development of novel physical (electrostatic detection

314
1 Development of Novel Physical (Electrostatic Detection) and Chemical (ICP-AES; ICP-MS and LA-ICP-MS) Techniques for the Provenance Determination of Papers, Inks and Pencils for use in Forensic Document Examination Ali Khalifa Saeed BinQuraish Al Falasi The University of Western Australia, Faculty of Science, Centre for Forensic Science This thesis is presented for the degree of Doctor of Philosophy of the University of Western Australia. Submitted on 20/01/2017

Upload: others

Post on 09-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Development of Novel Physical (Electrostatic Detection

1

Development of Novel Physical (Electrostatic Detection) and Chemical (ICP-AES; ICP-MS and LA-ICP-MS) Techniques for

the Provenance Determination of Papers, Inks and Pencils for use in Forensic Document Examination

Ali Khalifa Saeed BinQuraish Al Falasi The University of Western Australia,

Faculty of Science, Centre for Forensic Science

This thesis is presented for the degree of Doctor of Philosophy of the University of Western Australia.

Submitted on 20/01/2017

Page 2: Development of Novel Physical (Electrostatic Detection

2

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude and thanks to my supervisor Professor John

Watling, without whom none of this would have been possible. John, thank you for your

tremendous support, knowledge, and advice and for encouraging me throughout this

journey. You have been an incredible mentor, and I am so grateful for all your support.

Thank you.

I would also like to thank Professor Ian Dadour, the Head of UWA’s Centre for Forensic

Science for his valuable and continuous support through my Master's degree and this

research work.

I would like to say a very special thank you to TSW Analytical for their amazing support in

conducting my research and sampling and for making me feel welcome in their organization.

In particular, I would like to thank Cameron J Scadding, Rachel L. Scadding, Dr. Christopher

May, and everyone at TSW who helped me and gave me support and knowledge throughout

my research and the production of my thesis. Without your support and constructive

feedback, I would not have been able to complete my research.

I would also like to gratefully thank the Western Australian Police Service (WAPS), Forensic

Division in particular Senior Sergeant Julie Hansen for her support with the ESDA part of the

research.

It goes without saying that none of this would have been possible without the sponsorship

and support of the Dubai Police to whom I am extremely grateful for their past and continual

support throughout my studies. I am proud to be in their service.

Page 3: Development of Novel Physical (Electrostatic Detection

3

Finally, I’d like to thank the most important people in my life, for all their love and support

over the many years that I have been a student in Australia. In particular, my best friend and

wife Ida, my two little girls Haya and Alia, my father Khalifa, and my two mothers Haya, and

Fakhereh….

Page 4: Development of Novel Physical (Electrostatic Detection

4

ELECTRONIC APPENDIX An electronic Appendix is included with this thesis. It contains relevant analytical data.

Page 5: Development of Novel Physical (Electrostatic Detection

5

ABSTRACT

An investigation has been undertaken into the extended use of ESDA (Electrostatic Detection Apparatus) instrumentation for document examination, specifically in terms of its use for enhancing marks on various grades in terms of grams per square meter (gsm) of paper and for marks on semi-charred documents. It was determined that the best marks could be recovered from the heavier grades of paper and that marks could be recovered from paper that had been exposed to temperatures up to 300oC, just before the paper becomes carbonized.

The study called into doubt the accepted position that humidifying paper resulted in the enhancement of marks and suggested that this phenomenon could be variable with respect to a function of the ambient conditions of the environment where the paper was being investigated and the grade and make of paper concerned.

A detailed investigation was undertaken into the use of Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) for determining the provenance of paper, paper ash, ink and pencil leads. In addition, a detailed study was undertaken to develop a method of determining the chemical signature of ballpoint pen ink on paper using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and tracing that signature back to the original batch of ink used.

Investigations into the provenance of paper were able to confirm that the element distribution pattern (chemical fingerprint) within single sheets and single reams of paper were statistically indistinguishable and that individual batches of paper had the same chemical signature. In addition, it was able to be confirmed that Australian paper has a generic signature that can distinguish it from paper made in other countries around the world. It is distinctly possible that this type of generic signature exists for other countries of manufacture of paper, where the manufacturing process is automated and paper is made on a large scale. However, to investigate this aspect is beyond the scope of this thesis. Eighty-five reams of paper from around the world were used in this study.

In addition, paper that has been completely ashed was proven to be unambiguously traced back to the original unburned paper it came from, and it is therefore possible to unambiguously confirm whether or not ashed papers have, or have not, a common chemical signature with un-ashed material that may also be recovered in the course of a criminal investigation. It is also appears to be possible to determine whether or not “old-growth” forest has been used to produce paper, which is an extremely important environmental safeguard for the preservation of indigenous forest throughout the world from unscrupulous logging and chipping for this purpose.

Individual ballpoint pen inks were chemically analysed to determine their element distribution pattern (chemical fingerprint). This chemical fingerprint is also unambiguously associated with a batch of manufacture and can be used to relate specific pens back to recovered evidence.

Page 6: Development of Novel Physical (Electrostatic Detection

6

Although it may appear obvious what colour an ink is by simple visual comparison, it may not be as easy to distinguish between them as one may wish when ink colours are close together. Consequently, the individual inter element association pattern of each ink has been determined to facilitate unambiguous comparison to a reference data base of inks with the equivalent colour and overcome any false positive and false negative identification simply on the basis of colour of the ink. Even with the same colour inks, and the same manufacturer of these inks, differences in the trace element signatures of the individual inks occur and can be easily identified and lead to the proposition that each batch of ink has a separate trace element signature. Consequently, an individual ink can be traced back to its batch of origin or compared with recovered relevant material from the crime scene, or from follow up investigations, to determine matches. One hundred and eighty six ballpoint pens from around the world were used in this study.

While there are obvious differences in the trace element association patterns for individual batches of ballpoint pen ink, at this stage there appears to be limited data that could confirm the existence of generic trace element signatures for the same colour ballpoint pen inks from individual countries.

Research into the unique identification of one hundred and eight bottles of fountain pen inks manufactured around the world has confirmed that the chemical signature of these inks from the same manufacturer and same batch are statistically indistinguishable. In addition, it is statistically possible to identify batch differences between inks and to determine the country of origin, and, perhaps more surprisingly, to determine that some very expensive inks (for example Cross and Pelican) are made in the same country, by the same manufacturer and are identical in chemical composition, but are sold at completely different prices. It can be assumed that this practice occurs universally and that customers are being charged prices that do not reflect the quality of the product.

The inter-element association patterns (chemical fingerprints) of one hundred and twenty seven pencils, manufactured in different countries around the world, have been investigated using LA-ICP-MS. Elements, present in individual different batches of the same manufacturer have discernible differences in their chemical fingerprint while there is excellent reproducibility between the chemical signatures of pencil leads from the same batch. There is also a noticeable difference between the chemical signatures of different hardness’s of pencils from the same manufacturer and equivalently from and between different manufacturers. It is therefore equally as easy to identify the chemical signatures of pencil leads and to assign these signatures to specific pencils or to pencil lead data that have been entered into a data base. The fact that pencils are not accepted for signing legal documents means that this research has somewhat limited use in forensic investigations. However, it does represent a completeness in the methodology that has been developed to determine the provenance of hand held writing instruments.

It has been possible to isolate the chemical fingerprint ballpoint pen inks after they have been applied to paper, and to link this back to an individual ink in a data base of inks. In this investigation, LA-ICP-MS was used as the investigative technique, and a laser was used to traverse across drawn ballpoint pen ink lines on different manufacturer’s brands of paper. The analytical data produced obviously incorporated the chemical fingerprint of the paper,

Page 7: Development of Novel Physical (Electrostatic Detection

7

and the ink and it was not a simple matter of blank subtraction to remove the signal of the one from that of the other to obtain the ink signature. Many of the analytes involved, when corrected were below the detection limits of the technique and consequently only a limited set of twenty-seven analytes from the sixty-two determined were present in sufficient concentrations to be useful for determining the chemical composition of the inks involved in the study.

In addition, because of variations in the background major-analyte composition of the paper, due to fillers and dust etc. incorporation, it was necessary to interpret all data manually and to use subjective (experience) background definition to determine blanks for each analyte in each sample. This resulted in the manual correction of nearly four and a half thousand data points to obtain the final data set.

It was however confirmed that a single traverse (100μm wide) across an ink mark is capable of providing a chemical fingerprint of the ink involved and that that chemical fingerprint can be traced back, irrespective of the paper it is written on, to a unique batch of ballpoint pen ink. This aspect is of major significance to document examiners as it provides indisputable proof of origin of these types of ink and can also be used in cross comparison in the case of different pens, even the same brand, being used to falsify documents.

A combination of the protocols detailed in this thesis adds a new and significant arsenal to that already available to the forensic document examiner and, when used in combination with traditional investigational data, can provide unambiguous and compelling scientific evidence to assist examiners in determining whether documents have been falsified, added to or are unique and genuine.

Page 8: Development of Novel Physical (Electrostatic Detection

8

TABLE OF CONTENTS

TITLE PAGE ….…………………………………………………………………………………………………. 1

ACKNOWLEDGEMENTS ……………………………………………………………………………….…..2

ELECTRONIC APPENDIX…………………………………………………………………………………..…4

ABSTRACT ……………………………………………………………………………………………………… 5

TABLE OF CONTENTS ……………………………………………………………………………………… 8

LIST OF FIGURES ................................................................................................... 13

LIST OF TABLES ..................................................................................................... 13

Chapter 1 Introduction ......................................................................................... 20

1.1 Paper .............................................................................................................................. 20

1.1.1History of Paper ....................................................................................................... 20

1.1.2 Papermaking ........................................................................................................... 21

1.1.3 Paper Uses ............................................................................................................... 22 1.2 Inks and Pens ................................................................................................................. 22

1.2.1 History of Inks and Pens ......................................................................................... 22

1.2.2 Identification of Pen Marks .................................................................................... 24 1.2.3 Composition of Inks………………………………………………………………24

1.2.3.1 Fountain pen inks……………………………………………………………24 1.2.3.2 Ballpoint pen inks…………………………………………………………....24

1.3 Pencils …………………………………………………………………………….......25 1.3.1 The History of Pencils ....................................................................................... 25

1.3.2 The Manufacture of Pencils ............................................................................... 25

1.3.3 Pencil Grades ..................................................................................................... 27 1.4 General overview - Documents and Crime .................................................................... 28

1.5 Previous Research .......................................................................................................... 29

1.5.1 Paper .................................................................................................................. 29

1.5.2 Ink ...................................................................................................................... 32

1.5.3 Pencils ................................................................................................................ 32

1.5.4 Questioned Documents ...................................................................................... 33

1.5.5 Project Scope and Objectives ............................................................................. 35

Page 9: Development of Novel Physical (Electrostatic Detection

9

Chapter 2: Physical Methods: Electro Static Detection Apparatus (ESDA) .......... 37

2.1 Introduction .................................................................................................................... 37

2.2 The Analytical Operation of ESDA ............................................................................... 38

2.3 Pre- Imaging Technique. Humidifying .......................................................................... 39

2.4 ESDA Operating Procedures ......................................................................................... 40

2.5 Preservation of the indentations ..................................................................................... 42

2.6 Potential Problems ......................................................................................................... 43

2.7 Applications of ESDA in Forensic Science ................................................................... 44

2.7.1 Overview ................................................................................................................. 44

2.7.2 Comparisons with Other Techniques ...................................................................... 48

2.8 The ESDA Testa ............................................................................................................ 49

2.8.1 Introduction ............................................................................................................. 49

2.8.2 Analytical Operation of the ESDAtesta .................................................................. 50

2.9 ESDA Examination ........................................................................................................ 53

2.9.1 Overview ................................................................................................................. 54

2.9.2 Experimental Procedure .......................................................................................... 56 2.9.2.1 Phase One. Paper type………………….…………………………………….55 2.9.2.2 Phase Two. The effect of humidification…...…………………………..…....55 2.9.2.3 Phase Three. The effect of increased temperatures……………………….….56

2.9.3 Analytical Methods……………………………………………………………….58

2.10 Results and Discussions……………………………………………………………...59

2.10.1 Phase One Results ................................................................................................. 60

2.10.2 Phase Two Results ................................................................................................ 63

2.10.3 Phase Three Results .............................................................................................. 65

2.10.4 Discussion of results from phase one experiments ............................................... 66

2.10.5 Discussion of results from phase two experiments ............................................... 68

2.10.6 Discussion of Results from phase three experiments ........................................... 66

Chapter 3 Chemical Analysis of Paper, Ink and Pencils…………………………………….69

3.1 Analytical Methods ........................................................................................................ 69 3.1.1 Instrumentation …………………………………………………………………...69

3.1.2 Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) ............. 73

3.1.3 Inductively Couple Plasma as an Ionization Source ............................................... 75

3.1.4 Inductively Coupled Plasma Mass Spectrometry (ICP-MS)……………...…… 74 3.1.5 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)……………………………………………………………………………...………78

Page 10: Development of Novel Physical (Electrostatic Detection

10

3.2 Data Analysis and Interpretation ................................................................................... 80

3.2.1 Multi-Element Data Interpretation………………………………………………..80

3.3 Sample Description…………………………………………………..………………..84

3.3.1 Trace Element Signature (Fingerprint) of Paper, Within Sheet Reproducibility Study…………………………………………………………………………….………84

3.3.2 Ashed paper ............................................................................................................ 89

3.3.3 Ink samples ....................................................................................................... .... 89 3.3.3.1 Bulk pack-based ballpoint pen trace element comparison study………………87

3.3.3.2 Batch variations within single countries: ballpoint pen trace element comparison study………………………………………………………………..……………87 3.3.3.3 Bulk fountain pen ink…………………………………………………….……….…88

3.3.4 Pencil Samples ........................................................................................................ 90

3.4 Sample Preparation – Solution....................................................................................... 90

3.4.1 Paper ....................................................................................................................... 90 3.4.2 Ashed paper ............................................................................................................ 91

3.4.2.1 Preliminary study…………………………………………………………………….91 3.4.3 Ink ........................................................................................................................... 92

3.4.3.1 Reproducibility of elemental signature of ballpoint pen ink ………………...92 3.4.3.2 Comparison of the elemental distribution patterns for the same colour and manufacturer of selected ballpoint pen inks …………………………………………93 3.4.3.3 Effect of sample size on the reproducibility of the trace element signature of fountain pen inks ………………………………………………………………….93 3.4.3.4 Reproducibility of the elemental signature and provenance establishment of fountain pen inks ………………………………………………………………….94

3.5 Sample Preparation for LA-ICP-MS ............................................................................. 95

3.5.1 Paper ....................................................................................................................... 95

3.5.2 Pencil....................................................................................................................... 95

3.6 Sample Analysis – Solution ........................................................................................... 96

3.6.1 Instrument Optimization ......................................................................................... 98 3.6.1.1 ICP-AES………………………………………………………………………96

3.6.1.2 ICP-MS……………………………………………………………….…........96 3.7 Calibration and Quantitation…………………………………………………………..97

3.7.1 ICP-AES Calibration …………………………………………………………..98 3.7.2 ICP-MS Calibration ……………………………………………………………98 3.7.3 Isobaric Interference Correction in ICP-MS Analysis…………………….…...98 3.7.4 Detection Limit………………………………………………………………...99

3.8 Sample Analysis – Laser……………………………………………………………..101

3.8.1 Optimization……………………………………………………………………..101

3.8.2 Analytical Method……………………………………………………………….102 3.8.2.1 Spot Ablation Method ………………………………………………………102 3.8.2.2 Traverse Method ……………………………………………………………102

Page 11: Development of Novel Physical (Electrostatic Detection

11

3.8.2.3 Isotopes Determined ………………………………………………………..103

Chapter 4 Results and Discussion………………………………………….…………………….…………………………………...104

4.1 Paper .......................................................................................................................... 1064

4.1.1 Reproducibility of the elemental composition within a single sheet of paper. ... 1064

4.1.2 Reproducibility of the elemental signature within a single ream ......................... 112

4.1.3 Variations in the elemental composition of paper with respect to country/manufacturer of origin. ..................................................................................... 131

4.1.4 Ash ....................................................................................................................... 140 4.1.4.1 Preliminary Study of the Elemental Composition of Ashed Paper…………..141

4.1.5 Reproducibility of the elemental composition of Ashed Paper ............................ 143

4.1.6 Ash to Paper Comparison ..................................................................................... 146

4.1.7 Applying the Ash Factor for Ash/Paper Comparison ........................................... 152 4.2 Ballpoint pen ink .......................................................................................................... 162

4.2.1 Reproducibility of elemental signature of ballpoint pen inks ............................... 163

4.2.2 Comparison of the elemental distribution patterns for the same colour and manufacturer of selected ballpoint pen inks. .. .............................................................. 167 4.2.3 Variations in elemental signature within batches for the three study ink colours 170

4.3 Fountain Pen Ink .......................................................................................................... 177

4.3.1 Effect of sample size on reproducibility of fountain pen ink. ............................... 177

4.3.2 Comparison of the elemental signatures of brands of fountain pen ink ............... 179 4.4 Pencils .......................................................................................................................... 188

4.4.1Analytical technique .............................................................................................. 188

4.4.2 Samples ................................................................................................................. 189

4.4.3 Analytical reproducibility. .................................................................................... 189

4.4.4 Differences in the elemental fingerprint of different pencil brands of the same harness, but manufactured in different countries. .......................................................... 192

4.5 Differentiation between ballpoint pen inks on paper using LA-ICP-MS. ................... 194

4.5.1 Introduction ........................................................................................................... 194

4.5.2 Preliminary study of ink on paper analysis using LA-ICP-MS. ........................... 195

4.5.3 Reproducibility of the elemental composition of Ball-point ink on paper ........... 196

Chapter 5 Conclusions and Recommendations .................................................. 208

5.1 ESDA ........................................................................................................................... 208

5.2 The chemical investigation into the unique composition of paper, ink and pencils using ICP-AES, ICP-MS and LA-ICP-MS ................................................................................. 209

Page 12: Development of Novel Physical (Electrostatic Detection

12

5.3 Recommendations ........................................................................................................ 212

Chapter 6 Bibliography ....................................................................................... 213

Appendix 1 Paper and Ash Experiments ............................................................. 225

Appendix 2 Ballpoint and Fountain Pen Inks Experiments .................................. 264

Appendix 3 Statistical data for Fountain Pen Ink Experiments ........................... 282

Appendix 4 Pencil Analytical Data Experiments .................................................. 288

Appendix 5 Ink on Paper Experiments ................................................................ 296

Page 13: Development of Novel Physical (Electrostatic Detection

13

Number Caption page 1.1 Pencil Grade Swatches 28 2.1 The ESDA Instrument 37

2.2 Electrostatic charge. Corona discharge unit is used to charge the surface and from latent images of the present indentations (Foster and Freeman Ltd.) 41

2.3 The application of cascade toner over the surface of the film 41

2.4 Original Document (A) undergoes ESDA process to reveal the hidden indentations (B) resulting in ESDA transparency (C) 43

2..5 A/B The black words are of the latent impressions, with original writing appearing as red text 46

2.6 Transparency Result of the ESDA. 47 2.7 Reading from the transparency result of the ESDA 47 2.8 Transparency Result of the ESDA with fingerprints highlighted 47 2.9 The new ESDA2 document humidifier 49

2.10 The XTEK ESDAtesta Kit (XTEK LTD.) 50

2.11 A/D A The QA Template Sheet, B An assembled ESDAtesta with carriage, stylus and one weight, C The ESDAtesta Carriage with One Weight, D The ESDAtesta being pulled across the page with one weight attached

52

2.12 Fig. 2.12A showing a paper sample contained inside the cardboard spacing sheets prior to heating, Fig.2.12B Open furnace, Fig 2.12C Three tier sandwich of paper samples between ceramic plates.

57

2.13 Colour changes after one hour exposure associated with the different degrees of heat treatment A) 200oC, B) 300oC and C) 400oC. 57

2.14 Paper sample that had been heated at 400oC for sixty minutes placed on the ESDA plate before evacuation prior to running. 58

3.1 Schematic of an Inductively Coupled Plasma Atomic Emission Spectrophotometer using an Eschelle grating. (Figure reproduced from Skoog et. al., 2007).

72

3.2 Inductively Coupled Plasma set up for sample ionisation. (Figure reproduced from de Hoffman and Stroobant, 2007). 75

3.3 Schematic of a quadrupole Inductively Coupled Plasma Mass Spectrometer. (Figure reproduced from Linge and Jarvis 2009). 76

3.4 A and B

A - An image of the UP 213 laser ablation system; B - A close up of the ablation cell with the laser (encased in orange plastic shield). 79

4.1 A Results obtained for the analysis of Samples (1A-C) Paper One premium all purpose (made in Indonesia). 109

4.1 B Results obtained for the analysis of Samples (3A-C) Reflex Acid-Free paper (made in Australia). 109

4.1 C Results obtained for the analysis of Samples (4A-C) Fuji Xerox business paper (made in China). 110

4.1 D Results obtained for the analysis of Samples (12A-C) TNPL Copier sugar cane waste paper (made in India). 110

4.2

Comparison between the average values for each of the four paper sheets (Sample 1, Paper One premium All Purpose; made in Indonesia: Sample 3, Reflex Acid-Free paper; made in Australia: Sample 4, Fuji Xerox business paper; made in China: and Sample 12, TNPL Copier sugar cane waste paper; made in India.

111

LIST OF FIGURES

Page 14: Development of Novel Physical (Electrostatic Detection

14

4.3 A-B Elemental fingerprint of five sheets of paper (A: 52 A-E Argentina Ream1, B: 53 A-E Indonesia Ream 3. Table 4.2) taken from the same individual reams of A4 paper.

119

4.3 C-D Elemental fingerprint of five sheets of paper (C: 53 A-E Australia Ream 2, D: 55 A-E Thailand Ream 1. Table 4.2) taken from the same individual reams of A4 paper.

120

4.3 E-F Elemental fingerprint of five sheets of paper (E: 56 A-E Brazil Ream2, F: 55A-E Thailand Ream 1. Table 4.2) taken from the same individual reams of A4 paper. 121

4.3 G-H Elemental fingerprint of five sheets of paper (G: 56 A-E Australia Ream 1, H: 59 A-E Indonesia Ream 2. Table 4.2) taken from the same individual reams of A4 paper.

122

4.3 I Elemental fingerprint of five sheets of paper (I: 54 A-E Australia Ream 2. Table 4.2) taken from the same individual reams of A4 paper. 123

4.4 Average data for elemental profiles of the nine initial study reams of paper. 124

4.5

LDA plots of the five replicates of the nine initial study reams of paper. LDA (A) is a plot using all analytes shown in the adjacent elemental list, while LDA (B) is a plot using all analytes that have NOT been highlighted in yellow. The apparent generic grouping of data for the three different Australian and three different Indonesian sample reams is also shown.

124

4.6 Diagram of the relative concentrations of selected analytes in different reams of the paper used in the initial inter-ream study.

125-127

4.7 Relative distribution of selected individual analytes between the different reams of paper from different countries/manufacturers.

132-134

4.8 A series of LDA plots indicating the separation of paper sub-populations based on A) the complete data set; B) all analytes in the ppm range and C) all analytes in the ppb range (Appendix 1D)

135

4.9

A series of LDA plots indicating the separation of paper sub-populations, following removal of groups 10, 13, 14 and 16. Iterative plots are based on: A) the complete data set; B) all analytes in the ppm range and C) all analytes in the ppb range.

139

4.10

A series of LDA plots indicating the separation of Australian paper sub-populations, following removal of groups 10 – 16. Iterative plots are based on: A) the complete data set; B) all analytes in the ppm range and C) all analytes in the ppb range (Appendix 1D).

140

4.11 A and B

Results obtained for the analysis of ASH, Samples (53AA-EA) Paper One-Premium All Purpose (Indonesia). B) Results obtained for the analysis of ASH, Samples (54AA-EA) Reflex-Recycled Pure white (Australia).

142

4.12 A and B

A) Concentration of elements in the Ash of HP-Every day paper sample number(56AA-E/A) (made in Brazil). B) Concentrations of elements in the Ash of OfficeWorks Ultra White Premium sample number (58AA-E/A) (made in Australia).

145

4.12 C Concentrations of elements in the Ash of Paper One Premium Presentation sample number (59AA-EA), (made in Indonesia). 146

4.13

Comparison between the values of the average elemental concentration for the three different ash; HP-Every day paper sample number (56AA-EA) (Brazil), Office Works Ultra White Premium sample number (58AA-EA) (Australia), and Paper One Premium Presentation sample number (59AA-EA) (Indonesia).

147

4.14 A Comparison of concentrations of elements of the Ash and paper HP-Every day paper sample number (56A-E/A) made in Brazil. 148

4.14 B Comparison of concentrations of elements of the Ash and Paper Office Works Ultra White Premium sample number (58A-E/A) made in Australia 148

Page 15: Development of Novel Physical (Electrostatic Detection

15

4.14 C Comparison of concentrations of elements of the Ash and paper for Paper One Premium Presentation sample number (59A-E/A) made in Indonesia 149

4.15 A and B

A) Concentrations of elements in the Ash and paper from Double A Premiumpaper from Thailand (Sample 55). B) Concentrations of elements in the Ash andpaper from HP-Every day paper made in Brazil (Sample 56). All data combinedfor comparison using the paper/ash normalization factor of 4.15

151

4.15 C and D

C) Concentrations of elements in the Ash and Paper from Laser IT paper made inIndonesia (Sample 57). D) Concentrations of elements of the Ash and Paper fromOffice Works Ultra White premium paper made in Australia (Sample 58). All datacombined for comparison using the paper/ash normalization factor of 4.15.

152

4.15 E and F

E) Concentrations of elements in the Ash and Paper from Paper One PremiumPresentation made in Indonesia (Sample 59). F) Concentrations of elements ofthe Ash and Paper from Reflex Recycled Pure white made in Australia (Sample60). All data combined for comparison using the paper/ash normalization factorof 4.15.

153

4.15 G Concentrations of elements of the Ash and Paper from Paper one All Purpose made in Indonesia (Sample 61). 154

4.16

Average concentrations of elements from each paper batch represented in Figures 4.15A – 4.15G showing general differences between the individual paper sets. All data combined for comparison using the paper/ash normalization factor of 4.15.

154

4.17 A-B A – B LDA comparison of the normalized data for paper and ash samples combined with both validation (Fig. 4.17A) and no validation (Fig. 4.17B) samples included. Analytes plotted in the LDA are detailed below the paper origins.

157

4.17 C-D C - D LDA comparison of the normalized data for paper and ash samples combined based on all major elements and all minor and trace element. No validation samples included.

158

4.17 E-F LDA comparison of the normalized data for paper and ash samples based on all major elements (Fig. 4.17E) and all minor and trace elements (Fig. 4.17F). Plotted with validation samples.

159

4.17 G-H

G – H LDA comparison of the normalized data for all paper and ash samples based on reduced analyte suite (Fig. 4.17G) and Australian and Indonesian samples only (Fig. 4.17H): (refer reduced analyte suite below). Plotted with validation samples.

160

4.18 A and B

A) Results obtained for the analysis of Samples (1-5) Blue BIC ink (China). B):Results obtained for the analysis of Samples (10-14) Blue Office Works (China). 162

4.18 C and D

C) Results obtained for the analysis of Samples (15-19) Blue PaperMate(Malaysia). D) Comparison between the values of the average elementalconcentration for the three different inks samples (1-5) Blue BIC ink (China),samples (10-14) Blue Office Works (China), and samples (15-19) Blue PaperMate(Malaysia).

163

4.19 LDA plot of the data for the three ballpoint pen inks investigated in the initial survey 164

4.20 A LDA plots of blue, red and black ballpoint pen inks indicating associations of make and manufacturer 166

4.20 B Additional LDA plots of blue, red and black ballpoint pen inks indicating better discrimination between make and manufacturer 166

4.21 LDA plot for elemental data in black and red ballpoint pen inks 167 4.22 LDA plot of the three different colours of ballpoint pen ink used in this study 168 4.23 LDA plot of fifty samples (ten batches of five individual pen ink samples) of BIC 169

Page 16: Development of Novel Physical (Electrostatic Detection

16

Crystal blue ballpoint pen ink manufactured in France (Group numbers refer to the individual samples of ink detailed in Appendix 2 Table 2).

4.24 First iterative LDA plot of forty five samples (nine batches of five individual pen ink samples) of BIC Crystal blue ballpoint pen ink manufactured in France (Group numbers refer to the individual samples of ink detailed in Appendix 2 Table 2).

170

4.25

A) Second iterative LDA plot of thirty five samples (seven batches of fiveindividual ballpoint pen ink samples) of BIC Crystal blue, (France); B) Thirditerative LDA plot of twenty samples (four batches of five individual ballpoint penink samples) of BIC Crystal blue (France) (Group numbers refer to the individualsamples of ink detailed in Appendix 2 Table 2).

171

4.26 LDA plot of fifty samples (ten batches of five individual ballpoint pen ink samples) of BIC Crystal black manufactured in Mexico (Group numbers refer to the individual samples of ink detailed in Appendix 2 Table 2).

172

4..27

A) Second iterative LDA plot of forty five samples (nine batches of five individualballpoint pen ink samples) of BIC Crystal black, manufactured in Mexico; B) Thirditerative LDA plot of fifteen samples (three batches of five individual ballpointpen ink samples) of BIC Crystal black manufactured in Mexico (Group numbersrefer to the individual samples of ink detailed in Appendix 2 Table 2).

173

4..28 LDA plot of thirty samples (six batches of five individual ballpoint pen ink samples) of BIC Crystal red manufactured in China (Group numbers refer to the individual samples of ink detailed in Appendix 2 Table 2).

174

4.29 A-B Elemental concentrations following the digestion of various volumes of black fountain pen ink. 178

4.30 A-C

LDA Plots of analytical data for eight different bottles of fountain pen ink. Fig. 4.30A eight groups of ink; Fig. 4.30B iterative LDA plot of six groups of ink following removal of Groups 1 and 5 data; Figure 4.30C iterative LDA plot of four groups

179

4.31 A-C

LDA Plots of analytical data for sixteen different bottles of black fountain pen ink. Fig. 4.31A all sixteen groups of ink; Fig. 4.31B iterative LDA plot of seven groups of ink data following removal of Groups 2, 5, 7, 11, 18, 21, 23, 25, 30 and 32 data; Figure 4.31C iterative LDA plot of four groups of ink data following the removal of Groups 8, 13 and 14 data. Groups refer to data detailed on Appendix 2 Table 6

181

4.32 A-C

LDA Plots of analytical data for sixteen different bottles of blue fountain pen ink. Fig. 4.32A all sixteen groups of ink; Fig. 4.32B iterative LDA plot of twelve groups of ink data following removal of Groups 9, 10 and 22 data; Figure 4.32C iterative LDA plot of four groups of ink data following the removal of Groups 4, 12, 13, 18, 20, 24, 26 and 27. Groups refer to data detailed on Appendix 2 Table 6.

182

4.33 LDA Plot of analytical data for four different bottles of red fountain pen ink. 183

4.34 A-B Comparability plots for Chelpark crimson – violet ink made in India (Figure 4.34A) and Pelikan black ink made in Germany (Figure 4.34B). Samples refer to Appendix 2 Table 7.

184

4.35 A-C

Plots of counts per second (CPS) with respect to analyte isotope for PaperMate 2B pencil leads made in China but purchased in three different countries. Each graph represents data for five replicate pencil leads selected from boxes of twelve leads.

189

4.36 A-B Diagram of the average values for the three sets of samples detailed in Figure 4.35A-C (Figure 4.36A), and an LDA plot of the values for the same samples using the entire analyte isotope data set (Figure 4.36B).

190

4.37 A-B LDA Plots of pencil lead samples from eight boxes of PaperMate 2B pencils, made in China but sold in different countries. LDA plot of all eight sets of 191

Page 17: Development of Novel Physical (Electrostatic Detection

17

samples (Fig. 4.37A); LDA Plot of seven sets of data with outlier data from Box 1 samples removed before re-plotting (Fig. 4.37B).

4.38 A-B LDA plot of HB and 2B pencil lead data (detailed in Appendix 4, Table 2) manufactured in three different countries. Fig. 4.38A data for all seven Groups of samples. Fig. 4.38B iterative LDA plot of Groups 1, 4 and 7.

193

4.39 Typical diagram of an LA-ICP-MS traverse across an ink line on paper from background to background across the ink line (Data are expressed as counts per second (CPS)).

196

4.40 Replicate LA-ICP-MS elemental distribution patterns for three different coloured inks on the same paper. Each ink was analysed six times 198

4.41 A-C

Inter element association pattern plots blue inks for six replicate analyses of: Fig. 4.41A - BIC; Fig. 4.41B Paper Mate and Fig. 4.41C Office Works on three different paper samples. Data are recorded in Appendix 5 Table 3.

202

4.42A-C

Inter element association pattern plots black inks for six replicate analyses of: Fig. 4.42A - BIC; Fig. 4.42B Paper Mate and Fig. 4.42C Office Works on three different paper samples. Data are recorded in Appendix 5 Table 3.

203

4.43 A-C

Inter-element association pattern plots red inks for six replicate analyses of: Fig. 4.43A - BIC; Fig. 4.43B Paper Mate and Fig. 4.43C Office Works on three different paper samples. Data are recorded in Appendix 5 Table 3.

205

4.44 A-C

LDA plots of analytical data from LA-ICP-MS scans of blue, black and red inks on three paper types. Fig. 4.44A: Blue ink, 4.44B: Black ink and Fig. 4.44C: Red ink. Each cluster represents the analysis of eighteen sub-samples of the same ink on the three different paper types. Analyte element isotopes are given in Table 4.7 and all analytes are used for each plot.

206

4.45 A and B

LDA plots of analytical data from LA-ICP-MS scans of all blue, black and red inks combined. Fig. 4.51A: all inks and papers used in this study, Figure 4.51B: iterative LDA plot of the data set after the removal of data for ink groups 1, 4, 7 and 9.

207

Page 18: Development of Novel Physical (Electrostatic Detection

18

LIST OF TABLES page Table caption Number

28 English Pencil Grading System 1.1

28 Conversion between US and English Grading System for Pencils 1.2

54 Description of Paper Types Tested 2.1

55 Test Procedure Outline. Each set contains QA Top Sheet, Template Sheet and Sample Sheet.

2.2

60 Results for Phase One. Paper Type 1. 2.3 60 Results for Phase One. Paper Type 2 2.4 60 Results for Phase One. Paper Type 3 2.5

60 Results for Phase One. Paper Type 4 2.6

61 Results for Phase One. Paper Type 5 2.7 61 Results for Phase One. Paper Type 6 2.8

61 Results for Phase Two. Paper Type 1 2.9 61 Results for Phase Two. Paper Type 2 2.10 62 Results for Phase Two. Paper Type 3. 2.11 62 Results for Phase Two. Paper Type 4 2.12 62 Results for Phase Two. Paper Type 5 2.13 62 Results for Phase Two. Paper Type 6 2.14 63 Results for Phase Three. Paper Type 1 2.15 63 Results for Phase Three. Paper Type 2 2.16 63 Results for Phase Three. Paper Type 3 2.17 63 Results for Phase Three. Paper Type 4. 2.18 64 Results for Phase Three. Paper Type 5 2.19 64 Results for Phase Three. Paper Type 6 2.20 64 Summary of Results. Averages from phase one, two and three (The data

correspond to the point values used in the analytical method) 2.21

67 The decrease in the point value averages from Phase one to Phase two – calculated by subtracting the averages from Phase one from the Phase two averages.

