development of dependable wireless system and device

12
1 Development of Dependable Wireless System and Device Research Director: Kazuo Tsubouchi, Tohoku University Members: Akira Matsuzawa, Tokyo Institute of Technology Makoto Iwata, Kochi University of Technology Minoru Fujishima, Hiroshima University Hiroshi Oguma, Toyama National College of Technology Mitsubishi Electric Corporation Cooperators: NEC Corporation SoftBank Mobile Corp. etc. December 6, 2013 JST International Symposium on Dependable VLSI Systems 2013

Upload: others

Post on 18-Dec-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

1

Development of Dependable Wireless

System and Device

Research Director:

Kazuo Tsubouchi, Tohoku University

Members: Akira Matsuzawa, Tokyo Institute of Technology

Makoto Iwata, Kochi University of Technology

Minoru Fujishima, Hiroshima University

Hiroshi Oguma, Toyama National College of Technology

Mitsubishi Electric Corporation

Cooperators: NEC Corporation

SoftBank Mobile Corp. etc.

December 6, 2013

JST International Symposium on

Dependable VLSI Systems 2013

2

802.20

802.11ac

LTE

LTE-A

10M 1M 100k 10k

10m

100m

1000m

Bluetooth

802.15.1

PHS

PDC

W-CDMA

cdma2000

802.11

802.11a/g

UWB

Cellular

Short range

RF-ID

dis

tan

ce

Zigbee

802.15.4

802.11n

cdmaOne

Narrowband Broadband

Wireless LAN

TDMA CDMA

100M 1G

802.11b

mmWave

802.15.3c

802.11ad

Wide area

High throughput

Ultra high throughput

OFDMA

throughput [bit/s]

10G Standard IEEE (IP friendly)

Non IEEE

HSPA

802.16e

Dependable Air

Dependable Air Platform

Muti-mode/Multi-band Module

Dependable Air: Heterogeneous and High-Reliable Wireless Network and Devices

MBWA/WLAN

WLAN/WPAN

High-speed Digital Equalizer

DAC/ADC Synthesizer

Analog/RFAntenna

High-speed Digital Equalizer

DAC/ADC Synthesizer

Analog/RFAntenna

3

Summarize the R&D Areas for Dependable Air

Intra-Car Network

ITS

Plant Control

Agriculture

Forestry

Fisheries

Physical Distribution

Home

Gateway

Home

Gateway

Home Network

Medical Network

Smart Grid

Dependable Air Terminal

SC

data

MC

Mo

d.

MBWA

Un

ivers

al

RF

Tx

Mo

du

le

WLAN

WPAN

Sc

ala

ble

D/A

Co

nv

ert

er

Dep

en

da

ble

FD

E

Tx

Ba

seb

an

d M

od

ule

Device Technology

Network Technology

Wireless Dependability

Evaluation Index

4

Wireless Dependability Index F

Conventional standards

Single system:

Max F = 30

DL = 2km

DL

MBWA

100Mbit/s

F = 400

MBWA single cell

DL = 0.2km

WLAN

1Gbit/s

F = 40

WLAN single cell

DL = 2km

DL MBWA

100Mbit/s

MBWA (cell edge)

1Mbit/s

F = 40

MBWA multi cell

Consideration of

throughput decline

at the cell edge

DL

SdRF rr)( )1(

Total throughput index F of

communication control area

Throughput of point r

Communication control area:

Cell radius L0, Spread S

0Lr

effRSF )2(

minmax RRReff

Rmax: Max R(r)

Rmin: Min R(r)

Simplification

Definition

[1] K. Tsubouchi et al., IEICE Trans. Commun., J95-C(12), Dec. 2012.

[2] T. Takagi et al., GSMM2013.

Wireless Dependability

Evaluation Index

5

DL

= 2km

F = 400

MBWA Single cell

+ WLAN Multi cell

MBWA

100Mbit/s

Wireless Dependability Index F: Hetero-Network

min,1max,1max,22 RRRSFh

minmax RRSF )3(

)4(

WLAN

1Gbit/s

MBWA

Max 100Mbit/s

min,1max,1max,2max,33 RRRRSFh MBWA + WLAN

+ WPAN (10Gbit/s)

F = 4000 )5(

Dependable Air:

F improves by using combinations of hetero-networks.

MBWA

Min 1Mbit/s

WPAN 10Gbit/s

Single cell

Hetero-cell

WLAN

1Gbit/s

MBWA (cell edge)

1Mbit/s

6

Research Area

High S/N

Low S/N Cellular

(MBWA)

WLAN

Hetero-Network Joint H2H, H2M, M2M

Information network &

Control network

Dependable Air

Interface

(1) Universal RF

(2) FDE

(3) Scalable

A/D & D/A

SC

data

Channel

Select

MC

Mo

d.

