development of a microsatellite library for the passion flower butterfly dione moneta hübner...

6
TECHNICAL NOTE Development of a microsatellite library for the passion flower butterfly Dione moneta Hu ¨ bner (Lepidoptera: Nymphalidae: Heliconiinae) Darli Massardo Paula A. Roratto He ´ctor A. Vargas Marcus R. Kronforst Gilson R. P. Moreira Received: 20 February 2012 / Accepted: 27 February 2012 / Published online: 13 March 2012 Ó Springer Science+Business Media B.V. 2012 Abstract We characterized 19 polymorphic microsatel- lite loci in the Neotropical butterfly Dione moneta. Based on the genotypes of 20 individuals from one population, we detected one to 13 alleles per locus, observed heterozy- gosities ranging from 0.00 to 0.80, and expected hetero- zygosities ranging from 0.23 to 0.88. Levels of variation were high, although heterozygosity deficiencies were found at most loci. The loci showed broad amplification success in a second population of D. m. moneta, in D. m. butleri, other species of the genus (D. juno juno and D. glycera) and the related species, Agraulis vanillae maculosa. These polymorphic markers should provide efficient tools to study population genetic structure of D. moneta and other closely related butterflies. Keywords Mexican Silverspot butterfly Genetic markers Short tandem repeats Genetic diversity Introduction Microsatellites are important molecular markers for studies of population genetics and evolution (Ne ´ve and Megle ´cz 2000), but the development of these markers in Lepidoptera has been difficult (Zhang 2004; Sinama et al. 2011) because they are rare within genomes and difficult to amplify (Megle ´cz and Solignac 1998). Microsatellites in Lepidop- tera are associated with the flanking regions characterized by repetitive sequences (Megle ´cz et al. 2004) and mobile elements leading to multiple copies of loci (Zhang 2004). These properties can result in a deficit of heterozygotes due to the presence of null alleles (Megle ´cz et al. 2004). Heliconiini (sensus Penz and Peggie 2003) is a well- studied lineage of nymphalid butterflies, yet microsatellites have only been developed for two species, both belonging to the derived genus Heliconius (Flanagan et al. 2002; Mava ´rez and Gonza ´lez 2006). Here, we developed novel microsatellite loci for the primitive genus Dione. Using these microsatellites, we then measured genetic variation in two separate populations of Dione moneta moneta and examined cross amplification in D. moneta butleri, in the congeneric D. glycera and D. juno juno, and in a sister lineage, Agraulis vanillae maculosa. These microsatellites will be useful for a variety of purposes, including examining potential migratory behavior in D. moneta (Gilbert 1969) and in developing management strategies for D. glycera, D. juno, and A. vanillae, which are pests of cultivated Pas- siflora (Aguiar-Menezes et al. 2002; Beccaloni et al. 2008). Genomic DNA was isolated from one individual of D. m. moneta using the cetyltrimethyl ammonium bromide D. Massardo (&) G. R. P. Moreira Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil e-mail: [email protected] G. R. P. Moreira e-mail: [email protected] P. A. Roratto Departamento de Gene ´tica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil e-mail: [email protected] H. A. Vargas Facultad de Ciencias Agrono ´micas, Universidad de Tarapaca, Arica, Chile e-mail: [email protected] M. R. Kronforst FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA e-mail: [email protected] 123 Conservation Genet Resour (2012) 4:719–724 DOI 10.1007/s12686-012-9630-9

Upload: gilson-r-p-moreira

Post on 25-Aug-2016

215 views

Category:

Documents


2 download

TRANSCRIPT

TECHNICAL NOTE

Development of a microsatellite library for the passion flowerbutterfly Dione moneta Hubner (Lepidoptera: Nymphalidae:Heliconiinae)

Darli Massardo • Paula A. Roratto •

Hector A. Vargas • Marcus R. Kronforst •

Gilson R. P. Moreira

Received: 20 February 2012 / Accepted: 27 February 2012 / Published online: 13 March 2012

� Springer Science+Business Media B.V. 2012

Abstract We characterized 19 polymorphic microsatel-

lite loci in the Neotropical butterfly Dione moneta. Based

on the genotypes of 20 individuals from one population, we

detected one to 13 alleles per locus, observed heterozy-

gosities ranging from 0.00 to 0.80, and expected hetero-

zygosities ranging from 0.23 to 0.88. Levels of variation

were high, although heterozygosity deficiencies were found

at most loci. The loci showed broad amplification success

in a second population of D. m. moneta, in D. m. butleri,

other species of the genus (D. juno juno and D. glycera)

and the related species, Agraulis vanillae maculosa. These

polymorphic markers should provide efficient tools to

study population genetic structure of D. moneta and other

closely related butterflies.