2.22

73 Analytical emission lines (wavelengths are expressed in nanometres) used in this study.

3.1

76/77 A- List of all isotope masses used, B- List of final analyte isotopes used forcomparison purposes

3.2 A-B

77 C- List of all isotope masses used for the analysis of ink samples, D- List of finalanalyte isotopes used for ink provenancing purposes

3.2 C-D

85 Description of paper samples used in this thesis (Data recorded in Appendix 1 Table 1A)

3.3

86 Description of paper samples used in this thesis (Data recorded in Appendix 1 Tables 1B and 1C

3.4

Page 19: Development of Novel Physical (Electrostatic Detection

19

page Table caption Number 86 Description of paper samples used in this thesis (data recorded in Appendix 1

Tables 1D and 1E 3.5

87 Sample base for the study of ashed paper 3.6 88 Ballpoint pen ink samples used in the trace element comparison study 3.7 88 Ballpoint pen ink samples used in the trace element comparison study of the

elemental distribution patterns for the same colour and manufacturer of three selected ballpoint pen inks.

3.8

89 Fountain pen ink samples used in trace element signature reproducibility study 3.9 89 Fountain pen ink samples used in country of origin and provenance

determination study. 3.10

90 Pencil samples used in the initial single-country of manufacture (different countries of purchase) box to box comparison (eight boxes) study

3.11

90 Pencil samples used in the main provenance determination study 3.12 96 An indication of the typical tuning parameters used for ICP-AES determination

and also the analyte wavelengths investigated (nm). 3.13

97 An indication of the typical tuning parameters used for ICP-MS determination 3.14 97 Final list of all isotopes and their relevant m/z ratios used in solution based

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) studies in this thesis. 3.15

100 Detection limits for analytes determined using solution based ICP-MS. 3.16

100 Detection limits in solution for the analytes determined using solution based ICP-AES. (Analytical wavelengths are detailed in nanometres)

3.17

101 List of generic LA-ICP-MS operating conditions. 3.18 101 List of generic LA-ICP-MS tuning parameters. 3.19 103 Complete analyte (isotope) suite used for LA-ICP-MS analysis of pencil leads 3.20

103 Final analyte (isotope) suite used for LA-ICP-MS analysis interpretation of data obtained from pencil leads

3.21

107/108 Reproducibility for element concentrations in four sheets of paper, samples have been analysed in triplicate (Na, Mg, Al, P, S, K, Ca & Fe concentrations are expressed as ppm all other elements are expressed as ppb: Indo – Indonesia, Aus – Australia)

4.1

113 List of samples used in the initial intra-ream trace element concentration reproducibility study. (Data refers to samples shown in Figures 4.3 A-I).

4.2

116/118 Reproducibility and statistical data for element concentrations in nine reams of paper. Six samples from each ream were analysed. The total data set is given in Appendix Table 1B. Data marked with an asterisk are expressed in ppm while data not marked are expressed as ppb.

4.3

125 Table indicating the relatively high analyte concentrations in specific reams of paper used in the initial inter-ream study.

4.4

130 List of sample reams used in country/manufacturer of origin experiment 4.5

150 Comparison of the loss in mass percentage (LiM) on ashing the seven sets of study paper. (STDev – Standard Deviation: RSD% - Relative Standard Deviation)

4.6

195 A list of the analytes used in the paper-ink study 4.7

Page 20: Development of Novel Physical (Electrostatic Detection

20

Chapter 1 Introduction 1.1 Paper

1.1.1 History of Paper

The word “paper” is derived from the Egyptian word “papyrus” (Achtemeier, Green et al.,

2001). Papyrus refers both to a reed, which flourished along the Nile River, and to the paper

like material made from the plant and which was used for recording written material from as

early as 3000 BC (Wiedeman and Bayer, 1983). The ancient Egyptians made papyrus sheets

by removing the reed’s outer skin and cutting the centre into thin strips (Wiedeman and

Bayer, 1983) The strips were laid side by side and a second layer was placed on top of the

first at right angles (Wiedeman and Bayer, 1983). The combined strips were then hammered

into a single sheet, being bound by a secretion which was released from the plant (Asunción,

2003). The resultant papyrus sheets were lightweight, portable, and ideal for writing on and

became the writing medium of choice for various cultures in the ancient world up to

relatively modern times (Christensen and Wegner, 2009).

However, papyrus sheets are not true paper in the sense of macerating and mixing fibres

(Twede et al., 2014). Paper as we know it today, was the invention of Ts’ai-Lun, a Chinese

imperial court official in 105AD (Twede et al., 2014). Ts’ai-Lun’s method, which is

fundamentally the same as that used today, involved softening mulberry bark with lime,

mixing it with linen and hemp and then beating the mixture into a pulp (Twede and Selke,

2005). Having been kept a secret in China for centuries, the art of papermaking slowly spread

along the Silk Road, reaching Central Asian by the 4th century (Herbert, 2006). Later the

techniques of paper making travelled west, firstly to Turkestan and then to the Arabic

countries in 751AD, reaching Europe by the 12th century (Asunción, 2003).

Once exposed to European demand important developments soon followed with the

invention of the printing press by Gutenberg in 1450, which brought about an enormous

increase in the demand for paper worldwide. At the end of the 17th century, a mechanical

beater known as the “Hollander” which worked as a wood pulp beater to break down the

Page 21: Development of Novel Physical (Electrostatic Detection

21

pulp and separate it, was developed, and most notably the “Fourdrinier” or paper machine,

which forms the paper

into a continuous web, was developed in 1798 (Saltman, 1978). The Fourdrinier is a multi-

cylinder machine which produces paper on an endless wire screen on which a fibre slurry is

deposited to form a matt from which the water is then drained leaving a continuous integral

sheet of paper. This process is essentially that used today and is the basis of the modern

paper industry. Prior to this invention, paper was hand-made one sheet at a time.

1.1.2 Papermaking

Today papermaking involves fundamentally the same steps as have been used for centuries;

namely preparation of the fibre material, sheet or web forming, pressing, drying, and

smoothing (Herbert, 2006).

Wood, which is made up of small cellulose fibres bound together by a glue-like substance

called lignin, is the basic raw material for the papermaking process. First the wood is chipped

into small pieces, which are then mixed with chemicals such as sodium hydroxide, and

sodium sulphide, and fed into digesters (known as pressure vessels) to dissolve the lignin and

separate the pulp fibres (Koppenhaver, 2007). The fibres are then washed with water and

screened to remove any clumps. Bleach may then be applied to remove any lignin remaining

in the pulp and to achieve the desired level of brightness. This procedures is necessary

because lignin contains chromophoric groups which generally impart a brown colouration to

the pulp mass (Saltman, 1978).

The fibres are then combined with pigments, dyes and size, a solution containing modified

starches and sometimes gelatine which adheres to substrate fibres and forms a smooth

water-repellent surface which improves the strength and printability of the paper. Optical

brighteners and fillers can also be added at this stage. The resulting mix contains over 99%

water and less than 1% fibre and other solids (Koppenhaver, 2007). This mixture flows onto

an endless moving wire screen (known as a Fourdrinier) on which the water is drained and

the fibres form a loose matt (Saltman, 1978).

Page 22: Development of Novel Physical (Electrostatic Detection

22

The sheet then passes through heavy rollers which squeeze out the majority of the moisture

and is then dried over steam-cylinders to evaporate any remaining water and cause the fibre

bonds to set. Following this procedure, the paper is smoothed by passing through a series of

iron rollers known as calendar stacks (Koppenhaver, 2007). Pressing also adds gloss and

results in a higher density (Saltman, 1978). Finally the resultant paper is cut into the required

dimensions (Ellen, 2005).

1.1.3 Paper Uses

Although, with the advent of the “electronic age” and the Internet, and the rise of “Green

Politics” the amount of paper used is being reduced, as a medium paper still is the worldwide

medium for printed communication. It is also used in a wide variety of different ways and is

produced in a variety of forms including newsprint (newspapers), finished paper, offset paper

for books, opaque paper, coated paper and coloured paper (Saltman, 1978). Research

detailed in this thesis concentrates primarily on examination of ‘all purpose’ and copier paper

from various manufacturers and countries of origin Section 3.3 Table 3.3 as it is the most

widely used and available base for the written word.

1.2 Inks and Pens

1.2.1 History of Inks and Pens

Ink and pens have been in existence for over 5000 years. The earliest pens consisted of

hollow straws or reeds that held small amounts of ink (Lander, 1988). This type of pen was

superseded by the invention of quill pens which used the strong primary feathers of birds

such as geese and swans (Koppenhaver, 2007). In fact the word pen is derived from the word

“penna”, meaning feather in Latin (Koppenhaver, 2007).

It was not until 1784 that the first steel pen was manufactured (Koppenhaver, 2007) and by

1822 Joseph Gillot had devised the steel pen press which produced pens in large quantities

with high precision and little cost, leading to mass production. In 1884 Lewis E. Waterman

patented the first practical fountain pen, which had to be filled with ink using an eyedropper

Page 23: Development of Novel Physical (Electrostatic Detection

23

(Koppenhaver, 2007). In 1913 Walter A Schaeffer invented the level-filler fountain pen.

Modern fountain pens draw ink from an internal reservoir of ink through a metal nib (writing

tip) (Cavendish, 2002). The ink is deposited onto paper through a combination of capillary

action and surface tension between the tip of the pen and the paper (Cavendish, 2002).

The first ballpoint pen was patented in 1888 by John Loud, however it was too coarse for

writing and commercially non-viable (Brunelle and Reed, 1984). It was not until 1945 that

ballpoint pens became popular after several improvements to the original design were made

(Koppenhaver, 2007). A ballpoint pen consists of four parts, the ink, tube, ball and ball holder.

(Koppenhaver, 2007). When it is used, the ink dispenses at its tip by the rolling action of the

pinhead-sized metal ball (Erol et al., 2004). The main problem was to maintain the viscosity of

the ink without the ink crystallizing or becoming a gel as this led to ink leakages or clogging

(Koppenhaver, 2007).

In 1938 Laszlo Jozsef Bíró patented a ballpoint pen which, much like ballpoint pens today,

used quick-drying ink and a small ball in its tip that was free to turn in a socket and suctioned

ink from the internal reservoir (Biro, US Patent No. 2265055A). This pen used capillary action

and a piston that pressurised the ink column, solving the ink delivery flow problems.

Fibre tip, porous or felt tip pens were first manufactured in 1963 (Koppenhaver, 2007). They

draw a liquid ink from an internal reservoir to the tip in a controlled leakage (Hechtle, US

Patent No. 3353899A). The first roller ball pen was invented in 1963 (Koppenhaver, 2007)

and made use of a mobile ball in its tip. However, unlike a ballpoint pen, it has more fluid ink

which flows more readily onto paper (Erol, 2004). Commonly a water-based ink is used

(Koppenhaver, 2007). Gel pens are the most recent innovation and contain permanent gel in

a liquid solution which is fade proof (Koppenhaver, 2007). These pens are highly resistant to

most common solvents and water and this complicates forensic analysis since it is necessary

to extract the ink using a suitable solvent before analysis can take place (Verma et al., 1979).

Page 24: Development of Novel Physical (Electrostatic Detection

24

1.2.2 Identification of Pen Marks

The type of pen used can be identified through examining the characteristics of the pen and

the ink used. The fountain pen consists of two parallel steel ‘nibs’ that when moved against

paper they slightly break through or penetrate the paper leaving an ink line along the groves

(Kobilinsky, 2012 p.234). In contrast, the ball point pen simply rolls ink onto the paper by

means of a small ball and only leaves a groove in the paper in the centre of the line of ink,

which can be seen under a microscope. (Koppenhaver, 2007). This heavy ink sits on the paper

surface and generally may be characterized as being shiny. These pens are susceptible to

‘gooping’ (where ink collects on the ball of the pen and is dispersed in an excessive amount)

and sometimes leave blank spots in the ink line (known as burr striations) where the ball

failed to deposit ink on the paper because the ink clogged (Koppenhaver, 2007).

1.2.3 Composition of inks

1.2.3.1 Fountain pen inks

The two main types of ink used in modern fountain pens are solutions containing iron gallate

or synthetic dyes (Siegel et al., 2013). The iron gallotannate type consists of iron salts and

gallotannic acid in an aqueous solution which is colourless when first applied to paper but

quickly darkens upon oxidation in air (Brenner, 2004 p.146). Such inks are very stable, rapidly

absorb into the paper fibre, are insoluble in water and cannot be effectively removed by

abrasion (Brunelle and Reed, 1984).

1.2.3.2 Ballpoint pen inks

Ball point pen inks consist of synthetic dyes dissolved in glycol (such as propylene glycol or

butylene glycol) or alcohol (such as benzyl alcohol). Modern inks contain dyes that are highly

soluble in the glycol or alcohol (Brunelle and Reed, 1984). The most common dyes are blue

and based on the compound copper phthalocyanine and are treated by sulfonating or

chlorosulfonating copper phthalocyanine pigment (Brunelle and Reed, 1984). Other pre-

metalized dyes, such as reds, greens and yellows, are similarly treated (Brunelle and Reed,

1984).

Page 25: Development of Novel Physical (Electrostatic Detection

25

1.3 Pencils

1.3.1 The History of Pencils

The history of pencils can be traced to the Ancient Egyptians and Romans, who used a thin

rod known as a ‘stylus’ to impress a mark into wax or wet-clay (Blaxland, 2008). However

pencils as we know them today only developed with the discovery of graphite deposits in

Bavaria in the 1400’s (Cain et al., 1978). These graphite deposits were called ”plumbago”

which in Latin translates to ‘acting like lead’ a word which continues to lend itself to the

name ‘lead pencil’ (Cain et al., 1978). Graphite was first held together in a variety of forms

including sheepskin and sticks and finally wooden hollow sticks which were developed by

Simonio and Lyndiana Bernacotti in 1565 (Blaxland, 2008).

The first commercial production of pencils was instigated after the discovery of the

Borrowdale graphite deposit in Cumberland England in 1564, from which very high purity

graphite blocks were mined and cut into thin strip rods and inserted into wood veneers (Cain

et al., 1978). By the mid 1700’s, as high grade graphite became extremely valuable and high

grade graphite deposits were becoming depleted, attempts were made to create

concentrates and mixes of graphite that were cheaper and could be used for pencils (Cain et

al., 1978). In 1795 a French scientist, Nicholas Jacques Conte, developed the process for

producing black “lead” pencils which is still used today (Blaxland, 2008; Cain et al., 1978). This

process, which gave birth to the modern pencil, was achieved by mixing powdered graphite

with ground clay and kiln-firing it to make pencil rods. By varying the proportions of graphite

and clay, the hardness and darkness of the product could be changed (Mandel, 1929). This

resulted in a less costly product that was relatively standardised (Cain et al., 1978). Conté's

method of combining graphite with clay is still used for the manufacture of pencil ‘leads’

today.

1.3.2 The Manufacture of Pencils

This process for the manufacture of pencils can involve more than 125 different steps (Cain

et al., 1978). Today’s pencils are largely produced by mixing finely ground graphite and clay

powders with water to from thin ‘string’ rods which are fired in a kiln.

Page 26: Development of Novel Physical (Electrostatic Detection

26

Graphite is used for pencils that are mass produced and is mixed with a wide variety of other

chemicals so that the density of the final product can be controlled (Cain et al., 1978). This

material is mixed with clay in a variety of ratios to achieve the type and specifications of the

pencil required. The greater the proportion of graphite, the softer the pencil and the darker

the line whereas the greater portion of clay increases the hardness of the product (Brunelle

and Crawford, 2003) and produces lighter coloured lines.

The graphite and clay mixtures are then mixed and ground with water in a special ball mill for

several weeks. This process not only micronized the particles in the graphite and clay mix but

it also ensures a homogenous mixture product (Cain et al., 1978). Water is removed from this

mixture by flocculation, and the final “sludge” compressed and then fired in ‘string-shaped’

batches in a ceramic kiln (Cain et al., 1978). Once the graphite and clay mixture is fired and

set, waxes are applied in a pressurized bath for coating. There are a variety of different types

of waxes used, including stearic and tallow wax in various combinations, in this step in the

process; (Cain et al., 1978). The wax seeps into the microcellular structure of the graphite

mixture bonding the particles and making drawing smoother and giving the pencil the

relative shading qualities exhibited.

The next step in the manufacturing process is to overlay permanent castings around the

pencil. Thin wooden castings made from dried, stained and waxed cedar are most common,

although casings made out of plastic or paper may also be used (Burgelman, 1994). Once

cased, the pencils are then cut and shaped into either round, triangular or most commonly,

hexagonal cross Sections as this hexagonal design prevents them from easily rolling off flat

surfaces such as tables. The final step in the process, after the pencils have been shaped, is

for their surfaces to be smoothed and a varnish applied and dried.

For the manufacture of coloured pencils, colour pigments are added to the clay mix and very

little graphite is used.

Page 27: Development of Novel Physical (Electrostatic Detection

27

1.3.3 Pencil Grades

The hardness and darkness of pencils is dependent on the portion of clay used. The greater

the portion of clay used, the harder the core of the pencil and the lighter the mark or

‘blackness’ as less graphite is deposited on the paper. The pencils first designed by Conte’s

were distinguished using a grading system with four numerical grades from “1” being the

hardest and “4” being the softest and darkest (Martin, 1997). As the Conté process for

manufacturing pencils became recognised and used by other pencil makers, similar grading

systems were developed. However, these grading systems were inconsistent and arbitrary

from one pencil manufacturer to another. During the early nineteenth century, English pencil

manufacturers began using a new alphabetical system for differentiating the hardness

between pencils. This new system originally ranged from ‘B’ for black for softer “leads” to ‘H’

for hard for harder “leads” and in the middle of this scale "HB" was included to signify “hard

and black” and “F” to indicate that that the pencil sharpens to a fine point (Cain et al., 1978).

To allow for a wider range, the system was expanded with letters from ‘BB’ and ‘BBB’ for

successively softer “leads” to ‘HH’ and ‘HHH’ for successively harder “leads” (Burgelman,

1994). However, the system was finally expanded to combine letters and numbers and allow

for a greater variety of grades with no more than two characters. This final expansion to

letters and numbers ranging from 9B to 9H is the same English system that is in use today

(Burgelman, 1994). This English system continues to indicate hardness by the letter ‘H’ and

softness by the letter ‘B’ for the blackness pencils, with the numbers indicating varying

degrees. The system is detailed in Table 1.1 and Fig. 1.1.

A second grading system also developed and was largely adopted by US pencil

manufacturers, becoming known as the ‘US system’ (Cain et al., 1978; Burgelman, 1994). This

US system used only numbers (1, 2, 2½, 3, 4) ranging from darker (1) to lighter (4), with

number “2” in the middle of the scale (Cain et al., 1978; Burgelman, 1994). This system was

developed in the United States by John Thoreau, and it is claimed that it was based on the

grading system originally created by Conte although inversed with Conte using higher

numbers to indicate softer “leads” and Thoreau using them to designate harder “leads”

(Burgelman, 1994). Today the most common pencil grade is the HB, equivalent to a “2” in the

Page 28: Development of Novel Physical (Electrostatic Detection

28

US scale. Table 1.1 Conversion between US and English Grading System for Pencils is detailed

in Table 1.2 (Cain et al., 1978; Burgelman 1994).

Table 1.1 English Pencil Grading System

Darker Lighter9B 8B 7B 6B 5B 4B 3B 2B B HB F H 2H 3H 4H 5H 6H 7H 8H 9H

Figure 1.1 Pencil Grade Swatches.

Table 1.1 Conversion between US and English Grading System for Pencils

US

System

English

System

US

System

English

System

#1 B #3 H

#2 HB #4 2H

#2½ F

Whilst today there are two primary grading systems used internationally (English and the US

system), there are no specific industry standards for manufacturing to these different grades.

Thus even for pencils with the same grades, there may be disparity between the marks left

on paper depending on the brand pencil (Cain et al., 1978).

1.4 General Overview - Documents and Crime

Paper and ink are important sources of evidence in crimes dealing with cases as diverse as

fraud, threats, ransoms, forgery and money counterfeiting. Documents play an important

role in solving crimes. For example, the so called “Hitler Diaries” fraud was a case that

involved the analysis of ink and paper (Hamilton, 2009; Harris, 2009; Michel and Baier, 1985).

9B

Page 29: Development of Novel Physical (Electrostatic Detection

29

In 1981 Rupert Murdoch was committed to buying these diaries and publishing them. The

forger was known by the name of Konrad Kujau. The German police analysed the ink and

paper using chromatography and XRF respectively. These techniques revealed a whitening

agent that was not used in Hitler’s era as well as four different ink types which were not

available when Hitler was alive. The result of the enquiry was the arrest and successful

prosecution of Konrad Kujau for fraud.

Today, where documents are involved, Questioned Document Examiners (QDE’s) are often

required to perform procedures necessary to analyse the paper to determine its source,

identify and characterise markings, and often to enhance any markings or writing impressions

in order to help link the paper to an offence. In doing so, QDE’s can employ a number of

techniques and devices including physical examination (examination of weight, thickness,

fluorescence properties, opacity and water marks of the paper), chemical investigation of the

properties of the paper and ink and enhancement of impressions in underlying sheets of

paper, below that sheet on which the original message was written, using such techniques as

electrostatic detection apparatus (ESDA) to try and obtain a clearer image of what was

actually written on the original sheet. Many of these tests involve the use of “traditional”

techniques which, because of their longevity in the criminal arena, can be nullified by

judicious use of masking materials. Consequently, new scientific approaches for the

provenance determination of paper, inks and pencils and new techniques to enhance the

ESDA approach to enhance impressions need to be developed.

1.5 Previous Research

1.5.1. Paper

During the 1960’s and 1970’s several studies were undertaken which demonstrated the high

variability in the elemental composition of papers, produced by different manufacturers.

(Brunelle and Reed, 1984). These studies often confirmed that there were differences in the

chemical signature between batches of paper produced by different manufacturers (Ellen,

2005). However, as sample numbers increased the limited sensitivity of the analytical

techniques of the time, and limited number of analytes that could be determined,

Page 30: Development of Novel Physical (Electrostatic Detection

30

significantly compromised the ability to distinguish between different paper batches.

Consequently, it became obvious that much more sensitive techniques needed to be applied

to the analysis of paper to ensure that a robust differentiation between both manufacturers

and batches of paper could be achieved. In 1971, thermal neutron activation analysis was

used in a study by Schlesinger and Settle to analyse 120 white paper samples from nine

different manufacturers. Their study not only indicated that samples from an individual

manufacturer could be grouped together but that a more chemically uniform product was

produced by some manufacturers than others (Schlesinger and Settle, 1971). An additional

study by Brunelle, Washington, Hoffman and Pro, using neutron activation analysis and

involving 600 samples of coloured and white paper from ten different manufacturers, found

that paper produced by the same manufacturer could be distinguished using quantitative

trace element analysis (Brunelle et al., 1971).

In 1974 Langmyhr, Thomassen and Massoumi used atomic absorption spectrophotometry to

determine the concentration of copper, lead, cadmium and manganese in paper pulp and

were able to differentiate between four different paper types; letterhead, chromatographic,

filter and greaseproof paper (Langmyhr et al., 1974). In 1975 Duewer and Kowalski used

pattern recognition software to interpret elemental data for white bond papers that had

been analysed using neutron activation analysis and confirmed that separation between the

papers produced by different manufacturers did occur (Duewer and Kowalski, 1975).

Scanning Electron Microscopy-Energy Dispersive X-ray Analysis (SEM-EDXRA) was used by

Barnard, Polk and Giessen in 1975 to determine the elemental composition of both paper

and ash from paper samples. However, their study confirmed that this technique could be

used satisfactorily only for the determination of major element concentrations in both

matrices. At the time, the study was considered as being particularly important as many

forensic science laboratories were purchasing SEM-EDXRA systems (Barnard et al., 1975). The

use of SEM-EDXRA to determine the elemental composition of paper was further developed

by Attard and Giessen who, together with Polk in 1977, found that differences in paper

batches were common (Attard et al., 1977).

Page 31: Development of Novel Physical (Electrostatic Detection

31

In 1977, Simon, Giessen and Copeland, using atomic absorption spectrophotometry and

pattern recognition techniques to categorize paper, determined that copper, manganese,

antimony, chromium and cobalt were the most useful elements in distinguishing between

papers from different manufacturers. These authors also determined that density was an

important parameter in tracing paper back to the manufacturer (Simon et al., 1977).

In a study published in 1978, Blanchard and Harrison used neutron activation analysis to

determine the trace element compositional profiles of paper and used the ratios of specific

elements to identify fine paper. Initially these authors investigated the chemical composition

of clays from various sources which were being used as fillers for paper. Following this study,

they then tried to relate the elemental profiles of these clays to the chemical composition of

the paper that they were used to produce. The assumption was that the clay used gave a

unique chemical signature “fingerprint” to the individual batches of paper they were

incorporated into and that this fingerprint varied from batch to batch of clay or with

incorporation of multiply sourced clays into a single batch of paper. Their work successfully

resulted in a degree of comparability between clays and the final paper and also resulted in

one of the first databases detailing the chemical composition of paper being produced

(Blanchard and Harrison, 1978).

More recently in 2000, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to

determine the elemental composition of white photocopy paper from 17 different sources.

The study by Spence, Baker and Byrne, which determined the concentrations of 23 elements

commonly, found in paper, they identified nine elements which could be used to distinguish

between the 17 papers. Of these nine they considered manganese and strontium to be the

most useful (Spence et al., 2000).

However, the problem still existed that the number of sources of paper analysed and the

range of analytes determined were limited and therefore the ability to distinguish between

different types of paper and between manufacturers in “real world” forensic situations was

still unsatisfactory. In 2009 initial research was undertaken using ICP-MS by McGaw et al. and

LA-ICP-MS by van Es et al., heralding the start of the use of high-sensitivity, modern analytical

techniques for the identification and provenancing of paper.

Page 32: Development of Novel Physical (Electrostatic Detection

32

1.5.2 Ink

Chemical analysis of inks is often based around thin layer (TLC) or paper chromatography (PC)

and is a common type of technique used to differentiate between inks produced by different

manufacturers (Brunelle and Reed, 1984) . In 2009, a blind study by Naes used quantitative

chemical analysis to obtain a 95.6% discrimination between 45 black gel pen inks (Naes,

2009). This type of ink is the latest type of marker ink and it is extremely difficult to

determine its provenance.

Providing there is enough sample, chromatography-based separation and analysis techniques

are the most common ink analysis techniques used by forensic examiners. Usually a small

sample is removed from the questioned document using a scalpel or hole-punch. The ink is

then separated from the surrounding paper using an appropriate solvent. The resulting

solution can then be concentrated by evaporation and subjected to simple thin layer

chromatography (TLC) and the ink components separated into individual bands of colour that

form a “fingerprint” of the ink that can be easily compared with a reference sample. This

method is excellent for screening inks and gives a visible pattern that is easy for juries to

comprehend in court.

In 2006, Budnar et al. and Maind et al. applied PIXE and ICP-MS respectively directly to the

analysis of inks and in 2008 Maid et Al. tagged printing inks with europium as a tracing tool.

Analyses were undertaken using spectrofluorimetry and ICP-AES. In 2010, the first use of

mass spectrometric techniques for direct analysis of inks was undertaken by Trejos et al. and

Denman et al. Neither study was sufficiently comprehensive to facilitate incorporation of the

technique into general forensic practice.

1.5.3 Pencils

The analysis of pencil lead, to be able to distinguish between manufacturers, has proven to

be difficult (Brunelle and Crawford, 2003). In 1978 a study was undertaken to analyse the wax

component of the pencil lead using the technique of thin layer gas chromatography (TL-GC)

which did not prove that there are differences between pencil leads. In 1980, another study

Page 33: Development of Novel Physical (Electrostatic Detection

33

was conducted using mass spectrometry to determine the elemental composition of pencil

“lead” cores. Data produced in this study was able to be used to discriminate between two

different manufacturers (Zoro and Totty, 1980).

1.5.4 Questioned Documents

Forensic document examination, referred to in some countries as “questioned document

examination”, is a branch of forensic science that relates to the examination of any type of

documentary evidence in both civil and criminal investigations. A document is anything upon

which a mark is made for the purposes of conveying a message and a questioned document

is one where there is some doubt or dispute regarding the contents or creation of the

document. Although questioned document examination most commonly includes the

examination and comparison of handwriting and signatures, the scope is not limited

exclusively to these parameters (Hilton, 1992). Document examiners investigate disputed

documents of which some of the most common may include cheques, letters, credit card

receipts, motor drivers’ licences, wills, contracts, suicide notes, anonymous letters, insurance

claim forms, passports, petitions, lottery tickets and medical prescriptions.

Forensic document examination includes two particular categories for most examiners. The

examination and comparison of handwriting, hand printing and signatures is one specific

domain and involves the comparison of questioned writing with samples of writing that are

known or purported to have been written by an identified individual. At the completion of

the examination the document examiner provides an opinion on the authorship of the

questioned writing based on the identifying features.

The second broader category of document examination relates to the physical examination

of the questioned document. Physical aspects of the document may include paper,

watermarks, erasures, obliterations, impressions, tears, and ink and toner applications.

Macroscopic and microscopic examination, aided by the application of light and filters, can

assist in the provision of vital information regarding the document’s origin and other

questions likely to concern an investigator or the court.

Page 34: Development of Novel Physical (Electrostatic Detection

34

Forensic document examination is a diverse field and includes the following functions.

o Comparison of questioned signatures with known signatureso Mechanical impression comparison (typewriters, printers, rubber stamps, seals)o Visualising impressions in papero Identification of photocopy machineso Typewriter identification (make, model)o Non-destructive ink-examinationo Restoration of water or fire damaged documentso Physical matching of torn and cut papero Identification of printing processeso Graffiti and spray painting comparison

A physical examination of submitted evidence, within a holistic forensic document

examination procedure, involves thorough and meticulous scrutiny of documents. Examiners

may assess the surface features of the document for physical evidence such as alterations,

obliterations, indented writing, watermarks, security fibres, torn edges, moisture absorption

or fire damage.

In undertaking physical examinations, a number of different non-destructive techniques are

universally employed by forensic document examiners. Placing paper over a transmitted light

source will allow the examiner to determine the presence of a watermark. This may assist in

establishing the date period when the document was created. A document dated in 1978 on

paper bearing a watermark that was not produced before 1984 would obviously arouse

suspicion regarding the authenticity of the document. Other instruments and techniques,

such as electrostatic detection to visualise indented writing in paper, are also commonly

relied on. The ESDA (electrostatic detection apparatus) can be used to produce a visible

image of writing impressions in sheets of paper that were physically beneath a document at

the time it was being written.

The ESDA is the focus of the physical document examination part of the current study

detailed in this thesis. A recent innovation, the ESDAtesta, has been trialled and tested with

various types and weights of paper to establish its effectiveness and reliability for producing

robust images of impressed handwriting under various changes in the physical state of paper

both prior and post indentation (Steward, 1999). Factors such as changes in humidity,

Page 35: Development of Novel Physical (Electrostatic Detection

35

pressure, number of sheets of paper beneath the writing surface and ability to produce

readable images following different degrees of oxidation (degrees of burning), have been

tested.

1.5.5 Project Scope and Objectives

The research detailed in this thesis was designed to address ink, pencil and paper chemical

analysis protocols to develop where possible additional unique analytical techniques which

could be used to determine uniqueness and provenance of the materials involved. In

addition, ESDA was applied to the determination of the limits to which the technique could

be applied to enhance and determine the nature of marks and indentations on “carbonized”

paper, an application thus far not investigated in the literature.

The primary objectives of this project were to:

• Test the boundaries and parameters for the physical examination of paper using the

Electrostatic Detection Apparatus (ESDA), a forensic device to detect indentations in

paper

• Chemical examination of paper to determine if the trace element distribution

patterns vary between different manufacturers but are stable within a single batch

• Chemical examination of ink to determine if the trace element distribution patterns

vary between different manufacturers but are stable within a single batch

• Chemical examination of ink on paper to determine whether trace element

concentrations for ink and paper can be determined separately

• Chemical analysis of pencil “leads” to determine if the trace element distribution

patterns vary between different manufacturers but are stable within a single batch.

The investigation detailed in this thesis was designed to investigate whether currently

existing ESDA protocols could be modified or extended to identify a wider range of marks on

paper. The study particularly concentrated on whether it was possible to use ESDA

techniques to clarify marks on charred paper. In addition, the use of ESDA techniques, in

association with modern chemical analytical protocols, was also investigated. This aspect of

Page 36: Development of Novel Physical (Electrostatic Detection

36

the research was designed to try and establish if it was possible to use trace element

distributing patterns (fingerprints) to identify either generic chemical fingerprints for paper,

pencils and inks (both ballpoint and fountain pen) which would either relate these products

back to country of origin, manufacturer or, in the best case scenario, could be used to

establish a unique manufacturer or product batch, and whether it was possible to relate the

chemical fingerprint f charred paper back to the original uncharred material.

Page 37: Development of Novel Physical (Electrostatic Detection

37

Chapter 2: Physical Methods: Electro Static Detection Apparatus (ESDA)

2.1 Introduction

One of many instruments that is commonly employed by document examiners world-wide is

the Electrostatic Detection Apparatus (Figure 2.1), also referred to as ESDA (Steward 1999),

manufactured by Foster and Freeman Ltd. (Vale Park Evesham Worcestershire WR11 1TD

UK). This equipment, which has been one of the most important scientific advancements in

the field of forensic questioned document examination, is used to detect and visualize

indentations on paper (Moore 1988).

Figure 2.1 The ESDA Instrument

Since it was first developed and introduced as a device for detecting indented impressions on

paper in England in 1978, the role and operation of ESDA in Forensic Science has been

extensively studied and researched by scholars and forensic scientists. The first study on the

ESDA was published in 1979 in the Forensic Science International. Written by Foster and

Morantz, it outlined the technical procedure of the ESDA and recognized that the relationship

between the charge density on the surface of cellophane film on the earthed metal plate and

the potential at its surface is given by the formula.

V = L ơ

KЄ0

Page 38: Development of Novel Physical (Electrostatic Detection

38

where ơ is the surface charge density, K the dielectric constant, L the thickness of the

material and Є0 the permittivity of free space. In 1980, Ellen et al. also published an article on

the use of electrostatic imaging in the detection of indented impressions in the same journal.

They set out the operation of the ESDA and also highlighted its advantages in the field of

forensic science. However, in neither of these two original papers was there any mention of

the underlying mechanisms that effect the ESDA’s operation, such as the optimum conditions

required for examination.

Based on the principle that when writing is produced on a piece of paper resting on other

pages, impressions of the writing may be indented into the sheets underneath, it is these

latent writing impressions on the underlying pages, which may be invisible to the naked eye,

that can be recovered and made into permanent recordings using the ESDA process. ESDA

works by creating an invisible electrostatic image of indented writing which is then visualised

and recorded by employing a toning procedure (Ellen et al., 1980). The use of ESDA has been

perfected in forensic science to the point that an impression of the original document can be

traced to a depth of up to seven underlying sheets. In the application of ESDA, the latent

writing impressions left on the paper can provide vital and clear evidence for a variety of

investigations, both criminal and civil. For over two decades ESDA has been used

internationally as an instrument of necessity within Forensic Document Examiner’s

laboratories.

