development of a new family of normalized modulus reduction and materials dumping curves darendeli...

25
DEVELOPMENT OF A NEW FAMILY OF NORMALIZED MODULUS REDUCTION AND MATERIAL DAMPING CURVES by MEHMET BARIS DARENDELI, B.S., M.S. DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY The University of Texas at Austin August, 2001

Upload: omar45

Post on 28-Jul-2015

455 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

DEVELOPMENT OF A NEW FAMILY OF NORMALIZED

MODULUS REDUCTION AND MATERIAL DAMPING

CURVES

by

MEHMET BARIS DARENDELI, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

The University of Texas at Austin

August, 2001

Page 2: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

249

CHAPTER 10

RECOMMENDED NORMALIZED MODULUS REDUCTION

AND MATERIAL DAMPING CURVES

10.1 INTRODUCTION

Mean values of the normalized shear modulus and the material damping

ratio (predicted by the calibrated model) at strain amplitudes ranging from 1x10-5

% to 1 % are presented in this chapter. As discussed in Chapter Nine, the mean

values of model parameters can be utilized to construct normalized modulus

reduction and material damping curves for different soil types and loading

conditions. However, the reader must use caution when a soil type or loading

condition not represented in the database is to be evaluated with these equations.

Since the impact of overconsolidation ratio is relatively small and ten

cycles at 1 Hz loading frequency closely represents the characteristics of

earthquake shaking, these parameters are fixed for the recommended curves. In

this chapter, recommended normalized modulus reduction and material damping

curves are presented for soils with a broad range of plasticities confined at a broad

range of mean effective stresses.

These curves are presented from two different perspectives so that the

reader can interpolate the data for different values of soil plasticity and confining

pressure. If the reader has to extrapolate for soil plasticities and confining

pressures not represented in the database, use of caution is suggested.

Page 3: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

250

10.2 EFFECT OF PI AT A GIVEN MEAN EFFECTIVE STRESS

Figures 10.1 through 10.4 show the effect of PI on nonlinear soil behavior

at 0.25, 1.0, 4.0 and 16 atm, respectively. These normalized modulus and material

damping curves are presented so that the reader can interpolate these relationships

for soils with different plasticities. Also, these curves are tabulated in Tables 10.1

through 10.8. The figures and tables are organized so that the G/Gmax – log γ and

D – log γ curves are followed on the next page by the associated tables.

10.3 EFFECT OF MEAN EFFECTIVE STRESS ON A SOIL WITH GIVEN PLASTICITY

Figures 10.5 through 10.9 show the effect of mean effective stress on

nonlinear behavior of soils with 0, 15, 30, 50 and 100 % plasticity, respectively.

These normalized modulus and material damping curves are presented so that the

reader can interpolate these relationships for soil layers at different depths

confined under different mean effective stresses. Also, these curves are tabulated

in Tables 10.9 through 10.18. The figures and tables are organized so that the

G/Gmax – log γ and D – log γ curves are followed on the next page by the

associated tables.

10.4 IMPACT OF UTILIZING THE RECOMMENDED CURVES ON EARTHQUAKE RESPONSE PREDICTIONS OF DEEP SOIL SITES

The impact of utilizing the recommended curves when assigning nonlinear

soil properties in site response analyses of deep (>50 m) soil sites is discussed in

this section. This point is addressed because site response analyses are often

performed using average, pressure-independent generic curves.

Page 4: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

251

1.2

1.0

0.8

0.6

0.4

0.2

0.0

G/Gmax G/Gmax Prediction( σo' = 0.25 atm, N = 10 cycles, f = 1 Hz, OCR = 1 )

(a)

25

20

15

10

5

0

D, %

0.0001 0.001 0.01 0.1 1

Shearing Strain, γ ,%

Material Damping PredictionPI = 0 %PI = 15 %PI = 30 %PI = 50 %PI = 100 %

(b)

Figure 10.1 Effect of PI on (a) normalized modulus reduction and (b) material damping curves at 0.25 atm confining pressure