Keywords Mexican Silverspot butterfly �Genetic markers � Short tandem repeats � Genetic diversity

Introduction

Microsatellites are important molecular markers for studies

of population genetics and evolution (Neve and Meglecz

2000), but the development of these markers in Lepidoptera

has been difficult (Zhang 2004; Sinama et al. 2011) because

they are rare within genomes and difficult to amplify

(Meglecz and Solignac 1998). Microsatellites in Lepidop-

tera are associated with the flanking regions characterized

by repetitive sequences (Meglecz et al. 2004) and mobile

elements leading to multiple copies of loci (Zhang 2004).

These properties can result in a deficit of heterozygotes due

to the presence of null alleles (Meglecz et al. 2004).

Heliconiini (sensus Penz and Peggie 2003) is a well-

studied lineage of nymphalid butterflies, yet microsatellites

have only been developed for two species, both belonging

to the derived genus Heliconius (Flanagan et al. 2002;

Mavarez and Gonzalez 2006). Here, we developed novel

microsatellite loci for the primitive genus Dione. Using

these microsatellites, we then measured genetic variation in

two separate populations of Dione moneta moneta and

examined cross amplification in D. moneta butleri, in the

congeneric D. glycera and D. juno juno, and in a sister

lineage, Agraulis vanillae maculosa. These microsatellites

will be useful for a variety of purposes, including examining

potential migratory behavior in D. moneta (Gilbert 1969)

and in developing management strategies for D. glycera,

D. juno, and A. vanillae, which are pests of cultivated Pas-

siflora (Aguiar-Menezes et al. 2002; Beccaloni et al. 2008).

Genomic DNA was isolated from one individual of

D. m. moneta using the cetyltrimethyl ammonium bromide

D. Massardo (&) � G. R. P. Moreira

Departamento de Zoologia, Universidade Federal do Rio Grande

do Sul, Porto Alegre, RS, Brazil

e-mail: [email protected]

G. R. P. Moreira

e-mail: [email protected]

P. A. Roratto

Departamento de Genetica, Universidade Federal do Rio Grande

do Sul, Porto Alegre, RS, Brazil

e-mail: [email protected]

H. A. Vargas

Facultad de Ciencias Agronomicas, Universidad de Tarapaca,

Arica, Chile

e-mail: [email protected]

M. R. Kronforst

FAS Center for Systems Biology, Harvard University,

Cambridge, MA, USA

e-mail: [email protected]

123

Conservation Genet Resour (2012) 4:719–724

DOI 10.1007/s12686-012-9630-9

Ta

ble

1C

har

acte

rist

ics

and

sum

mar

yst

atis

tics

of

mic

rosa

tell

ite

loci

gen

oty

ped

inD

ion

em

on

eta,

and

cro

ss-s

pec

ies

amp

lifi

edin

Dio

ne

gly

cera

,D

ion

eju

no

and

sist

ersp

ecie

s,A

gra

uli

sva

nil

lae

Lo

cus

Pri

mer

seq

uen

ce(50 -

30 )

Rep

eat

mo

tif

Ta

(�C

)D

ion

em

on

eta

mo

net

a

Po

pu

lati

on

1(n

=2

0)

Po

pu

lati

on

2(n

=8

)

Na

Siz

e

Ran

ge

(bp

)

HO

HE

Na

Siz

e

Ran

ge

(bp

)