2.2 The Analytical Operation of ESDA

Similar to a photocopier, ESDA works by making use of an electrostatic imaging process. The

process creates an invisible electrostatic image of indented writing, which is then visualised

following the application of charge sensitive toners. The sensitive imaging process reacts to

small areas of microscopic damage to the fibres at the surface of the document, which have

been created through rough interaction with overlying paper surfaces during the act of

handwriting.

Page 39: Development of Novel Physical (Electrostatic Detection

39

The ESDA consists of a 9.5 by 16.5 inch sintered bronze plate, a vacuum pump, black

photocopier toner, cellophane imaging film, adhesive fixing film, developer glass beads a

scalpel blade and circuitry for the high voltage required to create an electrostatic charge.

However, it has been found that if optimum results from the ESDA are to be achieved, then in

some circumstances the pre-imaging technique of humidifying the document must be

employed.

2.3 Pre- Imaging Technique. Humidifying

In 1981 at the 39th Annual Conference of the American Society of Questioned Document

Examiners in Houston Texas, a paper on ESDA was presented and, for the first time, the

forensic benefits of the ESDA instrumentation were internationally recognised. The work was

subsequently published (Baier, 1983). This paper which investigated and discussed

experimental pre-imaging procedures was the first to acknowledge the possible effect of the

moisture content of a document on the ESDA results. It recognised and highlighted the

requirement of humidifying the document as a pre-imaging technique that potentially

improved ESDA results.

Additional studies have indicated that ESDA produced the most effective results from

documents that were conditioned in a humidity chamber at 40 to 70 % relative humidity

prior to being examined by the ESDA. It has been found that, where documents were left

within the humidity chamber for extended periods of time, even as short as thirty minutes,

deleterious change could occur to some documents rendering the ability of ESDA to be used

to determine indented images being significantly reduced. For optimum results, it has been

established that document examiners should refrain from keeping documents within the

humidity chamber for longer than the fifteen minutes period that is recommended (Moore,

1987, Riebling and Koubs, 1994). Some studies have even suggested that the document

should only be kept in the ESDA humidifier for approximately five minutes (Heath, 1983). This

time period is also recommended in the ESDA manufacturer’s instruction booklet. However,

it should be noted that the standard humidifying time may need to be adjusted depending on

Page 40: Development of Novel Physical (Electrostatic Detection

40

the prevailing humidity conditions within a laboratory environment in the first place and

during document storage before examination.

2.4 ESDA Operating Procedures

The ESDA has been designed as a manual system to allow the Document Examiner the

flexibility and freedom to deal with the wide range of materials encountered operationally.

Operating procedures are essentially similar for all paper samples and can be represented by

a series of logical procedures.

1) The document with the assumed latent indentations is placed face-up on an earthed

porous bronze plate, which has its underside connected to a vacuum pump. A thin

sheet of cellophane film is placed on top of the paper and the vacuum switched on.

With the pump in operation, a thin sheet of insulating cellophane film is then placed

over the full surface of the vacuum plate. This non-porous insulating film (upon which

the image is later developed) is drawn into firm contact with the vacuum plate,

sandwiching the document between the plate and the film. The cellophane covering

also serves to prevent damage to the original document.

2) The insulating film is then electrostatically charged by moving a thin corona wire at a

potential of 8kV across the surface (Figure 2.2). Static electricity discharges itself to

earth through the compacted paper and cellophane film and this differentially

charges the surface of the cellophane. The corona discharge unit is passed slowly over

the document three to four times to charge the surface, and in doing so forms the

latent images of the indentations present. The local capacitance, over the various

areas of the film and document sandwich, changes as a result of indentations in the

paper, thus causing fluctuations in the potential on the surface of the film.

3) These fluctuations constitute a stable potential image owing to the negligible leakage

of charge from the insulating layer. At this stage, the surface of the paper causes a

different pattern of charging in those areas where there are indentations, even at a

Page 41: Development of Novel Physical (Electrostatic Detection

41

microscopic level. This difference results in an electrostatic image of the indentations

being created on the sheet of film.

Development of a visible image is achieved by lifting the vacuum bed to an angle and

applying cascade black toner over the cellophane sheet as shown in (Figure 2.3). This is done

by using glass beads (diameter 0.5mm) coated with ultra-fine black carbon powder as the

carrier of the fine black carbon toner (Foster and Freeman Ltd.). A collection tray on the side

of the equipment recovers the cascade developer beads for further use after they are poured

over the tilted vacuum bed. This application of the toner is repeated several times until a

satisfactory image is obtained.

Alternatively the toner may be applied by an aerosol process of misting, which involves a

misting cloud chamber being placed over the document. Similar results are obtained with

both development processes, although occasionally greater contrast results can be produced

with the cascade system.

Figure 2.3 The application of cascade toner over the surface of the film

Figure 2.2 Electrostatic charge. Corona discharge unit is used to charge the surface and from latent images of the present indentations (Foster and Freeman Ltd.)

Page 42: Development of Novel Physical (Electrostatic Detection

42

The toner is strongly attracted to the electrostatically charged document and film and is

retained on the film surface in accordance with the amount of static charge present at any

given surface point. The parts of the document containing the higher static electric charge

retain greater portions of the black toner, resulting in a visible deposit of toner aligned with

the indentations on the paper. This implies that the indentations produce regions of lower

(i.e. more positive) potential on the charged insulating film. Thus, the negatively charged

toner is being repelled from the high negatively charged background and only adheres to the

more positive areas above the indentations.

Despite the apparent simplicity of the ESDA, there has been much debate over the principle

behind its operation. Some studies have indicated that it is the compression in the paper

surface that creates a positive surface charge which is detectable by ESDA (Wanxiang and

Xiaoling, 1988). However, more recently it has been suggested and experimentally proven

that the electrostatic effect of indented writing, as the creation of surface charge, is as a

result of friction. Through experimental evidence it has been shown that it is the friction

between the paper fibres that is responsible for creating sites at which positive ions from the

atmosphere can bond to the paper. Other indentations created by frictionless compressions

have been shown not to create an electric perturbation and have no noticeable effect in

ESDA. Further, compressions without friction have had no noticeable effect in ESDA also. This

suggests that ESDA detectable impressions can be transferred as the result of a wide variety

of contact mechanisms and not only be the act of writing. These findings have been

confirmed by Dines (1998), who demonstrated unequivocally that the ESDA detectable

writing impressions can be created in paper simply by contact with the reverse of paper

bearing heavy pressure writing which embosses the back significantly. It is on these principle

findings that the ESDAtesta is based, as by drawing the carriage and weight across and down

the top layer of paper; impressions are made in the paper underneath through the lateral

relative motion of the sheets.

2.5 Preservation of the Indentations

If the results are required for record, the powder image can be developed and preserved.

This is done by placing a protective transparent adhesive covering film over the top of the

Page 43: Development of Novel Physical (Electrostatic Detection

43

cellophane film while it is still being held in place by the vacuum of the ESDA. This effectively

preserves the image of the indentations.

The resulting combined protective and cellophane films can be peeled away from the

document to produce a permanent full size transparency of the indentations, and also leave

an undamaged and uncontaminated specimen (document) which can be re-examined by this

or any other method as required. The resulting image is in the form of a series of black dots

that can form coherent images of indentations made by other documents on the paper. As

shown in Figure 2.4 Original Document (A) undergoes ESDA process to reveal the hidden

indentations (B) resulting in ESDA transparency (C). This can provide compelling and valuable

evidence in document examination. For example, if the recovered indented writing is of a

high enough quality, it may be used as evidence in associating a person with a questioned

document by comparing the handwriting indentations with standard material.

BA C

Figure 2.4 Original Document (A) undergoes ESDA process to reveal the hidden indentations (B) resulting in ESDA transparency (C)

2.6 Potential Problems

One major parameter affecting the quality of ESDA results is the type of paper used. The

ability of ESDA to visualize indented writings varies greatly from one paper type to another.

Noblett and James, (1983) recognised this by examining ten different types of paper, ranging

from notepad paper to dual purpose ‘Xerox paper’, for indented writing under the ESDA. It

was found that thicker and better quality papers produced on average clearer and more

Page 44: Development of Novel Physical (Electrostatic Detection

44

intense indented writings marks, when compared to fine grade and recycled papers such as

notepad and cotton paper. When several different types of paper are written on, creating

sets of indentations on a single underlying sheet, the additional thickness of the paper on top

does not interfere with the formation of ESDA developed images. However, if thicker and

heavier materials, as a top sheet, are written on then sheets of any thickness beneath them

would not be indented unless the pen pressure used was sufficient to overcome the

additional thickness (Lewis, 1981 and Moore, 1987). Similarly, paper type was also examined

as a variable that can adversely affect results produced by ESDA. In addition, it was found

(Lewis, 1981 and Moore, 1987) that poor quality and fine grade paper, such as type-writer

paper, were more susceptible than other superior types of paper such as cheque book paper,

to the ESDA process. Thus, question document examiners acknowledge paper type is another

factor that can affect the quality of ESDA results.

2.7 Applications of ESDA in Forensic Science

2.7.1 Overview

Although in recent years there has been the advent of new recording technology, in today’s

world there is still a high level of dependence on the use of documentation. Paper evidence is

commonly encountered in diverse forensic and civil cases, such as cases of forgery, fraud,

extortion and kidnapping. As ESDA provides a method of detecting and permanently

recording latent writing impressions, it can offer very valuable evidence to document

examiners by producing significant information, such as telephone numbers, names and

dates that could otherwise not be visible after the removal of the actual sheet on which the

original impressions had been made. Further, as ESDA can recover latent writing impressions

without damaging or destroying the document, its use is practical in forensic science as it

produces evidence whilst preserving the document in its natural form. Thus, due to its

flexibility in application and its non-destructive nature, ESDA is commonly used for the

following types of document examination and investigation:

• Source of identification in anonymous note cases;

Page 45: Development of Novel Physical (Electrostatic Detection

45

• Record tampering/ alterations; (medical records, company files, cheques, wills, police

interview notes etc.);

• Recovery of information, such as names, telephone numbers etc.;

• The linking of apparently unconnected documents;

• Determining writing sequence (sequence in which a series of pages were written or

when they were written);

• Evidence in connecting someone to a questioned document (handwriting

recognition);

• Differentiating between primary and secondary markings.

ESDA is immensely advantageous in that it can be used to provide fresh compelling evidence

in a variety of situations involving document examination.

The technique is extremely sensitive, in that it can be used to recover very shallow

indentations which could not otherwise be easily or clearly reproduced. ESDA is so sensitive;

that it can even recover microscopic indentations which may be present several pages below

the original writing. Due to this advantage, ESDA can be used to provide evidence from

documents where no indentations are visible or where weak unreadable indentations could

only be identified. ESDA is also relatively simple to operate when compared to the alternative

technique of oblique lighting. This makes ESDA more practical and valuable, as both the time

and energy of forensic document examiners can be saved and made more efficient. Given

that within several minutes, results of any latent indented writing on a document can be

reproduced on a transparency with clarity, ESDA is both advantageous and practical to use.

ESDA is advantageous in that it records only the indented writing, ignoring the visible written

script on the document. ESDA treats the top copy of writing on the paper surface in the

opposite way to the indentations and in some way is similar to the old fashioned

photographic process where negatives and positives are involved. As the original document

(Figure 2.5A-B) undergoes the ESDA process, the hidden indentations are exposed on the

cellophane film (Figure 2.6). As the tonal image of any original writing on the paper being

tested is reversed, the original writing on the paper surface appears as red images on a light

grey transparent background (Figure 2.5A). The latent writing impressions are also recorded,

Page 46: Development of Novel Physical (Electrostatic Detection

46

but as black writing against a light grey transparent background (Figure 2.5B). This is because

when the ESDA is used, the inked surface of the writing has the reverse effect on both the

electrostatic properties of the paper and also on the indented impressions. This difference in

the imaging record of any original writing and the indented writing makes it comparatively

easy to differentiate between the two and to decipher the suspected indentations, even

when the two overlap (Lewis, 1981). This is particularly advantageous, as most documents

which contain latent impressions which are important for forensic science purposes have

already been written on.

B

A

Figure 2.5A and 2.5B The black words are of the latent impressions, with the original writing appearing as red text.

The final product is a permanent transparency with a high precision and clarity (Figure 2.7).

The transparency, which holds a copy of the latent impressions in black, can then be placed

over a white surface and easily deciphered by anyone. Thus, even if the latent impressions

are in another language, a transparency copy can be given to one or a number of different

interpreters. Further as the latent impressions are recorded on a clear transparency, they can

be easily compared. For obvious reasons the clarity of the image produced by the ESDA

technique is also of value, especially when findings are of legal or criminal importance.

Finally, a typed copy of the results can be made for comparison with the original and

presentation as a support document to a jury and judge (Figure 2.7).

Page 47: Development of Novel Physical (Electrostatic Detection

47

ESDA is non-destructive in nature. As the indentations are revealed on the protective

cellophane film, the original document remains unharmed throughout the process. Thus, the

original document can be further examined for other forensic evidence using other

techniques and instruments. The transparency result of the ESDA is detailed in (Figure 2.8). In

addition, fingerprints that could provide evidence to match to the suspects are also

highlighted. Given these advantages, the benefits of using ESDA in Document Examination

have become apparent and scientifically recognised.

Figure 2.6 Transparency Result of the ESDA.

.

Figure 2.8 Transparency Result of the ESDA with fingerprints highlighted.

Peter

Please give the money stolen

from the bank to Adam in two

days, he is leaving Perth to catch

a flight to Melbourne. At the

Park meeting 7pm.

Mark J Peterson

Figure 2.7 Reading from the transparency result of the ESDA

Page 48: Development of Novel Physical (Electrostatic Detection

48

2.7.2 Comparisons with Other Techniques

The practical advantages of ESDA also become more apparent when compared to other

techniques for the detection of impressions in paper. Historically there have been various

other methods employed. However, today, the ESDA is one of two techniques that are most

commonly used for the recovery of latent writing impressions, the other being oblique light

photography.

When a document bearing impressions is illuminated by a light directed obliquely across the

page, then the impressions are revealed by the shadow they cast. Photography in oblique

light consists of illuminating the document to be analysed in a dark room, by a light source

almost parallel to its surface, or at a slight angle of approximately twenty degrees. The

method shows up unevenness in the surface of the document, and any indentations or raised

areas on the surface give rise to shadows, thus enabling visualisation of the indentations. The

revealed impressions are then photographed for analysis.

Although this method is quite acceptable and like the ESDA is non-destructive, it has several

drawbacks when compared to the ESDA. Firstly, oblique light photography techniques are

often unable to recover non- visible microscopic indentations, which may have occurred

three or four pages down in a series of sheets or in a writing pad. Secondly, they also have an

inherently lengthy processing time as any impressions found have to be photographed and

then a second photograph at a different light angle must also be taken to illustrate the

difference between any different writing strokes. Whilst ESDA results can produce results

within a few minutes, oblique light photography can take over an hour to produce similar

results. Further, photographing a document by this method is difficult as the document must

be perfectly flat, as any raised areas create shadows and may obliterate sections of the

writing. Finally, the success of this technique largely depends on the skill of the forensic

document examiner in interpreting various fragments and thus results by this method are not

always consistent. Given these shortcomings, ESDA when available has become a more

preferred and practical approach in questioned document examination.

Page 49: Development of Novel Physical (Electrostatic Detection

49

2.8 The ESDA Testa

2.8.1 Introduction

The ESDA has had, until recently, very few modifications since its first commercial production

in the late 1970’s. Recently, an updated model of the ESDA was released by Foster and

Freeman manufacturers. Known as the ESDA2 it provided for documents up to A3 in size and

replaced the cascade developers used in the image development process with a toner pad.

Further the ESDA2 comes equipped with a document humidifier, shown in (Figure 2.9).

Besides these few changes, the actual ESDA apparatus has remained virtually unchanged for

over thirty years and as such the technology has only been subjected to limited validation

protocols. However, with increasing quality assurance programs being required to be

implemented by police forces internationally in response to demands for forensic laboratory

international accreditation, there has been considerable pressure to devise some method to

accurately compare ESDA instrumentation internationally.

Recently one of the agents for ESDA in Australia, XTEK released the ESDAtesta kit (Figure

2.10), a new device designed to allow regular quality assurance, inter comparison and testing

of ESDA machines internationally. This equipment has been designed to test whether an

Figure 2.9 The new ESDA2 document humidifier

Page 50: Development of Novel Physical (Electrostatic Detection

50

ESDA machine is working accurately for document examination purposes. ESDAtesta can

provide an ongoing record of any ESDA instrument’s calibration and thus offer proof to

validate any forensic evidence found whilst using the ESDA machine. Given the high level of

dependency on evidence produced by ESDA for Document Examination purposes; the

ESDAtesta can have important implications on the accuracy of such findings.

2.8.2 Analytical Operation of the ESDAtesta

The ESDAtesta is a device that allows for ongoing assurance and record of the ESDA

instrument’s calibration. Manufactured in Australia by XTEK Pty Ltd the ESDAtesta Kit consists

of. a carriage, stylus, five different weights, a drawbar, an Allen key, 3.5 inch floppy disk

containing reserve documentation, and ESDAtesta calibration forms. The components of the

apparatus contained in the ESDAtesta Kit are detailed in Figure 2.10. The QA template sheet,

although not shown in this figure, is shown in Figure 2.11A and these sheets are supplied by

XTEK Pty Ltd.

The ESDAtesta is designed as a manual system so that test indentations can be repeated on

different occasions. The ESDAtesta can either be used on a periodic basis or before the

analysis of case evidence by the ESDA. Furthermore, the ESDAtesta operates independently

from the operator’s input.

Figure 2.10 Diagram of the ESDAtesta components (XTEK LTD.)

Page 51: Development of Novel Physical (Electrostatic Detection

51

The ESDAtesta calibration sheets are comprised of three QA (Quality assurance) sheets

attached together.

• The top sheet is referred to as the “QA Top sheet”. A carbon stock sheet.

• The middle sheet is referred to as the “QA Template”.

• The bottom sheet is referred to as the “Sample Sheet”.

The ESDAtesta calibration sheets comes with printed template of the lines marked ‘1 to 5’

horizontally and vertically, which corresponds to the weight used to indent the sheets

(Error! Reference source not found.

The three ESDAtesta calibration sheets are placed on a hard surface (

Figure 2A). The “QA Top sheet” is made of carbon stock, whereas the other underling two

sheets consist of 80 gsm printer/ photocopy paper. The ESDAtesta instrument is assembled

Page 52: Development of Novel Physical (Electrostatic Detection

52

on a flat surface, with one weight on the stylus which is then placed on the carriage (

Figure 2B). The ESDAtesta is designed in such a way that the stylus ball protrudes below the

level of the carriage rollers and a constant weight on the stylus is maintained. The drawbar is

then hooked into the carriage (Figure 2.11B). The carriage with a single weight on it is drawn

across the ESDAtesta calibration sheets “QA Top sheet” horizontally above the lines marked

‘1’ which corresponds to the weight. This procedure is then repeated vertically. The

drawbar is employed when doing this, so as to prevent any external downward

pressure on the ESDAtesta stylus. The carriage is then lifted off the sheets, and one

more weight is added to the stylus. The carriage is then drawn across by the drawbar both

horizontally and vertically above the lines marked ‘2’ (Figure 2.11D). This process is

repeated, adding one more weight each time for lines ‘3’ through to ‘5’ with the

corresponding weight.

The “QA Top sheet” is then discarded. The middle sheet, the white “QA Template” sheet, is

then filled in by the examiner to record the details of experiment, such as the date and

Page 53: Development of Novel Physical (Electrostatic Detection

53

experiment number, while the third sheet, the “Sample Sheet” that holds the indentations, is

the one imaged by the ESDA.

The last sheet, the “Sample Sheet” is then placed in an ESDA Humidifier so that it is suitable

for examination. The new ESDA2 humidifier, recommended for this procedure, is shown in

(Figure 2.9), although a humidity chamber may also be used. The manufacturer XTEK Pty Ltd,

in their instructions recommend humidifying the Sample Sheet for a standard ten minutes

when using the ESDA so as to produce identical conditions for the quality assurance test

every time and so as to be independent of the methodology needed in actual casework.

However, communications between the company and Sergeant J. Hansen (West Australian

Police Service; Forensics, Document Examination Division (personal communication)), have

indicated that a two-minute period of humidification is more appropriate. This time has

therefore been used in studies throughout this thesis.

Page 54: Development of Novel Physical (Electrostatic Detection

54

Figure 2.11 A- The QA Template Sheet, B- An assembled ESDAtesta with carriage, stylus and one weight, C- The ESDAtesta Carriage with One Weight, D- The ESDAtesta being pulled across the page with one weight attached (XTEK Pty Ltd. 25 Yallourn Street Fyshwick, ACT. 2609 Australia.)

2.9 ESDA Examination

A normal ESDA examination is then performed on the paper until a satisfactory result is

obtained as explained in Section 2.4. The sample page is also signed and dated, and together

with the template page they are attached to the fixed developed film from the ESDA, and

preserved for examination and comparison.

2.9.1 Overview

ESDA is a widely accepted and routinely used instrumental procedure for investigating latent

marks on paper (Moore, 1987). As such it is indispensable to document examiners. However,

specific limits of the ESDA instrumentation, especially the newest instruments, have not been

investigated fully. The purpose of this Section is to establish the detection limits of ESDA and

A

D

B

C

Page 55: Development of Novel Physical (Electrostatic Detection

55

try to determine whether it can be used to recover marks on paper that has been heated or

even burned. Experimentation centred on the effect of changing paper types and the degree

of humidification of these papers together with heating paper to various temperatures to

simulate burning as a means of destroying material. The parameters investigated were:

• Variable 1 Paper Type

• Variable 2 Effect of Humidification

• Variable 3 Effect of high Temperatures

These three variables were manipulated and evaluated during a testing process in an attempt

to determine their relative impact, if any, on the efficiency of the ESDA instrument. The

various types and thicknesses of paper that were tested are listed in Table 2.2. Nine sheets of

each type of paper were used. Each paper type was selected so as to fairly represent the

variety of papers encountered by document examiners.

Table 2.2 Description of Paper Types Tested

Paper Number Description

1 Notepad Paper 60 gsm Paper. Manufactured by Spirax, Number 595 Made in Indonesia. Size 210 x 297mm (A4)

2 Opal Laser Offset 80 gsm Paper. Produced by Edwards Dunlop Paper Made in Perth, WA. Size 210 x 297mm (A4)

3 Opal Laser Offset 90 gsm Paper. Produced by Edwards Dunlop Paper Made in Perth, WA. Size 210 x 297mm (A4)

4 Opal Laser Offset 100 gsm Paper. Produced by Edwards Dunlop Paper Made in Perth, WA. Size 210 x 297mm (A4)

5 Opal Laser Offset 110 gsm Paper. Produced by Edwards Dunlop Paper Made in Perth, WA. Size 210 x 297mm (A4)

6 Blue Printer Paper 80 gsm Paper. Manufactured by Reflex Made in Australia. Size 210 x 297mm (A4)

Page 56: Development of Novel Physical (Electrostatic Detection

56

2.9.2 Experimental Procedure

Each of these six paper types was given a Paper Number corresponding to the information

listed in Table 2.1. Using the disk from the ESDAtesta Kit, which contained templates of the

ESDAtesta grids corresponding to the QA Top Sheet as explained in Section 2.8. The QA-Top

Sheet (Section 2.8 Figure 2.11A) was printed with five horizontal, and five vertical lines on

each of nine sheets of each type of the six types of paper, giving a total of 54 study sheets of

paper for this experiment. During this procedure, the ESDAtesta carriage, with a single

specified weight on it, was drawn across a page both horizontally and vertically across the

line marked ‘1’ (corresponding to that specific weight mass), then, after adding a second

weight, the carriage is drawn across the line marked ‘2’ and so on until all five weights and

lines corresponding to their masses had been drawn. The 54 sheets resulting from this

experiment were uniquely labelled on each bottom corner.

Nine sets of sheets were created out of the six different types of paper and the testing

procedure was conducted in three separate phases (Table 2.2).

Table 2.2 Test Procedure Outline. Each set contains QA Top Sheet, Template Sheet and Sample Sheet.

Paper number

Phase One- Variable 1 Paper Type

Phase Two – Variable 2 The Effect of Humidity

Phase Three – Variable 3 The Effect of High Temperatures

1 Sets A, B and C Sets D, E and F Sets G 200c, H 300c and I 400c

2 Sets A, B and C Sets D, E and F Sets G 200c, H 300c and I 400c

3 Sets A, B and C Sets D, E and F Sets G 200c, H 300c and I 400c

4 Sets A, B and C Sets D, E and F Sets G 200c, H 300c and I 400c

5 Sets A, B and C Sets D, E and F Sets G 200c, H 300c and I 400c

6 Sets A, B and C Sets D, E and F Sets G 200c, H 300c and I 400c

Page 57: Development of Novel Physical (Electrostatic Detection

57

2.9.2.1 Phase One. Paper type

In Phase one, the reliability of the latent indented lines produced by the ESDAtesta was

examined only in relation to the various paper types and qualities. In this phase ESDAtesta

was performed on each paper type three times for repeatability. Using the carriage from the

ESDAtesta kit lines was marked on a piece of paper at five different indent pressures, the

same indent pressures were used for each paper. This was conducted on one set of paper

from each of the six paper types. All five weights from the ESDAtesta Kit were used in the

experiment, followed by a standard ESDA test explained in Section 2.8 on the QA Sample

Sheet from each set, giving a total of nine ESDA transparencies as explained in Section 2.9.

The paper sets examined in this phase were tested at room humidity, and thus they were not

humidified in the humidifier chamber. The reason behind this was to examine the papers in

their natural state without trying to enhance the outcome of the ESDA results.

2.9.2.2 Phase Two. The effect of humidification

Routinely, documents in forensic science laboratories are placed in the ESDA humidity

chamber for periods of five to fifteen minutes, depending on the personal preference of the

individual examiner. The manufacturers of ESDAtesta, XTEK Pty Ltd, recommend in their

instructions a humidification of ten minutes. However, a memorandum released recently by

XTEK Pty Ltd to the Document Examination Section of the Western Australian Police Service

recommended that humidifying the document for two minutes was more appropriate. In

Phase Two, the effect of humidification on the latent indented lines produced by the

ESDAtesta procedure was examined. The reliability of the ESDA was studied in relation to the

different paper types being conditioned in the humidity chamber for a period of two minutes

prior to the ESDA procedure. Phase two, the effect of humidification, was conducted over a

three-day period and the ESDAtesta indented lines were performed on each paper type three

times for repeatability. The complete ESDAtesta procedure with two minutes of

humidification was conducted on sets D, E and F from each of the six paper types on each

consecutive day.

Page 58: Development of Novel Physical (Electrostatic Detection

58

2.9.2.3 Phase Three. The effect of increased temperatures

In this phase ESDA was performed as explained in Section 2.4. The paper samples were

placed between two ceramic blocks with card board sheets surrounding them to act as

spacers between the bottom and top ceramic plate (Figure 2.12A). Under this configuration a

series of paper sheets could be built up between ceramic plates with cardboard spacers

between each in order to heat a series of paper samples individually under the same

conditions. The cardboard served to stop the increase of oxygen during heating and acted

somewhat like the pages of a book, which if thrown on a fire would limit complete oxidation

and promoted simple carbonization. Once assembled the paper was placed into a pre-heated

muffle furnace Figure 2.12B, and Figure 2.12C at a specific temperature and equilibrated for

60 minutes.

Three different temperatures were chosen, 200oC, 300oC and 400oC. At temperatures above

400oC the paper was completely carbonized and no indentations could be observed. In

addition, at this high temperature, the carbonized paper was so brittle that it could not be

transported satisfactorily to the ESDA instrument and certainly could not withstand the

flattening process required before treatment.

A B

Page 59: Development of Novel Physical (Electrostatic Detection

59

Figure 2.12. Fig. 2.12A showing a paper sample contained inside the cardboard spacing

sheets prior to heating, Fig.2.12B Open furnace, Fig 2.12C Three tier sandwich of paper

samples between ceramic plates.

Figure 2.13 Colour changes after one hour exposure associated with the different degrees of heat treatment A) 200oC, B) 300oC and C) 400oC.

C

Ceramic Plates

Cardboard Spacers

Page 60: Development of Novel Physical (Electrostatic Detection

60

Figure 2.14 Paper sample that had been heated at 400oC for sixty minutes placed on the ESDA plate before evacuation prior to running.

Once removed the paper sheets showed various degrees of heat treatment and colour changes

with samples heated to 400oC being almost completely carbonized (Figure 2.13A-C). Following

heat treatment all samples were investigated for the presence of the marks ruled on them

using ESDA (Figure 2.14).

2.9.3 Analytical Methods

As the ESDAtesta weights and carriage were drawn along the different sets of paper in both

directions, it was expected that they would create a latent indented line on the pages below

Thus when the ESDA was used on each sample sheet, it highlighted the marks and they were

then able to be recorded, interpreted and kept. The ESDA transparency records from Phase

One, Two, and Three were evaluated based on the precision and clarity of the line produced.

In order to evaluate the variables tested, the clarity of the visualised indented lines resulting

from the five weights were assigned a point value. If the indented line produced was dark,

and clearly defined it scored two points. If some of the line was rendered visible but

somewhat vague in some areas, it scored one point, and if no line was observed a score of

Page 61: Development of Novel Physical (Electrostatic Detection

61

zero points was ascribed to the “mark”. This point system was applied to both the horizontal

and vertical indented line produced as a result of a line being drawn under the pressure of

each weight. Thus for example, a transparency that showed visible and clear lines on all five

weight levels both horizontally and vertically would be scored the maximum of twenty points,

2 points for each line. Whereas a transparency that showed two visible but imprecise

indented lines, and no visualizations on any of the remaining eight lines, received a score of

two.

A total of 54 paper samples from six different paper types representing 18 papers from each

of the three phases of the experiment, namely the paper type, the effect of humidification

and the effect of heat, were tested using the ESDA. The results were analysed according to

this point system.

2.10 Results and Discussions

Phase one results, where only the paper type was variable, are summarised in Tables 2.3 to

2.8, phase two findings, which correspond to the variations in humidification, are detailed in

Tables 2.9 to 2.14, and phase three results, where high temperatures were the only variable,

are summarised in Tables 2.15 to 2.20. In all of these tables, “H” refers to horizontal indented

lines and “V” to vertically indented lines created by the ESDATesta carriage. In assigning the

point values for analysis, all eighteen underlying QA sample sheets were examined.

Page 62: Development of Novel Physical (Electrostatic Detection

62

2.10.1 Phase One Results

Table 2.3 Results for Phase One. Paper Type 1.

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 1A 0 0 0 0 0 0 2 2 2 2 8 1B 0 0 0 0 0 0 1 1 1 1 4 1C 0 0 0 0 0 0 1 1 1 1 4 AVERAGE 5.3 pts

Table 2.4 Results for Phase One. Paper Type 2

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 2A 1 1 1 1 1 1 2 2 2 2 14 2B 1 1 1 1 1 1 2 2 2 2 14 2C 1 1 1 1 1 1 1 1 2 1 11 AVERAGE 13 pts

Table 2.5 Results for Phase One. Paper Type 3

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 3A 1 1 1 1 1 1 2 2 2 2 14 4B 1 1 1 1 1 1 2 2 2 2 14 5C 1 1 1 1 1 1 1 1 2 2 12 AVERAGE 13.3pts

Table 2.6 Results for Phase One. Paper Type 4

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 4A 1 1 1 1 2 2 2 2 2 2 16 4B 1 1 1 1 1 2 2 2 2 2 15 4C 1 1 1 1 2 2 2 2 2 2 16 AVERAGE 15.7pts

Page 63: Development of Novel Physical (Electrostatic Detection

63

Table 2.7 Results for Phase One. Paper Type 5

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 5A 1 1 2 2 2 2 2 2 2 2 18 5B 1 1 2 2 2 2 2 2 2 2 18 5C 1 1 1 2 2 2 2 2 2 2 17 AVERAGE 17.7pts

Table 2.8 Results for Phase One. Paper Type 6

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 6A 1 1 1 1 1 1 2 1 2 2 13 6B 1 1 1 1 1 1 2 2 2 2 14 6C 1 1 1 1 1 1 1 2 2 2 13 AVERAGE 13.3pts

2.10.2 Phase Two Results

Table 2.9 Results for Phase Two. Paper Type 1

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 1D 0 0 0 0 0 0 0 0 0 0 0 1E 0 0 0 0 0 0 0 0 0 0 0 1F 0 0 0 0 0 0 0 0 0 0 0 AVERAGE 0pts

Table 2.10 Results for Phase Two. Paper Type 2

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 2D 1 1 1 1 1 1 1 1 2 2 12 2E 1 1 1 1 1 1 2 2 2 2 14 2F 0 0 1 1 1 1 1 1 2 2 10 AVERAGE 12pts

Table 2.11 Results for Phase Two. Paper Type 3.

Page 64: Development of Novel Physical (Electrostatic Detection

64

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 3D 0 0 0 0 0 0 1 1 1 1 4 3E 0 0 0 0 0 0 0 0 0 0 0 3F 0 0 0 0 0 0 0 0 0 0 0 AVERAGE 4 pts

Table 2.12 Results for Phase Two. Paper Type 4.

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 4D 1 1 1 1 1 1 1 1 1 1 10 4E 1 1 1 1 1 1 2 2 2 2 14 4F 1 1 1 1 1 1 1 1 1 1 10 AVERAGE 11.3pts

Table 2.13 Results for Phase Two. Paper Type 5

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 5D 1 1 1 1 2 2 2 2 2 2 16 5E 1 1 1 1 1 1 1 1 1 1 10 5F 0 0 0 0 0 0 0 0 0 0 0 AVERAGE 8.7pts

Table 2.14 Results for Phase Two. Paper Type 6

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 6D 1 1 1 1 1 1 2 1 2 2 13 6E 1 1 1 1 1 1 1 1 1 1 10 6F 1 1 1 1 1 1 1 1 1 1 10 AVERAGE 11pts

Page 65: Development of Novel Physical (Electrostatic Detection

65

2.10.3 Phase Three Results

Table 2.15 Results for Phase Three. Paper Type 1

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 1G (2000C) 0 0 0 0 0 0 1 1 1 1 4 1H (3000C) 0 0 0 0 0 0 1 1 1 1 4 1I (4000C) 0 0 0 0 0 0 0 0 0 0 0 AVERAGE 2.7pts

Table 2.16 Results for Phase Three. Paper Type 2

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 2G (2000C) 0 0 0 0 1 1 1 1 2 2 8 2H (3000C) 0 0 0 1 1 1 1 1 2 2 9 2I (4000C) 0 0 0 0 0 0 0 0 0 0 0 AVERAGE 5.7pts

Table 2.17 Results for Phase Three. Paper Type 3.

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 3G (2000C) 1 1 1 1 1 1 2 2 2 2 14 3H (3000C) 1 1 1 1 1 2 2 2 2 2 15 3I (4000C) 0 0 0 0 0 0 0 0 0 0 0 AVERAGE 9.7pts

Table 2.18 Results for Phase Three. Paper Type 4.