Page 5: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

252

Table 10.1 Effect of PI on normalized modulus reduction curve: σo’ = 0.25 atm

Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 %1.00E-05 0.999 0.999 1.000 1.000 1.0002.20E-05 0.998 0.999 0.999 0.999 1.0004.84E-05 0.996 0.997 0.998 0.998 0.9991.00E-04 0.993 0.995 0.996 0.997 0.9982.20E-04 0.986 0.990 0.992 0.994 0.9964.84E-04 0.971 0.979 0.983 0.987 0.9911.00E-03 0.944 0.959 0.968 0.975 0.9832.20E-03 0.891 0.919 0.936 0.949 0.9664.84E-03 0.799 0.847 0.876 0.900 0.9321.00E-02 0.671 0.739 0.783 0.822 0.8762.20E-02 0.497 0.579 0.637 0.692 0.7744.84E-02 0.324 0.400 0.459 0.521 0.6251.00E-01 0.197 0.255 0.303 0.358 0.4612.20E-01 0.107 0.142 0.174 0.213 0.2934.84E-01 0.055 0.074 0.093 0.116 0.1671.00E+00 0.029 0.040 0.050 0.063 0.093

Table 10.2 Effect of PI on material damping curve: σo’ = 0.25 atm

Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 %1.00E-05 1.201 1.489 1.778 2.164 3.1292.20E-05 1.207 1.493 1.781 2.166 3.1314.84E-05 1.226 1.506 1.791 2.174 3.1361.00E-04 1.257 1.528 1.808 2.187 3.1442.20E-04 1.330 1.579 1.848 2.217 3.1634.84E-04 1.487 1.690 1.933 2.282 3.2041.00E-03 1.792 1.906 2.101 2.411 3.2862.20E-03 2.458 2.387 2.476 2.702 3.4724.84E-03 3.762 3.358 3.249 3.310 3.8681.00E-02 5.821 4.977 4.581 4.386 4.5932.20E-02 9.097 7.778 7.010 6.441 6.0704.84E-02 12.993 11.489 10.477 9.589 8.5791.00E-01 16.376 15.064 14.088 13.137 11.7982.20E-01 19.181 18.334 17.640 16.904 15.7164.84E-01 20.829 20.515 20.208 19.849 19.2131.00E+00 21.393 21.507 21.542 21.547 21.544

Page 6: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

253

1.2

1.0

0.8

0.6

0.4

0.2

0.0

G/Gmax G/Gmax Prediction( σo' = 1 atm, N = 10 cycles, f = 1 Hz, OCR = 1 )

(a)

25

20

15

10

5

0

D, %

0.0001 0.001 0.01 0.1 1

Shearing Strain, γ ,%

Material Damping PredictionPI = 0 %PI = 15 %PI = 30 %PI = 50 %PI = 100 %

(b)

Figure 10.2 Effect of PI on (a) normalized modulus reduction and (b) material damping curves at 1.0 atm confining pressure

Page 7: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

254

Table 10.3 Effect of PI on normalized modulus reduction curve: σo’ = 1.0 atm

Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 %1.00E-05 0.999 1.000 1.000 1.000 1.0002.20E-05 0.999 0.999 0.999 1.000 1.0004.84E-05 0.998 0.998 0.999 0.999 0.9991.00E-04 0.995 0.997 0.997 0.998 0.9992.20E-04 0.991 0.993 0.995 0.996 0.9974.84E-04 0.981 0.986 0.989 0.992 0.9941.00E-03 0.964 0.973 0.979 0.984 0.9892.20E-03 0.928 0.947 0.958 0.967 0.9784.84E-03 0.861 0.896 0.917 0.934 0.9561.00E-02 0.761 0.816 0.849 0.878 0.9172.20E-02 0.607 0.682 0.732 0.778 0.8434.84E-02 0.428 0.509 0.569 0.629 0.7221.00E-01 0.277 0.348 0.404 0.465 0.5712.20E-01 0.157 0.205 0.248 0.296 0.3924.84E-01 0.083 0.111 0.137 0.169 0.2381.00E+00 0.044 0.060 0.076 0.095 0.138