Dm

on

1F

-CG

AA

CC

AC

AA

GT

TC

CT

GA

GT

T(C

A) 1

55

24

17

1–

18

30

.10

00

00

.23

33

35

17

3–

18

3

R-A

CG

CG

TG

GA

TG

TA

GA

CA

CA

A

Dm

on

2F

-TT

CA

CA

TC

AA

GA

TC

AA

TG

AC

CA

G(C

A) 9

52

71

82

–2

06

0.3

50

00

*0

.75

38

56

18

2–

19

4

R-C

CG

TA

TT

GC

AC

GA

TG

TT

CA

C

Dm

on

3F

-GC

TC

AA

CA

AC

GA

CG

AG

CT

G(A

C) 1

35

53

18

2–

19

00

.05

00

0*

0.5

21

79

41

82

–1

98

R-C

GT

GA

GA

TA

TT

GC

GT

GT

TG

C

Dm

on

4F

-CG

TA

GT

TA

CT

TA

AT

TT

GG

AC

GA

AT

C(T

G) 1

65

29

17

3–

19

30

.70

00

0*

0.8

21

79

61

73

–1

99

R-A

TG

CT

TC

TC

TC

GC

TT

CA

TC

G

Dm

on

7F

-CT

CT

GC

AA

GA

GC

GA

GG

AA

AT

(GT

) 13

52

61

75

–1

91

0.1

50

00

*0

.64

10

33

18

3–

19

1

R-T

CT

TG

CT

TA

CG

CG

TG

GA

CT

A

Dm

on

8F

-AC

CT

CG

AC

TG

CC

AC

TA

CC

C(C

A) 8

52

91

80

–2

26

0.0

52

63

*0

.75

81

86

17

4–

22

2

R-T

CG

CA

CC

TA

GC

CA

TG

GT

AT

T

Dm

on

9F

-CA

AT

TC

AC

AA

TC

TA

TT

GT

TT

TT

GT

TT

A(G

T) 2

05

21

21

9M

on

om

orp

hic

21

89

–2

19

R-C

AG

TG

AA

CG

AC

GA

GT

GA

TC

G

Dm

on

10

F-C

AG

GC

TA

CG

CA

AG

GA

GA

AT

C(T

G) 1

25

24

16

6–

18

80

.70

00

00

.51

53

87

16

0–

19

0

R-C

TA

GC

AG

TG

GC

AA

CG

AT

TG

A

Dm

on

13

F-A

CA

AT

AA

AG

GG

CA

GC

AC

TG

G(G

T) 1

55

51

31

92

–2

26

0.5

00

00

*0

.88

20

57

19

0–

21

8

R-G

TG

AA

GG

AC

GG

GG

TG

AG

TT

A

Dm

on

15

F-A

AG

CC

AT

TA

TC

GC

GG

TT

AA

A(T

G) 1

05

55

16

9–

17

70

.80

00

0*

0.6

43

59

––

R-T

AA

CA

TA

CC

GC

TC

CC

GC

TG

T

Dm

on

18

F-G

GC

TT

CT

TC

AA

GC

TG

AC

CA

C(C

A) 1

05

22

21

8–

22

00

.00

00

0*

0.4

66

67

41

84

–2

20

R-T

GA

CA

GT

CA

AC

AT

GT

GT

GT

GC

Dm

on

19

F-T

CT

CA

TG

TA

AC

AT

CA

TC

CC

AC

A(A

C) 9

T(A

C) 4

