development of chloroplast- based indel markers for the

6
้Ÿ“่—ฅไฝœ่ชŒ(Korean J. Medicinal Crop Sci.) 29(1) : 11 - 16 (2021) ISSN(Print) 1225-9306 ISSN(Online) 2288-0186 http://www.medicinalcrop.org http://dx.doi.org/10.7783/KJMCS.2021.29.1.11 11 ์˜ค๋ฏธ์ž๊ณผ ์‹๋ฌผ ์ข… ํŒ๋ณ„์„ ์œ„ํ•œ ์—ฝ๋ก์ฒด ๊ธฐ๋ฐ˜ InDel ๋งˆ์ปค์˜ ๊ฐœ๋ฐœ ์ •ํฌ์ • 1 ยท ์ด์žฌ๋ณต 2 ยท ๊ธธ์ง„์ˆ˜ 3 ยท ํ™์ฐฝํ‘œ 4 ยท ๊ฐ•์ƒํ˜ธ 5 ยท ๊ถŒ์ˆ˜์ง„ 6 ยท ๊น€ํšจ์ง„ 7 ยท ๊น€์ฐฝ๊ตญ 8 ยท ์ด์ •ํ˜ธ 9 ยท ์ด์ด 10โ€  Development of Chloroplast-based InDel Markers for the Discrimination of Schisandraceae Plant Species Hee Jeong Jeong 1 , Jea Bok Lee 2 , Jin Su Gil 3 , Chang Pyo Hong 4 , Sang Ho Kang 5 , Soo Jin Kwon 6 , Hyo Jin Kim 7 , Chang Kug Kim 8 , Jung Ho Lee 9 and Yi Lee 10โ€  ์„œ ์–ธ ์˜ค๋ฏธ์ž๋Š” ์˜ค๋ฏธ์ž๊ณผ (Schisandraceae) ์— ์†ํ•˜๋Š” ๋ฉ๊ตด์„ฑ ์‹๋ฌผ ์ด๋‹ค. ์˜ค๋ฏธ์ž๊ณผ๋Š” Schisandra ์†, Illicium ์†, Kadsura ์† ๋“ฑ 3 ์†์„ ํฌํ•จํ•˜๋ฉฐ (APG III, APG IV), ์ด๋“ค 3 ์†์€ ๋Œ€ ํ•œ๋ฏผ๊ตญ์— ๋ถ„ํฌํ•˜๊ณ  ์žˆ๋‹ค (Lee, 1979; APG, 2009, 2016). Schisandra ์†์—๋Š” ๋‚™์—ฝํ™œ์—ฝ ๋ฉ๊ตด์„ฑ ์‹๋ฌผ์ธ ์˜ค๋ฏธ์ž [Schisandra chinensis (Turcz.) Baill.] ์™€ ํ‘์˜ค๋ฏธ์ž [(Schisandra repanda (Siebold & Zucc.) Radlk.)] ๋“ฑ 2 ์ข…์˜ ์‹๋ฌผ์ด ์žˆ๋‹ค (Lee, 1979). ํ‘์˜ค๋ฏธ์ž์˜ ํ•™๋ช…์€ S. repanda ์ด๋‚˜ S. nigra ๋ผ๋Š” ์ด๋ช…์„ ๊ฐ– ๊ณ  ์žˆ์œผ๋ฉฐ ์•”์ˆ˜ ๋”ด๊ทธ๋ฃจ์ธ ์‹๋ฌผ์ด๋‹ค (Kim et al., 1999). Kadsura ์†์—๋Š” ์ƒ๋กํ™œ์—ฝ ๋ฉ๊ตด์„ฑ ์‹๋ฌผ์ธ ๋‚จ์˜ค๋ฏธ์ž [Kadsura japonica (L.) Dunal] 1 ์ข…์˜ ์‹๋ฌผ์ด ์žˆ๋‹ค (Lee, 1979). ABSTRACT Received: 2020 October 8 1st Revised: 2020 November 4 2nd Revised: 2020 December 30 3rd Revised: 2021 January 6 Accepted: 2021 January 6 This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/ by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: The three Schisandracae species, Schisandra chinensis, Schisandra repanda, and Kadsura japonica, which are used as raw materials for the production of herbal medicines, are readily confused. However, of these three species, only S. chinensis is formally registered as a medicinal herb in the Korean Pharmacopeia. In order to facilitate the clear identification of S. chin- ensis, S. repanda, and K. japonica, we developed insertion or deletion (InDel) markers by compar- ing the chloroplast sequences of the three species. Methods and Results: Genomic DNA was extracted from the leaves of S. chinensis, S. repanda, and K. japonica, and next generation sequencing (NGS) analysis was performed using the Illumina HiSeq-2500 platform. Chloroplast sequences for the three species were obtained and compared to identify polymorphic loci. Primers were designed for those InDel loci showing polymorphism in all three species, and four InDel markers were accordingly developed and successfully used for species discrimination. Conclusions: In this study, we developed four markers that can be used to discriminate S. chinen- sis, S. repanda, and K. japonica at the molecular level. Key Words: Kadsura japonica, Schisandra chinensis, Schisandra repanda, Chloroplast, Insertion or Deletion Marker Corresponding author: (Phone) +82-43-261-3373 (E-mail) [email protected] ์ถฉ๋ถ๋Œ€ํ•™๊ต ํŠน์šฉ์‹๋ฌผํ•™๊ณผ ๋Œ€ํ•™์›์ƒ / Graduate student, Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju 28644, Korea. ์ถฉ๋ถ๋Œ€ํ•™๊ต ํŠน์šฉ์‹๋ฌผํ•™๊ณผ ๋Œ€ํ•™์›์ƒ / Graduate student, Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju 28644, Korea. ์ถฉ๋ถ๋Œ€ํ•™๊ต ํŠน์šฉ์‹๋ฌผํ•™๊ณผ ๋Œ€ํ•™์›์ƒ / Graduate student, Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju 28644, Korea. ( ์ฃผ) ํ…Œ๋ผ์  ๋ฐ”์ด์˜ค ์ด์‚ฌ / Director, Theragen Bio Co., Ltd., Suwon 16229, Korea. ๋†์ดŒ์ง„ํฅ์ฒญ ๊ตญ๋ฆฝ๋†์—…๊ณผํ•™์› ์—ฐ๊ตฌ์‚ฌ / Researcher, National Institute of Agricultural Science, RDA, Jeonju 55365, Korea. ๋†์ดŒ์ง„ํฅ์ฒญ ๊ตญ๋ฆฝ๋†์—…๊ณผํ•™์› ์—ฐ๊ตฌ๊ด€ / Researcher, National Institute of Agricultural Science, RDA, Jeonju 55365, Korea. ์ „๋ผ๋ถ๋„๋†์—…๊ธฐ์ˆ ์› ์•ฝ์šฉ์ž์›์—ฐ๊ตฌ์†Œ ์—ฐ๊ตฌ์‚ฌ / Researcher, Jeollabukdo ARES Medicinal Resource Research Institute, Jinan 55440, Korea. ๋†์ดŒ์ง„ํฅ์ฒญ ๊ตญ๋ฆฝ๋†์—…๊ณผํ•™์› ์—ฐ๊ตฌ์‚ฌ / Researcher, National Institute of Agricultural Science, RDA, Jeonju 55365, Korea. ๋…น์ƒ‰์‹๋ฌผ์—ฐ๊ตฌ์†Œ ์†Œ์žฅ / Research institute director, Green Plant Institute, Yongin 16954, Korea. ์ถฉ๋ถ๋Œ€ํ•™๊ต ํŠน์šฉ์‹๋ฌผํ•™๊ณผ ๊ต์ˆ˜ / Professor, Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea.