Table 10.4 Effect of PI on material damping curve: σo’ = 1.0 atm

Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 %1.00E-05 0.804 0.997 1.191 1.450 2.0962.20E-05 0.808 1.000 1.193 1.451 2.0974.84E-05 0.820 1.008 1.199 1.456 2.1001.00E-04 0.839 1.021 1.209 1.464 2.1052.20E-04 0.884 1.053 1.234 1.482 2.1174.84E-04 0.982 1.122 1.287 1.523 2.1431.00E-03 1.174 1.257 1.392 1.603 2.1932.20E-03 1.602 1.562 1.628 1.786 2.3094.84E-03 2.474 2.198 2.128 2.175 2.5601.00E-02 3.953 3.317 3.028 2.888 3.0292.20E-02 6.579 5.440 4.803 4.343 4.0294.84E-02 10.184 8.650 7.664 6.824 5.8761.00E-01 13.788 12.217 11.092 10.024 8.5412.20E-01 17.199 15.951 14.966 13.941 12.2794.84E-01 19.565 18.829 18.185 17.458 16.1321.00E+00 20.716 20.460 20.178 19.815 19.069

Page 8: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

255

1.2

1.0

0.8

0.6

0.4

0.2

0.0

G/Gmax G/Gmax Prediction( σo' = 4 atm, N = 10 cycles, f = 1 Hz, OCR = 1 )

(a)

25

20

15

10

5

0

D, %

0.0001 0.001 0.01 0.1 1

Shearing Strain, γ ,%

Material Damping PredictionPI = 0 %PI = 15 %PI = 30 %PI = 50 %PI = 100 %

(b)

Figure 10.3 Effect of PI on (a) normalized modulus reduction and (b) material damping curves at 4.0 atm confining pressure

Page 9: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

256

Table 10.5 Effect of PI on normalized modulus reduction curve: σo’ = 4.0 atm

Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 %1.00E-05 1.000 1.000 1.000 1.000 1.0002.20E-05 0.999 1.000 1.000 1.000 1.0004.84E-05 0.998 0.999 0.999 0.999 1.0001.00E-04 0.997 0.998 0.998 0.999 0.9992.20E-04 0.994 0.996 0.997 0.997 0.9984.84E-04 0.988 0.991 0.993 0.995 0.9961.00E-03 0.976 0.983 0.986 0.989 0.9932.20E-03 0.952 0.965 0.972 0.978 0.9864.84E-03 0.906 0.931 0.945 0.956 0.9711.00E-02 0.832 0.873 0.898 0.918 0.9452.20E-02 0.706 0.770 0.810 0.845 0.8934.84E-02 0.538 0.618 0.673 0.725 0.8021.00E-01 0.374 0.454 0.514 0.575 0.6752.20E-01 0.225 0.287 0.339 0.396 0.5014.84E-01 0.123 0.163 0.199 0.241 0.3271.00E+00 0.067 0.091 0.113 0.140 0.200

Table 10.6 Effect of PI on material damping curve: σo’ = 4.0 atm

Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 %1.00E-05 0.539 0.668 0.798 0.971 1.4042.20E-05 0.541 0.670 0.799 0.972 1.4054.84E-05 0.548 0.675 0.803 0.975 1.4071.00E-04 0.560 0.683 0.809 0.980 1.4102.20E-04 0.588 0.703 0.824 0.991 1.4174.84E-04 0.649 0.745 0.857 1.016 1.4331.00E-03 0.769 0.829 0.922 1.066 1.4642.20E-03 1.039 1.021 1.070 1.180 1.5374.84E-03 1.607 1.428 1.388 1.426 1.6931.00E-02 2.618 2.173 1.977 1.886 1.9912.20E-02 4.572 3.684 3.206 2.871 2.6484.84E-02 7.621 6.235 5.387 4.693 3.9341.00E-01 11.134 9.482 8.357 7.333 5.9722.20E-01 14.946 13.400 12.231 11.056 9.2264.84E-01 17.990 16.866 15.935 14.917 13.1181.00E+00 19.792 19.158 18.571 17.876 16.513