G(C

A) 6

55

22

43

–2

49

0.1

00

00

*0

.46

66

7–

R-T

GA

TA

AA

AG

GC

GA

AG

GT

TT

AC

A

Dm

on

20

F-C

AG

GT

AG

TG

AT

GA

CG

GA

AC

CT

(CA

) 9…

(CA

) 75

25

29

1–

34

10

.60

00

00

.48

46

24

18

3–

29

1

R-C

AT

AC

CC

AC

GG

GA

TT

CT

CT

G

Dm

on

22

F-C

AC

GC

AC

CT

TC

TT

TG

TT

TC

A(A

CA

T) 8

…(A

CA

T) 6

55

52

17

–2

41

0.0

50

00

*0

.63

46

25

17

5–

28

3

R-T

CA

AT

GA

CA

GT

GG

AC

GA

GG

A

Dm

on

23

F-G

AA

CC

TA

AT

GT

CC

GT

GT

CA

AT

G(T

G) 1

15

53

23

9–

24

10

.20

00

00

.27

30

84

20

7–

25

1

R-G

CG

TG

GT

CT

AA

CC

AG

TC

CA

T

Dm

on

24

F-T

GT

AT

CT

CA

CG

GT

CG

GT

TT

TT

(CA

) 95

54

18

7–

19

50

.05

00

0*

0.6

91

03

51

79

–1

95

R-A

GT

GC

CG

TG

TT

CA

CA

TT

CA

A

720 Conservation Genet Resour (2012) 4:719–724

123

Ta

ble

1co

nti

nu

ed

Lo

cus

Pri

mer

seq

uen

ce(50 -

30 )

Rep

eat

mo

tif

Ta

(�C

)D

ion

em

on

eta

mo

net

a

Po

pu

lati

on

1(n

=2

0)

Po

pu

lati

on

2(n

=8

)

Na

Siz

e

Ran

ge

(bp

)

HO

HE

Na

Siz

e

Ran

ge

(bp

)

Dm

on

25

F-A

TT

GA

GC

GA

TA

AT

CC

CG

AT

G(G

T) 1

05

25

34

1–

38

30

.3

50

00

0.3

17

95

52

37

–2

67

R-T

CT

TG

CT

TA

CG

CG

TG

GT

CT

A

Dm

on

26

F-T

AG

GT

CG

GG

CT

CG

TC

TA

TT

G(G

T) 1

05

21

29

8M

on

om

orp

hic

62

12

–3

00

R-T

CG

AT

GG

GA

AT

CG

TG

TT

GT

A

Dm

on

27

F-G

TG

TA

TC

CG

TG

TG

CG

CT

CT

A(A

C) 1

45

29

16

5–

19

90

.00

00

0*

0.8

76

19

––

R-T

CT

TG

CT

TA

CG

CG

TG

GA

CT

A

Lo

cus

Pri

mer

seq

uen

ce(50 –

30 )

Rep

eat

mo

tif

Ta

(�C

)D

ion

em

on

eta

bu

tler

iD

ion

eg

lyce

raD

ion

eju

no

jun

oA

gra

uli

sva

nil

lae

ma

culo

sa

(n=

8)

(n=

4)

(n=

4)

(n=

4)

Na

Siz

e

Ran

ge

(bp

)

Na

Siz

e

Ran

ge

(bp

)

Na

Siz

e

Ran

ge

(bp

)

Na

Siz

e

Ran

ge

(bp

)