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 4G (2000C) 1 1 1 1 2 1 2 2 2 2 15 4H (3000C) 1 1 1 1 1 2 2 2 2 2 15 4I (4000C) 0 0 0 0 0 0 0 0 0 0 0 AVERAGE 10pts

Page 66: Development of Novel Physical (Electrostatic Detection

66

Table 2.19 Results for Phase Three. Paper Type 5

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 5G (2000C) 1 1 1 1 2 2 2 2 2 2 16 5H (3000C) 1 1 2 2 2 2 2 2 2 2 18 5I (4000C) 0 0 0 0 0 0 0 0 0 0 0 AVERAGE 11.3pts

Table 2.20 Results for Phase Three. Paper Type 6

PAPER SAMPLES

LINE 1 LINE 2 LINE 3 LINE 4 LINE 5 TOTAL

H V H V H V H V H V 6G (2000C) 0 0 0 0 1 1 1 1 2 2 8 6H (3000C) 0 0 0 0 0 0 1 1 2 2 6 6I (4000C) 0 0 0 0 0 0 0 0 0 0 0 AVERAGE 4.7pts

A summary of the experimental results for phases one, two, and three are detailed in (Table

2.21). The averages of the results from each of the three experimental phases are also

detailed in this table.

Table 2.21. Summary of results. Averages from phase one, two and three (The data correspond to the point values used in the analytical method)

Paper Number Phase one Averages Phase two Averages Phase three Averages

1 (60gsm) 5.37 0 2.7

2 (80 gsm) 13 12 5.7

3 (90 gsm) 13.3 4 9.7

4 (100 gsm) 15.7 11.3 10

5 (110 gsm) 17.7 8.7 11.3

6 (80 gsm) 13.3 11 4.7

Page 67: Development of Novel Physical (Electrostatic Detection

67

2.10.4 Discussion of Results from Phase One Experiments

The research results from Phase one indicated that the strongest ESDAtesta indented results

were obtained with the heavier grades of paper, 100 and especially 110 gsm. In contrast,

when the notepad paper which is of low quality and finer in composition was tested, the

results showed that the ESDAtesta indentations were weakly produced. Document evidence

typically involves the examination of sheets of standard printer paper, which generally have a

unit mass of 80gsm. The results from the Blue Printer Paper (paper type 6) were consistent

with the results from paper type 2 (80gsm), suggesting that although the Blue Printer Paper

was dyed blue its fibre composition was the same as the normal white photo copy paper.

The blue dye in the paper had no substantial effect on the results obtained in this phase of

the experiment as it was not expected to have affected the paper fibres in any significant

way. The results presented in this paper are consistent with other studies (Riebeling and

Kobus 1994), in that they demonstrate the importance of paper quality in the detection of

latent imprints using ESDA.

As was expected, the quality of paper was also an important factor governing the ESDAtesta

process. This is because indentations in paper that are detectable by ESDA are transferred

through the paper as a result of friction between the paper’s fibres in the top and lower

sheets. When the ESDAtesta process is conducted on heavier grades of paper, the higher

quality fibres in the paper generate more friction between each other and as a result the

ESDAtesta indentations are more readily produced.

The data presented clearly demonstrate that if the ESDAtesta is to provide quality assurances

of the ESDA for casework and evidence verification, then the paper type on which the

ESDAtesta is tested must correspond to the paper quality of the document being tested by

the ESDA. Further if the ESDAtesta is to be used regularly to quality assure the ESDA in any

laboratory, document examiners must routinely perform the ESDAtesta process on the

variety of paper types encountered in document examination in order to adequately

familiarise themselves with the effect of paper quality on results.

Page 68: Development of Novel Physical (Electrostatic Detection

68

2.10.5 Discussion of Results from Phase Two Experiments

The research results from Phase two were not as consistent as those in Phase one. As

humidification increases the moisture content of a document, it was expected that this would

produce better quality ESDAtesta indentations and that the point value averages in Phase

two of this experiment would increase from those in Phase one.

However, it was found that humidifying the document for two minutes produced poor and

inconsistent results. With all the six paper types, humidification of the document prior to the

ESDA process weakened the visibility of the latent impressions from the ESDAtesta. The

Phase two point value averages which all decreased when compared to the results from

Phase one are shown in Table 2.22. The results are inconsistent and a trend between the

effect of humidification and paper type on the ESDAtesta results could not be established.

Whilst these results contradict earlier published data on the effect of humidification on ESDA,

they indicate that the ESDAtesta process is extremely sensitive and that the indentations

produced are consistently lower than for the equivalent dry material when paper is

humidified. These results appear to suggest that humidifying the document, for even as short

as two minutes can adversely affect the development of latent ESDAtesta indentations. As

this part of the study was restricted to the effect of humidification for only two minutes a

conclusive rationale for the results cannot be given. One possible rationale could be that as

the paper documents were not left at room humidity for an extended period of time and

therefore were not ‘dry’ so as to need humidification, the humidity chamber had the effect of

overexposing the paper to water vapour and thus produced less quality results. However,

without further research, such a rationale cannot be definite; research findings simply

indicate that humidification on the ESDAtesta process can affect the outcome of results.

2.10.6 Discussion of Results from Phase Three Experiments

The research results from Phase Three were more consistent than those in Phase Two and

were as good if not better than those of equivalent paper that had not been heated. This was

surprising because heating decreases the moisture content of a document, and it was

expected that in this phase heating to high temperature would produce lower quality

Page 69: Development of Novel Physical (Electrostatic Detection

69

indentations. Nonetheless investigations were able to prove that even when the paper was

heated up to 300oC it was still possible to develop the marks and it was only after the paper

was almost charred at 400oC that the ability to develop the indentations further was lost and

this largely due to the fact that the paper was so brittle that it was not possible to lay the

paper on the ESDA instrument.

Table 2.22 The decrease in the point value averages from Phase one to Phase two – calculated by subtracting the averages from Phase one from the Phase two averages.

Paper Number Phase One Averages Phase Two Averages Phase Two Decrease in Averages

1 5.33 0 - 5.33

2 13 12 - 1

3 13.33 4 - 9.33

4 15.6 11.3 - 4.5

5 17.6 8.6 - 9

6 13.3 11 - 2.33

The scenario was trying to mimic the possible disposal of a document by setting fire to it, or

throwing it on a fire, but the fire not completely destroying the document, if the imprint

would still be there. It was envisaged that the point value averages in Phase Three of this

experiment would increase from those in Phase One. However, it was found that applying

very high heating (4000C) to the (6 types) of paper, no visible lines were produced.

With all the six paper types, heating of the document in a (2000C and 3000C) in oven prior to

the ESDA process strengthened the visibility of the latent impressions from the ESDAtesta

over the data for equivalent paper heated to 400oC. Direct comparisons of results are

detailed in Tables 2.17-19. The results from paper (type 3-5) samples (3G, 3H), (4G, 4H), and

(5G, 5H) which were exposed to heat (2000C and 3000C) indicate that these papers with

higher gsm masses (90, 100, and 110gsm) showed more consistent results than those for

paper (type 1, 2, 6) as shown in (Tables 2.15, 2.16, and 2.20). Paper (type 1, 2, 6) in Tables

2.15, 2.16, and 2.20 have lower gsm (80, and 90). This demonstrates the importance of paper

quality in the detection of latent imprints by the ESDA. Results for samples (6I) from the (6

types) of paper that were exposed to (4000C), indicate that no indentation was recoverable.

Page 70: Development of Novel Physical (Electrostatic Detection

70

The high heat charred most of the document and on the part of the document which did not

get charred there was no visible line to record after the ESDA technique was applied.

Page 71: Development of Novel Physical (Electrostatic Detection

71

Chapter 3 Chemical Analysis of Paper, Ink and Pencils

3.1 Analytical Methods

3.1.1 Instrumentation

Three analytical techniques were used throughout this research; Inductively Coupled Plasma

Atomic Emission Spectroscopy (ICP-AES), Inductively Coupled Plasma Mass Spectrometry

(ICP-MS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). A

Thermo iCAP 6500 Inductively Coupled Plasma-Atomic Emission Spectrophotometer (ICP-

AES) (Thermo Fisher Scientific Australia Pty Ltd 5 Caribbean Drive, Scoresby Vic 3179) and an

Agilent 7700cs Inductively Coupled Plasma Mass Spectrometer (Agilent Technologies

Australia Pty Ltd, 679 Springvale Road, Mulgrave, Vic 3170), were used to produce all

analytical data. A New Wave UP-213 laser system (13900 NW Science Park Drive, Portland,

Oregon 97229-5497, USA) was used for all laser ablation experimentation. The use of laser

ablation allowed small areas of the sample to be analysed without the requirement to take

the bulk sample into solution.

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and Inductively Coupled

Plasma Mass Spectrometry (ICP-MS) are two common analytical techniques employed for the

determination of analytes at minor to ultra-trace concentrations in a wide variety of sample

types (Korsrud et al., 1985; Zhou et al., 1997; Mahan et al., 1998; Bush et al., 1995; Anan et

al., 2001; Ikemoto et al., 2004; Catarino et al., 2006; García-Ruiz et al., 2007; López-Alonso et

al., 2007; Ludwick et al., 2008; Linge, 2009; Nardi et al., 2009; Gerber et al., 2009; Watling et

al., 2010; Furia et al., 2011; López-Alonso et al., 2012). Due to the different sensitivities of the

two instruments, and to the different interferences that occur in each technique, the use of

both ICP-MS and ICP-AES in this research facilitated the determination of a wider range of

analytes and gave the highest levels of analytical accuracy by using the most appropriate

technique for each analyte. Consequently, the use of both techniques enables all analytes to

be determined using both the optimum analytical technique and also in the optimum

analytical range for their solution concentrations (Soltanpour et al., 1996; Linge and Jarvis,

2009).

Page 72: Development of Novel Physical (Electrostatic Detection

72

Atomic Emission Spectroscopy (ICP-AES) has a sensitivity that is reduced by one to three

orders of magnitude compared to ICP-MS (Soltanpour et al., 1996; Luykx and van Ruth,

2008). However, analytes such as sodium, magnesium, calcium, potassium and aluminium,

which are relatively high in concentration in biological matrices (including paper) are difficult

to quantify using ICP-MS due to significant complex-ion isobaric-overlaps. These analytes

however are much more accurately determined at trace and minor concentrations using ICP-

AES.

In addition to the basic instrumentation, LA-ICP-MS was also employed. The use of laser

ablation allowed small areas of the sample to be analysed without the requirement to take

the entire sample into solution. In addition, by using the line ablation protocol for LA-ICP-MS,

it was possible to determine variations in elemental patterns across the surface of paper

samples and also to produce data for scanning across the interface between blank paper and

paper that had been written on, by traversing the ink/paper interface.

All solution-based analytical data (generated using ICP-AES) were quantified with reference

to in-house standards made by serial dilution of multi-element calibration standards from

Merck Chemicals™, Australia. These standards were analysed at the beginning and end of

each analytical run. A drift solution, consisting of a bulk solution of the sample type being

analysed, was introduced every twelfth sample of the analytical run. This approach was used

for both ICP-AES and ICP-MS analyses to ensure inter-run comparability of data. Rh and Ir

were also used as internal standards (2ngmL-1) for ICP-MS analyses to correct for both drift

and matrix effects in the samples and also to ensure inter-run comparability of data (Saitoh,

et al., 2002).

First developed in the 1980’s, solution based ICP-MS soon became the technique of choice,

firstly for geologically based analyses and then for a much wider range of materials, as the

technique exhibited far fewer interference problems than ICP-AES and was significantly faster

for the production of quantitative multi-element data than any other technique then, and

even now, available. Not only was ICP-MS more sensitive than earlier techniques, thus

facilitating the analysis of trace or ultra-trace level elements in a matrix (Lam et al., 1995;

Koppenaal et al., 2004; García-Ruiz et al., 2007; de Hoffman and Stroobant, 2007), the

Page 73: Development of Novel Physical (Electrostatic Detection

73

instrumentation allowed for the rapid determination of multiple analytes almost

simultaneously with the

produced spectra being simple to interpret (Zhouand and Liu, 1997). Following its

development significant research into the technique has led to a wide variety of new

procedures and improvements which have made it one of the most powerful analytical

instruments available (Koppenaal et al., 2004; de Hoffman and Stroobant, 2007; Linge and

Jarvis, 2009).

3.1.2 Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) is an analytical

technique that uses an inductively coupled argon plasma to generate excited atoms and ions

which, when returning to their ground or lesser excited state, emit electromagnetic radiation

characteristic of that specific element. The technique quantifies the emission intensity of

both ion and atom emission lines and relates these values to a standard-based calibration

curve for each analyte to quantify the relevant analyte concentration (Boumans, 1987).

For Atomic Emission Spectroscopy (AES), light emitted after the excitation of atoms using an

Inductively Coupled Plasma (ICP), is recorded by the detector (Soltanpour et al., 1996; Linge

and Jarvis, 2009). The energy provided by the plasma provides enough energy to excite the

atom temporarily into a higher energy level (Luykx and van Ruth, 2008). As the energy is lost,

and excited atoms return to their stable state, they emit light which is characteristic for each

quantum drop of the electrons and is therefore characteristic for each analyte (Skoog et al.,

1998; Skoog et al., 2007). The produced light is passed through an entrance slit of a

polychromator and focused onto a grating using a series of mirrors and lenses. To achieve

clear wavelength separation, modern polychromators are based around an Eschelle

polychromator system (Skoog et al., 2007). Once separated into component wavelengths, the

individual wavelengths of light pass through exit apertures in an aperture plate, and their

intensities are recorded as electrical signals using individual charge injection or charge

coupled devices as an electrical signal. This electrical signal is directly proportional to the

emission intensity of the individual spectral line, which, based on signals derived from the

Page 74: Development of Novel Physical (Electrostatic Detection

74

intensities produced by equivalent analytes in standards, is in turn proportional to the

concentration of the relevant analyte in solution. Depending on the instrument, the

wavelengths of the different elements can either be detected sequentially or simultaneously

(Skoog et al., 2007). A diagrammatic representation of an ICP-AES is given in Figure 3.1.

Figure 3.1. Schematic of an Inductively Coupled Plasma Atomic Emission Spectrophotometer using an Eschelle grating. (Figure reproduced from Skoog et. al., 2007).

Although 19 elements, represented by 29 analytical wavelengths (Table 3.1), were

determined using ICP-AES only analytes relevant to the specific sample type being studied

were used for the determination of provenance of the individual sample types. The actual

analytes used in each study are detailed in all diagrams associated with the sample type and

are recorded in the relevant Appendices of this thesis. In order to avoid confusion, the

relevant analytes used for the specific sample type being discussed are specified individually

in each chapter. It is important that there is flexibility in the number and make-up of analytes

used in each study as the analytes vary in concentration (or CPS) with respect to each sample

type and provenance identification is compromised if analytes with roughly the same

concentrations in all the samples, or analytes that are at, or below, the detection limit of the

technique, are unnecessarily used in algorithms applied to the identification of sample origin.

Consequently, the number and make up of analytes used for provenance determination

varies between sample types.

Page 75: Development of Novel Physical (Electrostatic Detection

75

Table 3.1 Analytical emission lines (wavelengths are expressed in nanometres) used in this study.

Na589.5 Na818.3 Mg279.5 Mg285.2 Al167.0 Al396.1 Si251.6 P 177.4 P 178.2 S 180.7

K 766.4 Ca422.6 Ti334.9 Cr283.5 Cr359.3 Mn257.6 Mn279.4 Fe239.5 Fe259.9 Co230.7

Co237.8 Ni221.6 Ni341.4 Cu324.7 Zn206.2 Zn213.8 Sr407.7 Ba455.4 Pb220.3

Initially, as it was not possible to be specific as to the analytes that would assist in the

interpretation of data, as many analytes as possible and relevant were always determined.

Following analysis and preliminary data interpretation, a refined list of analytes was

developed for each sample type and data for some of the unreported analytes were used for

cross validation between ICP-MS and ICP-AES data to confirm reproducibility of the final data

and were not used in the final provenance determination investigation.

A Thermo Scientific iCAP 6500 series ICP spectrophotometer was used throughout this thesis.

Analytical solutions needed to be diluted in order to contain <2% Total Dissolved Solids (TDS).

Following dilution, quantization is achieved with reference to data for calibration standards

(0-100µgmL-1). These standards were supplied by AccuTrace™ (Registered trade mark of the

Dow Chemical Company, 2030 Dow Centre, Midland, Michegan, USA 48674), and were

diluted to the appropriate range using 18MegΩ resistance deionised water. Sub-boiling

redistilled nitric acid was produced using a quartz still (manufactured by Quarzglas

Komponenten und Services QCS GmbH, Germany) and each batch checked for purity before

use. Nitric acid was added to the final solution to give a final acid strength of 5% v/v after

dilution to the appropriate final volume. Analytical samples were diluted to an appropriate

final volume in the same manner.

3.1.3 Inductively Coupled Plasma as an Ionization Source

For the determination of elements using ICP-MS and ICP-AES the sample solution must first

be converted into an aerosol prior to being ionized (de Hoffman and Stroobant, 2007). In

both these instruments, the common ionization source is the Inductively Coupled Plasma

(ICP). Samples are nebulised to form a fine aerosol mist before introduction into the plasma

(Skoog et al., 1998; Skoog et al., 2007; de Hoffman and Stroobant, 2007; Linge and Jarvis,

Page 76: Development of Novel Physical (Electrostatic Detection

76

2009). The nebulization system for both ICP-AES and ICP-MS are essentially the same and

consist of a nebulizer, usually based around a Meinhard™ design (Meinhard, 700 Corporate

Circle, Suite L, Golden, Colorado 80401-5636, USA) and a cyclone based spray chamber that

may or may not be cooled to temperatures between 10oC and 20oC. If the solutions being

aspirated are organic in nature the cooling water can be as low as 5oC. The nebulized sample

is introduced into a spray chamber where particles greater than approximately 2μm in

diameter are removed and drained to waste. The separated <2μm particle size aerosol is co-

entrained with the nebulization gas which enters the plasma through the innermost quartz

(nebulizer) tube of the plasma torch. The nebulised gas forces its way through the centre of

the plasma where it is first desolvated and the residual particulate material ionized with the

resulting ions passing through the sampler and skimmer cones (interface) into the mass

spectrometer.

3.1.4 Inductively Coupled Plasma Mass Spectrometry

The ionization system of the ICP (the plasma) is contained within the outer of three

concentric quartz tubes. A water cooled copper coil, which is wound around the outermost

quartz tube, supplies a magnetic field to the plasma and a radio frequency generator (RF)

produces an alternating current within the coil (Skoog et al., 1998; Skoog et al., 2007; Linge

and Jarvis, 2009). The plasma is produced following the initial electron-seeding of the argon

gas using a Tessla discharge. The resulting ions are controlled using a radiofrequency (RF)

field and further ion interactions ionize the argon gas resulting ultimately in the production of

an argon plasma with an electronic temperature of approximately 10,000oK (Soltanpour et.

al., 1996; de Hoffman and Stroobant, 2007). A diagrammatic representation of an ICP can be

seen in Figure 3.2.

Ionisation of the sample in the plasma results in the production of an ion beam, which is then

sampled from the plasma through a hole in a nickel or platinum sampler cone and a skimmer

cone made of the same material. Once through the skimmer cone the ions pass into the mass

spectrometer. The ions are then focused into a collimated beam using a series of ion lenses

and then passed into the quadrupole where they are separated on the basis of their mass to

Page 77: Development of Novel Physical (Electrostatic Detection

77

Figure 3.2. Inductively Coupled Plasma set up for sample ionisation. (Figure reproduced from de Hoffman and Stroobant, 2007).

charge ratio (m/z) prior to exiting the quadrupole and passing on to the ion multiplier for ion

magnification. Ultimately ion counts are recorded for quantification purposes (de Hoffman

and Stroobant, 2007; Linge and Jarvis, 2009). A range of different mass analysers including

ion trap, time-of-flight, quadrupole, and multi-collector systems exist to separate out such

ions (Koppenaal et al., 2004). Depending on the mass analyser used, the ions are sorted using

either an electric or magnetic field to control which ions reach the detector at a given time

(de Hoffman and Stroobant, 2007; Boyd et al., 2011; Linge and Jarvis, 2009). The sorted m/z

ions are then sent through to the detector where an electrical current, proportional to the

relative abundance of each ion, is produced from the incident ions. A data processing system

interprets this signal and produces either a mass spectrum of the sample (de Hoffman and

Stroobant, 2007; Boyd et al., 2011) or output of counts per second for each analyte detected

(Boyd et al., 2011; Linge and Jarvis, 2009). The concentration of the elements of interest can

be determined by comparing the electrical signal (counts per second (CPS)) produced for

each isotope ion in a sample with that for the equivalent isotope ion produced when

nebulising a reference sample or calibration standard. A diagrammatic representation of a

quadrupole ICP-MS is given in Figure 3.3.

ICP-MS was used in this thesis to determine the concentration of 52 elements (Tables 3.2 A-

D). Amongst this range of analytes there were a significant number that were considered to

either exhibit isobaric overlap interference problems (e.g. 51V, 52Cr, 53Cr, 75As, 77Se) or could

be used to correct data for those isotopes that had recognised isobaric overlap problems

Page 78: Development of Novel Physical (Electrostatic Detection

78

(Tables 3.2 A and C). These isotopes were used to perform a series of corrections to achieve a

final list of analytes (isotopes) that could be used for provenance determination (Tables 3.2B

and D).

Figure 3.3. Schematic of a quadrupole Inductively Coupled Plasma Mass Spectrometer. (Figure reproduced from Linge and Jarvis, 2009).

Table 3.2 A & B. A - List of all isotope masses determined using ICP-MS for the analysis of paper samples, B - List of final analyte isotopes used for paper provenancing purposes

A

7Li 9Be 10B 11B 45Sc 48Ti 49Ti 51V 52Cr 53Cr 55Mn 59Co 60Ni 63Cu 64Zn 65Cu 66Zn 69Ga 70Ge 71Ga 73Ge 75As 82Se 85Rb 88Sr 89Y 90Zr 91Zr 93Nb 95Mo 98Mo 107Ag 109Ag 111Cd 114Cd 115In 118Sn 120Sn 121Sb 125Te 126Te 133Cs 138Ba 139La 140Ce 141Pr 146Nd 147Sm 151Eu 152Sm 153Eu 157Gd 158Gd 159Tb 162Dy 165Ho 166Er 169Tm 172Yb 174Yb 175Lu 178Hf 181Ta 182W 203Tl 204Pb 205Tl 206Pb 207Pb 208Pb 209Bi 232Th 238U

B

7Li 9Be 11B 45Sc 49Ti 51V 53Cr 55Mn 59Co 60Ni 64Zn 65Cu 69Ga 70Ge 75As 82Se 85Rb 88Sr 89Y 90Zr 93Nb 98Mo 107Ag 111Cd 115In 120Sn 121Sb 126Te 133Cs 138Ba 139La 140Ce 141Pr 146Nd 147Sm 151Eu 157Gd 159Tb 162Dy 165Ho 166Er 169Tm 174Yb 175Lu 178Hf 181Ta 182W 205Tl 208Pb 209Bi 232Th 238U

Page 79: Development of Novel Physical (Electrostatic Detection

79

Table 3.2 C & D. C- List of all isotope masses used for the analysis of ink samples, D- List of final analyte isotopes used for ink provenancing purposes

C

7Li 9Be 10B 11B 45Sc 48Ti 49Ti 51V 52Cr 53Cr 55Mn 59Co 60Ni 63Cu 64Zn 65Cu 66Zn 69Ga 70Ge 71Ga 73Ge 75As 82Se 85Rb 88Sr 89Y 90Zr 91Zr 93Nb 95Mo 98Mo 101Ru 102Ru 103Rh 105Pd 107Ag 108Pd 109Ag 111Cd 114Cd 115In 118Sn 120Sn 121Sb 125Te 126Te 133Cs 138Ba 139La 140Ce 141Pr 146Nd 147Sm 151Eu 152Sm 153Eu 157Gd 158Gd 159Tb 162Dy 165Ho 166Er 169Tm 172Yb 174Yb 175Lu 178Hf 181Ta 182W 203Tl 204Pb 205Tl 206Pb 207Pb 208Pb 209Bi 232Th 238U

D

7Li 9Be 45Sc 49Ti 51V 53Cr 55Mn 59Co 60Ni 65Cu 66Zn 69Ga 70Ge 75As 82Se 85Rb 88Sr 89Y 90Zr 93Nb 98Mo 101Ru 103Rh 105Pd 107Ag 111Cd 115In 120Sn 121Sb 126Te 133Cs 138Ba 139La 140Ce 141Pr 146Nd 147Sm 157Gd 178Hf 182W 208Pb 209Bi 238U

Although ICP-MS is an extremely sensitive analytical technique, which is traditionally used for

trace and ultra-trace analyte concentration quantitation, the technique can also be used to

provide concentrations for relatively high analyte levels (µgmL-1), as was the case with data

detailed in this thesis. Similarly to the data produced using ICP-AES, not all the analytes

determined using ICP-MS were directly used in data interpretation in this study. In some

cases, some analytes not directly reported in the text, were used for cross calibration and

data validation between ICP-AES and ICP-MS. In this way, any interferences occurring in a

specific technique could be easily identified and either corrected for or the most appropriate

analytical technique retrospectively chosen.

The ICP-MS instrument used was an Agilent 7500CS Inductively Coupled Plasma Mass

Spectrometer (Agilent Technologies, Inc., Santa Clara, CA, USA). The Standards used for the

calibration were obtained from AccuTrace™ (Registered trade mark for the Dow Chemical

Company, 2030 Dow Centre, Midland, Michegan, USA 48674). This series of ICP-MS

standards is provided as five different reference solutions (Icp-Ms-Cal-3.1, Icp-Ms-Cal-3.2,

Icp-Ms-Cal-3.3, Icp-Ms-Cal-3.4, Icp-Ms-Cal-3.5). The instrument calibration standards were

prepared by mixing the relevant standards (taking account of insolubility criteria) and diluting

them to the appropriate concentration using 18MegΩ resistance deionised water. The final

Page 80: Development of Novel Physical (Electrostatic Detection

80

solutions were made to volume to contain 2% sub-boiling quartz-redistilled nitric acid.

Samples were made up to final volume before analysis to be <500 µgmL-1 TDS in solution also

using 2% sub-boiling quartz-redistilled nitric acid in which rhodium and iridium had been

added to give a final concentration in solution of 2ngmL-1. Rhodium and iridium were added

as internal standards to facilitate normalization of data in the event of drift during the

analytical run.

3.1.5 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a solid sample

introduction technique that provides rapid, multi-elemental, low detection limit analysis

facilitating chemical characterisation of samples as small as 10µm in diameter with minimal

sample destruction. In LA-ICP-MS protocols, a laser of specific wavelength is focused onto the

surface of a solid sample through a window in a quartz ablation cell (Trejos and Almirall,

2005). Most commonly, this involves the use of an Nd:YAG laser operating at a fundamental

wavelength of 1064nm. The instrumentation used in this study, makes use of frequency

modulation of this light to the fifth harmonic and operates using frequency quintupled

213nm wavelength light. The laser beam is focussed onto the surface of a sample at a chosen

point, where energy is transferred to the sample surface. Interaction between the beam and

sample surface results in the ablation of ultra-fine (nm to μm sized) particles (Günther and

Hattendorf, 2005). The resulting ‘ablated’ aerosol of debris is transported in an argon:helium

mixed carrier gas and directly introduced into the plasma. The finer the particle size, the

better the transport efficiency of the aerosol resulting in improved sensitivity.

The advantages of this technique are that it provides a means for multi-elemental analysis of

solid material which can be directly introduced into the plasma without having to

independently sample and dissolve the material first, which is particularly appropriate for

forensic samples that are microscopic in size, cannot easily be removed from a substrate or

are dissolution-resistant materials. LA-ICP-MS can also facilitate the provision of spatial

information by allowing analysis of small selected areas of the sample. In addition, sample

preparation procedures are effectively eliminated, ensuring that labour costs, solvent-

induced spectral interferences, volatile element loss, dilution errors, reagent contamination,

Page 81: Development of Novel Physical (Electrostatic Detection

81

costs associated with reagents and sample transfer losses arising from sample handling steps

are all avoided, or at least minimized.

Figure 3.4 A An image of the UP 213 laser ablation system; B - A close up of the ablation cell with the laser (encased in orange plastic shield).

While Laser Ablation ICP-MS analysis provides the primary source of provenance

determination data for the ink on paper studies in this thesis (Section 4.5), all ballpoint and

fountain pen ink samples and all paper samples were analysed using solution based

techniques. Laser Ablation Inductively Coupled Plasma Mass Spectrometric analysis was

undertaken using a New Wave Research Co. Ltd. (Cambridgeshire, England) UPI 213nm Nd :

YAG laser system (Figures 3.4A and B) coupled with an Agilent 7500CS Inductively Coupled

Plasma Mass Spectrometer (Agilent Technologies, Inc., Santa Clara, CA, USA). The ICP-MS was tuned

prior to the commencement of each day’s analysis using a National Institute of Standards and

Technology (NIST) 612 glass standard. Throughout the analytical run, after every ten samples

the NIST 610 glass standard was analysed to facilitate normalisation of the data for

instrumental drift, correction for which, if necessary, was undertaken at the end of each

analytical run. The reason for using the two available NIST standards (NIST 610 and NIST 612),

was that when the ICP-MS is being tuned, continuous ablation of the standard occurs, a

process taking several minutes. Under these conditions if NIST 610 was used it would result in

the unnecessary introduction of ten times more analyte “contamination” into the mass

spectrometer as would occur if the lower concentration NIST 612 standard was used.

However, the use of NIST 610 standard for normalization makes use of the fact that the

higher concentrations of analytes present in this standard give rise to higher (CPS) signals

A B

Page 82: Development of Novel Physical (Electrostatic Detection

82

which are more statistically significant when assessing instrumental drift throughout an

analytical run. Data for approximately ten seconds of instrumental gas blank were collected

prior to each analysis to allow for background correction.

The precision of data obtained as a result of LA-ICP-MS, is heavily dependent on laser-to-

sample coupling efficiency, changes in which can result in signal fluctuations caused by pulse-

to-pulse variations in the amount of sample ablated and hence the amount of analyte

reaching the plasma (van de Weijer et al., 1992). Consequently, LA-ICP-MS is still a

predominantly qualitative technique as there are no suitable matrix-matched standards

available for the majority of sample matrices and the heterogeneity of samples makes it

almost impossible to determine accurate bulk analyte concentrations. However, for the

analytical protocols used in this thesis, the qualitative nature of the analysis has no effect on

data interpretation. In this thesis the interpretation of data relies on the comparison of inter-

isotopic ratios as opposed to comparison of absolute concentration values (Watling, 1999).

Consequently, the data obtained using this analytical method are perfectly suited for the

provision of data that can provide information regarding the sample origin or ‘provenance’.

3.2 Data Analysis and Interpretation

3.2.1 Multi-Element Data Interpretation

Multi-element analysis facilitates the identification of a key set of variables, and their

relationships to one another. Such analysis can provide a characteristic pattern, or chemical

fingerprint, of a sample that can relate it back to its geographic region of origin,

manufacturing site or batch of manufacture (Kreitals and Watling, 2014; Valentin and

Watling, 2013; Martin et al., 2012; Watling et al., 2011; May and Watling, 2011; Watling et

al., 2010; Pilgrim et al., 2010; Luykx and van Ruth, 2008; Bartle and Watling, 2007; Watling et

al., 1999; Watling, 1998; Watling et al., 1993). However a visual comparison of multi-element

data in the form of a chemical fingerprint is only feasible for a small number of samples.

When the chemical profiles of samples become complex with an increased number of

variables being analysed, and the sample number becomes large, the differences between

chemical profiles of samples can become difficult to visually identify and discriminate

between (Watling et al., 2010).

Page 83: Development of Novel Physical (Electrostatic Detection

83

Under these circumstances it is often required to reduce the data set to more manageable

proportions and to achieve this, a screening technique called “Comparability Index (CI)”

screening, has been employed. The Comparability Index (CI) statistics (Thomas et al., 1993)

are based around a sorting sub-routine that uses the logarithmic values of the CPS data, or

quantitative data, for a reference sample and compares these values with equivalent element

values in the remaining data base samples. These differences are then summed and sorted to

obtain an approximation of the relative comparability (fit) of the spectra of elements

(elemental fingerprints) for each sample, within the data set, to the reference sample

fingerprint. The series is sorted on the basis of a comparability index value which is the

difference from a 100% fit of the questioned sample with itself and as such sets a value for

the highest level of comparability (100%) possible. A 100% fit can only be achieved with

identical elemental fingerprints being compared. This is a statistically impossible situation in

any analytical regime and consequently only the use of the reference sample data (entered

twice) into the program ensures that a 100% fit is achieved. The 100% fit ensures that the

maximum possible comparability point is fixed in the interpretational protocol. The worse fit

of the questioned sample to one of the other samples in the database is designated as a 0%

comparability fit rating. Once comparability ranking has been achieved for all samples, it is

then also necessary to visually compare the spectral fingerprint of the high comparability

samples to the questioned sample to ensure that the fit is genuine and not an artifact based

on only statistics.

In addition to simply referring to the numbers (percentage comparability), it is also advisable

to plot the percentage comparability relative to the specific sample giving that comparability

and its positional number in the database. In this way significant changes in the slope of the

plot (“break in slope”) frequently can be observed, these breaks usually indicate the start of

new populations and are a means of sorting data. It is the samples with the highest %

comparability prior to the first break in slope that indicate which samples may be classified as

belonging to the same group as the reference sample. By using the CI, samples from the data

set may be tested to determine which of the other samples they share a high percentage of

similarities with. Comparability tests have been used previously in the literature to identify

unknown samples or to determine sample co-associations, especially with respect to the

Page 84: Development of Novel Physical (Electrostatic Detection

84

forensic “fingerprinting” of samples (Watling et al., 1997, Green and Watling, 2007). Having

determined which samples have a significant degree of comparability (equivalent elemental

fingerprints) these samples are then removed from the data base and independently

subjected to more conventional statistical and chemometrical examination to confirm or

reject the preliminary interpretation.

Chemometrical analysis applies statistical interpretational procedures to the interpretation of

multiple variables. The application of these procedures, specifically related to the use of

Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA), has been

extensively applied specifically to the determination of provenance of foodstuffs (Watling et

al., 2010; Luykx and van Ruth, 2008, Valentin and Watling, 2013, Martin et al., 2012, Pilgrim

et al., 2010.), forensic evidence (Watling et al. 2011., May and Watling, 2009, May and

Watling, 2011), aboriginal artworks (Scadding et al., 2015) and animal distribution patterns

(Kreitals et al., 2014). As a result of increased computational capacity (Gnanadesikan, 1997),

chemometric analysis of data has become more accessible to analysts resulting in modelling

systems ranging from one-class classifying to multi-class classifying models (Oliveri and

Downey, 2012). Consequently, because ICP-MS and ICP-AES analysis protocols can produce

an extremely large amount of data, analysis and interpretation of these data now commonly

employs the use chemometric methods.

One class modelling is an effective chemometric technique for the analysis of multi-variant

data where only one class is known. This approach is beneficial as it allows for the testing of

the compatibility of unknown samples to the class being modelled and does not require the

sampling of representatives from any other populations (Oliveri and Downey, 2012;

Gnanadesikan, 1997; Hand, 1997). When the question being investigated is “Does this

material relate to similar material, contained in a data base?” this type of modelling can be a

powerful tool. However, as material that has not been sampled has the potential to overlap

with the sampled class as ambiguous assignment of a sample is possible in one class

modelling (Oliveri and Downey, 2012). Furthermore one class modelling can only include or

exclude an unknown from a single class and it is thus not useful for geographic assignment

when multiple categories of interest are known.