Page 10: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

257

1.2

1.0

0.8

0.6

0.4

0.2

0.0

G/Gmax G/Gmax Prediction( σo' = 16 atm, N = 10 cycles, f = 1 Hz, OCR = 1 )

(a)

25

20

15

10

5

0

D, %

0.0001 0.001 0.01 0.1 1

Shearing Strain, γ ,%

Material Damping PredictionPI = 0 %PI = 15 %PI = 30 %PI = 50 %PI = 100 %

(b)

Figure 10.4 Effect of PI on (a) normalized modulus reduction and (b) material damping curves at 16 atm confining pressure

Page 11: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

258

Table 10.7 Effect of PI on normalized modulus reduction curve: σo’ = 16 atm

Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 %1.00E-05 1.000 1.000 1.000 1.000 1.0002.20E-05 1.000 1.000 1.000 1.000 1.0004.84E-05 0.999 0.999 0.999 1.000 1.0001.00E-04 0.998 0.999 0.999 0.999 0.9992.20E-04 0.996 0.997 0.998 0.998 0.9994.84E-04 0.992 0.994 0.996 0.997 0.9981.00E-03 0.985 0.989 0.991 0.993 0.9962.20E-03 0.969 0.977 0.982 0.986 0.9914.84E-03 0.938 0.954 0.964 0.972 0.9811.00E-02 0.885 0.915 0.932 0.946 0.9642.20E-02 0.789 0.839 0.869 0.895 0.9294.84E-02 0.645 0.716 0.763 0.804 0.8631.00E-01 0.482 0.564 0.623 0.679 0.7642.20E-01 0.311 0.386 0.444 0.506 0.6104.84E-01 0.179 0.233 0.279 0.331 0.4311.00E+00 0.101 0.135 0.166 0.203 0.280

Table 10.8 Effect of PI on material damping curve: σo’ = 16 atm

Shearing Strain (%) PI = 0 % PI = 15 % PI = 30 % PI = 50 % PI = 100 %1.00E-05 0.361 0.448 0.534 0.650 0.9412.20E-05 0.362 0.449 0.535 0.651 0.9414.84E-05 0.367 0.452 0.538 0.653 0.9421.00E-04 0.374 0.457 0.541 0.656 0.9442.20E-04 0.391 0.469 0.551 0.663 0.9494.84E-04 0.429 0.495 0.571 0.678 0.9581.00E-03 0.503 0.547 0.611 0.709 0.9782.20E-03 0.673 0.667 0.704 0.780 1.0234.84E-03 1.035 0.924 0.903 0.934 1.1201.00E-02 1.702 1.407 1.281 1.227 1.3082.20E-02 3.075 2.433 2.100 1.871 1.7294.84E-02 5.449 4.318 3.659 3.138 2.5891.00E-01 8.573 7.021 6.022 5.151 4.0492.20E-01 12.483 10.780 9.557 8.381 6.6514.84E-01 16.070 14.619 13.472 12.268 10.2411.00E+00 18.528 17.522 16.655 15.677 13.847

Page 12: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

259

1.2

1.0

0.8

0.6

0.4

0.2

0.0

G/Gmax G/Gmax Prediction( PI = 0 %, N = 10 cycles, f = 1 Hz, OCR = 1 )

(a)

25

20

15

10

5

0

D, %

0.0001 0.001 0.01 0.1 1

Shearing Strain, γ ,%

Material Damping Predictionσo' = 0.25 atmσo' = 1 atmσo' = 4 atmσo' = 16 atm

(b)

Figure 10.5 Effect of mean effective stress on (a) normalized modulus reduction and (b) material damping curves of a nonplastic soil