Dm

on

1F

-CG

AA

CC

AC

AA

GT

TC

CT

GA

GT

T(C

A) 1

55

26

17

5–

18

94

17

1–

18

1–

–3

19

1–

19

3

R-A

CG

CG

TG

GA

TG

TA

GA

CA

CA

A

Dm

on

2F

-TT

CA

CA

TC

AA

GA

TC

AA

TG

AC

CA

G(C

A) 9

52

21

90

–1

92

31

74

–1

94

22

02

–2

04

31

92

–2

06

R-C

CG

TA

TT

GC

AC

GA

TG

TT

CA

C

Dm

on

3F

-GC

TC

AA

CA

AC

GA

CG

AG

CT

G(A

C) 1

35

52

19

0–

19

2–

––

–2

16

4–

16

8

R-C

GT

GA

GA

TA

TT

GC

GT

GT

TG

C

Dm

on

4F

-CG

TA

GT

TA

CT

TA

AT

TT

GG

AC

GA

AT

C(T

G) 1

65

28

17

5–

20

93

16

5–

17

72

17

1–

21

73

17

3–

18

1

R-A

TG

CT

TC

TC

TC

GC

TT

CA

TC

G

Dm

on

7F

-CT

CT

GC

AA

GA

GC

GA

GG

AA

AT

(GT

) 13

52

41

89

–2

03

21

73

–1

75

31

93

–2

27

12

03

R-T

CT

TG

CT

TA

CG

CG

TG

GA

CT

A

Dm

on

8F

-AC

CT

CG

AC

TG

CC

AC

TA

CC

C(C

A) 8

52

21

82

–2

26

––

41

84

–2

30

41

86

–2

18

R-T

CG

CA

CC

TA

GC

CA

TG

GT

AT

T

Dm

on

9F

-CA

AT

TC

AC

AA

TC

TA

TT

GT

TT

TT

GT

TT

A(G

T) 2

05

21

21

91

21

91

19

52

18

7–

18

9

R-C

AG

TG

AA

CG

AC

GA

GT

GA

TC

G

Dm

on

10

F-C

AG

GC

TA

CG

CA

AG

GA

GA

AT

C(T

G) 1

25

22

16

6–

16

85

17

4–

22

63

17

2–

20

04

16

6–

20

0

R-C

TA

GC

AG

TG

GC

AA

CG

AT

TG

A

Dm

on

13

F-A

CA

AT

AA

AG

GG

CA

GC

AC

TG

G(G

T) 1

55

55

19

4–

21

4–

–2

23

2–

23

83

19

6–

21

8

R-G

TG

AA

GG

AC

GG

GG

TG

AG

TT

A

Dm

on

15

F-A

AG

CC

AT

TA

TC

GC

GG

TT

AA

A(T

G) 1

05

52

16

9–

17

1–

––

––

R-T

AA

CA

TA

CC

GC

TC

CC

GC

TG

T

Conservation Genet Resour (2012) 4:719–724 721

123

Ta

ble

1co

nti

nu

ed

Lo

cus

Pri

mer

seq

uen

ce(50 –

30 )

Rep

eat

mo

tif

Ta

(�C

)D

ion

em

on

eta

bu

tler

iD

ion

eg

lyce

raD

ion

eju

no

jun

oA

gra

uli

sva

nil

lae

ma

culo

sa

(n=

8)

(n=

4)

(n=

4)

(n=

4)

Na

Siz

e

Ran

ge

(bp

)

Na

Siz

e

Ran

ge

(bp

)

Na

Siz

e

Ran

ge

(bp

)

Na

Siz

e

Ran

ge

(bp

)