Page 85: Development of Novel Physical (Electrostatic Detection

85

The provenancing of paper and paper products and various inks to a geographic region of

origin or to a batch of material produced at a factory or manufacturing location typically

requires more than one class or location to be defined. For this reason most studies have

sought the use of a discriminant or multi-class modelling system (Boggia et al., 2002; Ariyama

et al., 2004; Forina et al., 2007; Gonzálvez et al., 2009; Lo Feudo et al., 2010; Watling et al.,

2010; Furia et al., 2011). Multiclass classifying models, as described by Oliveri and Downey

(2012), work by finding a delimiter, between two or more classes, which can be used to

discriminate between them. This creates classes that are distinct and do not overlap. The

type of delimiter used is dependent on the method selected. However, in all instances a

decision rule is assigned based on the delimiter whereby an unknown is assigned to one of

the classes studied depending on their compliance to the rule. As this discriminating delimiter

considers all classes involved, the classes investigated must be correctly defined and

thoroughly representative of all possibilities as they will critically impact on the decision rule

during modelling (Oliveri and Downey, 2012). Such multi-class systems are most beneficial

when a group of well-defined classes is known and assignment to a population is desired.

Depending on the type of problem, multi-class models can either be unsupervised or

supervised. As described by Hand (1997) and Gnanadesikan (1997), the unsupervised models

such as cluster analysis can be used to assess if there are any significantly different

groups/classes/or categories in the dataset, without a prior input from the user of the

perceived groups. Conversely supervised models facilitate identification of the known classes

by the user prior to analysis. The model rules are then constructed around the identified

groups to explain the differences between the groups (Hand, 1997 and Gnanadesikan, 1997).

It is the supervised models that are most beneficial to assignment testing as they allow the

unknown to be predicted into a class system as determined by the user (Hand, 1997) thus

allowing desired categories such as geographic region of origin, manufacturer and batches to

be assessed.

As a supervised classification model (Hand, 1997), Linear Discriminant Analysis (LDA) is

commonly used in provenancing studies (Padin et al., 2001; Ariyama et al., 2004; Lo Feudo,

2010; Watling et al., 2010; Furia, 2011) because it allows the known origins or associations to

be defined in the model. LDA models are developed in a step-wise, or iterative fashion to

determine differences between the groups by selecting single variables at a time. Variables

Page 86: Development of Novel Physical (Electrostatic Detection

86

must be independent of one another to ensure the same discriminatory force is not selected

at each step (Gnanadesikan, 1997). The forward stepwise modelling method starts with a

very basic model and at each step a new discriminatory term is added that best describes the

differences between classes (Hand, 1997). This makes the model increasingly more complex.

The model produced develops linear combinations of the variables that best describe the

differences in the groups and determines a discriminate space (two or three dimensional) in

which the multivariate point can be graphically represented based on their eigenvectors

corresponding to the two largest Eigen values (Hand, 1997; Gnanadesikan, 1997). The LDA

separates out each sample on the basis of user defined groupings, and a visual

representation of how distinct the samples are based on the groups selected is produced on

the graph (Watling et al., 2010). When the user defined groups do not separate, they cannot

be considered significantly different based on their chemical composition. Where separation

does occur the user determined threshold determines if a classification is significant and thus

accepted and is an important user input to the model (Hand, 1997). For the most part, in this

thesis, LDA has been use as the discriminatory mathematical technique, although comparison

of the spectral profile (elemental fingerprint) has also been used as it can immediately give

an indication of differences and of comparability between the elemental signatures of

samples from the same production batch or country.

3.3 Sample Description

3.3.1 Trace Element Signature (Fingerprint) of Paper, Within Sheet Reproducibility Study

Most of the photocopy paper samples used in this experiment were purchased over a period

of two years from nationally and internationally based paper suppliers. The samples used in

this study are detailed in Table 3.3 – 3.5. The tables refer to samples used in the individual

experiments to examine the variations in chemical profile (elemental fingerprint) within

individual sheets (Table 3.3), between sheets in a single ream (Table 3.4) and between sheets

across several reams (Table 3.5) of paper to establish reproducibility of the elemental profile.

Page 87: Development of Novel Physical (Electrostatic Detection

87

Table 3.3 Description of paper samples used in this thesis (Data recorded in Appendix 1 Table 1A)

Sample position Sample position Sample position Sample Brand Origin on each sheet Sample Brand Origin on each sheet Sample Brand Origin on each sheet

T - Top T - Top T - TopM - Middle M - Middle M - MiddleB - Bottom B - Bottom B - Bottom

Within sheet study Within sheet study Within sheet study1 A Paper One-Premium All purpose Indonesia T 18 A Office One-Copy/Laser Australia T 35 A Office Works-Recycled Copy/Laser Germany T1 B Paper One-Premium All purpose Indonesia M 18 B Office One-Copy/Laser Australia M 35 B Office Works-Recycled Copy/Laser Germany M1 C Paper One-Premium All purpose Indonesia B 18 C Office One-Copy/Laser Australia B 35 C Office Works-Recycled Copy/Laser Germany B2 A Paper One-Premium Copier Indonesia T 19 A Ultima-Laser Paper Australia T 36 A Double A/Advance Agro Thailand T2 B Paper One-Premium Copier Indonesia M 19 B Ultima-Laser Paper Australia M 36 B Double A/Advance Agro Thailand M2 C Paper One-Premium Copier Indonesia B 19 C Ultima-Laser Paper Australia B 36 C Double A/Advance Agro Thailand B3 A Reflex-Acid Free (Ream A) Australia T 20 A S Tudor-Laser (Ream A) Australia T 37 A HP-Every day Hi White Brazil T3 B Reflex-Acid Free (Ream A) Australia M 20 B S Tudor-Laser (Ream A) Australia M 37 B HP-Every day Hi White Brazil M3 C Reflex-Acid Free (Ream A) Australia B 20 C S Tudor-Laser (Ream A) Australia B 37 C HP-Every day Hi White Brazil B4 A Fuji Xerox-Business + China T 21 A Economy-WA Salvage unknow n T 38 A Double A/Advance Agro Thailand T4 B Fuji Xerox-Business + China M 21 B Economy-WA Salvage unknow n M 38 B Double A/Advance Agro Thailand M4 C Fuji Xerox-Business + China B 21 C Economy-WA Salvage unknow n B 38 C Double A/Advance Agro Thailand B5 A Perfect Print Indonesia T 22 A X Fuji Xerox (Ream A) Australia T 39 A HP-Every day Paper Brazil T5 B Perfect Print Indonesia M 22 B X Fuji Xerox (Ream A) Australia M 39 B HP-Every day Paper Brazil M5 C Perfect Print Indonesia B 22 C X Fuji Xerox (Ream A) Australia B 39 C HP-Every day Paper Brazil B6 A Excellent Copy Paper Indonesia T 23 A X Fuji Xerox (Ream B) Australia T 40 A Laser IT Indonesia T6 B Excellent Copy Paper Indonesia M 23 B X Fuji Xerox (Ream B) Australia M 40 B Laser IT Indonesia M6 C Excellent Copy Paper Indonesia B 23 C X Fuji Xerox (Ream B) Australia B 40 C Laser IT Indonesia B7 A Victory Thailand T 24 A Reflex (Ream A) Australia T 41 A Laser IT Indonesia T7 B Victory Thailand M 24 B Reflex (Ream A) Australia M 41 B Laser IT Indonesia M7 C Victory Thailand B 24 C Reflex (Ream A) Australia B 41 C Laser IT Indonesia B8 A Double A/Advance Agro Thailand T 25 A Australian Australia T 42 A Office Works-Recycled Copy/Laser Germany T8 B Double A/Advance Agro Thailand M 25 B Australian Australia M 42 B Office Works-Recycled Copy/Laser Germany M8 C Double A/Advance Agro Thailand B 25 C Australian Australia B 42 C Office Works-Recycled Copy/Laser Germany B9 A Yes-Bronze Copy/Print China T 26 A X Fuji Xerox (Ream C) Australia T 43 A Office Works-High White Copy/Laser Australia T9 B Yes-Bronze Copy/Print China M 26 B X Fuji Xerox (Ream C) Australia M 43 B Office Works-High White Copy/Laser Australia M9 C Yes-Bronze Copy/Print China B 26 C X Fuji Xerox (Ream C) Australia B 43 C Office Works-High White Copy/Laser Australia B

10 A Copy & Laser Paper Indonesia T 27 A Reflex-Blue Australia T 44 A Office Works-Premium Copy/Laser Australia T10 B Copy & Laser Paper Indonesia M 27 B Reflex-Blue Australia M 44 B Office Works-Premium Copy/Laser Australia M10 C Copy & Laser Paper Indonesia B 27 C Reflex-Blue Australia B 44 C Office Works-Premium Copy/Laser Australia B11 A Pacesetter-Premium All Purpose Indonesia T 28 A Australian Archive Paper Australia T 45 A Paper One-Premium Copier Indonesia T11 B Pacesetter-Premium All Purpose Indonesia M 28 B Australian Archive Paper Australia M 45 B Paper One-Premium Copier Indonesia M11 C Pacesetter-Premium All Purpose Indonesia B 28 C Australian Archive Paper Australia B 45 C Paper One-Premium Copier Indonesia B12 A TNPL Copier-Sugar Cane Waste India T 29 A Reflex-A3 Australia T 46 A Paper One-Presentation Indonesia T12 B TNPL Copier-Sugar Cane Waste India M 29 B Reflex-A3 Australia M 46 B Paper One-Presentation Indonesia M12 C TNPL Copier-Sugar Cane Waste India B 29 C Reflex-A3 Australia B 46 C Paper One-Presentation Indonesia B13 A Office Works-Economy Copy/Laser Paper Australia T 30 A Reflex Acid Free (Ream B) Australia T 47 A Paper One-Premium All Purpose Indonesia T13 B Office Works-Economy Copy/Laser Paper Australia M 30 B Reflex Acid Free (Ream B) Australia M 47 B Paper One-Premium All Purpose Indonesia M13 C Office Works-Economy Copy/Laser Paper Australia B 30 C Reflex Acid Free (Ream B) Australia B 47 C Paper One-Premium All Purpose Indonesia B14 A Economy-WA Salvage unknow n T 31 A Ultima-Laser Paper Finland T 48 A Reflex-Recycled Pure White Australia T14 B Economy-WA Salvage unknow n M 31 B Ultima-Laser Paper Finland M 48 B Reflex-Recycled Pure White Australia M14 C Economy-WA Salvage unknow n B 31 C Ultima-Laser Paper Finland B 48 C Reflex-Recycled Pure White Australia B15 A Post Off ice Supplies Australia T 32 A Yes-Color Copy Finland T 49 A Reflex-Laser Carbon Neutral Australia T15 B Post Off ice Supplies Australia M 32 B Yes-Color Copy Finland M 49 B Reflex-Laser Carbon Neutral Australia M15 C Post Off ice Supplies Australia B 32 C Yes-Color Copy Finland B 49 C Reflex-Laser Carbon Neutral Australia B16 A Victory Thailand T 33 A Laser IT Indonesia T 50 A Reflex-New Ultra White Australia T16 B Victory Thailand M 33 B Laser IT Indonesia M 50 B Reflex-New Ultra White Australia M16 C Victory Thailand B 33 C Laser IT Indonesia B 50 C Reflex-New Ultra White Australia B17 A Presstik Malaysia T 34 A Viking-Premium Paper Indonesia T 51 A Reflex-100% Recycled Pure White Australia T17 B Presstik Malaysia M 34 B Viking-Premium Paper Indonesia M 51 B Reflex-100% Recycled Pure White Australia M17 C Presstik Malaysia B 34 C Viking-Premium Paper Indonesia B 51 C Reflex-100% Recycled Pure White Australia B

Page 88: Development of Novel Physical (Electrostatic Detection

88

Within sheet studySample Brand Origin Ream 52 A Hotel stationery (generic brand) Argentina Ream 152 B Hotel stationery (generic brand) Argentina Ream 152 C Hotel stationery (generic brand) Argentina Ream 152 D Hotel stationery (generic brand) Argentina Ream 152 E Hotel stationery (generic brand) Argentina Ream 153 A PaperOne-Premium All Purpose Indonesia Ream 353 B PaperOne-Premium All Purpose Indonesia Ream 353 C PaperOne-Premium All Purpose Indonesia Ream 353 D PaperOne-Premium All Purpose Indonesia Ream 353 E PaperOne-Premium All Purpose Indonesia Ream 354 A Reflex-Recycled Pure w hite Australia Ream 254 B Reflex-Recycled Pure w hite Australia Ream 254 C Reflex-Recycled Pure w hite Australia Ream 254 D Reflex-Recycled Pure w hite Australia Ream 254 E Reflex-Recycled Pure w hite Australia Ream 255 A Double A Premium Thailand Ream 155 B Double A Premium Thailand Ream 155 C Double A Premium Thailand Ream 155 D Double A Premium Thailand Ream 155 E Double A Premium Thailand Ream 156 A HP Everyday Brazil Ream 256 B HP Everyday Brazil Ream 256 C HP Everyday Brazil Ream 256 D HP Everyday Brazil Ream 256 E HP Everyday Brazil Ream 257 A Laser IT Indonesia Ream 457 B Laser IT Indonesia Ream 457 C Laser IT Indonesia Ream 457 D Laser IT Indonesia Ream 457 E Laser IT Indonesia Ream 458 A Office Works UltraWhite Premium Australia Ream 158 B Office Works UltraWhite Premium Australia Ream 158 C Office Works UltraWhite Premium Australia Ream 158 D Office Works UltraWhite Premium Australia Ream 158 E Office Works UltraWhite Premium Australia Ream 159 A PaperOne Premium Presentation Indonesia Ream 259 B PaperOne Premium Presentation Indonesia Ream 259 C PaperOne Premium Presentation Indonesia Ream 259 D PaperOne Premium Presentation Indonesia Ream 259 E PaperOne Premium Presentation Indonesia Ream 260 A Reflex Recycled Pure White Australia Ream 260 B Reflex Recycled Pure White Australia Ream 260 C Reflex Recycled Pure White Australia Ream 260 D Reflex Recycled Pure White Australia Ream 260 E Reflex Recycled Pure White Australia Ream 2

Betw een ream study Betw een ream studySample Brand Origin Ream Sample Brand Origin Ream 61 A PaperOne All Purpose Indonesia Ream 1 73 A Reflex Carbon Neutral Ultra White Australia Ream 161 B PaperOne All Purpose Indonesia Ream 2 73 B Reflex Carbon Neutral Ultra White Australia Ream 261 C PaperOne All Purpose Indonesia Ream 3 73 C Reflex Carbon Neutral Ultra White Australia Ream 362 A 4CC Sw eden Ream 1 74 A Reflex Recycled Pure White® Australia Ream 362 B 4CC Sw eden Ream 2 74 B Reflex Recycled Pure White® Australia Ream 462 C 4CC Sw eden Ream 3 74 C Reflex Recycled Pure White® Australia Ream 563 A Australian Australia Ream 2 75 A Reflex 100% Recycled Pure White Australia Ream 263 B Australian Australia Ream 3 75 B Reflex 100% Recycled Pure White Australia Ream 363 C Australian Australia Ream 4 75 C Reflex 100% Recycled Pure White Australia Ream 464 A Reflex Recycled Pure White Australia Ream 3 76 A Australian Bright White OfficePaper Australia Ream 164 B Reflex Recycled Pure White Australia Ream 4 76 B Australian Bright White OfficePaper Australia Ream 264 C Reflex Recycled Pure White Australia Ream 5 76 C Australian Bright White OfficePaper Australia Ream 365 A Brilliant Australia Ream 1 77 A Tudor Multi White OfficePaper Australia Ream 165 B Brilliant Australia Ream 2 77 B Tudor Multi White OfficePaper Australia Ream 265 C Brilliant Australia Ream 3 77 C Tudor Multi White OfficePaper Australia Ream 366 A Reflex Carbon Neutral Ultra White Australia Ream 1 78 A Brilliant White CopyPaper Australia Ream 166 B Reflex Carbon Neutral Ultra White Australia Ream 2 78 B Brilliant White CopyPaper Australia Ream 266 C Reflex Carbon Neutral Ultra White Australia Ream 3 78 C Brilliant White CopyPaper Australia Ream 367 A Australian Australia Ream 1 79 A Reflex-Acid Free (Ream C) Australia Ream 367 B Australian Australia Ream 2 79 B Reflex-Acid Free (Ream D) Australia Ream 467 C Australian Australia Ream 3 79 C Reflex-Acid Free (Ream E) Australia Ream 568 A HP Bright White InkJet France Ream 1 80 A S Tudor-Laser (Ream B) Australia Ream 268 B HP Bright White InkJet France Ream 2 80 B S Tudor-Laser (Ream C) Australia Ream 368 C HP Bright White InkJet France Ream 3 80 C S Tudor-Laser (Ream D) Australia Ream 469 A HP Home and Office Brazil Ream 1 81 A S Tudor-Laser (Ream E) Australia Ream 569 B HP Home and Office Brazil Ream 2 81 B S Tudor-Laser (Ream F) Australia Ream 669 C HP Home and Office Brazil Ream 3 81 C S Tudor-Laser (Ream G) Australia Ream 770 A HP Home and Office France Ream 1 82 A X Fuji Xerox (Ream D) Australia Ream 470 B HP Home and Office France Ream 2 82 B X Fuji Xerox (Ream E) Australia Ream 570 C HP Home and Office France Ream 3 82 C X Fuji Xerox (Ream F) Australia Ream 671 A Clarion Collection notepad India Ream 1 83 A X Fuji Xerox (Ream G) Australia Ream 771 B Clarion Collection notepad India Ream 2 83 B X Fuji Xerox (Ream H) Australia Ream 871 C Clarion Collection notepad India Ream 3 83 C X Fuji Xerox (Ream I) Australia Ream 972 A PC Premier inkjet UK Ream 1 84 A X Fuji Xerox (Ream J) Australia Ream 1072 B PC Premier inkjet UK Ream 2 84 B X Fuji Xerox (Ream K) Australia Ream 1172 C PC Premier inkjet UK Ream 3 84 C X Fuji Xerox (Ream L) Australia Ream 12

85 A X Fuji Xerox (Ream M) Australia Ream 1385 B X Fuji Xerox (Ream N) Australia Ream 1485 C X Fuji Xerox (Ream O) Australia Ream 15

Table 3.4 Description of paper samples used in this thesis (Data recorded in Appendix 1 Tables 1B and 1C

Table 3.5 Description of paper samples used in this thesis (Data recorded in Appendix 1 Tables 1D and 1E

Page 89: Development of Novel Physical (Electrostatic Detection

89

3.3.2 Ashed Paper

Selected paper samples (Table 3.6) were ashed to provide ashed material for analysis. Ashing

was achieved by setting fire to the paper sample and collecting the residue in a ceramic

evaporating basin. Data are recorded in Appendix 1 Table 3. Five individual ash samples were

prepared from half a sheet of five sheets of paper from each ream used in this study and the

corresponding other halves of the five individual sheets of un-ashed paper were used for

comparison purposes. Nine different reams of paper were used in this study.

Table 3.6 Sample base for the study of ashed paper

Sample Sample Brand Origin 53 A-E PaperOne-Premium All Purpose Indonesia A53 A-E PaperOne-Premium All Purpose / Ash Indonesia 54 A-E Reflex-Recycled Pure white Australia A54 A-E Reflex-Recycled Pure white / Ash Australia 55 A-E Double A Premium Thailand A55 A-E Double A Premium / Ash Thailand 56 A-E HP Everyday Brazil A56 A-E HP Everyday / Ash Brazil 57 A-E Laser IT Indonesia A57 A-E Laser IT / Ash Indonesia 58 A-E Office Works Ultra White Premium Australia A58 A-E Office Works Ultra White Premium / Ash Australia 59 A-E PaperOne Premium Presentation Indonesia A59 A-E PaperOne Premium Presentation / Ash Indonesia 60 A-E Reflex Recycled Pure White Australia A60 A-E Reflex Recycled Pure White / Ash Australia 61 A-E PaperOne All Purpose Indonesia A61 A-E PaperOne All Purpose Ash Indonesia

Note* (Samples with the prefix A are ash samples).

3.3.3 Ink samples

3.3.3.1 Bulk pack-based ballpoint pen trace element comparison study

Five replicate pens from each of twelve multi-pen packs were used in this study. The samples

were purchased from commercial suppliers internationally and were also sourced from our

own internal forensic sample data base collection. The samples used in this study are detailed

in Table 3.7 and data are recorded in Appendix 2 Table 1.

3.3.3.2 Batch variations within single countries based ballpoint pen trace element comparison study

Five ink tubes were selected from ten different batches of ballpoint ink of BIC BLUE CRYSTAL

made in France, five tubes from ten batches of BIC BLACK CRYSTAL made in Mexico, and five

Page 90: Development of Novel Physical (Electrostatic Detection

90

tubes from six batches of BIC RED CRYSTAL made in China. The samples used in this study are

detailed in Table 3.8 and results are detailed in Appendix 2; Tables 2-4.

Table 3.7 Ballpoint pen ink samples used in the trace element comparison study

Sample Brand Origin 1-5 Blue BIC China

6-9 Blue Pilot China

10-14 Blue Office Works China

15-19 Blue PaperMate Malaysia

20-23 Blue Pilot (2) China

24-28 Red PaperMate Malaysia

29-33 Red BIC Mexico

34-38 Red J. Burrows China

39-43 Black Office Works China

44-48 Black Paper Mate Malaysia

49-52 Black Pilot China

53-56 Black BIC Crystal Mexico

Table 3.8 Ballpoint pen ink samples used in the trace element comparison study of the elemental distribution patterns for the same colour and manufacturer of three selected ballpoint pen inks.

Sample Number Brand Batch Origin 57-106 BIC Crystal Blue 1-10 France 107 - 156 BIC Crystal Black 1-10 Mexico 157 - 186 BIC Crystal Red 1-6 China

3.3.3.3 Bulk Fountain Pen Ink

Fountain pen ink samples (Tables 3.9 & 3.10) used in this part of the experiment were

purchased from nationally and internationally based ink suppliers. An initial experiment was

undertaken on samples detailed in Table 3.9 to determine how much ink was required to

establish a reproducible trace element signature, as a reference signature, for all study inks.

Samples 211-222 (Black Schaefer ink) and 235-246 (Blue Schaeffer ink) were provided by a

TSW Analytical staff member (Rachel Scadding) and because they were bought some five

years prior to the current survey and have been used during the intervening period, have

been designated (Provided by Rachel) to distinguish them from other Black and Blue

Schaeffer ink samples in this study.

Page 91: Development of Novel Physical (Electrostatic Detection

91

Table 3.9 Fountain pen ink samples used in trace element signature reproducibility study.

Sample Brand Country of Origin

187-198 Black Parker France 199-210 Blue Parker France 211-222 Black Schaeffer(R) Provided by Rachel Slovenia

223-234 Black Schaeffer Slovenia 235-246 Blue Schaeffer(R) Provided by Rachel Slovenia 247-258 Blue Schaeffer Slovenia 259-270 Red Schaeffer Slovenia

Following this the remaining ink samples (Table 3.10) were analysed to establish their trace

element signature and to identify if generic trace element signatures could be ascribed to

inks from different countries and whether the trace element signatures for individual inks

were unique enough to be able to identify batches of ink and inks back to recovered samples

as the basis of a provenance determination protocol. Sample numbers in these tables refer to

the analytical data detailed in Appendix 2 Tables 5-7. All statistical data from the analysis of

ballpoint pen and fountain pen inks is recorded in Appendix 3.

Table 3.10 Fountain pen ink samples used in country of origin and provenance determination study.

Sample Brand Origin Sample Brand Origin 271-273 Pelican Blue Germany 325-327 PARKER Black France 274-276 Pelican Black Germany 328-330 PARKER Blue France 277-279 Pelican Red Germany 331-333 CARAN d ‘ACHE Carbon Switzerland 280-282 Waterman Blue France 334-336 CARAN d ‘ACHE BlueSky Switzerland 283-285 Waterman Black France 337-339 GRAF VON FABER-CASTELL Black Germany 286-288 Waterman Red France 340-342 GRAF VON FABER-CASTELL Royal Blue Germany 289-291 Cross Black Germany 343-345 CROSS Black Germany 292-294 LAMY Black Germany 346-348 CROSS Blue Germany 295-297 LAMY Light Blue Germany 349-351 PARKER Blue France 298-300 LAMY Dark Blue Germany 352-354 Waterman Black France 301-303 Waterman Black France 355-357 Camel Royal Blue India 304-306 WATERMAN South Sea Blue France 358-360 Parker Quink Black India 307-309 WATERMAN Blue Black France 361-363 Parker Quink Blue India 310-312 OMAS Black Italy 364-366 Chelpark Black India 313-315 OMAS Blue Italy 367-369 Chelpark Royal Blue India 316-318 OMAS Red Italy 370-372 Chelpark Blue-Black India 319-321 AURORA Black Italy 373-375 Chelpark Crimson Violet India 322-324 AURORA Blue Italy

Page 92: Development of Novel Physical (Electrostatic Detection

92

3.3.4 Pencil samples

The pencil samples used in this experiment were purchased from national and international

sources and are detailed in Tables 3.11 and 3.12. Sample numbers refer to the analytical data

detailed in Appendix 4 Tables 1 and 2. Samples were analysed using Laser Ablation ICP-MS

following removal of a 2-3mm piece of “core material” and having mounted this on a Perspex

mount using cyanoacrylate glue. A total of one hundred and twenty seven pencil samples

were analysed in this manner.

Table 3.11 Pencil samples used in the initial single-country of manufacture (different countries of purchase) box to box comparison (eight boxes) study

Sample Manufactured Box Number Brand Bought in (country) 1-5 China 1 PaperMate 2B Australia 6-10 China 2 PaperMate 2B United Kingdom 11-15 China 3 PaperMate 2B China 16-18 China 4 PaperMate 2B (Batch 2) Australia 19-21 China 5 PaperMate 2B (Batch 3) Australia 22-24 China 6 PaperMate 2B (Batch 4) United Kingdom 25-27 China 7 PaperMate 2B (Batch 5) United Kingdom 28-30 China 8 PaperMate 2B (Batch 6) China

Table 3.12 Pencil samples used in the main provenance determination study

Sample Manufactured Group (Ref Fig. 4.44) Brand Bought in (country) 1-7 Indonesia 1 Colombia 2B Indonesia 8-22 China 2 PaperMate 2B China 23-36 China 3 PaperMate 2B China 37-57 Mexico 4 Ticonderoga HB Mexico 58-69 China 5 Dixons HB United Kingdom 70-73 China 6 Sainsbury’s HB United Kingdom 74-88 China 7 PaperMate HB Australia 89-97 China 8 PaperMate HB United Kingdom

3.4 Sample Preparation – Solution

3.4.1 Paper

Small samples of paper, approximately 5cm x 5cm in size (approximately 200mg) were cut

from the original A4 sheets using plastic scissors and weighed to four significant figures

before being stored individually prior to dissolution and analysis to avoid contamination. The

paper samples were subsequently transferred to pre-cleaned, accurately weighed and

labelled Teflon beakers and 10mL of a mixture of individually quartz sub-boiling redistilled

Page 93: Development of Novel Physical (Electrostatic Detection

93

nitric and perchloric acids (mixed by volume prior to use in 4 parts nitric acid and one part

perchloric acid) were added to each beaker. The Analar™ acids were purchased from Merck

Chemicals (Merck KGaA, Darmstadt, Germany). These acids can be easily mixed together as

there is no reaction between them during mixing; in addition the mixed acids can be stored

indefinitely as there is no deterioration over time. The Teflon beakers were then covered

using a Teflon watch glass, and the mixture left to reflux overnight on a hot plate at 180oC.

Following this, the Teflon watch glasses were removed and the mixture was left to evaporate

to dryness at approximately 200oC, after which time 0.5ml nitric acid was added, together

with 5mL of 18MegΩ resistance deionised water to dissolve the sample residue. Samples

were then left at 105oC for approximately two minutes for the residue to dissolve. Following

this the solutions were transferred to pre-weighed 50mL pre-cleaned propylene tubes, and

made up to 20g using 18MegΩ resistance deionised water. The samples were subsequently

analysed using solution based ICP-MS and ICP-AES protocols. Data are detailed in Appendix 1

Tables 1A -1E.

3.4.2 Ashed paper

3.4.2.1 Preliminary Study

A preliminary study was undertaken using two different paper samples (Paper One Premium

all purpose, made in Indonesia and Reflex Recycled Pure White, made in Australia). Eight

reams of paper manufactured in four different countries and sold by six different companies

were used in this experiment to investigate the reproducibility of the elemental signature of

paper following ashing. The samples used in this study are detailed in Section 3.3.2, Table 3.6

and results are detailed in Appendix 1 Table 3.

Paper samples (A4) were labelled and divided into two halves by tearing along a folded line

across the long axis of the paper. One half of the paper sample was placed in a porcelain

evaporating dish and set on fire using a cigarette lighter, the subsequently produced ash was

transferred from the evaporating dish to a pre-weighed glass vial. Subsequently,

approximately 0.05g of ash was accurately weighed (four decimal places) and placed into a

Teflon beaker which had been pre-weighed and labelled. The ash samples were digested in

Page 94: Development of Novel Physical (Electrostatic Detection

94

precisely the same manner as the paper samples detailed in Section 3.4.1. The data obtained

from analysis of paper directly required 200mg of sample, while the analysis of ash only used

50mg. This was because when paper is ashed it loses weight and 50mg of ash is

approximately equivalent to 200mg of paper and consequently the use of 50mg of ash and

200mg of paper ensures that as closely as possible equivalently derived data are being

compared and that the same sampling statistics and the same area of paper is being used for

both experiments.

3.4.3 Ink

3.4.3.1 Reproducibility of elemental signature of ballpoint pen ink

For this experiment, twelve packets of ballpoint pens, (each containing between 5 and 50

pens) were selected randomly from the in-house collection. The samples used in this study

are detailed in Table 3.3 and data are recorded in Appendix 2 Tables 1 and 2. Three red, five

blue and four black batches were chosen to represent the colours for this study. With the

exception of Blue Pilot made in China, Blue Pilot 2 made in China, Black Pilot made in China

and Black BIC made in Mexico, (where four pens were used from each packet), five pens

were taken from each of the remaining packets. Each pen was disassembled and the ink tube

removed and weighed to four significant figures. Once weighed the tubes were squeezed to

remove a drop of ink into a pre-weighed, pre-cleaned Teflon beaker, again to four significant

figures.

Both the beaker and the ink tube were then re-reweighed to four significant figures. The loss

in weight of the ink tube and the increase in weight of the Teflon beaker were compared and

were required to match to three significant figures or the procedure was repeated. Nitric

acid:perchloric acid (4:1) mixed acid (redistilled, 10mL) was added to each beaker, following

which each Teflon beaker was covered with a Teflon watch glass, and the mixture was left to

reflux overnight on a hot plate on 180oC.

On the next day 5mL of redistilled nitric acid were added and the solution was left to reflux

for another 3 to 4 hours at 180oC before the Teflon watch glass was removed from each

beaker and the mixture evaporated to near dryness at 200oC. After this, 0.5mL redistilled

nitric acid was added followed by approximately 2mL of 18MegΩ resistance deionised water

Page 95: Development of Novel Physical (Electrostatic Detection

95

and the mixture left to warm for approximately 2 minutes at 105oC to dissolve the resulting

sample residue. The solution was then transferred to a pre-weighed, pre-cleaned 20mL

polypropylene tube and made up to 10mL using 18MegΩ resistance deionised water. The

volume of water added to make the final solution was, of course, not accurate and

consequently the final tube plus solution was reweighed to three significant figures and the

final volume calculated as a mass in grams. The samples were subsequently analysed using

solution based ICP-MS and ICP-AES protocols.

.

3.4.3.2 Comparison of the elemental distribution patterns for the same colour and

manufacturer of selected ballpoint pen inks

Five ink tubes were selected from each of ten different batches of BIC BLUE CRYSTAL

(Manufactured in France), five tubes from each of ten batches of BIC BLACK CRYSTAL

(Manufactured in Mexico), and five tubes from each of six batches of BIC RED CRYSTAL. A

description of the samples used (57-186) is given in Section 3.3.2 and the data produced in

this study is detailed in Appendix 2 Table 2. These samples were subsequently analysed using

solution based ICP-MS and ICP-AES protocols.

3.4.3.3 Effect of sample size on the reproducibility of the trace element signature of fountain

pen inks

Four different sample masses (approximately 0.02mL, 0.05mL, 0.1mL, and 0.2mL) from seven

different fountain pen inks were used in this study. The varying masses were used to

establish the suitable volume needed to obtain reproducible data for the analysis of fountain

pen inks using solution based protocols. While it was realised that this volume of ink may not

be available for conventional forensic studies, it was felt that an indication of the precision

variations of the elemental signature within the bottle of ink would be obtained by

undertaking this experiment and the data would be robust enough to establish the elemental

signature of the ink that could be used in a data base to try and establish if generic

indications of ink trace metal assemblages could be used to establish country of origin or

batch of origin. In this way if either of (or both) batch and country of origin could be

determined using trace elemental signatures then the trace elements that determined this

could be found and used to determine these factors when smaller volumes of ink were

available in actual forensic cases. In addition, the accurate determination of trace metal

Page 96: Development of Novel Physical (Electrostatic Detection

96

concentrations would serve to conform the validity of the hypothesis that inks could be

provenanced on the basis of their trace elemental signatures whether this could be used in

forensic investigations or not.

Samples consisted of (Parker Black, Parker Blue, Schaeffer Black, Schaeffer Blue, and

Schaeffer Red). A description of the samples is given in Appendix 2; Table 3. Samples were

transferred to previously weighed Teflon beakers using a micro-pipette. The transfer of ink

from pipettes cannot be accurately controlled as “hang up” of ink on the plastic of the

pipette tip always occurs. Consequently, while the pipette transfer mechanism gave a

“qualitative” idea of volume, the masses of each transferred sample were recorded to four

significant figures to ensure the best chance of obtaining analytical precision and the ability

to cross compare data. 10mL of a nitric acid:perchloric acid mix (redistilled, 4 nitric acid:1

perchloric acid v/v) were added and the beakers covered with a Teflon watch glass prior to

overnight refluxing at 180oC. The rest of the dissolution procedure was the same as already

detailed in Section 3.5.3.1. Samples were analysed in triplicate using ICP-AES and ICP-MS

protocols.

3.4.3.4 Reproducibility of elemental signature of fountain pen inks.

For this experiment, an additional thirty five bottles of fountain pen ink (blue (15), black (16)

and red (4)) were investigated. Data are detailed in Appendix 2 Table 4. The data for the

seven previously analysed inks (2mL volume) were also added to this data set for provenance

determination studies. Each ink was analysed in triplicate to establish the degree of

reproducibility of each chemical profile in each sample and to obtain an indication of the

reproducibility of the analytical method. Approximately 2mL volumes of each sample were

transferred to dissolution vessels using micro-pipettes and each transferred mass accurately

recorded to four decimal places. As previously stated, while very little relative differences

between mass and volume transfers to dissolution vessels was determined because of

“relative hang up” of the relatively large volume of ink used (2mL), it was nonetheless felt

that it was important to achieve the best possible accuracy and so consequently samples

were measured using mass rather than volume. The volume/mass measurement was decided

upon after experimenting with different volume/mass measurements in Section 3.5.3.3 and

while all masses used in this experiment essentially produced the same quantitative data it

was decided that the larger volume (2mL) produced analytical solutions that were higher in

Page 97: Development of Novel Physical (Electrostatic Detection

97

concentration for all analytes and would therefore gave better analytical precision.