Upload: others

Post on 22-Nov-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

้Ÿ“่—ฅไฝœ่ชŒ(Korean J. Medicinal Crop Sci.) 29(1) : 11 โˆ’ 16 (2021) ISSN(Print) 1225-9306ISSN(Online) 2288-0186

http://www.medicinalcrop.org

http://dx.doi.org/10.7783/KJMCS.2021.29.1.11

11

์˜ค๋ฏธ์ž๊ณผ ์‹๋ฌผ ์ข… ํŒ๋ณ„์„ ์œ„ํ•œ ์—ฝ๋ก์ฒด ๊ธฐ๋ฐ˜ InDel ๋งˆ์ปค์˜ ๊ฐœ๋ฐœ

์ •ํฌ์ •1ยท์ด์žฌ๋ณต2

ยท๊ธธ์ง„์ˆ˜3ยทํ™์ฐฝํ‘œ4

ยท๊ฐ•์ƒํ˜ธ5ยท๊ถŒ์ˆ˜์ง„6

ยท๊น€ํšจ์ง„7ยท๊น€์ฐฝ๊ตญ8

ยท์ด์ •ํ˜ธ9ยท์ด์ด10โ€ 

Development of Chloroplast-based InDel Markers for the Discrimination of Schisandraceae Plant Species

Hee Jeong Jeong1, Jea Bok Lee2, Jin Su Gil3, Chang Pyo Hong4, Sang Ho Kang5, Soo Jin Kwon6, Hyo Jin Kim7, Chang Kug Kim8, Jung Ho Lee9 and Yi Lee10โ€ 

์„œ ์–ธ

์˜ค๋ฏธ์ž๋Š” ์˜ค๋ฏธ์ž๊ณผ (Schisandraceae)์— ์†ํ•˜๋Š” ๋ฉ๊ตด์„ฑ ์‹๋ฌผ

์ด๋‹ค. ์˜ค๋ฏธ์ž๊ณผ๋Š” Schisandra ์†, Illicium ์†, Kadsura ์†

๋“ฑ 3 ์†์„ ํฌํ•จํ•˜๋ฉฐ (APG III, APG IV), ์ด๋“ค 3 ์†์€ ๋Œ€

ํ•œ๋ฏผ๊ตญ์— ๋ถ„ํฌํ•˜๊ณ  ์žˆ๋‹ค (Lee, 1979; APG, 2009, 2016).

Schisandra ์†์—๋Š” ๋‚™์—ฝํ™œ์—ฝ ๋ฉ๊ตด์„ฑ ์‹๋ฌผ์ธ ์˜ค๋ฏธ์ž

[Schisandra chinensis (Turcz.) Baill.]์™€ ํ‘์˜ค๋ฏธ์ž [(Schisandra

repanda (Siebold & Zucc.) Radlk.)] ๋“ฑ 2 ์ข…์˜ ์‹๋ฌผ์ด ์žˆ๋‹ค

(Lee, 1979).

ํ‘์˜ค๋ฏธ์ž์˜ ํ•™๋ช…์€ S. repanda์ด๋‚˜ S. nigra๋ผ๋Š” ์ด๋ช…์„ ๊ฐ–

๊ณ  ์žˆ์œผ๋ฉฐ ์•”์ˆ˜ ๋”ด๊ทธ๋ฃจ์ธ ์‹๋ฌผ์ด๋‹ค (Kim et al., 1999).

Kadsura ์†์—๋Š” ์ƒ๋กํ™œ์—ฝ ๋ฉ๊ตด์„ฑ ์‹๋ฌผ์ธ ๋‚จ์˜ค๋ฏธ์ž [Kadsura

japonica (L.) Dunal] 1 ์ข…์˜ ์‹๋ฌผ์ด ์žˆ๋‹ค (Lee, 1979).

ABSTRACT

Received: 2020 October 81st Revised: 2020 November 42nd Revised: 2020 December 303rd Revised: 2021 January 6Accepted: 2021 January 6

This is an open access articledistributed under the terms of theCreative Commons AttributionNon-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestrictednon-commercial use, distribution,and reproduction in any medium,provided the original work is properlycited.

Background: The three Schisandracae species, Schisandra chinensis, Schisandra repanda, andKadsura japonica, which are used as raw materials for the production of herbal medicines, arereadily confused. However, of these three species, only S. chinensis is formally registered as amedicinal herb in the Korean Pharmacopeia. In order to facilitate the clear identification of S. chin-ensis, S. repanda, and K. japonica, we developed insertion or deletion (InDel) markers by compar-ing the chloroplast sequences of the three species.Methods and Results: Genomic DNA was extracted from the leaves of S. chinensis, S. repanda,and K. japonica, and next generation sequencing (NGS) analysis was performed using the IlluminaHiSeq-2500 platform. Chloroplast sequences for the three species were obtained and compared toidentify polymorphic loci. Primers were designed for those InDel loci showing polymorphism inall three species, and four InDel markers were accordingly developed and successfully used forspecies discrimination. Conclusions: In this study, we developed four markers that can be used to discriminate S. chinen-sis, S. repanda, and K. japonica at the molecular level.

Key Words: Kadsura japonica, Schisandra chinensis, Schisandra repanda, Chloroplast, Insertionor Deletion Marker

โ€ Corresponding author: (Phone) +82-43-261-3373 (E-mail) [email protected])์ถฉ๋ถ๋Œ€ํ•™๊ต ํŠน์šฉ์‹๋ฌผํ•™๊ณผ ๋Œ€ํ•™์›์ƒ / Graduate student, Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju 28644, Korea.2)์ถฉ๋ถ๋Œ€ํ•™๊ต ํŠน์šฉ์‹๋ฌผํ•™๊ณผ ๋Œ€ํ•™์›์ƒ / Graduate student, Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju 28644, Korea.3)์ถฉ๋ถ๋Œ€ํ•™๊ต ํŠน์šฉ์‹๋ฌผํ•™๊ณผ ๋Œ€ํ•™์›์ƒ / Graduate student, Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju 28644, Korea.4)(์ฃผ)ํ…Œ๋ผ์  ๋ฐ”์ด์˜ค ์ด์‚ฌ / Director, Theragen Bio Co., Ltd., Suwon 16229, Korea.5)๋†์ดŒ์ง„ํฅ์ฒญ ๊ตญ๋ฆฝ๋†์—…๊ณผํ•™์› ์—ฐ๊ตฌ์‚ฌ / Researcher, National Institute of Agricultural Science, RDA, Jeonju 55365, Korea.6)๋†์ดŒ์ง„ํฅ์ฒญ ๊ตญ๋ฆฝ๋†์—…๊ณผํ•™์› ์—ฐ๊ตฌ๊ด€ / Researcher, National Institute of Agricultural Science, RDA, Jeonju 55365, Korea.7)์ „๋ผ๋ถ๋„๋†์—…๊ธฐ์ˆ ์› ์•ฝ์šฉ์ž์›์—ฐ๊ตฌ์†Œ ์—ฐ๊ตฌ์‚ฌ / Researcher, Jeollabukdo ARES Medicinal Resource Research Institute, Jinan 55440, Korea.8)๋†์ดŒ์ง„ํฅ์ฒญ ๊ตญ๋ฆฝ๋†์—…๊ณผํ•™์› ์—ฐ๊ตฌ์‚ฌ / Researcher, National Institute of Agricultural Science, RDA, Jeonju 55365, Korea.9)๋…น์ƒ‰์‹๋ฌผ์—ฐ๊ตฌ์†Œ ์†Œ์žฅ / Research institute director, Green Plant Institute, Yongin 16954, Korea.10)์ถฉ๋ถ๋Œ€ํ•™๊ต ํŠน์šฉ์‹๋ฌผํ•™๊ณผ ๊ต์ˆ˜ / Professor, Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju 28644, Korea.