Dm

on

18

F-G

GC

TT

CT

TC

AA

GC

TG

AC

CA

C(C

A) 1

05

23

21

8–

22

01

18

03

18

4–

21

82

18

2–

22

2

R-T

GA

CA

GT

CA

AC

AT

GT

GT

GT

GC

Dm

on

19

F-T

CT

CA

TG

TA

AC

AT

CA

TC

CC

AC

A(A

C) 9

T(A

C) 4

G(C

A) 6

55

22

43

–2

49

22

37

–2

39

––

––

R-T

GA

TA

AA

AG

GC

GA

AG

GT

TT

AC

A

Dm

on

20

F-C

AG

GT

AG

TG

AT

GA

CG

GA

AC

CT

(CA

) 9…

(CA

) 75

21

29

1–

–1

17

9–

R-C

AT

AC

CC

AC

GG

GA

TT

CT

CT

G

Dm

on

22

F-C

AC

GC

AC

CT

TC

TT

TG

TT

TC

A(A

CA

T) 8

…(A

CA

T) 6

55

12

25

41

91

–3

01

12

63

21

77

–1

81

R-T

CA

AT

GA

CA

GT

GG

AC

GA

GG

A

Dm

on

23

F-G

AA

CC

TA

AT

GT

CC

GT

GT

CA

AT

G(T

G) 1

15

52

24

1–

25

92

23

9–

25

52

23

9–

24

13

23

9–

26

3

R-G

CG

TG

GT

CT

AA

CC

AG

TC

CA

T

Dm

on

24

F-T

GT

AT

CT

CA

CG

GT

CG

GT

TT

TT

(CA

) 95

52

18

7–

18

9–

19

12

16

1–

19

11

19

1

R-A

GT

GC

CG

TG

TT

CA

CA

TT

CA

A

Dm

on

25

F-A

TT

GA

GC

GA

TA

AT

CC

CG

AT

G(G

T) 1

05

22

32

7–

34

12

29

9–

31

11

26

52

31

9–

32

5

R-T

CT

TG

CT

TA

CG

CG

TG

GT

CT

A

Dm

on

26

F-T

AG

GT

CG

GG

CT

CG

TC

TA

TT

G(G

T) 1

05

22

21

6–

29

8–

––

–3

19

4–

26

8

R-T

CG

AT

GG

GA

AT

CG

TG

TT

GT

A

Dm

on

27

F-G

TG

TA

TC

CG

TG

TG

CG

CT

CT

A(A

C) 1

45

2–

–3

17

5–

20

32

18

9–

19

12

17

5–

17

7

R-T

CT

TG

CT

TA

CG

CG

TG

GA

CT

A

Fo

rwar

dp

rim

erse

qu

ence

(F),

rev

erse

pri

mer

seq

uen

ce(R

),an

nea

lin

gte

mp

erat

ure

(Ta),

nu

mb

ero

fin

div

idu

als

for

wh

ich

loci

succ

essf

ull

yam

pli

fied

(n),

nu

mb

ero

fal

lele

s(N

a),

ob

serv

edan

d

exp

ecte

dh

eter

ozy

go

sity

(HO

and

HE,

resp

ecti

vel

y).

*D

evia

tio

nfr

om

HW

E(p

=0

.00

26

)af

ter

Bo

nfe

rro

ni’

sco

rrec

tio

n.

D.

m.

mo

net

ap

op

ula

tio

ns

1an

d2

wer

elo

cate

dre

spec

tiv

ely

inP

ort

o

Ale

gre

(30

�40 2

300 S

;5

1�70 3

300 W

)an

dA

ug

ust

oP

esta

na

(28�3

10 0

100 S

;5

3�5

90 3

200 W

)m

un

icip

alit

ies,

Rio

Gra

nd

ed

oS

ul

Sta

te,

Bra

zil.

D.

m.

bu

tler

isp

ecim

ens

wer

eco

llec

ted

inC

ald

asD

epar

tmen

t,

Man

izal

es(7

5�3

30 1

000 W

;0

5�0

60 1

500 N

),C

olo

mb

ia.

D.

gly

cera

spec

imen

sw

ere

coll

ecte

din

Par

inac

ota

Pro

vin

ce,

So

coro

ma

(18�1

50 4

900 S

;6

9�3

60 6

000 W

),C

hil

e.A

.v.

ma

culo

sasp

ecim

ens

cam

e

fro

ma

po

pu

lati

on

also

loca

ted

inth

eP

ort

oA

leg

rear

ea,

and

tho

seo

fD

.j.

jun

ofr

om

Sao

Ben

tod

oS

ul

(26�1

50 0

100 S

;4

9�2

20 4

300 W

)m

un

icip

alit

y,

San

taC

atar

ina

Sta

te,

Bra

zil.

Co

rres

po

nd

ing

vo

uch

ers

wer

ed

epo

site

din

the

tiss

ue

coll

ecti

on

of

Lab

ora

tori

od

eM

orf

olo

gia

eC

om

po

rtam

ento

de

Inse

tos

(LM

CI)

,D

epar

tam

ento

de

Zo

olo

gia

/UF

RG

S,

Po

rto

Ale

gre

city

,R

S,

Bra

zil,

un

der

acce

ssn

um

ber

s:L

MC

I1

58

,3

1,

93

,1

12

,1

58

,an

d1

10

,re

spec

tiv

ely

722 Conservation Genet Resour (2012) 4:719–724

123

(CTAB) method (Doyle and Doyle 1990). A genomic-

enriched library was constructed following the protocol

described by Billotte et al. (1999). Genomic DNA (20 lg)

was digested with the RsaI restriction enzyme (Invitrogen,

Carlsbad, CA) and the resulting fragments were linked to

RsaI adapters. Dinucleotide (CT)8 and (GT)8 biotinylated

probes were used in a selective hybridization to retrieve

RsaI digested fragments that contained microsatellites.