Consequently, the 2mL volume was used for all experiments in this Section. The ink samples

were digested in the same manner as the ink samples detailed in Section 3.5.3.1.

3.5 Sample Preparation for LA-ICP-MS

3.5.1 Paper

Paper samples from three different reams of paper were used in this experiment and were

selected randomly from the different manufacturers studied in this thesis. Each paper sample

was analysed six times to provide blank values for the analyte composition.

In addition, these samples were marked using nine different inks from different

manufacturers. The ink colours consisted of three blue, three black, and three red with each

ink being applied to each paper sample. Paper sample one is Double A premium (Thailand),

paper sample two is Reflex Recycled Pure White (Australia), and paper sample three is Paper

One Premium Presentation (Indonesia). In total fifty-four samples of ink on paper were used

for each paper type in this study making a total of 162 samples. Following marking, the

samples were cut to provide a Section small enough to be mounted on a Perspex disk

(approximately 1cm2 using a double-sided tape and subsequently analysed using Laser

Ablation ICP-MS. Results are detailed in Appendix 5 Table 1.

3.5.2 Pencil

Paper Mate pencil lead samples 1, and 2 (made in China of hardness 2B), and Columbia pencil

lead samples 5, and 6 (made in Indonesia of hardness 2B), were used in this experiment. The

pencil “lead” samples were extracted from their wooden housing, labelled and mounted on

Perspex discs using double sided tape prior to be analysed using LA-ICP-MS.

Page 98: Development of Novel Physical (Electrostatic Detection

98

3.6 Sample Analysis – Solution

3.6.1 Instrument Optimization

3.6.1.1 ICP-AES

Elements that were potentially present in high concentrations (>10mgL-1) were determined

using ICP-AES. The ICP-AES instrument was tuned on a daily basis to give optimum sensitivity.

A table of average tuning conditions and a list of analyte wavelength used for ICP-AES analysis

is given in Table 3.13.

Table 3.13 Table an indication of the typical tuning parameters used for ICP-AES determination and also the analyte wavelengths investigated (nm).

Na589.5 Na818.3 Mg279.5 Mg285.2 Al167.0 Al396.1 Si251.6 P 177.4 P 178.2 S 180.7

K 766.4 Ca422.6 Ti334.9 Cr283.5 Cr359.3 Mn257.6 Mn279.4 Fe239.5 Fe259.9 Co230.7

Co237.8 Ni221.6 Ni341.4 Cu324.7 Zn206.2 Zn213.8 Sr407.7 Ba455.4 Pb220.3

3.6.1.2 ICP-MS

The instrument was tuned on a daily basis with respect to an in-house optimization solution

containing 2μgL-1 of rhodium and iridium as 103Rh and 191Ir and 193Ir. The system was tuned to

give optimum sensitivity while obtaining the minimum oxide interferences. A generalized set

of tuning parameters is given in Table 3.14.

Parameter ICP-AES RF Power 1150 W Auxiliary Gas Flow 0.8 L/min Nebuliser Gas Flow 0.60 L/min Coolant Gas Flow 12 L/min Flush Pump Rate 100 rpm Analysis Pump Rate 70 rpm Pump Stabilisation Time 10 seconds Peristaltic Pump Tubing PVC 0.76 mm diameter 5% v/v HNO3 Rinse Time 15 seconds Sample Flush Time 25 seconds Maximum Integration Time 30 seconds

Page 99: Development of Novel Physical (Electrostatic Detection

99

Table 3.14 An indication of the typical tuning parameters used for ICP-MS determination

ICP-MS RF Power 1500 W Carrier Gas Flow 1.02 L/min Auxiliary Gas Flow 0.9 L/min Nebuliser Pump 0.13 rps Interface Cones Platinum Omega Bias -50 VOmega Lens 10.5 VCell Entrance Aperture -40 VCell Exit Aperture -52 VPlate Bias -43 VHelium Gas Flow 0 mL/minOctapole RF 160 VOctapole bias -11 VQuadrupole -6 V5% v/v HNO3 Rinse Time 20 secondsSample Flush Time 25 secondsIntegration Time 0.1 seconds

A list of analyte isotopes and their relative m/z ratios is given in Table 3.15.

Table 3.15 Final list of all isotopes and their relevant m/z ratios used in solution based Inductively Coupled Plasma Mass Spectrometry (ICP-MS) studies in this thesis.

ICP-MS 7Li, 9Be, 11B, 27Al, 45Sc, 49Ti, 51V, 53Cr, 55Mn, 59Co, 60Ni, 65Cu, 66Zn, 69Ga, 74Ge, 75As, 82Se, 85Rb, 88Sr, 98Y, 90Zr, 93Nb, 98Mo, 101Ru, 103Rh, 105Pd, 109Ag, 111Cd, 115In, 120Sn, 123Sb, 126Te, 133Cs, 138Ba, 139La, 140Ce, 141Pr, 146Nd, 152Sm, 153Eu, 158Gd, 159Tb, 162Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu, 178Hf, 181Ta, 182W, 202Hg, 205Tl, 208Pb, 209Bi, 232Th, 238U

3.7 Calibration and Quantitation

Quantitative calibration is based on measuring the intensities of all analytes in a number of

calibration standards that represent a range of concentrations. Calibration solutions are

prepared in 5% v/v dilute redistilled nitric acid, by serial dilution of Merck Certified Standards.

The concentration range of these standards is, wherever possible, calculated to cover the

range of concentrations present in the samples. Using these standards, a calibration curve is

developed with counts per second data being converted to concentration using this

Page 100: Development of Novel Physical (Electrostatic Detection

100

calibration curve. On the basis of this relationship, pre-programmed software in the

instrument is designed to calculate the concentration of all analytes in the samples. However,

even though this method is appropriate for calculations of concentration where there is no

interference, or where the interference is well known and can be mathematically corrected

for by the software, all analytical data in this thesis have been manually calculated, using

counts per second data after interference correction has been performed and checked by the

analyst.

3.7.1 ICP-AES Calibration

Multi-element standards (1, 2, 5, 10, 20, 50 and 100µgmL-1) were prepared using serial

dilutions of a series of 1000µgmL-1 Merck™ standards. The dilutions were made using

redistilled nitric acid which had been made up to a 2% v/v mixture using 18MegΩ resistance

deionised water.

3.7.2 ICP-MS Calibration

Multi-element standards (1, 2, 5, 10 and 20µgL-1) were prepared using serial dilutions of a

series of 10µgmL-1 Merck™ multi-element stock standards. The dilutions were made using

redistilled nitric acid which had been made up to a 2% v/v mixture using 18MegΩ resistance

deionised water. Internal standards (2µgL-1 Rh & Ir) were contained in the dilution acid.

3.7.3 Isobaric Interference Correction in ICP-MS analysis

Isobaric overlap and polyatomic interferences are the most common error associated with

reported ICP-MS data (Lam, McLaren et al., 1995). Interferences are particularly detrimental

in ultra-trace element analysis as the concentration of many analytes is extremely low and

often approaching the detection limit of the technique. Under these circumstances, it is often

difficult to distinguish the analyte signal from the background, a situation made significantly

worse if isobaric interference is contributing to the signal as is often the case for arsenic,

vanadium and chromium (Pick, Leiterer et al., 2010). These interferences occur when

reactions in the sample matrix, air, argon in the plasma or water result in the formation of

polyatomic species that overlap the mass of analytes of interest (Koppenaal, Eiden et al.,

2004; Pick, Leiterer et al., 2010). A wide range of correction protocols have been developed

Page 101: Development of Novel Physical (Electrostatic Detection

101

to deal with this problem from changing the dissolution method or instrumentation set up, to

mathematically accounting for the error post analysis (Lam, McLaren et al., 1995).

Mathematical correction post analysis is one commonly employed procedure to account for

polyatomic interferences (Krushevska, Waheed et al., 1998; Catarino, Curvelo-Garcia et al.,

2006 and Bednar, 2009). Mathematical corrections all rely on the use of known natural

isotope abundances to develop a correction factor that can be used to account for

interferences at a given mass (Brown et al., 2004). However, the manner in which this is

conducted can vary depending on the mathematical model and the matrix of interest. For

arsenic (75m/z) for example, correction for chloride interference (40Ar35Cl) can be conducted

by directly measuring the signal at both 75 and 77m/z and 82 and 83m/z (Lam, McLaren et al.,

1995; Brown, Yardley et al., 2004; Catarino, Curvelo-Garcia et al., 2006; Pick, Leiterer et al.,

2010). The signal at 82m/z can be caused by 82Se and 82Kr and at 83m/z by 83Kr. Consequently,

removing the contribution of krypton on the 82m/z signal will leave only selenium

contributing to that signal. The relative ratio of 82Se to 77Se will allow the residual counts on 77m/z to be attributed to 40Ar37Cl which in turn can be used to remove the 40Ar35Cl

contribution to the 75As signal and allow calculation of the actual amount of arsenic in the

sample. The problem with all these calculations is that each one has a precision associated

with it and the combination of all the variables at each stage of the correction procedure will

ultimately compromise both the detection limit of arsenic and also the analytical precision

associated with its determination (Zhou and Liu, 1997).

3.7.4 Detection Limit.

Coefficient of variation values for each analyte were used to determine the detection limits

for the study elements (Watling, 1977). The coefficient of variation of the analytical data was

calculated for each analyte by using data from the analysis of ten replicates of the blank and

comparing the variation in CPS data to the relative calibration curves for both techniques.

The detection limit was then calculated as both two and three sigma. Data are presented for

ICP-MS and ICP-AES analysis in Table 3.16 and 3.17 respectively.

Page 102: Development of Novel Physical (Electrostatic Detection

102

Table 3.16 Detection limits for analytes determined using solution based ICP-MS.

Detection Limits ppb Li Be B Sc Ti V Cr Mn Co 2 sigma 0.0015 0.0026 0.1605 0.1050 0.0483 0.0098 0.0096 0.0101 0.0104 3 sigma 0.0022 0.0039 0.2408 0.1575 0.0725 0.0147 0.0145 0.0152 0.0157

Ni Cu Zn Ga Ge As Se Rb Sr 2 sigma 0.0396 0.0265 0.0215 0.0291 0.0254 0.0430 0.1115 0.0038 0.0015 3 sigma 0.0594 0.0397 0.0322 0.0437 0.0382 0.0645 0.1673 0.0057 0.0023

Y Zr Nb Mo Ag Cd In Sn Sb 2 sigma 0.0010 0.2552 0.0431 0.0890 0.0304 0.0121 0.0039 0.0931 0.0061 3 sigma 0.0015 0.3829 0.0647 0.1336 0.0456 0.0181 0.0058 0.1397 0.0092

Table 3.16 (Continued) Detection limits for analytes determined using solution based ICP-MS.

Te Cs Ba La Ce Pr Nd Eu Sm 2 sigma 0.0390 0.0043 0.0042 0.0009 0.0006 0.0002 0.0004 0.0002 0.0005 3 sigma 0.0585 0.0065 0.0063 0.0014 0.0009 0.0003 0.0005 0.0003 0.0008

Gd Tb Dy Ho Er Tm Yb Lu Hf 2 sigma 0.0002 0.0003 0.0004 0.0002 0.0002 0.0001 0.0005 0.0003 0.2579 3 sigma 0.0003 0.0005 0.0007 0.0003 0.0003 0.0002 0.0008 0.0005 0.3869

Ta W Tl Pb Bi Th U 2 sigma 0.0337 0.3847 0.1349 0.0026 0.1331 0.3805 0.0059 3 sigma 0.0506 0.5770 0.2023 0.0038 0.1997 0.5708 0.0089

Table 3.17 Detection limits in solution for the analytes determined using solution based ICP-AES. (Analytical wavelengths are detailed in nanometres)

Detection Limits ppm Na589.5 Mg279.5 Al396.1 Si251.6 P178.2 S180.7 2 sigma 0.193 0.014 0.033 0.017 0.044 0.012 3 sigma 0.290 0.022 0.050 0.025 0.066 0.018

K766.4 Ca422.6 Ti334.9 Mn257.6 Fe239.5 2 sigma 0.029 0.157 0.006 0.000 0.004 3 sigma 0.043 0.235 0.010 0.001 0.006

Page 103: Development of Novel Physical (Electrostatic Detection

103

3.8 Sample Analysis – Laser

3.8.1 Optimization

The ICP-MS instrument was optimised at the beginning of each analytical run in order to

achieve optimum operating conditions (highest CPS values for 59Co, 115In, 140Ce, 172Yb and 232Th. Tuning was performed by continually ablating a NIST 612 glass standard. During this

period the ion beam was focused by adjusting the ion lenses. After this the analogue and

pulse detectors were adjusted to ensure a linear relationship between instrument response

and isotopic concentration. Selected isotopic ratios (140Ce16O, 232Th16O, 140Ce2+) were

investigated in real time to observe and potentially counteract interferences from oxides and

from double-ionization of elements. The gas flow rate and gas composition were also

adjusted to reduce oxide interferences. Response ratios between high and low mass isotopes

were investigated and the voltages to the quadrupole and the ion lenses were adjusted to

observe and reduce, as much as possible, any mass bias. A set of generic sample analysis

conditions for the LA-ICP-MS are detailed in Table 3.18 and a list of tuning parameters given

in Table 3.19.

Table 3.18 List of generic LA-ICP-MS operating conditions.

Conditions Spot Ablation Traverse Ablation

Isotope Dwell Time (ms) 30 30

Sampling Time Per Cycle (s) 1.78 1.12

Total Acquisition Time (s) 63.65 89.46

Table 3.19 List of generic LA-ICP-MS tuning parameters.

Conditions Spot Ablation Traverse Ablation

Laser Frequency (Hz) 10 10

Laser Power (mJ) 0.33-0.38 0.33-0.38

Ablation Diameter (µm) 55 55

Laser Warm-Up (seconds) 5.0 5

Laser Ablation Duration (seconds) 30 90

Laser Traversing Speed (µms-1) 0 22

Page 104: Development of Novel Physical (Electrostatic Detection

104

3.8.2 Analytical Method

3.8.2.1 Spot Ablation Method

After instrument tuning, the samples were placed into the laser cell and held in place using

either Blu-Tac™ or cyanoacrylate glue. The distance between the top of the sample and the

base of the laser cell were adjusted to a consistent distance for all of the samples and all

samples were levelled to ensure they were at right angles to the direction of the laser beam.

Once introduced into the laser ablation cell, the cell was purged using an Ar/He carrier gas for

a period of 90 seconds to remove any air that may be present. The area of ablation on the

sample was manually selected using the laser ablation software and data collection was

initiated for 5 seconds with the laser switched off to obtain a background signal. This

procedure also allows a baseline to be determined as a reference point for the subsequent

analytical run. After the five seconds had elapsed, the laser was switched on and sample

ablation commenced. After the 30 seconds of ablation the next sample location was selected

and the procedure was repeated until all analytical sites on the sample had been ablated.

A set of standards was run regularly throughout a typical LA-ICP-MS analytical period of

approximately eight hours. The NIST 610 standard was used to establish the optimum

ablation conditions at the beginning of a sample run and then reanalysed every 45 minutes to

facilitate drift correction throughout the day. A set of cross-over samples (samples that had

been analysed in a previous run and were re-analysed in the current run) were analysed at

the beginning, middle, and end of the analysis period. These samples were analysed in every

analytical period throughout this study and their frequent analysis facilitates achieving

reproducibility of data between runs.

3.8.2.2 Traverse Method

Initial setup for this procedure was identical to that described in Section 3.2.2.1. Following

the initial setup, the analytical sequence incorporated a 10 second Ar/He purge prior to an

ablation period of 90 seconds. After the ablation of a single traverse line, the process was

repeated for any additional lines required for the sample analysis. Samples were analysed

one at a time with repeated lines being run on the sample before a new sample was

introduced into the laser cell. After a sample was removed from the laser cell and a new

Page 105: Development of Novel Physical (Electrostatic Detection

105

sample was placed into the cell, the cell was purged for 90 seconds and the procedure was

repeated.

3.8.2.3 Isotopes Determined

The majority of LA-ICP-MS analyses were performed with laser ablation taking place at a

single site on the pencils and as a traverse on the paper and ink on paper samples. An

extensive range of analytes and corresponding isotopes were chosen for determination

(Table 3.20) but following analysis of trial samples it was apparent that certain analytes were

only ever present in ultra-trace concentrations and/or were consistently below the detection

limit for LA-ICP-MS analysis. These analytes were removed from the initial analytical

elemental suite (Table 3.21) as their lack of consistent presence above the detection limit

renders them inappropriate for use in data interpretation protocols. Nonetheless, an

extensive suite of analytes was able to be determined for each sample.

Table 3.20 Complete analyte (isotope) suite used for LA-ICP-MS analysis of pencil leads

A 7Li 9Be 11B 23Na 24Mg 27Al 31P 34S 39K 44Ca 45Sc 48Ti 49Ti 51V 52Cr 53Cr 55Mn 57Fe 59Co 60Ni 63Cu 64Zn 65Cu 66Zn 69Ga 70Ge 71Ga 73Ge 75As 82Se 85Rb 88Sr 89Y 90Zr 91Zr 93Nb 95Mo 98Mo 101Ru 102Ru 103Rh 106Pd 107Ag 108Pd 109Ag 111Cd 114Cd 115In 118Sn 120Sn 121Sb 125Te 126Te 133 Cs 138Ba 139La 140Ce 141Pr 146Nd 147Sm 151Eu 152Sm 153Eu 157Gd 158Gd 159Tb 162Dy 165Ho 166Er 169Tm 172Yb 174Yb 175Lu 178Hf 181Ta 182W 184W 185Re 195Pt 197Au 200Hg 202Hg 203Tl 204Pb 205Tl 206Pb 207Pb 208Pb 209Bi 232Th 238U

Table 3.21 Final analyte (isotope) suite used for LA-ICP-MS analysis interpretation of data

obtained from pencil leads

B 7Li 9Be 11B 23Na 24Mg 27Al 31P 34S 39K 44Ca 45Sc 49Ti 51V 53Cr 55Mn 57Fe 59Co 60Ni 65Cu 66Zn 71Ga 73Ge 75As 85Rb 88Sr 89Y 90Zr 93Nb 98Mo 109Ag 111Cd 115In 120Sn 121Sb 133 Cs 138Ba 139La 140Ce 141Pr 146Nd 152Sm 153Eu 158Gd 159Tb 162Dy 165Ho 166Er 169Tm 174Yb 175Lu 178Hf 181Ta 182W 202Hg 205Tl 208Pb 209Bi 232Th 238U

Page 106: Development of Novel Physical (Electrostatic Detection

106

Chapter 4 Results and Discussion 4.1 Paper

4.1.1 Reproducibility of the elemental composition within a single sheet of paper.

Fifty one different reams of paper were collected during the initial eighteen months of this

investigation. This material served the basis of the preliminary investigation into both

whether it was possible to obtain reproducible trace element profiles from paper and

whether the differences between both countries and batches of paper from those countries

would be different enough to facilitate the establishment of a trace element based paper

data base or not. A single sheet of paper was selected randomly from each of these fifty one

individual reams of paper in order to investigate, initially, if the trace element distribution

within a single sheet of paper was uniform. These samples were selected to represented

paper manufactured by different manufacturers in different countries and therefore,

because the cost of the paper and the countries of origin are wide ranging, this study also

was able to determine if the uniformity of the chemical signatures in paper were dependent

on either country of origin or cost, or indeed both.

Samples used in this initial study are detailed in Table 3.3; Section 3.3.1, and Appendix Table

1A. Samples were analysed for 61 elements. Paper was oriented in the portrait style and sub-

samples taken at the top middle and bottom of each sheet. Samples of paper from four

different manufacturers and countries were randomly chosen as examples to demonstrate

the reproducibility of the elemental signature within single sheets of paper (Figure 4.1). All

samples were independently dissolved and analysed. Data for all single sheet comparisons for

the 51 reams of paper used in this Section are detailed in Appendix Table 1A. Data for the

average elemental composition and reproducibility of the elemental signatures of the paper

samples used in these Figures are detailed in Table 4.1. From the data detailed in Figure.

4.1A-D, it is apparent that the trace elemental signature for the majority of elements within a

single sheet of paper is extremely reproducible. The actual data used in this Figure are

detailed in Table 4.1 where the average, standard deviation, and coefficient variation

percent, are also given. These values confirm the reproducibility of the analytical data and

highlight which elements exhibit the highest levels of reproducibility.

Page 107: Development of Novel Physical (Electrostatic Detection

107

With reference to Figure 4.1 A-D, it can be seen the inter-element association pattern that is

obtained from each of the three triplicate analyses for each sheet of paper is essentially

identical. This means that in the event of a trace back investigation being undertaken, it is not

essential to take a reference sample from a particular part of a sheet of paper as the

elemental profile across any sheet of paper is essentially identical. This means that even

when it is not possible to identify exactly where a piece of paper comes from in a sheet it will

be representative of that sheet. However, it is recognised that there are some analytes that

show slight variations in concentrations within the sheets, mainly due to the fact that their

concentrations are at or near the detection limits for the technique. Nonetheless, providing

the differences in the trace element signatures within a sheet are less than the differences in

the trace element signatures between sheets from different brands of paper, then trace back

of a piece of paper to brand of origin can still be achieved unambiguously.

The data, with respect to the inter-element association patterns for the four different paper

types used as an example of results for this experiment, are detailed in Figure 4.2. As can be

seen from reference to this Figure, there are very large differences between the trace

element assemblages for these four different papers. This is true even for trace and ultra-

trace levels of analytes, such as the results for the rare earth elements where, while the

pattern of these elements is the same for all paper samples, their relative concentrations are

different. In these cases, with respect to the major element concentrations (sodium to iron in

Figures 4.1A-D and 4.2), the variations reflect mainly the concentrations and types of fillers

used in the paper’s production. This is especially interesting for sample 12 where the high

aluminium and low calcium are reflected by a high rare earth element profile. This is

surprising and reflects the use of a high rare earth content clay as a filler, a situation possibly

reflecting the use of a marine clay, and in this case a high magnesium marine clay. Under

these circumstances it may be possible to identify the origin of the filler as well and further

confirm the origin of the paper concerned. The principle of this observation is likely to be

demonstrated in all types of paper and highlights the fact that the use of elemental profiles in

paper may be able to provide far more information than simple concentrations alone as

fillers usually are of geologically based rather than artificial in origin and therefore reflect a

basic pre-cursor rock geochemistry that may much more easily reflect country of

manufacture than simple reference to analyte concentrations alone. Reference to Table 1A in

Page 108: Development of Novel Physical (Electrostatic Detection

108

the Appendix further confirms the excellent comparability within a single sheet of paper for

all fifty one samples investigated. Furthermore, while the experiment detailed in this Section

was designed to investigate the reproducibility of the elemental signature within a single

piece of paper the data can also be used to give an initial indication of the relative variation

of elemental signatures between the four different papers used to show this association

(Figure 4.1). Because the reproducibility of the elemental signatures of these papers is

excellent an average value for each paper can be taken and plotted against equivalent values

for the other three (Figure 4.2). From this Figure, it can be seen that there are obvious

differences between all four paper samples. The fact that the differences between paper

samples are considerably greater than the differences in the elemental signatures within a

single sheet is the hypothesis studied in this thesis, and from Figure 4.2 it is apparent that

these differences can easily be seen. Consequently, differences between the trace element

signatures of paper manufactured in different parts of the world have the potential of being

easily recognised and recorded in a data base for retrospective examination. Furthermore, it

may be possible to establish variations in the trace element signature of the paper produced

by the same manufacturer over time. On the basis of this experiment it can be concluded

that any sample taken from a single sheet of paper will have an elemental signature

representative of that sheet.

Page 109: Development of Novel Physical (Electrostatic Detection

109

Table 4.1 Reproducibility for element concentrations in four sheets of paper, samples have been analysed in triplicate (Na, Mg, Al, P, S, K, Ca & Fe concentrations are expressed as ppm all other elements are expressed as ppb: Indo – Indonesia, Aus – Australia)

Name Origin Na Mg Al P S K Ca Fe Li Be B Sc Ti V Cr Paper One-Premium All purpose Indo Mean 562 678 307 26.5 2280 79 69600 65.8 929 14.2 29000 72 4970 506 1160

Sample (1 A-C) Std Dev 29.8 22.1 29.7 1.38 101 9.65 3660 6.26 129 2.76 4860 7.03 136 251 106

CoV% 5.30 3.26 9.67 5.21 4.43 12.22 5.26 9.51 13.89 19.44 16.76 9.76 2.74 49.60 9.14

Reflex-Acid Free Aus Mean 1090 720 324 20.3 2290 79.8 88800 225 168 4.13 40200 157 14200 436 1950

Sample (3 A-C) Std Dev 64.9 35.1 16 7.81 5.56 12.3 375 4.6 11.4 0.634 6020 7.03 74.9 2.26 91.9

CoV% 5.95 4.88 4.94 38.47 0.24 15.41 0.42 2.04 6.79 15.35 14.98 4.48 0.53 0.52 4.71

Fuji Xerox-Business + China Mean 1160 1190 411 15.7 2870 94.9 87400 139 420 8.13 20900 113 13500 600 931

Sample (4 A-C) Std Dev 33.8 63.5 28.5 1.18 114 9.13 5730 9.45 4.09 0.468 7530 3.66 451 120 42.2

CoV% 2.91 5.34 6.93 7.52 3.97 9.62 6.56 6.80 0.97 5.76 36.03 3.24 3.34 20.00 4.53

TNPL Copier-Sugar Cane Waste India Mean 76.5 3420 4950 34 832 33 696 340 356 6.01 1610 74.8 26100 1330 2400

Sample (12 A-C) Std Dev 25 148 274 1.15 20 5.98 68.6 19.4 3.97 1.11 1230 2.88 619 34.6 308

CoV% 32.68 4.33 5.54 3.38 2.40 18.12 9.86 5.71 1.12 18.47 76.40 3.85 2.37 2.60 12.83

Name Origin Mn Co Ni Cu Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Paper One-Premium All purpose Indo Mean 5420 174 2790 1090 6410 32.5 9.69 302 135 174 22100 574 713 97.4 2240

Sample (1 A-C) Std Dev 151 25.5 164 107 1070 1.41 0.397 134 7.99 9.25 556 11.2 162 14.9 13.4

CoV% 2.79 14.66 5.88 9.82 16.69 4.34 4.10 44.37 5.92 5.32 2.52 1.95 22.72 15.30 0.60

Reflex-Acid Free Aus Mean 60200 290 4470 1180 4090 36.2 6.57 250 168 114 38700 371 21800 71.8 354

Sample (3 A-C) Std Dev 1060 5.46 93.9 605 2020 0.979 1.6 52.4 4.9 7.42 426 4.54 13300 33.6 49.8

CoV% 1.76 1.88 2.10 51.27 49.39 2.70 24.35 20.96 2.92 6.51 1.10 1.22 61.01 46.80 14.07

Fuji Xerox-Business + China Mean 4960 257 4160 1550 5460 50.7 8.16 84.8 166 172 36900 146 1240 93.1 551

Sample (4 A-C) Std Dev 76 13.9 55.4 58.4 997 1.23 0.154 144 18 8.13 779 4.36 110 7.56 6.29

CoV% 1.53 5.41 1.33 3.77 18.26 2.43 1.89 169.81 10.84 4.73 2.11 2.99 8.87 8.12 1.14

TNPL Copier-Sugar Cane Waste India Mean 2340 104 1160 337 4220 511 25.6 8.2 11 61.4 2260 177 1110 132 44.4

Sample (12 A-C) Std Dev 12 9.8 59.8 111 2110 15.4 1.14 11.3 3.12 6.77 101 4.8 68.3 5.28 4.8

CoV% 0.51 9.42 5.16 32.94 50.00 3.01 4.45 137.80 28.36 11.03 4.47 2.71 6.15 4.00 10.81

Page 110: Development of Novel Physical (Electrostatic Detection

110

Table 4.1 continued…. Name Origin Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Eu Gd

Paper One-Premium All purpose Indo Mean 27.5 116 0.168 45.9 12.9 0.793 26.1 768 230 216 41.3 165 33.4 6.24 43.2

Sample (1 A-C) Std Dev

24.3 13.1 < 0.100 15.7 2.79 0.554 0.821 17.6 12.1 6.79 1.97 5.87 0.376 < 0.100 2.12

CoV% 88.36 11.29 < 0.100 34.20 21.63 69.86 3.15 2.29 5.26 3.14 4.77 3.56 1.13 < 0.100 4.91

Reflex-Acid Free Aus Mean 10 47.5 0.166 15 7.19 0.403 4.27 685 128 210 27.6 98.7 20.4 5.06 27.1

Sample (3 A-C) Std Dev

1.8 18.8 < 0.100 5.28 4.02 0.143 0.198 31.3 8.77 18 2.46 4.88 1.21 < 0.100 0.915

CoV% 18.00 39.58 < 0.100 35.20 55.91 35.48 4.64 4.57 6.85 8.57 8.91 4.94 5.93 < 0.100 3.38

Fuji Xerox-Business + China Mean 11.7 11 0.236 12.1 13.4 0.217 8.32 1760 167 330 35.4 126 24.8 5.93 27.8

Sample (4 A-C) Std Dev

2.4 0.966 < 0.100 1.87 5.51 0.152 0.396 45.1 5.04 10.5 1.08 4.98 < 0.100 0.134 0.467

CoV% 20.51 8.78 < 0.100 15.45 41.12 70.05 4.76 2.56 3.02 3.18 3.05 3.95 < 0.100 2.26 1.68

TNPL Copier-Sugar Cane Waste India Mean 17.3 5.33 0.159 32.9 8.11 0.504 1.04 2160 703 1370 141 497 89.4 15.6 91.7

Sample (12 A-C) Std Dev

2.1 1.86 < 0.100 1.86 2.46 0.226 0.382 170 23.8 48.6 4.19 8.82 5.55 0.587 2.37

CoV% 12.14 34.90 < 0.100

5.65 30.33 44.84 36.73 7.87 3.39 3.55 2.97 1.77 6.21 3.76 2.58

Name Origin Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U

Paper One-Premium All purpose Indo Mean 8.38 50.3 11 31.7 4.74 25.6 3.95 21.8 4.99 32400 1.73 627 27.5 22 37.3

Sample (1 A-C) Std Dev

< 0.100 1.34 0.256 0.532 0.257 0.682 0.259 6.1 1.45 1130 0.203 267 2.22 5.12 1.77

CoV% < 0.100 2.66 2.33 1.68 5.42 2.66 6.56 27.98 29.06 3.49 11.73 42.58 8.07 23.27 4.75

Reflex-Acid Free Aus Mean 5.15 34 8.21 25.8 4.15 27.4 4.63 431 1.66 9870 0.666 459 2.32 24.3 21.1

Sample (3 A-C) Std Dev

0.185 0.91 0.143 0.535 0.141 1.42 0.189 256 < 0.100 2400 < 0.100 186 0.916 1.09 0.474

CoV% 3.59 2.68 1.74 2.07 3.40 5.18 4.08 59.40 < 0.100 24.32 < 0.100 40.52 39.48 4.49 2.25

Fuji Xerox-Business + China Mean 4.75 24.3 5.11 13.8 1.73 12.2 1.73 30 4.19 13600 0.692 495 15.5 25.9 42.6

Sample (4 A-C) Std Dev

0.225 1.08 < 0.100 0.417 0.278 0.406 0.278 0.972 0.263 264 < 0.100 42.6 0.723 1.14 1.55

CoV% 4.74 4.44 < 0.100 3.02 16.07 3.33 16.07 3.24 6.28 1.94 < 0.100 8.61 4.66 4.40 3.64

TNPL Copier-Sugar Cane Waste India Mean 15.4 68.3 9.46 21.7 1.59 12.6 1.59 36.3 6.35 201 0.634 1110 13.3 166 40.8

Sample (12 A-C) Std Dev

0.238 2.73 0.623 1.12 < 0.100 0.828 < 0.100 1.81 0.224 54.4 < 0.100 162 10.6 5.37 0.903

CoV% 1.55 4.00 6.59 5.16 < 0.100

6.57 < 0.100

4.99 3.53 27.06 < 0.100

14.59 79.70 3.23 2.21

Page 111: Development of Novel Physical (Electrostatic Detection

111

Figure 4.1A Results obtained for the analysis of Samples (1A-C) Paper One premium all purpose (made in Indonesia).

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

Figure 4.1B Results obtained for the analysis of Samples (3A-C) Reflex Acid-Free paper (made in Australia).

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

Page 112: Development of Novel Physical (Electrostatic Detection

112

Figure 4.1C Results obtained for the analysis of Samples (4A-C) Fuji Xerox business paper (made in China).

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

Figure 4.1D Results obtained for the analysis of Samples (12A-C) TNPL Copier sugar cane waste paper (made in India).

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

Page 113: Development of Novel Physical (Electrostatic Detection

113

Figure 4.2 Comparison between the average values for each of the four paper sheets (Sample 1, Paper One premium All Purpose; made in Indonesia: Sample 3, Reflex Acid-Free paper; made in Australia: Sample 4, Fuji Xerox business paper; made in China: and Sample 12, TNPL Copier sugar cane waste paper; made in India.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

Page 114: Development of Novel Physical (Electrostatic Detection

114

4.1.2 Reproducibility of the elemental signature within a single ream

While it has been successfully demonstrated that reproducibility of elemental signature

within a single sheet of paper is excellent, it is necessary to establish how reproducible that

signature is within, and between reams, and batches of paper for the technique to be

forensically useful in the real world. Nine reams of paper from five different countries,

collected between six and ten months after the initial collection of paper detailed in

Appendix Table 1A and referred to in Appendix Table 1B, were used in the initial component

of this investigation. This type of collection framework was undertaken in order not only to

determine the reproducibility of the elemental signature within a ream of paper but also to

be able, where possible, to cross reference this signature with that from paper samples

collected earlier and detailed in Appendix Table 1A.

Five sheets of paper were selected from each of the nine reference reams. Samples were

selected from the top (sheet 1) and at sheet 101, 201, 301 and 401 from each of the reams.

An approximately 5cm by 5cm square was cut from the centre of each page (approximately

200mg), weighed to four decimal places and dissolved as detailed in Section 3.4.1. The

samples used in the initial study are detailed in Table 4.2.

Page 115: Development of Novel Physical (Electrostatic Detection

115

Table 4.2 List of samples used in the initial intra-ream trace element concentration reproducibility study. (Data refers to samples shown in Figures 4.3 A-I).

Identification Country of

Origin/Manufacture Data base ream number

Hotel stationery (generic) Argentina Ream 1

Paper One-Premium All Purpose Indonesia Ream 3

Reflex Recycled Pure White Australia Ream 2

Double A Premium Thailand Ream 1

HP Everyday Brazil Ream 2

Laser IT Indonesia Ream 4

Office Works UltraWhite Premium Australia Ream 1

Paper One Premium Presentation Indonesia Ream 2

Reflex Recycled Pure White Australia Ream 3

It was found that the trace elemental signatures for the majority of elements within a single

ream of paper were extremely reproducible (Table 4.3). The excellent reproducibility of the

majority of analytes can be seen with reference to Figures (4.3 A-I) and in Appendix Table 1B.