Page 13: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

260

Table 10.9 Effect of σo’ on normalized modulus reduction curve: PI = 0 %

Shearing Strain (%) σo' = 0.25 atm σo' = 1.0 atm σo' = 4.0 atm σo' = 16 atm1.00E-05 0.999 0.999 1.000 1.0002.20E-05 0.998 0.999 0.999 1.0004.84E-05 0.996 0.998 0.998 0.9991.00E-04 0.993 0.995 0.997 0.9982.20E-04 0.986 0.991 0.994 0.9964.84E-04 0.971 0.981 0.988 0.9921.00E-03 0.944 0.964 0.976 0.9852.20E-03 0.891 0.928 0.952 0.9694.84E-03 0.799 0.861 0.906 0.9381.00E-02 0.671 0.761 0.832 0.8852.20E-02 0.497 0.607 0.706 0.7894.84E-02 0.324 0.428 0.538 0.6451.00E-01 0.197 0.277 0.374 0.4822.20E-01 0.107 0.157 0.225 0.3114.84E-01 0.055 0.083 0.123 0.1791.00E+00 0.029 0.044 0.067 0.101

Table 10.10 Effect of σo’ on material damping curve: PI = 0 %

Shearing Strain (%) σo' = 0.25 atm σo' = 1.0 atm σo' = 4.0 atm σo' = 16 atm1.00E-05 1.201 0.804 0.539 0.3612.20E-05 1.207 0.808 0.541 0.3624.84E-05 1.226 0.820 0.548 0.3671.00E-04 1.257 0.839 0.560 0.3742.20E-04 1.330 0.884 0.588 0.3914.84E-04 1.487 0.982 0.649 0.4291.00E-03 1.792 1.174 0.769 0.5032.20E-03 2.458 1.602 1.039 0.6734.84E-03 3.762 2.474 1.607 1.0351.00E-02 5.821 3.953 2.618 1.7022.20E-02 9.097 6.579 4.572 3.0754.84E-02 12.993 10.184 7.621 5.4491.00E-01 16.376 13.788 11.134 8.5732.20E-01 19.181 17.199 14.946 12.4834.84E-01 20.829 19.565 17.990 16.0701.00E+00 21.393 20.716 19.792 18.528

Page 14: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

261

1.2

1.0

0.8

0.6

0.4

0.2

0.0

G/Gmax G/Gmax Prediction( PI = 15 %, N = 10 cycles, f = 1 Hz, OCR = 1 )

(a)

25

20

15

10

5

0

D, %

0.0001 0.001 0.01 0.1 1

Shearing Strain, γ ,%

Material Damping Predictionσo' = 0.25 atmσo' = 1 atmσo' = 4 atmσo' = 16 atm

(b)

Figure 10.6 Effect of mean effective stress on (a) normalized modulus reduction and (b) material damping curves of a soil with PI = 15 %

Page 15: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

262

Table 10.11 Effect of σo’ on normalized modulus reduction curve: PI = 15 %

Shearing Strain (%) σo' = 0.25 atm σo' = 1.0 atm σo' = 4.0 atm σo' = 16 atm1.00E-05 0.999 1.000 1.000 1.0002.20E-05 0.999 0.999 1.000 1.0004.84E-05 0.997 0.998 0.999 0.9991.00E-04 0.995 0.997 0.998 0.9992.20E-04 0.990 0.993 0.996 0.9974.84E-04 0.979 0.986 0.991 0.9941.00E-03 0.959 0.973 0.983 0.9892.20E-03 0.919 0.947 0.965 0.9774.84E-03 0.847 0.896 0.931 0.9541.00E-02 0.739 0.816 0.873 0.9152.20E-02 0.579 0.682 0.770 0.8394.84E-02 0.400 0.509 0.618 0.7161.00E-01 0.255 0.348 0.454 0.5642.20E-01 0.142 0.205 0.287 0.3864.84E-01 0.074 0.111 0.163 0.2331.00E+00 0.040 0.060 0.091 0.135