This process utilized Streptavidin magnetic particles (Pro-

mega, Fitchburg, WI). Selected fragments were PCR

amplified using primer sequences complementary to the

RsaI adapters with the amplification conditions: 95 �C for

1 min followed by 25 cycles of 40 s at 94 �C, 1 min at

60 �C, 2 min at 72 �C, and a 5-min final extension at

72 �C. The PCR products were ligated into the pGEM-T

vector (Promega) and transferred into Escherichia coli XL-

1 Blue strain cells by Calcium chloride (CaCl2) transfor-

mation (Sambrook and Russell 2002).

A total of 239 clones were sequenced, of which 73

contained microsatellites. Of these, 43 microsatellites were

unique and 30 of these had flanking sequences suitable for

primer design. These loci all contained repetitions of CA,

GT or ACAT. Primers were designed using the software

PRIMER 3 (Rozen and Skaletsky 2000) and each forward

primer contained a M13 tail for fluorescent labeling. The

sequences were deposited in GenBank (accession numbers

HQ848307–HQ848322 and JQ522937–JQ522945). PCR

amplifications were performed in a 10 ll final volume

containing 50 ng of DNA, 0.25 lM forward and M13

fluorescently labeled (FAM) primer and 0.5 lM reverse

primer, 0.2 lM dNTPs, and 2.3 mM MgCl2, 19 buffer

(AdvII), 1 U Taq DNA polymerase and ultrapure water.

PCRs were performed using the following conditions:

95 �C for 2 min followed by 35 cycles of 30 s of 94 �C,

specific annealing temperature for 30 s (see Table 1),

1 min of 72 �C, and a final extension of 72 �C for 4 min.

The final analysis was based on the 19 microsatellites that

yielded reliable amplification across multiple samples.

PCR products were separated on an ABI 3700 DNA

sequencer using GS500-ROX size standard (Applied Bio-

systems, Foster City, CA). Alleles were sized and scored using

Peak Scanner Software v1.0 (Applied Biosystems). The

genotyping results were checked with Micro Checker 2.2.3

(van Oosterhout et al. 2004) and then Arlequin 3.5.1.3 (Ex-

coffier and Schneiser 2005) was used to estimate the number

of alleles, observed and expected heterozygosity, and linkage

disequilibrium among loci. Significance thresholds were

adjusted by Bonferroni’s correction (Rice 1989).

The number of alleles per locus ranged from 1 to 13 in

D. m. moneta (population 1). Observed and expected het-

erozygosities ranged from 0.00 to 0.80 and 0.23 to 0.88,

respectively (Table 1). Only two loci were monomorphic

in population 1 (Dmon9, Dmon26). However, Dmon9

exhibited two alleles in population 2 and in A. v. maculosa,

and Dmon26 was polymorphic in population 2, D. m. butleri

and A. v. maculosa. Most loci amplified successfully across

species and subspecies (Table 1).

After applying the Bonferroni’s correction, there was evi-

dence of linkage disequilibrium in four pairs of loci in popu-

lation 1 (Dmon2–Dmon10, Dmon11–Dmon13, Dmon13–

Dmon15, Dmon10–Dmon18). A majority of loci exhibited

low observed heterozygosities, with significant deviations

from Hardy–Weinberg equilibrium (after Bonferroni’s cor-

rection) at 12 loci in population 1(Table 1). Although analysis

with MicroChecker did not reveal evidence of large allele

drop out in our dataset, the reduced heterozygosity could be

explained by the presence of null alleles, a common issue with

microsatellites in the Lepidoptera. In addition, the observed

deviations from linkage and HW equilibrium may also be

compounded by the interesting biology of D. moneta. This

species may be migratory, and recent mixing of distinct sub-

populations could produce the observed results due to the

Wahlund effect, as has been demonstrated in other studies

(Carvalho-Costa et al. 2006; Lumley et al. 2009; Sinama et al.

2011). Future population studies applying these loci in a

broader sampling area will help to clarify this question.

Acknowledgments We thank CBMEG/UNICAMP and LCE/

UFRGS staff, Brazil, for their support on the first phase of study.