์ •ํฌ์ • ยท์ด์žฌ๋ณต ยท๊ธธ์ง„์ˆ˜ ยทํ™์ฐฝํ‘œ ยท๊ฐ•์ƒํ˜ธ ยท๊ถŒ์ˆ˜์ง„ ยท๊น€ํšจ์ง„ ยท๊น€์ฐฝ๊ตญ ยท์ด์ •ํ˜ธ ยท์ด์ด

12

Illicium ์†์—๋Š” ๋ถ“์ˆœ๋‚˜๋ฌด (I. anisatum) 1 ์ข…์ด ์šฐ๋ฆฌ๋‚˜๋ผ์— ์ž

์ƒํ•˜๊ณ  ์žˆ๋‹ค.

๋Œ€ํ•œ๋ฏผ๊ตญ ์•ฝ์ „์—์„œ ์˜ค๋ฏธ์ž๋Š” ์ž˜ ์ต์€ ์˜ค๋ฏธ์ž (S. chinensis)

์—ด๋งค๋กœ ๊ทœ์ •ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ์‰ฌ์ž”๋“œ๋ฆฐ (C24H32O7 : MW. 432.51),

๊ณ ๋ฏธ์‹  A (C23H28O7 : MW. 416.46) ๋ฐ ๊ณ ๋ฏธ์‹  N (C23H28O6 :

MW. 400.47)์˜ ํ•ฉ์ด 0.7% ์ด์ƒ ํ•จ์œ ๋˜์–ด์•ผ ํ•œ๋‹ค๊ณ  ๋˜์–ด ์žˆ

์œผ๋‚˜ ํ‘์˜ค๋ฏธ์ž ๋ฐ ๋‚จ์˜ค๋ฏธ์ž๋Š” ํ•œ์•ฝ์žฌ ์›๋ฃŒ๋กœ์จ์˜ ์‚ฌ์šฉ์ด ๊ทœ์ •

๋˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค (KFDA, 2012).

๋ถ“์ˆœ๋‚˜๋ฌด์˜ ์—ด๋งค๋Š” ๋‹ค๋ฅธ 3 ์ข…์˜ ์‹๋ฌผ๊ณผ ํ˜„์ €ํ•˜๊ฒŒ ๋‹ค๋ฅธ ํ˜•

ํƒœ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋‚˜ ํ•œ์•ฝ์žฌ๋กœ ์ด์šฉ๋˜๋Š” ์˜ค๋ฏธ์ž๋Š” ํ‘์˜ค๋ฏธ์ž

๋ฐ ๋‚จ์˜ค๋ฏธ์ž์˜ ๊ฑด์กฐ๋œ ์—ด๋งค์™€ ์œก์•ˆ์— ์˜ํ•œ ํŒ๋ณ„์ด ์–ด๋ ค์›Œ ์›

๋ฃŒ์˜ ํ˜ผยท์˜ค์šฉ ๋ฌธ์ œ๊ฐ€ ์•ผ๊ธฐ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ (Kim et al.,

1999), ์ด๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๋ถ„์ž์ƒ๋ฌผํ•™์  ๊ธฐ๋ฒ•์— ์˜ํ•œ ํŒ๋ณ„

์ด ํ•„์š”ํ•˜๋‹ค.

์ง€๊ธˆ๊นŒ์ง€ ์šฐ๋ฆฌ๋‚˜๋ผ์—์„œ ์˜ค๋ฏธ์ž์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ์˜ค๋ฏธ์ž

์—ด๋งค์—์„œ ์ƒ๋ฆฌํ™œ์„ฑ ๋ฐ ํšจ๋Šฅ ์ค‘์‹ฌ์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ์œผ๋ฉฐ (Han et

al., 2019), ๋ถ„์ž ์ƒ๋ฌผํ•™์ ์œผ๋กœ ์˜ค๋ฏธ์ž๊ณผ์˜ ์ข… ํŒ๋ณ„์— ๊ด€ํ•œ ์—ฐ

๊ตฌ๋กœ๋Š” RAPD (random amplified polymorphic DNA) ์œ ๋ž˜

SCAR (sequence characterized amplified region) marker ๋ฐ

multiplex-PCR ๊ธฐ๋ฒ• ๊ฐœ๋ฐœ, nrDNA-ITS ๋ถ„์ž๋งˆ์ปค๋ฅผ ์ด์šฉํ•œ ์˜ค

๋ฏธ์ž ์ข… ๊ฐ๋ณ„ ๋“ฑ์ด ๋ณด๊ณ ๋˜์–ด ์žˆ๋‹ค (Gao et al., 2003; Moon

et al., 2010; Kim et al., 2012; Lee et al., 2013). SCAR

marker ๊ธฐ๋ฐ˜์˜ multiplex-PCR์„ ์ด์šฉํ•  ๊ฒฝ์šฐ ๋‹ค์ˆ˜์˜ primer๋ฅผ

์‚ฌ์šฉํ•ด์•ผํ•˜๋ฉฐ ์ฆํญ์ด ์ œ๋Œ€๋กœ ์ด๋ค„์ง€์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋Š” ๋‹จ์ ์ด

์žˆ๋‹ค (Henegariu et al., 1997; Lee et al., 2013). ๋˜ํ•œ SNP

(single nucleotide polymorphism)๋Š” InDel (insertion or

deletion) ๋งˆ์ปค์— ๋น„ํ•ด ๋ถ„์„ ์‹œ ๊ณ ๊ฐ€์˜ ์žฅ๋น„๊ฐ€ ํ•„์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ

์— ์ตœ์†Œํ•œ์˜ ์‹คํ—˜์žฅ๋น„๋กœ ํฌ๊ธฐ์— ๋”ฐ๋ผ ์‰ฝ๊ฒŒ ๊ตฌ๋ณ„ํ•  ์ˆ˜ ์žˆ๋Š”

InDel ๋งˆ์ปค๊ฐ€ ์„ ํ˜ธ๋˜๊ณ  ์žˆ๋‹ค (Vรคli et al., 2008; Kim et al.,

2012; Li et al., 2014; Moghaddam et al., 2014; Lv et

al., 2016).