Table 10.12 Effect of σo’ on material damping curve: PI = 15 %

Shearing Strain (%) σo' = 0.25 atm σo' = 1.0 atm σo' = 4.0 atm σo' = 16 atm1.00E-05 1.489 0.997 0.668 0.4482.20E-05 1.493 1.000 0.670 0.4494.84E-05 1.506 1.008 0.675 0.4521.00E-04 1.528 1.021 0.683 0.4572.20E-04 1.579 1.053 0.703 0.4694.84E-04 1.690 1.122 0.745 0.4951.00E-03 1.906 1.257 0.829 0.5472.20E-03 2.387 1.562 1.021 0.6674.84E-03 3.358 2.198 1.428 0.9241.00E-02 4.977 3.317 2.173 1.4072.20E-02 7.778 5.440 3.684 2.4334.84E-02 11.489 8.650 6.235 4.3181.00E-01 15.064 12.217 9.482 7.0212.20E-01 18.334 15.951 13.400 10.7804.84E-01 20.515 18.829 16.866 14.6191.00E+00 21.507 20.460 19.158 17.522

Page 16: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

263

1.2

1.0

0.8

0.6

0.4

0.2

0.0

G/GmaxG/Gmax Prediction( PI = 30 %, N = 10 cycles, f = 1 Hz, OCR = 1 )

(a)

25

20

15

10

5

0

D, %

0.0001 0.001 0.01 0.1 1

Shearing Strain, γ ,%

Material Damping Predictionσo' = 0.25 atmσo' = 1 atmσo' = 4 atmσo' = 16 atm

(b)

Figure 10.7 Effect of mean effective stress on (a) normalized modulus reduction and (b) material damping curves of a soil with PI = 30 %

Page 17: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

264

Table 10.13 Effect of σo’ on normalized modulus reduction curve: PI = 30 %

Shearing Strain (%) σo' = 0.25 atm σo' = 1.0 atm σo' = 4.0 atm σo' = 16 atm1.00E-05 1.000 1.000 1.000 1.0002.20E-05 0.999 0.999 1.000 1.0004.84E-05 0.998 0.999 0.999 0.9991.00E-04 0.996 0.997 0.998 0.9992.20E-04 0.992 0.995 0.997 0.9984.84E-04 0.983 0.989 0.993 0.9961.00E-03 0.968 0.979 0.986 0.9912.20E-03 0.936 0.958 0.972 0.9824.84E-03 0.876 0.917 0.945 0.9641.00E-02 0.783 0.849 0.898 0.9322.20E-02 0.637 0.732 0.810 0.8694.84E-02 0.459 0.569 0.673 0.7631.00E-01 0.303 0.404 0.514 0.6232.20E-01 0.174 0.248 0.339 0.4444.84E-01 0.093 0.137 0.199 0.2791.00E+00 0.050 0.076 0.113 0.166

Table 10.14 Effect of σo’ on material damping curve: PI = 30 %

Shearing Strain (%) σo' = 0.25 atm σo' = 1.0 atm σo' = 4.0 atm σo' = 16 atm1.00E-05 1.778 1.191 0.798 0.5342.20E-05 1.781 1.193 0.799 0.5354.84E-05 1.791 1.199 0.803 0.5381.00E-04 1.808 1.209 0.809 0.5412.20E-04 1.848 1.234 0.824 0.5514.84E-04 1.933 1.287 0.857 0.5711.00E-03 2.101 1.392 0.922 0.6112.20E-03 2.476 1.628 1.070 0.7044.84E-03 3.249 2.128 1.388 0.9031.00E-02 4.581 3.028 1.977 1.2812.20E-02 7.010 4.803 3.206 2.1004.84E-02 10.477 7.664 5.387 3.6591.00E-01 14.088 11.092 8.357 6.0222.20E-01 17.640 14.966 12.231 9.5574.84E-01 20.208 18.185 15.935 13.4721.00E+00 21.542 20.178 18.571 16.655

Page 18: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

265

1.2

1.0

0.8

0.6

0.4

0.2

0.0

G/GmaxG/Gmax Prediction( PI = 50 %, N = 10 cycles, f = 1 Hz, OCR = 1 )

(a)

25

20

15

10

5

0

D, %

0.0001 0.001 0.01 0.1 1

Shearing Strain, γ ,%

Material Damping Predictionσo' = 0.25 atmσo' = 1 atmσo' = 4 atmσo' = 16 atm

(b)

Figure 10.8 Effect of mean effective stress on (a) normalized modulus reduction and (b) material damping curves of a soil with PI = 50 %

