100

200

300

400

500

600

700

0200040006000800010000

Years Before Present

Prec

ipita

tion

[mm

/yea

r]

BRICE 1978DIESTER-HAAS 1973

BRICE 1978

COLE 2004DIESTER-HAAS 1973VAN ZINDEREN BAKKER 1980

BRICE 1978

BRICE 1978

COLE 2004

COLE2004

VAN ZINDEREN BAKKER 1980

BRICE 1978

BRICE 1978

ISSAR2003

BRICE 1978BUTZER 1958

BARTH 1999BRICE 1978

Precipitation Fluctuations

0

100

200

300

400

500

600

700

0200040006000800010000

Years Before Present

Prec

ipita

tion

[mm

/yea

r]

BRICE 1978DIESTER-HAAS 1973

BRICE 1978

COLE 2004DIESTER-HAAS 1973VAN ZINDEREN BAKKER 1980

BRICE 1978

BRICE 1978

COLE 2004

COLE2004

VAN ZINDEREN BAKKER 1980

BRICE 1978

BRICE 1978

ISSAR2003

BRICE 1978BUTZER 1958

BARTH 1999BRICE 1978

Temperature Fluctuations

23

24

25

26

27

28

0200040006000800010000

Years Before Present

Tem

pera

ture

[°C

]

Technische Universität Darmstadt - 30. Mai 2006

Isotopes information: estimation of river infiltration

Temporal distribution of d18O in river water and groundwater

Spatial distribution of Iller infiltration

Technische Universität Darmstadt - 30. Mai 2006

Isotopes information: groundwater age

Simulated travel time to the Al Hassa oasis (mean residence time 12,000 a)

Groundwater Age Umm Er Radhuma Aquifer14C-Groundwater Age and 3H- Detection Line

Technische Universität Darmstadt - 30. Mai 2006

Modeling under uncertainty

• worst case – best case analysis

• scenario techniques

• sensitivity analysis

• stochastic modeling

Technische Universität Darmstadt - 30. Mai 2006

Stochastic modeling

Required: Parameter distribution, mean, variance, correlation length

Result: Mean, deviation, confidence limits

Methods: Monte Carlo Simulation

FOSM (First Order Second Moment)

Technische Universität Darmstadt - 30. Mai 2006

Monte Carlo method

Principle:

- generation of a large number N of equally probable random realizations of the aquifer

- the ensemble of N calculated solutions (Zi) is analyzed statistically

1

)(1

2

1

−==

∑∑==

N

ZZ

N

ZZ

N

ii

N

ii

σ

Technische Universität Darmstadt - 30. Mai 2006

Delineation of groundwater protection area

Sample problem:

Pumping rate:Q = -.005 m3/s

Groundwater recharge:I = 8 l/s/km2

Technische Universität Darmstadt - 30. Mai 2006

Statistical analysis of field data

Technische Universität Darmstadt - 30. Mai 2006

Simulation steps using Monte Carlo method

Technische Universität Darmstadt - 30. Mai 2006

Simulation steps using Monte Carlo method

Repeated simulation of catchment areas

Unconstrained sampling

Sampling under calibration constraint

Technische Universität Darmstadt - 30. Mai 2006

Simulation steps using Monte Carlo method

Probability distribution

Technische Universität Darmstadt - 30. Mai 2006

Convergence of Monte Carlo method

A large number of realizations N may be necessary in order to get meaningful convergent statistics

Problem: this number is not known a priori !

Technische Universität Darmstadt - 30. Mai 2006

Never forget:

• a good model includes important features of reality

• a model does not replace data acquisition

• a good modeler explores the uncertainty of her/his predictions

• what we really want are robust decisions

• do not overstretch a model

• a model is not reality

Technische Universität Darmstadt - 30. Mai 2006

Technische Universität Darmstadt - 30. Mai 2006