NGS (next generation sequencing) ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ

sequencing๊ณผ assembly์˜ ๋น„์šฉ๊ณผ ์ž‘์—…์˜ ๋ณต์žก์„ฑ์ด ์ค„์—ˆ์œผ๋ฉฐ

์‹๋ฌผ์˜ ์œ ์ „ ๋ฐ ์œก์ข… ์—ฐ๊ตฌ์— ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋งˆ์ปค๋ฅผ ๊ฐœ๋ฐœํ• 

์ˆ˜ ์žˆ๋Š” ์—ผ๊ธฐ์„œ์—ด์„ ์ œ๊ณตํ•˜๋ฉฐ (Moore et al., 2006; Varshney

et al., 2009a; Varshney et al., 2009b), ์ด๋Ÿฌํ•œ NGS ๊ธฐ์ˆ 

๋ฐ”ํƒ•์œผ๋กœ ์—ฝ๋ก์ฒด ๊ฒŒ๋†ˆ์€ ๋†์—…์—์„œ ํ’ˆ์ข…์„ ์‹๋ณ„ํ•˜๋Š”๋ฐ ์œ ์šฉํ•œ

๋„๊ตฌ๋กœ ์‚ฌ์šฉ๋œ๋‹ค (Daniell et al., 2016).

์‹๋ฌผ์—์„œ ์ฃผ๋กœ ๋ชจ๊ณ„ ์œ ์ „์„ ํ•˜๋Š” ์—ฝ๋ก์ฒด DNA๋Š” ํ•ต DNA

์—ผ๊ธฐ ์„œ์—ด์— ๋น„ํ•ด ์ง„ํ™”๊ฐ€ ๋Š๋ฆฐ ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์–ด ์‹๋ฌผ์˜ ๊ณ„

ํ†ตํ•™์  ์—ฐ๊ตฌ์— ์‚ฌ์šฉ๋˜๊ธฐ์— ์ ํ•ฉํ•˜๋ฉฐ (Wolfe et al., 1987;

Clegg et al., 1994; Ngan et al., 1999), ์ด๋Ÿฌํ•œ ์—ฝ๋ก์ฒด์—์„œ

์œ ์ „์  ๋ณ€์ด๋ฅผ ๋ฐœ๊ฒฌํ•˜๊ณ  ์—ฝ๋ก์ฒด ์œ ์ „์ฒด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ข…์˜

ํŒ๋ณ„์ด ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค (Liu et al., 2012; Kim et al., 2015;

Park et al., 2017; Song et al., 2017).

๊ธฐ์กด ์ข… ์‹๋ณ„์„ ์œ„ํ•œ ์—ฝ๋ก์ฒด ๊ธฐ๋ฐ˜ InDel ๋งˆ์ปค ์—ฐ๊ตฌ ์‚ฌ๋ก€๋Š”

Angelica polymorpha์˜ ์—ฝ๋ก์ฒด ๊ฒŒ๋†ˆ์˜ ์—ผ๊ธฐ์„œ์—ด์„ ๋ถ„์„ํ•˜์—ฌ

InDel ๋งˆ์ปค๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ ์ข… ์‹๋ณ„์— ์‚ฌ์šฉ๋˜์—ˆ๋‹ค (Park et al.,

2019). ์ด์™ธ์—๋„ ๋ฒผ (Steele et al., 2008), ํ† ๋งˆํ†  (Liu et

al., 2017), ์ฐจ๋‚˜๋ฌด (Liu et al., 2019) ์—์„œ InDel ๋งˆ์ปค๋ฅผ ํ’ˆ

์ข…์˜ ์‹๋ณ„์— ์ด์šฉํ•œ ๋ณด๊ณ ๊ฐ€ ์žˆ์—ˆ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ตญ๋‚ด์— ์ž์ƒํ•˜๊ณ  ์žˆ๋Š” ์˜ค๋ฏธ์ž, ํ‘์˜ค๋ฏธ์ž ๋ฐ

๋‚จ์˜ค๋ฏธ์ž์—์„œ ํš๋“ํ•œ ์—ฝ๋ก์ฒด ์—ผ๊ธฐ์„œ์—ด ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ข…๊ฐ„

์˜ ๋‹คํ˜•์„ฑ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” InDel ๋งˆ์ปค๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด๋ ‡

๊ฒŒ ๊ฐœ๋ฐœ๋œ ๋งˆ์ปค๋Š” ํ˜ผ์šฉ๋˜๊ธฐ ์‰ฌ์šด 3 ์ข…์˜ ์˜ค๋ฏธ์ž๋ฅผ ์‰ฝ๊ฒŒ ๊ตฌ๋ถ„

ํ•˜๊ณ  ํ•œ์•ฝ์žฌ ์œ ํ†ต๊ณผ์ •์˜ ์›๋ฃŒ ํ˜ผยท์˜ค์šฉ์„ ๋ฐฉ์ง€ํ•˜๋ฉฐ ์˜ค๋ฏธ์ž, ํ‘

์˜ค๋ฏธ์ž ๋ฐ ๋‚จ์˜ค๋ฏธ์ž์˜ ๊ณ„ํ†ตํ•™์  ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜๊ฑฐ๋‚˜ ์ƒˆ๋กœ์šด ํ’ˆ

์ข…์„ ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐ์—๋„ ์ด์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.

์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ•

1. ์‹คํ—˜์žฌ๋ฃŒ

๋ณธ ์‹คํ—˜์—์„œ ์‚ฌ์šฉ๋œ ์˜ค๋ฏธ์ž (Schisandraceae)๋Š” ์ „๋ผ๋ถ๋„๋†

์—…๊ธฐ์ˆ ์› ์•ฝ์šฉ์ž์›์—ฐ๊ตฌ์†Œ์—์„œ ์œก์„ฑ์ค‘์ธ ๋งŒ์ƒ์ข…, ์ค‘์ƒ์ข…, ์กฐ์ƒ

์ข…, ์žฌ๋ž˜์ข… ๊ฐ 3 ๊ฐœ์ฒด์”ฉ ์ด 12 ๊ฐœ์ฒด์—์„œ ์žŽ์„ ์ฑ„์ทจํ•˜์˜€์œผ๋ฉฐ

Table 1. List of Schisandraceae materials used in this study.

Species Sample name Major character

Schisandra chinensis (Turcz.) Baill.

Sc-L11)

late ripening varietySc-L2

Sc-L3

Sc-M1medium ripening variety

Sc-M2

Sc-M3

Sc-E1

early ripening varietySc-E2

Sc-E3

Sc-N1

native varietySc-N2

Sc-N3

Schisandra repanda (Siebold & Zucc.)

Radlk.

Sr-F11)

female plantSr-F2

Sr-F3

Sr-M1

male plantSr-M2

Sr-M3

Kadsura japonica (L.) Dunal

Kj-11)

Kj-2

Kj-31)Plants used for the next generation sequencing analysis.