Page 19: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

266

Table 10.15 Effect of σo’ on normalized modulus reduction curve: PI = 50 %

Shearing Strain (%) σo' = 0.25 atm σo' = 1.0 atm σo' = 4.0 atm σo' = 16 atm1.00E-05 1.000 1.000 1.000 1.0002.20E-05 0.999 1.000 1.000 1.0004.84E-05 0.998 0.999 0.999 1.0001.00E-04 0.997 0.998 0.999 0.9992.20E-04 0.994 0.996 0.997 0.9984.84E-04 0.987 0.992 0.995 0.9971.00E-03 0.975 0.984 0.989 0.9932.20E-03 0.949 0.967 0.978 0.9864.84E-03 0.900 0.934 0.956 0.9721.00E-02 0.822 0.878 0.918 0.9462.20E-02 0.692 0.778 0.845 0.8954.84E-02 0.521 0.629 0.725 0.8041.00E-01 0.358 0.465 0.575 0.6792.20E-01 0.213 0.296 0.396 0.5064.84E-01 0.116 0.169 0.241 0.3311.00E+00 0.063 0.095 0.140 0.203

Table 10.16 Effect of σo’ on material damping curve: PI = 50 %

Shearing Strain (%) σo' = 0.25 atm σo' = 1.0 atm σo' = 4.0 atm σo' = 16 atm1.00E-05 2.164 1.450 0.971 0.6502.20E-05 2.166 1.451 0.972 0.6514.84E-05 2.174 1.456 0.975 0.6531.00E-04 2.187 1.464 0.980 0.6562.20E-04 2.217 1.482 0.991 0.6634.84E-04 2.282 1.523 1.016 0.6781.00E-03 2.411 1.603 1.066 0.7092.20E-03 2.702 1.786 1.180 0.7804.84E-03 3.310 2.175 1.426 0.9341.00E-02 4.386 2.888 1.886 1.2272.20E-02 6.441 4.343 2.871 1.8714.84E-02 9.589 6.824 4.693 3.1381.00E-01 13.137 10.024 7.333 5.1512.20E-01 16.904 13.941 11.056 8.3814.84E-01 19.849 17.458 14.917 12.2681.00E+00 21.547 19.815 17.876 15.677

Page 20: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

267

1.2

1.0

0.8

0.6

0.4

0.2

0.0

G/GmaxG/Gmax Prediction( PI = 100 %, N = 10 cycles, f = 1 Hz, OCR = 1 )

(a)

25

20

15

10

5

0

D, %

0.0001 0.001 0.01 0.1 1

Shearing Strain, γ ,%

Material Damping Predictionσo' = 0.25 atmσo' = 1 atmσo' = 4 atmσo' = 16 atm

(b)

Figure 10.9 Effect of mean effective stress on (a) normalized modulus reduction and (b) material damping curves of a soil with PI = 100 %

Page 21: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

268

Table 10.17 Effect of σo’ on normalized modulus reduction curve: PI = 100 %

Shearing Strain (%) σo' = 0.25 atm σo' = 1.0 atm σo' = 4.0 atm σo' = 16 atm1.00E-05 1.000 1.000 1.000 1.0002.20E-05 1.000 1.000 1.000 1.0004.84E-05 0.999 0.999 1.000 1.0001.00E-04 0.998 0.999 0.999 0.9992.20E-04 0.996 0.997 0.998 0.9994.84E-04 0.991 0.994 0.996 0.9981.00E-03 0.983 0.989 0.993 0.9962.20E-03 0.966 0.978 0.986 0.9914.84E-03 0.932 0.956 0.971 0.9811.00E-02 0.876 0.917 0.945 0.9642.20E-02 0.774 0.843 0.893 0.9294.84E-02 0.625 0.722 0.802 0.8631.00E-01 0.461 0.571 0.675 0.7642.20E-01 0.293 0.392 0.501 0.6104.84E-01 0.167 0.238 0.327 0.4311.00E+00 0.093 0.138 0.200 0.280