In general, and as expected, the results indicate that there is a generic elemental signature

for paper (Figure 4.4). However, the relative concentrations of the analytes do vary especially

when it comes to the fillers such as titanium, strontium and barium. It is extremely difficult

to grasp the true significance of these differences between papers and also to understand

just how equivalent the data are for the individual reams of paper by reference to tables and

the graphs depicted. Consequently, Linear Discriminant Analysis (LDA) has been used to plot

the data to show these aspects (Figure 4.5).

In Figure 4.5 A the entire data set of analytes (61) has been used and while it is possible to

verify the similarities within individual reams of paper the variation in the F2 dimension is

trivial. Consequently, the data were replotted with those analytes that exhibited low inter-

batch differences removed. When this was undertaken (Figure 4.5 B) it was possible to see

not only the close association of the elemental concentration data for all reams of paper, but

Page 116: Development of Novel Physical (Electrostatic Detection

116

also the fact that there appeared to be a generic association for paper produced in the only

two countries that had more than one different ream of paper investigated in this

preliminary study, Australia and Indonesia. This aspect will be investigated further later in the

thesis.

However, at this stage of the investigation it was interesting to determine which, if any, of

the analytes determined were generically associated with each manufacturing country as this

knowledge may provide a basis on which to pre-screen data to suggest country of origin

before detailed investigations are undertaken. In addition, because paper is a natural

product, the trees used in its manufacture will remove trace and minor elements from the

soil and concentrate them in their wood. These elements will vary depending on the pre-

cursor geology to soil production and will reflect the areas in which the trees are growing. In

many instances it is not possible to remove these elements during paper production and they

will survive the processes involved to be retained in the paper produced. Understanding the

source and reason for any differences in the trace element assemblage within the paper will

facilitate the identification of any anomalous elemental levels in the paper and these

observations have the potential to be used in any eventual data base to suggest a possible

country of origin of at least the trees used for the manufacture of the specific paper on

question. Consequently, the data in (Appendix Table 1B) were carefully scrutinised and it was

possible to construct a table of anomalously high analyte concentrations in individual reams

(Table 4.4). In so doing the possibility of a generic elemental signature for papers from

different countries, independent of manufacturer, is strongly apparent. In addition, specific

aspects of the manufacturing process also become apparent. If examples of these relative

differences between papers and countries of origin are also plotted (Figure 4.6 A-G), the

magnitude of differences can be easily seen and the inter-county of origin elemental profiles

much more clearly demonstrated.

Page 117: Development of Novel Physical (Electrostatic Detection

117

Table 4.3 Reproducibility and statistical data for element concentrations in nine reams of paper. Six samples from each ream were analysed. The total data set is given in Appendix Table 1B. Data marked with an asterisk are expressed in ppm while data not marked are expressed as ppb.

Within ream statistical data *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Hotel stationery (generic brand) Argentina Ream 1

Average 1440 746 390 27.9 1890 57 52500 16.1 5.61 80.2 115 3.92 32900 67.5 9490 170 Stdev 179 67.6 48.4 3.34 119 8.68 4690 2.1 0.734 8.73 14.3 0.495 3000 2.48 1050 7.65 RSD % 12.4 9.06 12.4 11.9 6.27 15.2 8.93 13 13.1 10.9 12.5 12.6 9.11 3.67 11 4.51

Paper One Premium All Purpose Indonesia Ream 3 Average 1230 864 508 19 3310 112 101000 31.6 65 242 191 4.59 7190 114 15300 206

Stdev 99.7 54.8 44.2 1.35 138 14.5 5970 1.7 3.66 14.1 31.7 0.653 648 4.9 738 13.6 RSD % 8.09 6.35 8.69 7.11 4.16 12.9 5.9 5.37 5.63 5.83 16.6 14.2 9.01 4.29 4.82 6.59

Reflex Recycled Pure white Australia Ream 2 Average 1230 864 508 19 3310 112 101000 31.6 65 242 191 4.59 7190 114 15300 206

Stdev 99.7 54.8 44.2 1.35 138 14.5 5970 1.7 3.66 14.1 31.7 0.653 648 4.9 738 13.6 RSD % 8.09 6.35 8.69 7.11 4.16 12.9 5.9 5.37 5.63 5.83 16.6 14.2 9.01 4.29 4.82 6.59

Double A Premium Thailand Ream 1 Average 722 301 128 25.4 1450 71.1 48700 2.39 4.34 29.3 83.3 1.84 53000 59.5 3330 168

Stdev 53 16.3 92.1 1.76 44.7 8.48 2730 0.783 0.421 8.4 37.7 0.433 11500 5.11 392 32.1 RSD % 7.34 5.42 72 6.93 3.08 11.9 5.6 32.8 9.68 28.6 45.3 23.6 21.7 8.59 11.8 19.1

HP Everyday Brazil Ream 2 Average 832 356 333 81.7 1900 29.8 60300 1.61 3.82 38.3 84.1 3.11 68200 66 5510 224

Stdev 58 26.3 22.3 6.87 110 4.62 3970 0.448 0.347 10.8 5.16 0.4 7910 6.08 3770 36.7 RSD % 6.97 7.39 6.68 8.41 5.81 15.5 6.6 27.8 9.07 28.2 6.13 12.9 11.6 9.22 68.4 16.4

Laser IT Indonesia Ream 4 Average 738 532 269 23.6 2020 25.8 67700 3.06 6.45 72.3 1180 22.1 54800 95.7 5890 265

Stdev 59.5 28.7 14.3 1.75 69.7 15.5 2530 0.767 0.467 4.79 482 2.04 38500 4.28 333 20.8 RSD % 8.07 5.39 5.32 7.38 3.45 60.1 3.74 25 7.25 6.62 40.8 9.25 70.2 4.47 5.66 7.87

Office Works Ultra White Premium Australia Ream 1 Average 1380 596 279 8.37 2030 76.7 72600 11.2 55.3 213 229 4.99 80200 141 13900 255

Stdev 165 77 37.4 1.29 226 6.38 9390 1.68 7.79 26.2 16.8 1.25 24200 18.2 2010 56.2 RSD % 11.9 12.9 13.4 15.5 11.1 8.32 12.9 15.1 14.1 12.3 7.36 25.1 30.2 12.9 14.5 22

Paper One Premium Presentation Indonesia Ream 2 Average 806 381 291 28.8 2450 84.1 73100 3.77 4.57 66.3 1500 15.4 108000 120 7400 304

Stdev 34.8 28.2 16.2 3.54 166 15 5770 0.751 0.391 10 62.1 0.47 4270 4.15 868 42.6 RSD % 4.32 7.4 5.55 12.3 6.79 17.8 7.89 20 8.56 15.1 4.14 3.05 3.95 3.46 11.7 14

Reflex Recycled Pure White Australia Ream 3 Average 1240 594 428 13.6 2290 85.3 77400 17.2 59.4 209 301 6.62 68900 166 19700 339

Stdev 82.4 37 26.1 0.985 103 5.66 3330 2.05 3.85 12.4 14.9 0.988 5910 2.27 1020 50.9 RSD % 6.64 6.23 6.1 7.25 4.5 6.63 4.3 11.9 6.48 5.95 4.96 14.9 8.58 1.37 5.19 15

Page 118: Development of Novel Physical (Electrostatic Detection

118

Table 4.3 continued…. Reproducibility and statistical data for element concentrations in nine reams of paper. Six samples from each ream were analysed. The total data set is given in Appendix Table 1B. Data marked with an asterisk are expressed in ppm while data not marked are expressed as ppb.

Within ream statistical data Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Hotel stationery (generic brand) Argentina Ream 1

Average 4230 6770 190 3660 505 1570 49.3 9.68 903 87.2 125 34100 88.8 333 75.2 127 Stdev 261 391 8.66 166 22.3 95.5 3.19 0.96 164 10.5 4.95 750 1.83 45.3 7.34 25.4 RSD % 6.17 5.77 4.55 4.52 4.42 6.08 6.46 9.92 18.2 12.1 3.96 2.2 2.07 13.6 9.76 19.9

Paper One Premium All Purpose Indonesia Ream 3 Average 1590 54100 237 5110 502 1170 44 4.74 1050 205 105 36800 375 2920 69.3 366

Stdev 86.9 2300 10.9 229 66.4 238 2.49 0.325 41.9 11.4 6.32 1640 18.3 386 29.3 19.9 RSD % 5.48 4.25 4.59 4.49 13.2 20.4 5.66 6.86 3.99 5.57 5.99 4.47 4.87 13.2 42.2 5.43

Reflex Recycled Pure white Australia Ream 2 Average 1590 54100 237 5110 502 1170 44 4.74 1050 205 105 36800 375 2920 69.3 366

Stdev 86.9 2300 10.9 229 66.4 238 2.49 0.325 41.9 11.4 6.32 1640 18.3 386 29.3 19.9 RSD % 5.48 4.25 4.59 4.49 13.2 20.4 5.66 6.86 3.99 5.57 5.99 4.47 4.87 13.2 42.2 5.43

Double A Premium Thailand Ream 1 Average 1820 4310 106 1340 1440 1790 15.9 5 458 65.9 112 16800 611 438 31.1 19.5

Stdev 97.2 270 5.74 90.1 24.9 185 4.84 1.73 92 20.5 9 1510 11.1 111 10 1.18 RSD % 5.35 6.28 5.43 6.72 1.73 10.4 30.3 34.5 20.1 31.1 8.06 8.97 1.81 25.4 32.3 6.06

HP Everyday Brazil Ream 2 Average 2010 4320 153 1860 331 1240 21.2 5.92 576 84.4 52.7 248000 138 271 49.8 11.7

Stdev 69.9 337 8.72 94.3 25.2 183 1.63 1.1 136 12.2 9.5 13300 16.6 213 23.7 1.65 RSD % 3.48 7.81 5.7 5.07 7.6 14.8 7.69 18.6 23.5 14.4 18 5.38 12 78.7 47.6 14.1

Laser IT Indonesia Ream 4 Average 2420 8560 197 2270 1150 2060 38.7 14 987 111 172 28700 830 643 85.2 1380

Stdev 58 296 7.82 103 67.7 317 1.95 1.46 88.9 12.8 8.13 1090 32.8 42.7 2.87 41.8 RSD % 2.4 3.46 3.97 4.53 5.92 15.4 5.04 10.5 9.01 11.5 4.73 3.79 3.95 6.65 3.37 3.03

Office Works Ultra White Premium Australia Ream 1 Average 3500 69400 287 2860 711 1490 35.6 11.7 654 106 118 37400 367 577 22 218

Stdev 437 7720 34.5 323 115 406 4.98 2.01 81.9 14.6 15.1 4170 42.5 49.2 5.98 49.4 RSD % 12.5 11.1 12 11.3 16.2 27.3 14 17.2 12.5 13.7 12.8 11.1 11.6 8.53 27.2 22.7

PaperOne Premium Presentation Indonesia Ream 2 Average 3340 6290 250 2900 1140 2110 42.5 16.2 1280 105 116 24500 898 650 91.1 2400

Stdev 106 194 7.44 115 36.5 323 1.73 2.89 130 15 4.71 601 19.5 72.2 5.1 35.6 RSD % 3.17 3.08 2.97 3.96 3.19 15.3 4.07 17.8 10.2 14.2 4.05 2.45 2.17 11.1 5.59 1.49

Reflex Recycled Pure White Australia Ream 3 Average 3550 69600 338 3050 729 2580 55.3 12.9 984 102 116 37500 375 756 26.2 364

Stdev 201 3650 17.4 132 64.3 318 3.46 2.01 135 20 6.76 1880 16.2 88.4 6.39 56.3 RSD % 5.66 5.24 5.16 4.33 8.82 12.3 6.26 15.6 13.7 19.5 5.84 5 4.31 11.7 24.4 15.5

Page 119: Development of Novel Physical (Electrostatic Detection

119

Table 4.3 continued…. Reproducibility and statistical data for element concentrations in nine reams of paper. Six samples from each ream were analysed. The total data set is given in Appendix Table 1B. Data marked with an asterisk are expressed in ppm while data not marked are expressed as ppb.

Within ream statistical data Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Eu Gd Tb Hotel stationery (generic brand) Argentina Ream 1

Average 8.17 3.37 0.268 53.2 7.66 0.372 7.97 5910 315 231 26.8 97.3 23 5.91 21.6 3.46

Stdev 0.971 0.639 < 0.100 5.64 1.53 < 0.100 1.46 348 19.9 19.5 1.75 4.87 0.898 0.174 0.258 <

0.100 RSD % 11.9 19 23.5 10.6 20 30.8 18.3 5.89 6.32 8.46 6.54 5 3.9 2.94 1.2 2.48

PaperOne Premium All Purpose Indonesia Ream 3 Average 0.805 40 < 0.100 27 15.5 0.272 4.84 788 175 313 36.1 148 31.7 6.58 38.5 7.73

Stdev 0.224 16.3 < 0.100 10.4 1.8 < 0.100 3.55 55.3 23.5 24.5 3.25 11.6 2.06 0.503 2.23 0.478 RSD % 27.8 40.9 135 38.6 11.6 14.2 73.3 7.01 13.4 7.82 9.01 7.85 6.49 7.65 5.79 6.18

Reflex-Recycled Pure white Australia Ream 2 Average 0.805 40 < 0.100 27 15.5 0.272 4.84 788 175 313 36.1 148 31.7 6.58 38.5 7.73

Stdev 0.224 16.3 < 0.100 10.4 1.8 < 0.100 3.55 55.3 23.5 24.5 3.25 11.6 2.06 0.503 2.23 0.478 RSD % 27.8 40.9 135 38.6 11.6 14.2 73.3 7.01 13.4 7.82 9.01 7.85 6.49 7.65 5.79 6.18

Double A Premium Thailand Ream 1 Average 0.923 170 0.441 64.8 13.6 0.429 17.8 1220 290 202 46.2 180 33.3 7.58 46.1 8.65

Stdev <

0.100 12.9 < 0.100 3.76 3.12 0.283 2.95 290 23.3 46 5.05 16.1 2.92 0.835 3.43 0.709 RSD % 5.96 7.63 14.5 5.8 23 66.1 16.6 23.7 8.03 22.8 10.9 8.96 8.75 11 7.44 8.2

HP Everyday Brazil Ream 2 Average 0.891 11.5 0.334 54.9 5.2 0.253 10.8 2780 113 202 15.9 59.7 11.1 3.02 13.7 2.74

Stdev 0.161 3.55 < 0.100 10 1.3 < 0.100 3.33 156 47.9 82.1 2.56 16.3 1.1 0.411 1.12 0.355 RSD % 18 30.8 13.4 18.3 25 33.3 30.8 5.62 42.2 40.7 16.1 27.3 9.89 13.6 8.16 12.9

Laser IT Indonesia Ream 4 Average 0.916 126 0.367 68.4 16.1 0.534 40.6 727 352 318 61 233 45.6 8.34 60.7 11

Stdev 0.239 38.1 < 0.100 13 1.87 0.652 6.5 80.6 14.6 18.9 1.73 6.46 1.92 0.679 2.57 0.378 RSD % 26.1 30.1 16.1 19 11.6 122 16 11.1 4.13 5.95 2.84 2.77 4.21 8.13 4.23 3.45

Office Works Ultra White Premium Australia Ream 1 Average 0.842 32.7 0.319 33.3 6.37 0.768 10.5 604 162 207 24.1 88.5 19.1 4.54 23.1 4.95

Stdev 0.131 4.4 < 0.100 3.86 2.93 1.22 0.931 84.2 27.9 36.2 2.21 12.7 2.25 0.43 2.86 0.686 RSD % 15.5 13.4 15.3 11.6 46.1 160 8.91 13.9 17.2 17.5 9.16 14.4 11.8 9.47 12.4 13.9

PaperOne Premium Presentation Indonesia Ream 2 Average 0.791 176 0.268 34.2 14 0.259 24.3 766 333 262 55.4 212 41.4 7.83 55.9 10

Stdev 0.13 5.15 < 0.100 3.78 2.07 < 0.100 3.23 20.9 18.3 22.9 1.86 6.5 1.36 0.213 0.987 0.184 RSD % 16.5 2.93 14.5 11.1 14.8 36 13.3 2.73 5.49 8.73 3.36 3.06 3.29 2.72 1.77 1.83

Reflex Recycled Pure White Australia Ream 3 Average 1.25 26.3 0.293 37.1 7.4 0.251 11.6 635 153 257 27.7 97.2 19.1 4.33 24.5 4.61

Stdev <

0.100 3.27 < 0.100 10 0.839 < 0.100 2.76 48 22.8 32.6 1.62 5.34 1.14 0.195 1.98 0.319 RSD % 8.73 12.4 9.34 27 11.3 19.7 23.9 7.57 14.9 12.7 5.87 5.49 5.97 4.51 8.1 6.92

Page 120: Development of Novel Physical (Electrostatic Detection

120

Table 4.3 continued…. Reproducibility and statistical data for element concentrations in nine reams of paper. Six samples from each ream were analysed. The total data set is given in Appendix Table 1B. Data marked with an asterisk are expressed in ppm while data not marked are expressed as ppb.

Within ream statistical data Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U Hotel stationery (generic brand) Argentina Ream 1

Average 19.8 3.37 9.31 1.33 8.64 1.2 8.98 5.09 39.9 0.503 568 9.55 23.8 77.9

Stdev 0.724 <

0.100 0.627 <

0.100 0.555 <

0.100 1.19 0.61 9.74 < 0.100 107 2.05 0.784 2.48 RSD % 3.66 2.27 6.74 5.39 6.42 5.41 13.3 12 24.4 9.83 18.9 21.5 3.29 3.18

Paper One Premium All Purpose Indonesia Ream 3 Average 50.5 11.8 38 6.1 41.5 7.03 100 2.39 17700 0.79 261 2.27 48.6 32

Stdev 3.6 0.75 1.79 0.448 3.18 0.425 8.51 0.619 2090 < 0.100 63.8 0.567 7.01 1.9 RSD % 7.12 6.37 4.71 7.34 7.67 6.04 8.48 25.9 11.8 14 24.5 25 14.4 5.94

Reflex Recycled Pure white Australia Ream 2 Average 50.5 11.8 38 6.1 41.5 7.03 100 2.39 17700 0.79 261 2.27 48.6 32

Stdev 3.6 0.75 1.79 0.448 3.18 0.425 8.51 0.619 2090 < 0.100 63.8 0.567 7.01 1.9 RSD % 7.12 6.37 4.71 7.34 7.67 6.04 8.48 25.9 11.8 14 24.5 25 14.4 5.94

Double A Premium Thailand Ream 1 Average 52.4 12 35.1 4.68 24.3 4.11 15.4 11.9 78.5 1.28 201 9.62 9.34 17.3

Stdev 2.67 0.797 2.3 0.442 1.43 0.322 2.05 1.09 10.9 < 0.100 44.8 1.91 2.53 3.16 RSD % 5.1 6.63 6.55 9.45 5.88 7.84 13.3 9.17 13.9 2.83 22.3 19.9 27.1 18.3

HP Everyday Brazil Ream 2 Average 17.4 4.05 12.4 2.08 11.6 1.84 9.25 6.78 79.8 1.31 245 5.23 51.7 134

Stdev 2.21 0.514 1.98 0.316 1.89 0.26 7.1 1.69 71.1 0.249 128 0.659 7.84 10.2 RSD % 12.7 12.7 15.9 15.2 16.3 14.1 76.8 24.9 89.2 19 52.2 12.6 15.1 7.64

Laser IT Indonesia Ream 4 Average 69.1 15 44.8 6.01 32.7 5.37 17.7 8.43 13700 2.14 359 48.7 28.3 25.3

Stdev 3.05 0.705 2.75 0.254 1.36 0.368 1.33 1.48 1060 0.204 55.8 5.07 4.77 0.872 RSD % 4.41 4.7 6.14 4.22 4.15 6.85 7.51 17.6 7.74 9.51 15.5 10.4 16.9 3.44

Office Works Ultra White Premium Australia Ream 1 Average 32.4 7.38 24.4 3.96 24.5 4.58 2.68 2.66 4880 1.38 258 5.55 20.2 18.1

Stdev 3.99 0.836 2.65 0.444 2.77 0.412 1.02 0.6 853 0.18 104 1.41 2.41 1.94 RSD % 12.3 11.3 10.8 11.2 11.3 8.99 37.9 22.6 17.5 13.1 40.3 25.4 11.9 10.7

Paper One Premium Presentation Indonesia Ream 2 Average 63.1 13.6 39.7 5.25 28.9 4.48 13.5 5.53 13400 1.48 230 8.38 30.1 28.1

Stdev 2.44 0.356 1.21 0.189 0.928 0.129 0.524 0.551 1810 0.188 24.8 0.658 2.98 1.07 RSD % 3.87 2.63 3.05 3.61 3.21 2.87 3.88 9.98 13.5 12.7 10.8 7.85 9.9 3.82

Reflex Recycled Pure White Australia Ream 3 Average 29.5 6.95 22.3 3.49 22.5 4.02 13.9 1.38 7490 1.44 209 4.69 26.1 17.6

Stdev 2.05 0.392 1.5 0.316 1.2 0.249 1.89 0.373 381 0.133 25.7 0.526 2.35 1.22 RSD % 6.97 5.64 6.71 9.04 5.31 6.2 13.6 27 5.09 9.26 12.3 11.2 8.97 6.9

Page 121: Development of Novel Physical (Electrostatic Detection

121

Figure 4.3 A and B. Elemental fingerprint of five sheets of paper (A: 52 A-E Argentina Ream1, B: 53 A-E Indonesia Ream 3. Table 4.2) taken from the same individual reams of A4 paper.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

B

A

Page 122: Development of Novel Physical (Electrostatic Detection

122

Figure 4.3 C and D. Elemental fingerprint of five sheets of paper (C; 53 A-E Australia Ream 2, D: 55 A-E Thailand Ream 1. Table 4.2) taken from the same individual reams of A4 paper.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

C

D

Page 123: Development of Novel Physical (Electrostatic Detection

123

Figure 4.3 E and F. Elemental fingerprint of five sheets of paper (E: 56 A-E Brazil Ream2, F: 55A-E Thailand Ream 1. Table 4.2) taken from the same individual reams of A4 paper.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

E

F

Page 124: Development of Novel Physical (Electrostatic Detection

124

Figure 4.3 G and H. Elemental fingerprint of five sheets of paper (G: 56 A-E Australia Ream 1, H: 59 A-E Indonesia Ream 2. Table 4.2) taken from the same individual reams of A4 paper.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

G

H

Page 125: Development of Novel Physical (Electrostatic Detection

125

Figure 4.3 I. Elemental fingerprint of five sheets of paper (I: 54 A-E Australia Ream 2. Table 4.2) taken from the same individual reams of A4 paper.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

I

Page 126: Development of Novel Physical (Electrostatic Detection

126

Figure 4.4 Average data for elemental profiles of the nine initial study reams of paper. (N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

52 Hotel stationery (generic brand) Argentina

53 Paper One Premium All Purpose Indonesia

54 Reflex Recycled Pure white Australia

55 Double A Premium Thailand

56 HP Everyday Brazil

57 Laser IT Indonesia

58 Office Works Ultra White Premium Australia

59 Paper One Premium Presentation Indonesia

60 Reflex Recycled Pure White Australia

*Na *Mg *Al *P *S *K *Ca *Mn *Fe Li Be B Sc Ti V

Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr Y Zr Nb Mo

Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Eu Gd Tb

Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U

Australian

Indonesian

Figure 4.5 LDA plots of the five replicates of the nine initial study reams of paper. LDA (A) is a plot using all analytes shown in the adjacent elemental list, while LDA (B) is a plot using all analytes that have NOT been highlighted in yellow. The apparent generic grouping of data for the three different Australian and three different Indonesian sample reams is also shown

A

B

Page 127: Development of Novel Physical (Electrostatic Detection

127

Table 4.4 Table indicating the relatively high analyte concentrations in specific reams of paper used in the initial inter-ream study.

Figure 4.6 Diagram of the relative concentrations of selected analytes in different reams of the paper used in the initial inter-ream study. (The ordinate axis represents concentration)

Ream code Paper name

Country of origin/manufacture P S Sc Ti Mn Zr Fe Li Be Mo Cs Cu Y Cd Sb Sr Ag W Sn Ba Hf Ta Bi Th U

52 Hotel stationery (generic brand)

Argentina ˄ ˄ ˄

53 Paper One

Premium All Purpose

Indonesia ˄ ˄ ˄ ˄ ˄ ˄ ˄ ˄ ˄ ˄ ˄

54 Reflex Recycled

Pure white Australia ˄ ˄ ˄ ˄ ˄ ˄ ˄ ˄

55 Double A Premium Thailand ˄ ˄ ˄ ˄ ˄ ˄

56 HP Everyday Brazil ˄ ˄ ˄ ˄ ˄ ˄

57 Laser IT Indonesia ˄ ˄ ˄ ˄ ˄ ˄ ˄ ˄

58 Office Works Ultra

White Premium Australia ˄ ˄ ˄ ˄

59 Paper One Premium

Presentation Indonesia ˄ ˄ ˄ ˄ ˄ ˄ ˄ ˄ ˄ ˄ ˄ ˄

60 Reflex Recycled

Pure White Australia ˄ ˄ ˄ ˄

52 Hotel stationery (generic brand) Argentina

53 Paper One Premium All Purpose Indonesia

54 Reflex Recycled Pure white Australia

55 Double A Premium Thailand

56 HP Everyday Brazil

57 Laser IT Indonesia

58 Office Works Ultra White

Premium Australia

59 Paper One Premium Presentation Indonesia

60 Reflex Recycled Pure White Australia

A

Page 128: Development of Novel Physical (Electrostatic Detection

128

52 Hotel stationery (generic brand) Argentina

53 Paper One Premium All Purpose Indonesia

54 Reflex Recycled Pure white Australia

55 Double A Premium Thailand

56 HP Everyday Brazil

57 Laser IT Indonesia

58 Office Works Ultra White

Premium Australia

59 Paper One Premium Presentation Indonesia

60 Reflex Recycled Pure White Australia

Figure 4.6 continued …

Diagram of the relative concentrations of selected analytes in different reams of the paper used in the initial inter-ream study.

(The ordinate axis represents concentration)

D

C

B

Page 129: Development of Novel Physical (Electrostatic Detection

129

52 Hotel stationery (generic brand) Argentina

53 Paper One Premium All Purpose Indonesia

54 Reflex Recycled Pure white Australia

55 Double A Premium Thailand

56 HP Everyday Brazil

57 Laser IT Indonesia

58 Office Works Ultra White Premium Australia

59 Paper One Premium Presentation Indonesia

60 Reflex Recycled Pure White Australia

Figure 4.6 continued…

Diagram of the relative concentrations of selected analytes in different reams of the paper used in the initial inter-ream study.

(The ordinate axis represents concentration)

E

F

G

Page 130: Development of Novel Physical (Electrostatic Detection

130

While there are significant levels of titanium in most of the papers (Figure 4.6A), the highest

titanium levels are found in the Australian Reflex Recycled Pure White paper (sample number

54). This material is obviously the primary filler and whitening agent used in this paper and

the high titanium is also reflected in the high scandium, manganese, zirconium, iron,

tungsten and thorium as all these elements are present in the mineral sands from which

titanium dioxide pigment is extracted and for which the Australian mineral sands industry is

famous worldwide. The Office Works Ultra-White Premium and the second ream of Reflex

Recycled Pure White (sample number 60) also have relatively high levels of titanium and both

are made in Australia.

With respect to growing environment, the data in Table 4.4 indicate that the high

phosphorus in Brazilian paper, used in this investigation, is probably derived from old forest,

or at least deciduous forest, as trees that are grown in old soil, which has had centuries to

mature and contains high leaf litter, contain significantly more phosphorus than new and

sandy soils and the growing cycle of deciduous trees is much longer than that of the pine

forests used in most other countries for paper production. These fast-growing conifers

sequestrate less phosphorus than their much more slowly growing deciduous cousins and

consequently paper made from them contains far less phosphorus.

Lithium (Figure 4.6B) is highest in all three Indonesian papers (sample numbers 53, 57 and

59), and as indicated in Table 4.4, molybdenum is also highest in the same Indonesian papers

(Figure 4.6F). There is an indication that samples 54 and 60, both derived from Australia and

named Reflex Recycled Pure White, have elevated levels of molybdenum; however the Office

Works Ultra-White Premium paper does not. This could indicate differences in the feed stock

processed by different mills in Australia and may be indicative of the possibility of identifying

mill, and hence source, of origin of the individual papers even though they could be produced

for the same wholesaler.

One further interesting aspect is that the Argentinean paper is high in silver. As its name

suggests Argentina is a country whose history is steeped in the production of silver and is

recognised as a “Silver Province” by exploration geologists. This being the case it would

appear that the trees being used to produce the paper used in this study are grown on a

Page 131: Development of Novel Physical (Electrostatic Detection

131

silver rich soil and it may be possible to use trees as indicators of sub cropping silver

mineralization.

On the basis of this preliminary experiment it is a reasonable assumption that any sample

taken from a single ream of paper will have an elemental signature representative of that

ream. Therefore, it should be possible to trace a single sheet of paper back to the

manufacturing batch and also to the country of origin.

4.1.3 Variations in the elemental composition of paper with respect to country/manufacturer of origin.

An additional seventy-five reams of paper were purchased from national and international

suppliers to try and investigate the possibility, indicated in Section 4.1.2, that there were

generic differences in paper that were based on country/manufacturer of origin. The papers

involved in this investigation are detailed in Appendix Table 1D. In collecting these papers at

least three reams were obtained of each type of paper and in one case and extra twelve

reams of X Fuji Xerox Paper were collected from various departments around the University

over a four-month period to try and obtain different batch numbers. In this collection of

paper from around the university it was possible to have access to fifteen different reams of

paper and to compare profiles of these papers covering nearly a two-year interval.

In the study detailed in Section 4.1.3, a single sheet of paper was used to characterise the

trace element composition of each ream as previous investigations, detailed in this thesis,

had indicated that it was only necessary to use one sheet of paper to obtain the chemical

characteristics of the whole ream and it was necessary to keep analytical costs as low as

possible. When the data are plotted with respect to an individual analyte an equivalent series

of figures can be constructed (Figure 4.7 A-I). In these figures it is possible to see the generic

patterns of the different countries yet again, although the fact that very different types of

paper from within a single country are being plotted in these Figures makes generic

specificity difficult. A key to the abscissa axis is given in Table 4.5. As can be seen by reference

to this table, the majority of samples studied in this Section come from Australia and will be

the subject of a more detailed investigation in Section 4.1.4. As can be seen in Figures 4.7 A-I,

there are significant differences between samples of paper from the different countries used.

Page 132: Development of Novel Physical (Electrostatic Detection

132

However, there are also differences between the different paper reams coming from

Australia. The Indian Clarion sample (Figure 4.7 A) seems to have by far the highest

magnesium concentration of any of the paper samples and this high magnesium is

characteristic of all three reams used in the study. The magnesium possibly represents

magnesium carbonate which is a relatively insoluble carbonate, even in acid, and is also used

as a whitening agent. None of the other six countries studied seem to have anywhere near

this amount of magnesium in their paper.

Table 4.5. List of sample reams used in country/manufacturer of origin experiment

Sample code Brand Origin Ream Sample code Brand Origin Ream63 Australian Australia 2-4 81 S Tudor-Laser (Ream E) Australia 5-764 Reflex 100% Recycled Pure White Australia 3-5 82 X Fuji Xerox (Ream D) Australia 4-665 Brilliant White Copy Paper Australia 1-3 83 X Fuji Xerox (Ream G) Australia 7-966 Reflex Carbon Neutral Ultra White Australia 1-3 84 X Fuji Xerox (Ream K) Australia 10-1267 Australian Australia 1-3 85 X Fuji Xerox (Ream M) Australia 13-1573 Reflex Carbon Neutral Ultra White Australia 4-6 69 HP Home and Office Brazil 1-374 Reflex 100% Recycled Pure White Australia 6-8 68 HP Bright White InkJet France 1-375 Reflex 100% Recycled Pure White Australia 9-11 70 HP Home and Office France 1-376 Australian Bright White Office Paper Australia 1-3 71 Clarion Collection notepad India 1-377 Tudor Multi White Office Paper Australia 1-3 61 PaperOne All Purpose Indonesia 1-378 Brilliant White Copy Paper Australia 4-6 62 4CC Sweden 1-379 Reflex-Acid Free (Ream C) Australia 3-5 72 PC Premier inkjet UK 1-380 S Tudor-Laser (Ream B) Australia 2-4

The Brazilian paper (Figure 4.7 B) seems to have the highest phosphorus content of all the

papers as it did in the previous study (Section 4.1.2) but other countries seem to have varying

concentrations of this element which may reflect a combination of deciduous and coniferous

trees in their paper. Two countries, France and Indonesia (Figure 4.7 C) seem to have the

highest copper in the paper studied and this may reflect again the source of the trees as it

seems unlikely that French manufacturing processes would add copper to their paper. This

tentative observation may be a clue to determining if paper is manufactured in one country

and cut, packaged and sold in another as the secondary country’s product. It is interesting to

note that manganese seems to be high in all Australian papers (Figure 4.7 D), while in the

other six countries studied in this Section it is very much lower. In addition, manganese

seems to fluctuate within Australian papers making it a possible paper type or mill of origin

discriminating element. Arsenic (Figure 4.7 E), has obviously been introduced during the

growing of paper and shows very distinct differences both within the Australian population of

papers and between individual countries, and could be an extremely good indicator element

for brands of paper. Strontium is again extremely high in Brazilian papers (Figure 4.7 F),

Page 133: Development of Novel Physical (Electrostatic Detection

133

possibly indicating its use as a whitening agent and filler. Distinct differences exist between

Australian papers and those from the other six countries studied (Figure 4.7 G-I), zirconium

(Figure 4.7 G) indicates, as suggested in Section 4.1.2, an association with areas of titanium

production from mineral sands. This element too could be indicative of state of origin of

Australian papers as not all states in Australia have extensive mineral sands deposits.

Surprisingly, Australian paper has, in general, the lowest concentrations of uranium present

in the seven countries paper studied. The highest levels of uranium in paper come from India,

while Brazil, Sweden and the UK all have relatively anomalous levels of uranium in the paper

from their countries studied in this section.

Again it is difficult to distinguish differences between the different paper samples simply by

looking at diagrammatic representations of elemental association patterns. Consequently, it

is always essential to undertake statistical interpretation using LDA plots. Examples of these

plots can be seen in Figure 4.8 A-C. From these plots it is apparent that there is an excellent

association of data for all individual data sets of paper (in some cases up to nine different

reams) and essentially each individual paper group can easily be isolated from each other.