Thanks are also due to Sabrina Thiele (UFRGS, Brazil) and Julian

Adolfo Salazar (Centro de Museos de La Universidad de Caldas,

Colombia) for providing specimens used in the study. Financial

support for this work came in part from National Counsel of Tech-

nological and Scientific Development (CNPq)/Brazil (project num-

bers 200695/2011-8 and 309676/2011-8, granted to DM and GRPM,

respectively) and NIH NIGMS Grant GM068763 and NSF grant

DEB-1020355 to MRK.

References

Aguiar-Menezes EL, Menezes EB, Cassino PC et al (2002) Passion

fruit. In: Pena JE, Sharp JL, Wysoki M (eds) Tropical fruit pests

and pollinators. CAB International, New York, pp 361–390

Beccaloni GW, Viloria AL, Hall SK et al (2008) Catalogue of the

hostplants of the neotropical butterflies. The Natural History

Museum, London, pp 223–256

Billotte N, da Lago PJL, Risterucci AM, Baurens FC (1999)

Microsatellite-enriched libraries: applied methodology for the

development of SSR markers in tropical crops. Fruits 54:

277–288

Carvalho-Costa LF, Hatanaka T, Galetti PM Jr (2006) Isolation and

characterization of polymorphic microsatellite markers in the

migratory freshwater fish Prochilo duscostatus. Mol Ecol Notes

6:818–819

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue.

Focus 12:13–15

Excoffier L, Schneiser S (2005) Arlequin version 3.0: an integrated

software package for population genetics data analysis. Evol

Bioinform Online 1:47–50

Flanagan NS, Blum MJ, Davison A, Alamo M, Albarran R,

Faulhaber K, Peterson E, McMillan WO (2002) Characterization

Conservation Genet Resour (2012) 4:719–724 723

123

of microsatellite loci in neotropical Heliconius butterflies. Mol

Ecol Notes 2:398–401

Gilbert LE (1969) On the ecology of natural dispersal: Dione monetapoeyii in Texas (Nymphalidae). J Lepid Soc 23:177–185

Lumley LM, Davis CS, Sperling FAH (2009) Isolation and charac-

terization of eight microsatellite loci in the spruce budworm

species Choristoneura fumiferana and Choristoneura occiden-talis, and cross-species amplification in related tortricid moths.

Conserv Genet Resour 1:501–504

Mavarez J, Gonzalez M (2006) A set of microsatellite markers for

Heliconius melpomene and closely related species. Mol Ecol

Notes 6:20–23

Meglecz E, Solignac M (1998) Microsatellite loci for Parnassiusmnemosyne (Lepidoptera). Hereditas 128:179–180

Meglecz E, Petenian F, Danchin E et al (2004) High similarity

between flanking regions of different microsatellites detected

within each of two species of Lepidoptera: Parnassius apolloand Euphydryas aurinia. Mol Ecol 13:1693–1700

Neve G, Meglecz E (2000) Microsatellite frequencies in different

taxa. Trends Ecol Evol 15:376–377

Penz CM, Peggie D (2003) Phylogenetic relationships among

Heliconiinae genera based on morphology (Lepidoptera: Nymp-

halidae). Syst Entomol 28:451–479

Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:

223–225

Rozen S, Skaletsky HJ (2000) Primer3 on the www for general users

and for biologist programmers. In: Krawetz S, Misener S (eds)

Bioinformatics methods and protocols: methods in molecular

biology. Humana Press, Totowa, pp 365–386

Sambrook J, Russell DW (2002) Molecular cloning: a laboratory

manual, 3rd edn. Science Press of China, Beijing, pp 1723–1726

Sinama M, Dubut V, Costedoat C, Gilles A, Junker M et al (2011)

Challenges of microsatellite development in Lepidoptera: Eu-phydryas aurinia (Nymphalidae) as a case study. Eur J Entomol

108:261–266

van Oosterhout C, Hutchinson WF, Wills DPM et al (2004) Micro-

Checker: software for identifying and correcting genotyping

errors in microsatellite data. Mol Ecol Notes 4:535–538

Zhang DX (2004) Lepidopteran microsatellite DNA: redundant but

promising. Trends Ecol Evol 19:507–509

724 Conservation Genet Resour (2012) 4:719–724

123