์˜ค๋ฏธ์ž๊ณผ ์ข… ํŒ๋ณ„๋งˆ์ปค ๊ฐœ๋ฐœ

13

ํ‘์˜ค๋ฏธ์ž ์•”, ์ˆ˜๊ทธ๋ฃจ์™€ ๋‚จ์˜ค๋ฏธ์ž๋Š” 3 ๊ฐœ์ฒด์”ฉ 9 ๊ฐœ์ฒด๋ฅผ ์ œ์ฃผํŠน

๋ณ„์ž์น˜๋„ ๋†์—…๊ธฐ์ˆ ์›์—์„œ ์ฑ„์ทจํ•˜์—ฌ -70โ„ƒ์˜ ์ดˆ์ €์˜จ ๋ƒ‰๋™๊ณ ์—

๋ณด๊ด€ํ•˜์—ฌ DNA ์ถ”์ถœ์— ์‚ฌ์šฉํ•˜์˜€๋‹ค (Table 1).

2. DNA ์ถ”์ถœ

DNA ์ถ”์ถœ์„ ์œ„ํ•ด 21 ๊ฐœ์ฒด์˜ ์žŽ ์‹œ๋ฃŒ๋ฅผ ์•ก์ฒด์งˆ์†Œ๋กœ ๊ธ‰๋ƒ‰์‹œ

ํ‚ค๊ณ  ๋ง‰์ž์‚ฌ๋ฐœ์„ ์ด์šฉํ•˜์—ฌ ๋ถ„์‡„ํ•œ ํ›„ DNeasy Plant Mini

Kit (QIAGEN GmbH, Hilden, Germany)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ œ์กฐ์‚ฌ

์—์„œ ์ œ์‹œํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋”ฐ๋ผ ์ถ”์ถœํ•˜์˜€๋‹ค.

์ถ”์ถœ๋œ DNA๋Š” 1% agarose gel์—์„œ ์ „๊ธฐ์˜๋™ ํ•˜์—ฌ ํ™•์ธ

ํ•œ ํ›„ Nanodrop (Thermo Fisher Scientific Inc., Waltham,

MA, USA) ๊ธฐ๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋†๋„๋ฅผ ์ธก์ •ํ•œ ํ›„ nuclease-free

water๋ฅผ ์ด์šฉํ•˜์—ฌ 5 ng/ใŽ•๋กœ ํฌ์„ํ•˜์˜€๋‹ค.

3. InDel ๋งˆ์ปค ํƒ์ƒ‰

์˜ค๋ฏธ์ž์˜ ์—ฝ๋ก์ฒด ์—ผ๊ธฐ์„œ์—ด ํ™•๋ณด๋ฅผ ์œ„ํ•ด ์ถ”์ถœํ•œ ์˜ค๋ฏธ์ž,

ํ‘์˜ค๋ฏธ์ž ๋ฐ ๋‚จ์˜ค๋ฏธ์ž์˜ DNA๋ฅผ Illumina HiSeq 2500

platform (Illumina Inc., San Diego, CA, USA)์„ ์‚ฌ์šฉํ•˜์—ฌ

์—ผ๊ธฐ์„œ์—ด์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ƒ์‚ฐ๋œ ์—ผ๊ธฐ์„œ์—ด์€ CLC Genomics

Workbench 11.0 (QIAGEN GmbH, Hilden, Germany) ํ”„๋กœ

๊ทธ๋žจ์„ ํ†ตํ•ด ์กฐ๋ฆฝํ•œ ๋’ค InDel ๊ตฌ๊ฐ„์„ ํƒ์ƒ‰ํ•˜์—ฌ ํ”„๋ผ์ด๋จธ๋ฅผ ์ œ

์ž‘ํ•˜์˜€๋‹ค. ํ”„๋ผ์ด๋จธ์˜ ์กฐ๊ฑด์€ ๊ธธ์ด๋Š” 18 bp - 22 bp, ์˜จ๋„๋Š”

50โ„ƒ - 60โ„ƒ, G/C๋น„์œจ์€ 50%, product size range๋Š” 150 bp

- 400 bp๋กœ ํ•˜์˜€๋‹ค.

4. PCR (polymerase chain reaction) ๋ฐ genotyping

PCR์— ์‚ฌ์šฉ๋œ ํ˜ผํ•ฉ์šฉ์•ก ์กฐ์„ฑ์˜ PCR mixture ์ด ๋ถ€ํ”ผ๋Š”

20ใŽ•๋กœ 5 ng/ใŽ• genomic DNA 2ใŽ•, 2 ร— Taq mix (Dong-

sheng Biotech Co., Ltd., Guangzhou, China) 10ใŽ•, nuclease-

free water 6 ใŽ•, 5 ยตM forward ๋ฐ reverse primer ๊ฐ๊ฐ 1

ใŽ•๋กœ ๊ตฌ์„ฑํ•˜์˜€๊ณ  T100 Thermal Cycler (Bio-Rad Inc.,

Hercules, CA, USA)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ฆํญํ•˜์˜€๋‹ค.

PCR ๋ฐ˜์‘์€ pre-denaturation 94โ„ƒ 3 ๋ถ„, denaturation 94

โ„ƒ 30 ์ดˆ, annealing 54โ„ƒ - 55โ„ƒ 30 ์ดˆ, extension 72โ„ƒ 1

๋ถ„ ์ด 34 ํšŒ ๋ฐ˜๋ณตํ•˜์˜€์œผ๋ฉฐ final extension 72โ„ƒ, 10 ๋ถ„์˜

์กฐ๊ฑด์œผ๋กœ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. PCR ์ฆํญ ์‚ฐ๋ฌผ์€ 3๏ผ… agarose gel์—

์„œ 120 V๋กœ 30 ๋ถ„ ์ˆ˜ํ–‰ ํ•˜์˜€์œผ๋ฉฐ Gel DocTM XR+ Gel

Documentation System (Bio-Rad Inc., Hercules, CA, USA)

์—์„œ ์ฆํญ์‚ฐ๋ฌผ์˜ ์ƒ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค.

์˜ค๋ฏธ์ž, ํ‘์˜ค๋ฏธ์ž ๋ฐ ๋‚จ์˜ค๋ฏธ์ž ์ž์› ์ด 21 ๊ฐœ์ฒด์˜ PCR

์ˆ˜ํ–‰ ํ›„ ์ƒ์„ฑ๋œ ์ฆํญ ์‚ฐ๋ฌผ์€ DNA Fragment Analyzer

Automated CE System (Advanced Analytical Technologies

Inc., Ankeny, IA, USA)์„ ์ด์šฉํ•˜์—ฌ ๊ธธ์ด ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค.

๋ถ„์„๋œ data๋Š” PROSize 3.0 ํ”„๋กœ๊ทธ๋žจ (Advanced Analytic

Technologies Inc., Ankeny, IA, USA)์„ ์ด์šฉํ•ด ์‚ฌ์ด์ฆˆ๋ฅผ ์ธก

์ •ํ•˜์˜€๋‹ค.

๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ

1. ์—ฝ๋ก์ฒด ๊ธฐ๋ฐ˜ InDel ๋งˆ์ปค ๊ฐœ๋ฐœ

CLC Genomics Workbench ver. 11.0 ํ”„๋กœ๊ทธ๋žจ (QIAGEN

GmbH, Aarhus, Denmark)์„ ์ด์šฉํ•˜์—ฌ de novo assembly๋ฅผ

ํ†ตํ•ด ์กฐ๋ฆฝ๋œ ์˜ค๋ฏธ์ž (Schisandraceae) ์—ผ๊ธฐ์„œ์—ด๋กœ๋ถ€ํ„ฐ

sequencing depth์™€ BLAST (Basic Local Alignment Search

Tool) ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ์—ฝ๋ก์ฒด์˜ ์—ผ๊ธฐ์„œ์—ด์„ ์„ ๋ฐœํ•˜๊ณ  ์ด๋“ค ์—ผ

๊ธฐ์„œ์—ด์„ ๋น„๊ตํ•˜์—ฌ InDel ๊ตฌ๊ฐ„์„ ํƒ์ƒ‰ํ•˜์˜€๋‹ค. ์ด 4 ๊ฐœ์˜

InDel ๊ตฌ๊ฐ„์ด ์„ ๋ฐœ๋˜์–ด ํ•ด๋‹น ๊ตฌ๊ฐ„์—์„œ primer๋ฅผ ๋””์ž์ธํ•˜์˜€๋‹ค

(Table 2).

2. ์˜ค๋ฏธ์ž๊ณผ ์‹๋ฌผ์˜ ์ข… ํŒ๋ณ„

์ œ์ž‘๋œ 4 ๊ฐœ์˜ ํ”„๋ผ์ด๋จธ ์„ธํŠธ๋ฅผ ์˜ค๋ฏธ์ž 12 ๊ฐœ์ฒด, ํ‘์˜ค๋ฏธ์ž

6 ๊ฐœ์ฒด, ๋‚จ์˜ค๋ฏธ์ž 3 ๊ฐœ์ฒด์— ์ ์šฉํ•˜์—ฌ PCR ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ 

PCR ์‚ฐ๋ฌผ์„ fragment analyzer๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์—ฌ size๋ฅผ

์ธก์ •ํ•˜์˜€๋‹ค.

๊ทธ ๊ฒฐ๊ณผ 4 ๊ฐœ์˜ ๋งˆ์ปค๋Š” ๋ชจ๋‘ ์˜ค๋ฏธ์ž, ํ‘์˜ค๋ฏธ์ž, ๋‚จ์˜ค๋ฏธ์ž๋ฅผ

ํŒ๋ณ„์„ ํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ SCcpInDel-1์˜ ๊ฒฝ์šฐ ์˜ค๋ฏธ์ž ์„œ์—ด์„

๊ธฐ์ค€์œผ๋กœ ํ‘์˜ค๋ฏธ์ž๋Š” 24 bp, ๋‚จ์˜ค๋ฏธ์ž๋Š” 7 bp์˜ ์—ผ๊ธฐ์„œ์—ด์ด

๊ฒฐ์‹ค๋˜์—ˆ์œผ๋ฉฐ, SCcpInDel-2๋Š” ์˜ค๋ฏธ์ž ์„œ์—ด ๊ธฐ์ค€์œผ๋กœ ํ‘์˜ค๋ฏธ์ž

๋Š” 148 bp, ๋‚จ์˜ค๋ฏธ์ž๋Š” 156 bp์˜ ์—ผ๊ธฐ๊ฐ€ ๊ฒฐ์‹ค๋˜์—ˆ๊ณ ,

SCcpInDel-3 ์˜ ๊ฒฝ์šฐ์—๋Š” ์˜ค๋ฏธ์ž ์„œ์—ด์„ ๊ธฐ์ค€์œผ๋กœ ํ‘์˜ค๋ฏธ์ž๋Š”

20 bp์˜ ์—ผ๊ธฐ๊ฐ€ ์ฒจ๊ฐ€๋˜์—ˆ๊ณ , ๋‚จ์˜ค๋ฏธ์ž๋Š” 33 bp์˜ ์—ผ๊ธฐ๊ฐ€ ๊ฒฐ์‹ค

๋˜์–ด ์žˆ์—ˆ์œผ๋ฉฐ, SCcpInDel-4์˜ ๊ฒฝ์šฐ์—๋Š” ์˜ค๋ฏธ์ž ์„œ์—ด ๊ธฐ์ค€์œผ

๋กœ ํ‘์˜ค๋ฏธ์ž์—์„œ 27 bp, ๋‚จ์˜ค๋ฏธ์ž์—์„œ 71 bp์˜ ์—ผ๊ธฐ๊ฐ€ ๊ฒฐ์‹ค

๋˜์–ด ์žˆ์—ˆ๋‹ค (Fig. 1, Table 3).

Table 2. Primer information for the InDel markers developed in this study.

NO. Marker namePrimer sequence (5' โ†’ 3') Annealing

temparature (โ„ƒ)Forward Reverse

1 SCcpInDel-1 CACAAGGATACAAAGGGATAGA CGGCGTGTGACTAAACAAAA 55

2 SCcpInDel-2 ATTCCTTTCCTCCACCGA CCAGAGTCTTTCTTTTCACT 54

3 SCcpInDel-3 CGTTGTGGAACTGATTGATT TCAATTGAAACGGGACTCG 54

4 SCcpInDel-4 CGAAAGACCCGATGAATT TGAAAACACAAAGACAAAGGGC 54

์ •ํฌ์ • ยท์ด์žฌ๋ณต ยท๊ธธ์ง„์ˆ˜ ยทํ™์ฐฝํ‘œ ยท๊ฐ•์ƒํ˜ธ ยท๊ถŒ์ˆ˜์ง„ ยท๊น€ํšจ์ง„ ยท๊น€์ฐฝ๊ตญ ยท์ด์ •ํ˜ธ ยท์ด์ด

14

๋˜ํ•œ SCcpInDel-1 ๊ณผ SCcpInDel-2 ๋งˆ์ปค๋Š” ๊ฐ ์—ผ๊ธฐ ์„œ์—ด

์ฐจ์ด๊ฐ€ ํฌ์ง€ ์•Š์•„ agarose gel์—์„œ ๋ถ„์„ํ•˜๋Š”๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์–ด

fragment analyzer๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ถ„์„ํ•ด์•ผ ํ•˜์ง€๋งŒ, SCcpInDel-3

๊ณผ SCcpInDel-4 ๋งˆ์ปค๋Š” agarose gel์—์„œ ์œก์•ˆ์œผ๋กœ ์ฐจ์ด๋ฅผ ํ™•

์ธํ•  ์ˆ˜ ์žˆ์–ด SCcpInDel-1๊ณผ SCcpInDel-2์— ๋น„ํ•ด ๋น ๋ฅธ ์‹œ๊ฐ„

์— ์œ ์ „์žํ˜•์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ธฐ์กด ์˜ค๋ฏธ์ž๊ณผ ์ข…ํŒ๋ณ„ ์—ฐ๊ตฌ

์‚ฌ๋ก€ (Gao et al., 2003; Moon et al., 2010; Kim et al.,

2012; Lee et al., 2013)์—์„œ ์‚ฌ์šฉ๋œ ๋‹ค์†Œ ๋ณต์žกํ•œ ๋ฐฉ๋ฒ•์— ๋น„ํ•ด

์ด๋ฒˆ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๊ฐœ๋ฐœ๋œ SCcpInDel-3 ๊ณผ SCcpInDel-4 ๋งˆ์ปค

๋Š” ๋น ๋ฅธ ์‹œ๊ฐ„ ์•ˆ์— ์˜ค๋ฏธ์ž๊ณผ ์‹๋ฌผ์„ ํŒ๋ณ„ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ

๋ณด์ธ๋‹ค.

๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœ๋œ 4 ๊ฐœ์˜ ๋งˆ์ปค๋Š” ๊ตญ๋‚ด์— ์ž์ƒํ•˜๊ณ  ์žˆ๋Š”

์˜ค๋ฏธ์ž๊ณผ ์‹๋ฌผ์ธ ์˜ค๋ฏธ์ž, ํ‘์˜ค๋ฏธ์ž ๋ฐ ๋‚จ์˜ค๋ฏธ์ž๋ฅผ ์ถฉ๋ถ„ํžˆ ๊ตฌ

๋ถ„ํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ PCR ์ฆํญ์‚ฐ๋ฌผ์˜ ๊ธธ์ด ์ฐจ์ด๊ฐ€ ์ปค์„œ ์—ฌ๋Ÿฌ

๊ฐ€์ง€ ์ข…์ด ํ˜ผํ•ฉ๋˜์–ด ์žˆ๋Š” ๊ฒฝ์šฐ์—๋„ ์–ด๋–ค ์ข…์ด ํ˜ผํ•ฉ๋˜์–ด ์žˆ๋Š”

์ง€๋ฅผ ํŒ๋ณ„ํ•  ์ˆ˜ ์žˆ์„ ์ •๋„์˜ ํŒ๋ณ„ ๋Šฅ๋ ฅ์„ ๋ณด์˜€๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š”

๊ธฐ์กด ์˜ค๋ฏธ์ž๊ณผ ์ข…ํŒ๋ณ„ ์—ฐ๊ตฌ ์‚ฌ๋ก€ (Gao et al., 2003; Moon

et al., 2010; Kim et al., 2012; Lee et al., 2013)์—์„œ ํ•ด

๊ฒฐํ•  ์ˆ˜ ์—†์—ˆ๋˜ ํ˜ผํ•ฉ๋ฌผ์˜ ๋ถ„์„ ๋“ฑ ๋งŽ์€ ๋ถ€๋ถ„์„ ๋ณด์™„ํ•  ์ˆ˜ ์žˆ

์„ ๊ฒƒ์œผ๋กœ ๋ณด์ธ๋‹ค. ์ด ๋งˆ์ปค๋“ค์€ ํ˜ผ์šฉ๋˜๊ธฐ ์‰ฌ์šด 3 ์ข…์˜ ์˜ค๋ฏธ

์ž๊ณผ ์‹๋ฌผ์„ ์‰ฝ๊ฒŒ ๊ตฌ๋ถ„ํ•˜๊ณ  ํ•œ์•ฝ์žฌ ์œ ํ†ต๊ณผ์ •์˜ ์›๋ฃŒ ํ˜ผยท์˜ค์šฉ

์„ ๋ฐฉ์ง€ํ•˜๋ฉฐ ์˜ค๋ฏธ์ž๊ณผ ์‹๋ฌผ์˜ ๊ณ„ํ†ตํ•™์  ๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜๊ฑฐ๋‚˜

์ƒˆ๋กœ์šด ํ’ˆ์ข…์„ ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐ์—๋„ ์ด์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€

๋œ๋‹ค.

Fig. 1. PCR analysis of 21 Schisandraceae (S. chinensis, S. repanda, K. japonica) plants using 4 InDel markers. A; SCcpInDel-1, B;SCcpInDel-2, C; SCcpInDel-3, D; SCcpInDel-4. M; 1 kb ladder plus size marker, lane 1; Sc-L1, lane 2; Sc-L2, lane 3; Sc-L3,lane 4; Sc-N1, lane 5; Sc-N2, lane 6; Sc-N3, lane 7; Sc-E1, lane 8; Sc-E2, lane 9; Sc-E3, lane 10; Sc-N1, lane 11; Sc-N2, lane12; Sc-N3, lane 13; Sr-F1, lane 14; Sr-F2, lane 15; Sr-F3, lane 16; Sc-M1, lane 17; Sc-M2, lane 18; Sc-M3, lane 19; Kj-1, lane20; Kj-2, and lane 21; Kj-3.

Table 3. Fragment size of the amplicons amplified using 4 InDelmarker.

SpeciesSamplename

SCcpInDel-1(bp)

SCcpInDel-2(bp)

SCcpInDel-3(bp)

SCcpInDel-4(bp)

Schisandrachinensis

Sc-L1 176 370 207 322

Sc-L2 176 370 207 322

Sc-L3 176 370 207 322

Sc-M1 176 370 207 322

Sc-M2 176 370 207 322

Sc-M3 176 370 207 322

Sc-E1 176 370 207 322

Sc-E2 176 370 207 322

Sc-E3 176 370 207 322

Sc-N1 176 370 207 322

Sc-N2 176 370 207 322

Sc-N3 176 370 207 322

Schisandrarepanda

Sr-F1 152 222 227 295

Sr-F2 152 222 227 295

Sr-F3 152 222 227 295

Sr-M1 152 222 227 295

Sr-M2 152 222 227 295

Sr-M3 152 222 227 295

Kadsurajaponica

Kj-1 169 214 194 251

Kj-2 169 214 194 251

Kj-3 169 214 194 251

์˜ค๋ฏธ์ž๊ณผ ์ข… ํŒ๋ณ„๋งˆ์ปค ๊ฐœ๋ฐœ

15

๊ฐ์‚ฌ์˜ ๊ธ€

๋ณธ ์—ฐ๊ตฌ๋Š” ๋†์ดŒ์ง„ํฅ์ฒญ ์—ฐ๊ตฌ์‚ฌ์—…(๊ณผ์ œ๋ฒˆํ˜ธ: PJ01349002)์˜ ์ง€

์›์— ์˜ํ•ด ์ด๋ฃจ์–ด์ง„ ๊ฒฐ๊ณผ๋กœ ์ด์— ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค.

REFERENCES

Angiosperm Phylogeny Group(APG). (2009). An update of the

Angiosperm Phylogeny Group classification for the orders and

families of flowering plants: APG III. Botanical Journal of the

Linnean Society. 161:105-121.

Angiosperm Phylogeny Group(APG). (2016). An update of the

Angiosperm Phylogeny Group classification for the orders and

families of flowering plants: APG IV. Botanical Journal of the

Linnean Society. 181:1-20.

Clegg MT, Gaut BS, Learn JGH and Morton BR. (1994). Rates

and patterns of chloroplast DNA evolution. Proceedings of the

National Academy of Sciences. 91:6795-6801.

Daniell H, Lin CS, Yu M and Chang WJ. (2016). Chloroplast

genomes: Diversity, evolution, and applications in genetic

engineering. Genome Biology. 17:134. https://link.springer.

com/article/10.1186/s13059-016-1004-2 (cited by 2020 Oct 3).