Table 10.18 Effect of σo’ on material damping curve: PI = 100 %

Shearing Strain (%) σo' = 0.25 atm σo' = 1.0 atm σo' = 4.0 atm σo' = 16 atm1.00E-05 3.129 2.096 1.404 0.9412.20E-05 3.131 2.097 1.405 0.9414.84E-05 3.136 2.100 1.407 0.9421.00E-04 3.144 2.105 1.410 0.9442.20E-04 3.163 2.117 1.417 0.9494.84E-04 3.204 2.143 1.433 0.9581.00E-03 3.286 2.193 1.464 0.9782.20E-03 3.472 2.309 1.537 1.0234.84E-03 3.868 2.560 1.693 1.1201.00E-02 4.593 3.029 1.991 1.3082.20E-02 6.070 4.029 2.648 1.7294.84E-02 8.579 5.876 3.934 2.5891.00E-01 11.798 8.541 5.972 4.0492.20E-01 15.716 12.279 9.226 6.6514.84E-01 19.213 16.132 13.118 10.2411.00E+00 21.544 19.069 16.513 13.847

Page 22: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

269

To illustrate the impact of utilizing the recommended curves on site

response analyses, a 100-m thick silty sand (SM) deposit was modeled in twenty

six layers and analyzed using the shareware version of ProShake (EduPro, 1998).

A confining-pressure-dependent shear wave velocity, Vs, profile was used (as

shown in Figure 10.10) along with 1500-m/sec Vs at the half space. The Topanga

motion (Maximum Horizontal Acceleration, MHA, = 0.33 g) recorded during the

1994 Northridge earthquake was used as the input “rock” motion.

100

80

60

40

20

0

Depth, m

10008006004002000

Vs, m/sec

Figure 10.10 Shear wave velocity profile assumed for the 100-m thick silty sand deposit

Page 23: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

270

In Figure 10.11, the acceleration response spectra from two analyses are

presented: 1) using the average generic curves (Seed et al., 1986) to model all

layers, and 2) using the recommended nonlinear curves interpolated for each soil

layer. The response spectrum of the input motion is also shown in this figure. The

response spectra indicate that the recommended nonlinear curves produce an

MHA much higher than that predicted by the average generic curves (0.54 g vs.

0.37 g). Additionally, larger spectral accelerations (typically 30 % to 50 % higher)

are calculated at all periods less than 1 sec for the analysis utilizing the

recommended nonlinear curves.

As discussed in Darendeli et al. (2001) the impact of utilizing a family of

confining-pressure-dependent curves is expected to be more pronounced for

deeper sites subjected to higher intensity input motions due to lower damping

introduced by the confining-pressure-dependent curves. At longer spectral periods

(T > 1 sec), the response is dominated by the overall stiffness of the site. As a

result, the confining-pressure-dependent analyses may tend to predict a smaller

response at longer periods due to the more linear response modeled by these

curves.

Page 24: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

271

2.5

2.0

1.5

1.0

0.5

0.0

Spec

tral A

ccel

erat

ion,

S a ,

g

0.01 0.1 1 10Period, T, sec

This Study (a family of mean curves for PI = 0 %)Seed et al., 1986 (mean curve for sands)Input Motion

5 % Damping

Figure 10.11 An example of utilizing the recommended normalized modulus reduction and material damping curves and its impact on estimated nonlinear site response

Page 25: Development of a New Family of Normalized Modulus Reduction and Materials Dumping Curves Darendeli PhD-2008)

272

10.5 SUMMARY

In this chapter, recommended normalized modulus reduction and material

damping curves are presented for soils with a broad range of plasticities confined

over a broad range of mean effective stresses.

The impact of utilizing the recommended curves when assigning nonlinear

soil properties in site response analyses is illustrated by analyzing a 100-m thick

silty sand (SM) deposit using average generic curves (Seed et al., 1986) to model

all twenty six layers, and the recommended nonlinear curves interpolated for each

soil layer. Larger spectral accelerations (typically 30 % to 50 % higher) are

calculated at all periods less than 1 sec for the analysis utilizing the recommended

nonlinear curves than those calculated for the analysis utilizing average generic

curves.