Dem

od

.+

FE

C

data

Control Channel

Channel

Estimation

MBWA

ワイヤレスディペンダビリティ計測

Un

ive

rsal

RF

Tx

Mo

du

le

WLAN

WPAN

Scala

ble

D/A

Co

nvert

er

De

pen

dab

le F

DE

Tx

Ba

seb

an

d M

od

ule

De

pen

dab

le F

DE

Rx B

aseb

an

d M

od

ule

Sc

ala

ble

A/D

Co

nve

rte

r

Un

ive

rsa

l R

F R

x M

od

ule

WPAN

(3) Hybrid Single/Multi

Carrier Modulation + Optimum modulation

for distance, S/N, BER

+ Improving connectivity

(2) Hetero-Network

System Handover + High mobility

+ Optimum channel selection

All Si CMOS

(1) Wireless Dependability

Measurement Using

Frequency Domain Channel

Estimation Method + Measuring multi channel functions

simultaneously: distance, S/N, BER

+ Selection of optimum channels

after channel compensation

High-speed Digital Equalizer

DAC/ADC Synthesizer

Analog/RFAntenna

Wireless Dependability

Measurement

Network Technology

7

Seamless System Handover Method

Application layer

TCP

IP layer IP layer

Data link

layer

Data link

layer

Physical

layer

Physical

layer

Socket Socket

Application layer

TCP

IP layer IP layer

Data link

layer

Data link

layer

Physical

layer

Physical

layer

Socket Socket

MBWA WLAN

• The developed programs use multiple sockets

binding each air interface.

• The mobile terminal selects an air interface

through selecting a socket to send/receive packets.

Protocol stack

Server Mobile terminal

Network

All handover functions are implemented in the application layer

without requiring any upgrades of the infrastructures and terminals.

[1] Japanese Patent #5049069

[2] S. Kameda et al., IEICE Trans. Commun., E95-B(4), 1152-1160, April 2012.

8

Research Area

60GHz

|

5GHz

|

700MHz

RFIC

Scalable

ADC/DAC

Broadband

MODEM IC

with FDE

and

error

correction

High speed

MAC LSI

using

data driven

processor

A-D Layer Baseband Layer RF/Antenna

Layer

1) All Si CMOS RFIC (500MHz~70GHz)

2) Frequency Domain

Equalization (FDE)

3) Scalable ADC/DAC

■ Flash ADC for 60GHz-Band

Communication System

40nm CMOS

■ 60GHz-Band Receiver Front-End CMOS IC

90nm CMOS

All Si-CMOS Broadband

SC/MC FFT/IFFT

Dependable Wireless System

High-speed Digital Equalizer

DAC/ADC Synthesizer

Analog/RFAntenna

High-speed Digital Equalizer

DAC/ADC Synthesizer

Analog/RFAntenna

Ich Qch

CMP x 33

A ch

CMP x 33

B ch

S/P(1/8)

Reference

0.25 mm

0.22

mm

5bit, 2.3GSps, 12mW

Chip size: 2.85mm×0.82mm

Device Technology

4) Antenna Module

Using 3-D SiP Technology

1.85mm

Connector

(LO input)

IF output

connector

Passive

mixer Planar

dipole

antenna

Heterogeneous Scalable Receiver

for Realizing Dependable Air

Realizing Scalable Frequency Domain Equalization

for Heterogeneous Wireless System

– ASIC Implementation of Baseband Circuit with Scalable FDE

700MHz

Rx

Clock ~ ~ 5GHz

Rx

60GHz

Rx

700M/5G

Conv.

60G/5G

Conv. ~

ASIC Board

SC

MC

IFF

T

A/D

FD

E

Dem

od.

~ ~

A/D

FF

T

FPGA

to Tx Channel

Select

2) Frequency Domain

Equalization (FDE)

Channel

Estimation

• Multimode: SC and/or MC signals

• Channel estimation: 2 channels simultaneously

• Two 256-point FFT/IFFT circuits (include 64 point x 4) – Each FFT is also able to work either two 128-point FFTs or four 64-point FFTs.

• Implemented estimation scheme: MMSE and ZF (zero forcing)

Noise

estimator

Weight

calculator RAM

Data equalizer

OUT

(SC)

dr(n)

dr(t)

pr(t)

(Data) Buffer

pr(t) Buffer

Sele

cto

r

FFT

FFT

FFT

FFT

Sele

cto

r Pilot demod.

Sele

cto

r FFT

FFT

FFT

FFT

Sele

cto

r

RAM (Pilot)

IN

IN

IN

Scalable FFT

OUT

(MC)

Multimode FDE Receiver: Design

Block Diagram of Multimode FDE

10

Scalable FFT (64 point x 4)

for compensation

Scalable FFT (64 point x 4)

for channel estimation

Weight Calc.

+ etc.

RAM

RAM

4.7

mm

Multimode FDE Receiver: ASIC implementation

Process 180nm CMOS

Total area

(core area)

22.1 mm2

(17.6 mm2)

Throughput 48.1 Mbit/s at

100 Msample/s

Power

consumption

660mW at

100 Msample/s

FPGA Xilinx Corp.

Virtex4 LX200

Clock frequency 100 MHz

ASIC specifications Evaluation board specifications

FPGA

ASIC socket

CMOS: complementary metal-oxide semiconductor

FPGA: field-programmable gate array 11

12

Surface & Space Communications

Future Direction: Extended Dependable Air

Space

Surface