Gao J, Wang Y, Qiao C and Chen D. (2003). Ribosomal DNA

ITS sequences analysis of the Chinese crude drug fructus

schisandrae sphenantherae and fruits of Schisandra viridis. China

Journal of Chinese Materia Medica. 28:706-710.

Han SH, Jang JK, Ma KH, Kim YJ, Kim SM, Lee HJ andHong CO. (2019). Selection of superior resources through

analysis of growth characteristics and physiological activity

of Schisandra chinensis collection. Korean Journal of Medicinal

Crop Science. 27:9-16.

Henegariu O, Heerema NA, Dlouhy SR, Vance GH and VogtPH. (1997). Multiplex PCR: Critical parameters and step-by-

step protocol. Biotechniques. 23:504-511.

Kim JH, Byeon JH, Park HS, Lee JH, Lee SW, Cha SW andCho JH. (2015). Authentication of traded traditional medicine

ogapi based on nuclear ribosomal DNA internal transcribed

spacers and chloroplast DNA sequences. Korean Journal of

Medicinal Crop Science. 23:489-499.

Kim JS, Jang HW, Kim JS, Kim HJ and Kim JH. (2012).

Molecular identification of Schisandra chinensis and its allied

species using multiplex PCR based on SNPs. Genes and

Genomics. 34:283-290.

Kim PG, Lee KY, Kim SH and Han SS. (1999). Foliar charac-

teristics and photosynthetic efficiency of three species of

Schisandraceae trees distributed in Korea. Korean Journal of

Agricultural and Forest Meteorology. 1:90-96.

Korea Food and Drug Administration(KFDA). (2012). The

Korean pharmacopoeia. Korea Food and Drug Adminis-

tration. Chungwon, Korea. p.76-77.

Lee CB. (1979). Coloured flora of Korea. Hyangmoonsa. Seoul,

Korea. p.375-376.

Lee YM, Moon BC, Ji YU, Seo HS and Kim HK. (2013). De-

velopment of RAPD-derived SCAR markers and multiplex-PCR

for authentication of the Schisandrae Fructus. Korean Journal of

Medicinal Crop Science. 21:165-173.

Li Y, Liu B, Reif JC, Liu Y, Li H, Chang R and Qiu LU.(2014). Development of insertion and deletion markers based

on biparental resequencing for fine mapping seed weight in

soybean. The Plant Genome. 7:1-8.

Liu S, An Y, Tong W, Qin X, Samarina L, Guo R, Xia X andWei C. (2019). Characterization of genome-wide genetic

variations between two varieties of tea plant(Camellia sinensis)

and development of InDel markers for genetic research. BMC

Genomics. 20:935. https://link.springer.com/article/10.1186/

s12864-019-6347-0 (cited by 2020 Sep 20).

Liu X, Geng X, Zhang H, Shen H and Yang W. (2017).

Association and genetic identification of loci for four fruit traits

in tomato using indel markers. Frontiers in plant science.

8:1269. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515879/

(cited by 2020 Sep 20).

Liu Y, Zhang L, Liu Z, Luo K, Chen S and Chen K. (2012).

Species identification of Rhododendron(Ericaceae) using the

chloroplast deoxyribonucleic acid psbA-trnH genetic marker.

Pharmacognosy Magazine. 8:29-36.

Lv Y, Liu Y and Zhao H. (2016). mInDel: A high-throughput

and efficient pipeline for genome-wide InDel marker de-

velopment. BMC Genomics. 17:290. https://bmcgenomics.bio

medcentral.com/articles/10.1186/s12864-016-2614-5 (cited by

2020 Sep 19).

Moghaddam SM, Song Q, Mamidi S, Schmutz J, Lee R,Cregan P, Osorno JM and McClean PE. (2014). Developing

market class specific InDel markers from next generation

sequence data in Phaseolus vulgaris L. Frontiers in Plant

Science. 5:185. https://www.frontiersin.org/articles/10.3389/

fpls.2014.00185/full (cited by 2020 Sep 19).

Moon BC, Ji YU, Seo HS, Lee AY, Chun JM and Kim HK.(2010). Molecular authentication of schisandrae fructus and

analysis of phylogenetic relationship based on nrDNA-ITS

sequences. Korea Journal of Herbology. 25: 47-54.

Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, FoltaKM and Soltis DE. (2006). Rapid and accurate pyro-

sequencing of angiosperm plastid genomes. BMC Plant

Biology. 6:17. https://link.springer.com/article/10.1186/1471-

2229-6-17 (cited by 2020 Sep 19).

Ngan F, Shaw P, But P and Wang J. (1999). Molecular authen-

tication of Panax species. Phytochemistry. 50:787-791.

Park IK, Yang SY, Kim WJ, Song HJ, Lee HS, Lee HO, LeeJH, Ahn SN and Moon BC. (2019). Sequencing and com-

parative analysis of the chloroplast genome of Angelica

polymorpha and the development of a novel Indel marker for

species identification. Molecules. 24:1038. https://www.mdpi.

com/1420-3049/24/6/1038 (cited by 2020 Sep 20).

Park SI, Hwang BK, Gil JS, Chung H, Kim HB, Kim OT,Kim SC, Koo SC, Um Y and Lee Y. (2017). Determination

of the origin of Angelica roots using Angelica gigas chloroplast

based SSR markers. Korean Journal of Medicinal Crop Science.

25:361-366.

Song Y, Chen Y, Lv J, Xu J, Zhu S, Li M and Chen N. (2017).

Development of chloroplast genomic resources for Oryza

species discrimination. Frontiers in Plant Science. 8:1854.

https://www.frontiersin.org/articles/10.3389/fpls.2017. 01854/

์ •ํฌ์ • ยท์ด์žฌ๋ณต ยท๊ธธ์ง„์ˆ˜ ยทํ™์ฐฝํ‘œ ยท๊ฐ•์ƒํ˜ธ ยท๊ถŒ์ˆ˜์ง„ ยท๊น€ํšจ์ง„ ยท๊น€์ฐฝ๊ตญ ยท์ด์ •ํ˜ธ ยท์ด์ด

16

full?report=reader (cited by 2020 Sep 19).

Steele KA, Ogden R, McEwing R, Briggs H and Gorham J.(2008). InDel markers distinguish Basmatis from other fragrant

rice varieties. Field Crops Research. 105:81-87.

Vรคli รœ, Brandstrรถm M, Johansson M and Ellegren H. (2008).

Insertion-deletion polymorphisms(indels) as genetic markers

in natural populations. BMC Genetics. 9:8. https://link.springer.

com/article/10.1186/1471-2156-9-8 (cited by 2020 Sep 19).

Varshney RK, Close TJ, Singh NK, Hoisington DA and CookDR. (2009a). Orphan legume crops enter the genomics era.

Current Opinion in Plant Biology. 12:202-210.

Varshney RK, Nayak SN, May GD and Jackson SA. (2009b).

Next-generation sequencing technologies and their implications

for crop genetics and breeding. Trends in Biotechnology.

27:522-530.

Wolfe KH, Ll WH and Sharp PM. (1987). Rates of nucleotide

substitution vary greatly among plant mitochondrial, chloroplast,

and nuclear DNAs. Proceedings of the National Academy of

Sciences. 84:9054-9058.