The fact that each paper group is so distinct and that the elemental signatures are so precise

adds further to the hypothesis that it will be possible to take the protocol of paper

provenancing detailed here and use it even to the level of batches of origin. From the data

shown in Figures 4.8A-C, it is apparent that a number of groups of paper are able to be

isolated from each other, either using the complete data analyte set (4.8A), major (4.8B) or

trace (4.8C) elemental assemblages. Using LDA it is possible to initially separate paper groups

from Brazil (10), India (13), Indonesia (14) and the United Kingdom (16) using a combination

of total element signature (48A), major element (all analytes with concentrations above

Page 134: Development of Novel Physical (Electrostatic Detection

134

Australian Paper

Indian Paper

Figure 4.7. Relative distribution of selected individual analytes between the different reams of paper from different countries/manufacturers

Australian Paper

Australian Paper

French Paper

Indonesian Paper

Brazilian Paper

A

C

B

French Paper

Indonesian Paper UK Paper

Page 135: Development of Novel Physical (Electrostatic Detection

135

D

E

F

Australian Paper

Australian Paper

Australian Paper

Brazilian, French and Indonesian Paper

Indonesian Paper

UK Paper

Brazilian Paper

Figure 4.7 Continued …. . Relative distribution of selected individual analytes between the different reams of paper from different countries/manufacturers

Page 136: Development of Novel Physical (Electrostatic Detection

136

G

H

I

Australian Paper

Australian Paper

Australian Paper

UK PaperSwedish Paper

Indian Paper

Indian Paper

Indonesian Paper

UK Paper

Brazilian Paper

Figure 4.7 Continued …. . Relative distribution of selected individual analytes between the different reams of paper from different countries/manufacturers

Page 137: Development of Novel Physical (Electrostatic Detection

137

Number Name Origin Ream LDA

Group Number Name Origin Ream LDA Group Number Name Origin Ream LDA Group

63 Australian Australia Ream 2-4 1 76 Australian Bright White Office Paper Australia Ream 1-3 5 69 HP Home and Office Brazil Ream 1-3 10

67 Australian Australia Ream 5-7 1 77 Tudor Multi White Office Paper Australia Ream 1-3 6 68 HP Bright White InkJet France Ream 1-3 11

65 Brilliant White Copy Paper Australia Ream 1-3 2 79 Reflex-Acid Free (Ream C) Australia Ream 3-5 7 70 HP Home and Office France Ream 1-3 12

78 Brilliant White Copy Paper Australia Ream 4-6 2 80 S Tudor-Laser (Ream B) Australia Ream 2-4 8 71 Clarion Collection notepad India Ream 1-3 13

66 Reflex Carbon Neutral Ultra

White Australia Ream 1-3 3 81 S Tudor-Laser (Ream B) Australia Ream 5-7 8 61 PaperOne All Purpose Indonesia Ream 1-3 14

73 Reflex Carbon Neutral Ultra White

Australia Ream 3-5 3 82 X Fuji Xerox (Ream D) Australia Ream 4-6 9 62 4CC Sweden Ream 1-3 15

74 Reflex 100% Recycled Pure White

Australia Ream 3-5 4 83 X Fuji Xerox (Ream D) Australia Ream 7-9 9 72 PC Premier inkjet UK Ream 1-3 16

75 Reflex 100% Recycled Pure

White Australia Ream 6-8 4 84 X Fuji Xerox (Ream D) Australia Ream 10-12 9

64 Reflex 100% Recycled Pure

White Australia Ream 9-11 4 85 X Fuji Xerox (Ream D) Australia Ream 13-15 9

Figure 4.8 A series of LDA plots indicating the separation of paper sub-populations based on A) the complete data set; B) all analytes in the ppm range and C) all analytes in the ppb range (Appendix 1D).

A CB

India

Indonesia

UK

Brazil

UK

India

India

All other study samples

Page 138: Development of Novel Physical (Electrostatic Detection

138

1ppm) (Figure 4.8B) and trace element signature (all analytes with concentrations below

1ppm) (Figure 4.8C). It is especially interesting to note that in the LDA diagram representing

the major element concentrations (Figure 4.8 B) there are only two groups of data, one

representing all other papers studied in this section and one representing the Indian

material, suggesting that the Indian paper is made from completely different parent material

than the rest of the papers studied. This probably indicates that this type of paper may even

represent a different type of tree or plant used in its manufacture as the trace element

signature separates the papers out more than the major element signature.

Obviously with reference to Figure 4.8B, the major element composition of the Indian paper

is very different from the rest of the papers in this study. However, there is a significant

spread of data in the remaining two LDA plots (Figures 4.8A and C). In Figure 4.8A there are

three sets of data (three reams of paper in each set), representing samples from India,

Indonesia and the United Kingdom (UK), are outside the main cluster of data points. The

Indian sample set has already been addressed but the two other sets of data, from the UK

and Indonesia, obviously isolate from the other data sets by virtue of variations in their trace

elemental signatures. If the trace element based LDA is inspected (Figure 4.8C), it is obvious

that these clusters of paper again isolate from the main data set and that an additional set of

data representing Brazilian paper is also isolated. Each one of these four clusters is

represented by three reams of paper whose internal uniformity of trace elemental

composition is evidenced by the close association of data points. Consequently, because of

the extremely close grouping of the data within each individual data set, it is justifiable to

remove the sample data representing these reams of paper before progressing to undertake

a second series of iterative LDA plots.

In the second series of LDA plots detailed in Figure 4.9A-C are obtained. The majority of data

represented in these plots is obtained from the analysis of various different Australian paper

brands and even a cursory inspection of the LDA plots indicates that there are essentially four

or five clusters of data, one representing all Australian samples and the other three data

clusters representing paper from France and Sweden. The reason for indicating four or five

clusters (and not a definitive number) is obvious with reference to Figure 4.9B, where it can

Page 139: Development of Novel Physical (Electrostatic Detection

139

be clearly seen that the Australian papers sub-group into two defined clusters based on their

major element (ppm) profiles.

The first major grouping of Australian papers contains paper from groups 1-6 (thirty samples)

inclusive while the second from groups 7-9 (twenty seven samples) inclusive. The two French

(six samples) and one Swedish (three samples) sets are completely isolated and it is

interesting to note that the two French sets of data associate with each other in all three

plots, pointing to a generic trace element signature in the two sets of paper and to the

possibility that this generic signature is country of origin dependent. The Swedish sample

remains isolated from the other data sets in all three LDA plots. While the Australian samples

do from two distinctive groups these groups are also co-associated again indicating a

potential generic, country of origin, trace element signature. Using the two sets of LDA plots

(Figures 4.8A-C and 4.9A-C) it has been possible to isolate all paper samples into country of

origin sets and to prove the consistency of the trace elemental signature of individual paper

reams within those sets. However, the biggest data set is for the Australian papers and

consists of fifty seven individual reams of paper. While obviously the extent of the paper data

base used in this study is limited, the protocols used do confirm the principle of the use of

inter-elemental association patterns for distinguishing between papers from different

countries.

If an iterative LDA approach is now used, and the data for those papers that can be easily

distinguished in the initial series of plots removed, (that is all the paper that does not come

from Australia) it is possible to sequentially remove sub-populations of paper that can be

individually identified and thereby isolate all the study paper groups (Figures 4.10 A-C). In this

series of plots it is quite obvious that, on the basis of the total elemental signature it is

possible to identify each ream of paper to a manufacturer, i.e. they are separated into

individual groups. This separation is largely based on their trace elemental profiles (Figure

4.10C); however, the major element signature confirms the separation of the various reams

into four clusters, possibly representing the four mills in Australia at which photocopying

paper is produced (Murphy, 2009). However, it is far too early to suggest that this

observation is any more than “coincidental” at this stage as it will be necessary to trace mill

Page 140: Development of Novel Physical (Electrostatic Detection

140

of origin physically in the ground and then sample paper at site for this observation to be

confirmed and this is obviously the subject of follow up research.

While it may be considered as interesting to be able to determine the mill of origin, and

possibly establish a generic elemental signature for this mill, probably due to the different

nature of feedstock at each mill, this really is not important as long as the specific batch of

origin can be established and relevant samples traced back to that batch. The reason that mill

of origin may be of interest is that that mill may have a different supply chain from the others

and this may help to identify a possible distribution area and narrow down search protocols

in the event of a trace back.

4.1.4 Ash

It is not always the case that the “paper” present at a crime scene will be in a pristine

condition. It may be that a criminal could be trying to destroy a document or destroy

evidence of copying or practicing a forgery, for example forgery of a signature. Consequently,

it could be the case that the forger tries to destroy evidence by setting fire to it. In the case of

paper this is an obvious method of destruction of evidence as paper is extremely flammable.

In this case, it would be extremely useful of the trace element signature of the ashed paper

could be traced back to that of the original paper, especially if material could be read on it as

well and related back to a specific crime or attempted crime. Consequently, a number of

paper samples were randomly selected and an experiment undertaken where this paper was

burned and the ash trace elemental signature compared with that of the original paper.

Sample preparation and dissolution for this experiment has been described in Section 3.3.2.

Page 141: Development of Novel Physical (Electrostatic Detection

141

Number Name Origin Ream LDA Group

Number Name Origin Ream LDA Group

Number Name Origin Ream LDA Group

63 Australian Australia Ream 2-4 1 76 Australian Bright White Office Paper

Australia Ream 1-3 5 82 X Fuji Xerox (Ream D) Australia Ream 4-6 9

67 Australian Australia Ream 5-7 1 64 Reflex 100% Recycled Pure White Australia Ream 9-11 6 83 X Fuji Xerox (Ream D) Australia Ream 7-9 9 65 Brilliant White Copy Paper Australia Ream 1-3 2 76

Australian Bright White Office Paper Australia Ream 1-3 7 84 X Fuji Xerox (Ream D) Australia Ream 10-12

9

78 Brilliant White Copy Paper Australia Ream 4-6 2 77 Tudor Multi White Office Paper Australia Ream 1-3 8 85 X Fuji Xerox (Ream D) Australia Ream 13-15 9

66 Reflex Carbon Neutral Ultra White

Australia Ream 1-3 3 79 Reflex-Acid Free (Ream C) Australia Ream 3-5 8 68 HP Bright White InkJet France Ream 1-3 11

73 Reflex Carbon Neutral Ultra White

Australia Ream 3-5 3 80 S Tudor-Laser (Ream B) Australia Ream 2-4 8 70 HP Home and Office France Ream 1-3 12

74 Reflex 100% Recycled Pure

White Australia Ream 3-5 4 81 S Tudor-Laser (Ream B) Australia Ream 5-7 8 62 4CC Sweden Ream 1-3 15

75 Reflex 100% Recycled Pure

White Australia Ream 6-8 4

Figure 4.9 A series of LDA plots indicating the separation of paper sub-populations, following removal of groups 10, 13, 14 and 16. Iterative plots are based on: A) the complete data set; B) all analytes in the ppm range and C) all analytes in the ppb range (Appendix 1D).

France

Sweden

Australian Sweden

France

France

Australian 7, 8 & 9

Australian 1-6

Australian 1, 7, 8 & 9

Australian 2-6

France

Sweden

Page 142: Development of Novel Physical (Electrostatic Detection

142

Number Name Origin Ream

LDA Group Number Name Origin Ream

LDA Group Number Name Origin Ream

LDA Group

63 Australian Australia Ream 2-4 1 75 Reflex 100% Recycled Pure White Australia Ream 6-8 4 80 S Tudor-Laser (Ream B) Australia Ream 2-4 8 67 Australian Australia Ream 5-7 1 76 Australian Bright White Office

Paper Australia Ream 1-3 6 81 S Tudor-Laser (Ream B) Australia Ream 5-7 8

65 Brilliant White Copy Paper Australia Ream 1-3 2 64 Reflex 100% Recycled Pure White Australia Ream 9-11 7 82 X Fuji Xerox (Ream D) Australia Ream 4-6 9

78 Brilliant White Copy Paper Australia Ream 4-6 2 76 Australian Bright White Office

Paper Australia Ream 1-3 8 83 X Fuji Xerox (Ream D) Australia Ream 7-9 9

66 Reflex Carbon Neutral Ultra White

Australia Ream 1-3 3 77 Tudor Multi White Office Paper Australia Ream 1-3 8 84 X Fuji Xerox (Ream D) Australia Ream 10-12 9

73 Reflex Carbon Neutral Ultra White

Australia Ream 3-5 3 79 Reflex-Acid Free (Ream C) Australia Ream 3-5 8 85 X Fuji Xerox (Ream D) Australia Ream 13-15 9

74 Reflex 100% Recycled Pure

White Australia Ream 3-5 4

Figure 4.10 A-C: Series of LDA plots indicating the separation of Australian paper sub-populations, following removal of groups 10 – 16. Iterative plots are based on: A) the complete data set; B) all analytes in the ppm range and C) all analytes in the ppb range (Appendix 1D).

(NB all remaining reams of paper were “manufactured” in Australia.

Groups 1, 2, 3, 5 & 6

Group 8

Groups 9 & 7 Group 4

Page 143: Development of Novel Physical (Electrostatic Detection

143

4.1.4.1 Preliminary study of the elemental composition of Ashed Paper

Five sheets of paper from two reams of paper, Paper One-Premium All Purpose (Indonesia),

and Reflex-Recycled Pure white (Australia), Section 3.4.2.1 (Table 3.6) from different

manufacturers and countries were labelled, torn longitudinally in half, weighed to three

decimal Figures and each half set on fire and ashed. The ash was then collected and

reweighed and a loss of mass on ignition calculated.

A representative sample was then dissolved and analysed in the same way as the paper

samples Section 3.4.1. Data are detailed in Appendix 1; Table 2. The excellent reproducibility

of the majority of analytes can be seen with reference to Figure 4.11A-B. Having established

this excellent agreement in the elemental association pattern of the ash for these two

samples, an additional detailed study was undertaken using the remaining five samples of

paper in this experiment.

4.1.5 Reproducibility of the Elemental Composition of Ashed Paper

Five sheets of paper from each of seven reams of paper samples description Section 3.3.2

Table 3.6 from different manufacturers and countries were labelled, torn longitudinally in

half, weighed to three significant figures and each half set on fire and ashed Section 3.4.2.

The ash was then collected and reweighed and a loss of mass on ignition calculated.

A representative sample was then dissolved and analysed in the same way as the paper

samples Section 3.4.1 Data are detailed in Appendix 1; Table 3. Paper reams from three

different manufacturers of three different countries were chosen as an example to

demonstrate the reproducibility of the elemental signature of the ash. The samples are HP-

Every day paper sample number (56A-E/A) (made in Brazil), Office Works Ultra White

Premium sample number (58A-E/A) (made in Australia), and Paper One Premium

Presentation sample number (59A-E/A) (made in Indonesia). The excellent reproducibility of

all analytes in the ash can be seen with reference to Figures 4.12A, 4.12B, and 4.12C. One

further aspect of note, obvious in the comparison of these three plots is that the generic

Page 144: Development of Novel Physical (Electrostatic Detection

144

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

*Na

*Mg

*Al

*P *S *K *Ca

*Ti

*Mn

*Fe Li B

e B Sc Ti V Cr Mn Co Ni

Cu Zn Ga Ge As Se Rb S r Y Z r Nb

Mo A g Cd In S n Sb Te Cs Ba La Ce Pr Nd

Sm Eu

Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U

53 A A 53 B A 53 C A 53 D A 53 E AA

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

*Na

*Mg

*Al

*P *S *K *Ca

*Ti

*Mn

*Fe Li Be B Sc Ti V Cr Mn Co Ni

Cu Zn Ga

Ge As Se Rb Sr Y Zr Nb

Mo Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd

Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U

54 A A 54 B A 54 C A54 D A 54 E AB

Figures 4.11 A and B. A) Results obtained for the analysis of ASH, Samples (53AA-EA) Paper One-Premium All Purpose (made in Indonesia). B) Results obtained for the analysis of ASH, Samples (54AA-EA) Reflex-Recycled Pure white (made in Australia).

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

Page 145: Development of Novel Physical (Electrostatic Detection

145

signature of paper from all three countries is essentially the same. This is not altogether

surprising as the source and production protocol for paper is essentially the same the world

over. Furthermore, the generic trace element profile probably reflects the fundamental

biochemical processes taking place in the source tree species and it is distinctly possible that

changes in these profiles may reflect old and new growth forest and be useful in policing the

use of old growth material in modern paper production. The main sources of difference in

the trace element signatures between countries and manufacturer is therefore to be found in

fillers and occasionally in “rare” elements that have been taken up by the trees from site

specific locations. This aspect is why it is possible to use inter-element association patterns to

distinguish provenance of this type, and essentially all types, of material.

Elemental data for the ash of HP-Every day paper sample number (56A-E/A) (made in Brazil),

are shown in Figure 4.12A. The overlap of the “fingerprint” of the five samples detailed on

this figure for this paper ash is quite remarkable and indicates the reproducibility of the QC

and manufacturing process that are inherent in paper manufacture today. The same

remarkable “fingerprint” overlap is shown for Office Works Ultra White Premium made in

Australia, Figure 4.12B, and Paper One Premium Presentation made in Indonesia (Figure

4.12C). This aspect is extremely important as it improves the provenance determination

statistics and indicates that it should be possible to undertake even batch to batch

discrimination when there have been further improvements in the detection limit capabilities

of the techniques used. Because of the excellent reproducibility of the elemental signatures

of the paper ashes it is perfectly acceptable to represent each group of ashes with the

average ash data and to plot the three different papers together for comparison purposes

(Figure 4.13). From this figure it is apparent that, in spite of a generic similarity between the

elemental signatures of the ash from the three papers, there are definitely differences that

can be used to discriminate between each set of ashes.

The main differences between the paper ash samples are associated with fillers into the

paper, which are largely the result of manufacturing practices. However, trace element

differences such as those for copper, zinc, germanium, molybdenum and cadmium, improve

the chances of ash trace element chemistry being useful in the trace back of paper to generic

sources.

Page 146: Development of Novel Physical (Electrostatic Detection

146

This observation, together with the definite possibility of comparing the ashed and un-ashed

samples and being able to relate these to each other further suggests that it will be possible

to identify ashed paper and relate it back to the original material and that there is significant

potential for this technique to be used in forensic investigations even after the “evidence”

has been “destroyed” by fire. This concept opens up a completely new area in forensic

investigations.

4.1.6 Ash to Paper Comparison

However, the most important point is not necessarily whether or not it is possible to

distinguish ashes from different paper samples from each other but more whether it is

possible to relate the ashes from different samples back to the original paper. In order to

achieve this comparison it is necessary to compare the ashed paper elemental signature with

that of the original un-ashed paper (Figure 4.14).

In this figure the inter-element association patterns for each set of ashes exhibit a uniform

relationship with the equivalent association patterns for the original un-ashed paper (Figure

4.14A-C). In addition, the relative differences between the association patterns for the ashes

and papers seem to be relatively consistent between all three sets of paper. The relatively

lower, in terms of counts per second, position of the paper inter-element association pattern

to that of the ash simply represents the loss of mass of the paper when ashed. With this in

mind it was decided to calculate the relative loss on mass of the seven paper samples used in

this study and determine a generic multiplication (normalization) factor to use to modify the

paper signatures and compare them to the ash values and in so doing remove the loss in

mass related gap between the two sets of data for each paper when comparing results

graphically. Data for the loss in mass of the seven paper samples is given in Table 4.6.

Page 147: Development of Novel Physical (Electrostatic Detection

147

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

10000000.00

*Na

*Mg

*Al

*P *S *K *Ca

*Ti

*Mn

*Fe

Li Be B Sc Ti V Cr

Mn

Co Ni

Cu Zn Ga

Ge As Se Rb Sr Y Zr Nb

Mo Ag Cd In Sn Sb Te Cs

Ba La Ce Pr Nd

Sm Eu

Gd Tb Dy

Ho Er Tm Yb Lu Hf

Ta W Tl Pb Bi Th U

56 A A 56 B A56 C A 56 D A56 E A

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

*Na

*Mg

*Al

*P *S *K *Ca

*Ti

*Mn

*Fe

B Sc Ti V Cr

Mn

Co Ni

Cu Zn Ga

Ge As Se Rb Sr Y Zr Nb

Mo Ag Cd In Sn Sb Te Cs

Ba La Ce Pr Nd

Sm Eu

Gd Tb Dy

Ho Er Tm Yb Lu Hf

Ta W Tl Pb Bi Th U

58 A A 58 B A58 C A 58 D A58 E A

Figures 4.12A and B. A) Concentration of elements in the Ash of HP-Every day paper sample number (56AA-E/A) (made in Brazil). B) Concentrations of elements in the Ash of Office Works Ultra White Premium sample number (58AA-E/A) (made in Australia).

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

A

B

Page 148: Development of Novel Physical (Electrostatic Detection

148

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

*Na

*Mg

*Al

*P *S *K *Ca

*Ti

*Mn

*Fe Li B

e B S c Ti V Cr Mn Co Ni

Cu Zn Ga Ge As Se Rb S r Y Z r Nb

Mo A g Cd In S n Sb Te Cs Ba La Ce P r Nd

S m Eu

Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl P b Bi Th U

59 A A 59 B A 59 C A 59 D A 59 E AC

Figure 4.12C. Concentrations of elements in the Ash of Paper One Premium Presentation sample number (59AA-EA), (made in Indonesia).

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

Page 149: Development of Novel Physical (Electrostatic Detection

149

0.10

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

10000000.00*N

a*M

g*A

l*P *S *K *C

a*T

i*M

n*F

e Li Be B Sc Ti V Cr M

n Co Ni

Cu Zn Ga Ge As Se Rb Sr Y Zr Nb

Mo Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd

Sm Eu

Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U

56 58 59

Figure 4.13 Comparison between the values of the average elemental concentration for the three different ash; HP-Every day paper sample number (56AA-EA) (Brazil), Office Works Ultra White Premium sample number (58AA-EA) (Australia), and Paper One Premium Presentation sample number (59AA-EA) (Indonesia).

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

Page 150: Development of Novel Physical (Electrostatic Detection

150

0.10

10.00

1000.00

100000.00

10000000.00

*Na

*Mg

*Al

*P *S *K *Ca

*Ti

*Mn

*Fe Li Be B Sc Ti V Cr Mn Co Ni

Cu Zn Ga

Ge As Se Rb Sr Y Zr Nb

Mo Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd

Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U

56 A 56 B56 C 56 D56 E 56 A A56 B A 56 C A56 D A 56 E A

A

Figure 4.14A Comparison of concentrations of elements of the Ash and paper HP-Every day paper sample number (56A-E/A) made in Brazil.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

Figure 4.14B Comparison of concentrations of elements of the Ash and Paper Office Works Ultra White Premium sample number (58A-E/A) made in Australia. Note. (* concentrations expressed as ppm; no asterisk results expressed as ppb).

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

Page 151: Development of Novel Physical (Electrostatic Detection

151

Figure 4.14C Comparison of concentrations of elements of the Ash and paper for Paper One Premium Presentation sample number (59A-E/A) made in Indonesia.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

Page 152: Development of Novel Physical (Electrostatic Detection

152

Table 4.6 Comparison of the loss in mass percentage (LiM) on ashing of the seven sets of study paper. (STDev – Standard Deviation: RSD% - Relative Standard Deviation %)

Ash LiM Ash LiM Ash LiM Ash LiM Ash LiM Ash LiM Ash LiM

55A 77.35 56A 76.16 57A 77.30 58A 70.18 59A 75.19 60A 72.84 61A 74.29

55B 77.82 56B 75.23 57B 76.11 58B 79.43 59B 74.53 60B 74.19 61B 74.67

55C 80.23 56C 77.66 57C 79.35 58C 73.96 59C 77.52 60C 73.59 61C 74.68

55D 80.76 56D 78.03 57D 74.52 58D 74.41 59D 76.03 60D 74.78 61D 74.83

55E 78.93 56E 77.28 57E 76.31 58E 72.85 59E 75.49 60E 75.03 61E 74.70

STDev 1.48 STDev 1.15 STDev 1.78 STDev 3.37 STDev 1.13 STDev 0.89 STDev 0.21

RSD% 1.87 RSD% 1.50 RSD% 2.32 RSD% 4.54 RSD% 1.49 RSD% 1.20 RSD% 0.28

4.1.7 Applying the Ash Factor for Ash/Paper Comparison

From Table 4.6, it is apparent that the loss in mass on ashing is nearly the same for all

samples of paper, in fact if the loss in mass on ashing of all thirty-five samples is calculated it

is 75.89% +/- 2.8%, which amounts to an RSD of only +/-3%. Consequently, it was decided to

use an ash to paper mass ratio of 4.15 (100/ (100-76))/as a multiplication factor for the

concentrations of analytes in paper in order to plot them on the same graphs as the

concentrations in their equivalent ashes. Obviously, in the real world this factor would be

unknown. However, this approach is pragmatic and will allow easier visual comparison of

data for ashed material to a reference data base than simply comparing the data sets without

normalization. Comparison graphs, following normalization to ash concentrations, for all

seven papers are detailed in Figure 4.15 A-G and data are summarised in Figure 4.16. While it

is expected that some elements may differ relatively between the ashed values and the paper

values the comparison of elemental profiles or the two sets of data is nonetheless

remarkable. Even when the data for the ash and original material is combined the differences

between the sources of the paper is still absolutely discernible. However, relative comparison

of data is always subjective and, in court, could be argued one way or the other with the

distinct probability of confusing a non-scientific jury and resulting in a dismissal that may or

may not be valid. Consequently, it is necessary to subject the data to more rigorous statistical

interrogation before the use of this comparison method could be considered for court.

Consequently, all data (ashed and non-ashed) were plotted together to try and establish the

coincidence of the various populations (Figure 17 A- H). In Figure 17A and B, the entire data

set has been plotted (LDA Plot) using all analytes but with both validation and no validation

data used. The advantage of the validation data is that until the groups have been defined by

Page 153: Development of Novel Physical (Electrostatic Detection

153

Figures 4.15A and B. A) Concentrations of elements in the Ash and paper from Double A Premium paper from Thailand (Sample 55). B) Concentrations of elements in the Ash and paper from HP-Every day paper made in Brazil (Sample 56). All data combined for comparisonusing the paper/ash normalization factor of 4.15.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

A

B

Page 154: Development of Novel Physical (Electrostatic Detection

154

Figures 4.15C and D. C) Concentrations of elements in the Ash and Paper from Laser IT paper made in Indonesia (Sample 57). D) Concentrations of elements of the Ash and Paper from Office Works Ultra White premium paper made in Australia (Sample 58). All datacombined for comparison using the paper/ash normalization factor of 4.15.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

C

D

Page 155: Development of Novel Physical (Electrostatic Detection

155

Figures 4.15E and F. E) Concentrations of elements in the Ash and Paper from Paper One Premium Presentation made in Indonesia (Sample 59). F) Concentrations of elements of the Ash and Paper from Reflex Recycled Pure white made in Australia (Sample 60). All data combined for comparison using the paper/ash normalization factor of 4.15.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

E

F

Page 156: Development of Novel Physical (Electrostatic Detection

156

Figures 4.15G Concentrations of elements of the Ash and Paper from Paper one All Purpose made in Indonesia (Sample 61).

Figure 4.16 Average concentrations of elements from each paper batch represented in Figures 4.15A – 4.15G showing general differences between the individual paper sets. All data combined for comparison using the paper/ash normalization factor of 4.15.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

G

Page 157: Development of Novel Physical (Electrostatic Detection

157

the software the validation samples have not been assigned to a group and therefore act as

an indication of the robustness of the methodology when it comes to interpretation of data.

In Figure 17A, all validation data fit into the correct data groups either in the ash or non-

ashed aspect of the data. In all cases the ashed data and the non-ashed data are co-

associated. However, a larger group, consisting of both Australian samples is difficult to

separate on the basis of the entire elemental suite. When the samples are re-run using no

validation samples there is complete separation of all relevant country of origin groups while

the two Australian sets of samples are again co-associated. While this may, to some extent,

be expected, it is nonetheless interesting to see that while the Indonesian groups separate

into sub-populations depending on brand, the two Australian groups, Office works Ultra

White Premium and Reflex recycled Pure White, group together possibly suggesting that

there could be a generic relationship between paper within countries of origin, if the original

raw product source is within that country. This aspect will be explored in more detail later in

this chapter.

When interpreting data of this sort it is essential to realise that there is to a large extent the

same influence on sub-group establishment placed on differences between analytes that

have relatively high concentrations and those with low concentrations. The problem here is

that the lower the concentration of a specific analyte, the nearer the data are to the

detection limit of the technique and by definition this means the greater is the

irreproducibility (lower precision) of the data. This irreproducibility is then used to identify

sub-populations and while it is true that the lower the concentration of the analyte the

greater are the chances that it is site specific and hence the more value it has in discriminant

analysis, data must be viewed with this in mind and cross referencing of conclusions

compared with data that have higher concentrations to establish of the final observations

with respect to provenance can be substantiated in any way. Consequently, in Figures 17C

and 17D (no validation samples) respectively, major and minor element LDA plots have been

run separately. From the major element data (Figure 17C), the Australian samples again

group together and two of the three Indonesian sample groups group together also. When

only minor and trace element concentrations are used in the LDA plot (Figure 17D), all groups

are separated. The ash samples and the non-ashed samples still co-associate confirming the

robustness of the technique. However, the fact that the major element concentrations cause

Page 158: Development of Novel Physical (Electrostatic Detection

158

generic co-association of populations while the use of trace element concentrations causes

the separation of sub-groups which is extremely interesting. It implies that with larger and

more robust data bases it may be possible to determine generic elemental profiles for

individual countries of origin of the paper pulp using major (and possibly some minor)

element concentration patterns, whilst the use of trace and even ultra-trace elements

patterns may be used to identify origin in terms of manufacturer and possibly area of

production. This aspect may also make it possible to use this concept to determine if raw

pulp has been imported and additionally whether it comes from planted (new growth) or

indigenous (ancient) forest.

Again, when these data are plotted using LDA and including validation samples (separate

plots for the major (Figure 4.17E) and minor and trace elements (Figure 4.17F)), 100% of the

validation samples correctly fit into the groups that define the relevant sub-populations and

in this series of plots each individual sample suite can be unambiguously defined. Individual

scatter point data for each sample is also significantly reduced in these plots, which leads to a

much better resolution and identification of the sub-group and to the possibility that by

defining a reduced set of analytes, more relevant to each series of data under review, (Figure

4.17F and G), it may be possible to better isolate and separate individual sample sets based

on their manufacturer.

Although this approach was relatively successful, there was still some overlap of sub-

populations (Figure 4.17F), which could only be resolved when looking at the Australian and

Indonesian samples together and removing data for the Thai and Brazilian samples from the

data set before re-plotting (Figure 4.17G). Again, all validation samples were correctly

designated to their relevant sub-group, thereby cementing the original observation that it is

possible to determine provenance of ash material and relate it back to the original un-ashed

paper with a very high degree of certainty. From the data shown graphically in Figure 17, it is

obvious that by using a combination of the various LDA plots undertaken in Section 4.1.7, it is

also possible to determine country of origin and manufacturer of the paper and potentially,

with a larger data base, to also be able to determine the generic provenance of the pulp used

to make the paper as well.

Page 159: Development of Novel Physical (Electrostatic Detection

159

Paper number Description Origin Codes Paper number Description Origin Codes Paper number Description Origin Codes

55 Double A Premium Thailand 1 57 Ash Laser IT / Ash Indonesia 6 60 Reflex Recycled Pure White Australia 11

55 Ash Double A Premium / Ash Thailand 2 58 Office Works UltraWhite Premium Australia 7 60 Ash Reflex Recycled Pure White / Ash Australia 12

56 HP Everyday Brazil 3 58 Ash Office Works UltraWhite Premium / Ash Australia 8 61 PaperOne All Purpose Indonesia 13

56 Ash HP Everyday / Ash Brazil 4 59 PaperOne Premium Presentation Indonesia 9 61 Ash PaperOne All Purpose / Ash Indonesia 14 57

Laser IT Indonesia 5 59 Ash PaperOne Premium Presentation / Ash Indonesia 10

A B

1&2 Thailand

11 & 12 Australia

9 & 10 Indonesia

3 & 4 Brazil

5, 6 Indonesia 13 & 14 and 7 & 8 Australia

1 & 2 Thailand

9 & 10 Indonesia

3 & 4 Brazil

13 & 14 Indonesia

5 & 6 Indonesia

7, 8, 11 & 12 Australia

*Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr Y Zr

Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U

Figure 4.17 A – B LDA comparison of the normalized data for paper and ash samples combined with both validation (Fig. 4.17A) and no validation (Fig. 4.17B) samples included. Analytes plotted in the LDA are detailed below the paper origins.

Page 160: Development of Novel Physical (Electrostatic Detection

160

D C

1 & 2 Thailand 9 & 10 Indonesia

5, 6, 13 & 14 Indonesia

3 & 4 Brazil

7, 8, 11 and 12 Australia

9 & 10 Indonesia

11 & 12 Australia

3 & 4 Brazil 1 & 2 Thailand

13 & 14 Indonesia

5 & 6 Indonesia

7 & 8 Australia

Major elements

Minor and trace elements

*Na *Mg *Al *Si *P *S *K *Ca *Fe

Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ru Rh

Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U

Figure 4.17 C - D LDA comparison of the normalized data for paper and ash samples combined based on all major elements* and all minor and trace element. No validation samples included.

Page 161: Development of Novel Physical (Electrostatic Detection

161

Paper number Description Origin Codes Paper

number Description Origin Codes Paper number Description Origin Codes 55 Double A Premium Thailand 1 57 Ash Laser IT / Ash Indonesia 6 60 Reflex Recycled Pure White Australia 11

55 Ash Double A Premium / Ash Thailand 2 58 Office Works UltraWhite Premium Australia 7 60 Ash Reflex Recycled Pure White / Ash Australia 12

56 HP Everyday Brazil 3 58 Ash Office Works UltraWhite Premium / Ash Australia 8 61 PaperOne All Purpose Indonesia 13

56 Ash HP Everyday / Ash Brazil 4 59 PaperOne Premium Presentation Indonesia 9 61 Ash PaperOne All Purpose / Ash Indonesia 14

57 Laser IT Indonesia 5 59 Ash PaperOne Premium Presentation / Ash Indonesia 10

E F 11 & 12 Australia

7 & 8 Australia

13 & 14 Indonesia

5 & 6 Indonesia

1 & 2 Thailand

3 & 4 Brazil

9 & 10 Indonesia

3 & 4 Brazil

13 & 14 Indonesia

7 & 8 Australia

9 & 10 Indonesia

5 & 6 Indonesia

11 & 12 Australia

1 & 2 Thailand

*Na *Mg *Al *Si *P *S *K *Ca *Fe

Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ru Rh

Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U

Major elements

Minor and trace elements

Figure 4.17 E-F LDA comparison of the normalized data for paper and ash samples based on all major elements (Fig. 4.17E)* and all minor and trace elements (Fig. 4.22F). Plotted with validation samples.

Page 162: Development of Novel Physical (Electrostatic Detection

162

Paper number Description Origin Codes Paper number Description Origin Codes Paper number Description Origin Codes

55 Double A Premium Thailand 1 57 Ash Laser IT / Ash Indonesia 6 60 Reflex Recycled Pure White Australia 11

55 Ash Double A Premium / Ash Thailand 2 58 Office Works UltraWhite Premium Australia 7 60 Ash Reflex Recycled Pure White / Ash Australia 12

56 HP Everyday Brazil 3 58 Ash Office Works UltraWhite Premium / Ash Australia 8 61 PaperOne All Purpose Indonesia 13

56 Ash HP Everyday / Ash Brazil 4 59 PaperOne Premium Presentation Indonesia 9 61 Ash PaperOne All Purpose / Ash Indonesia 14

57 Laser IT Indonesia 5 59 Ash PaperOne Premium Presentation / Ash Indonesia 10

*Na *Mg *Al *S *Ca *Fe Li B Ti V Mn Co Cu Zn Rb Sr Y Mo Ba La Ce Pr Nd Sm Eu Gd W Pb

Reduced Analyte Suite: Figures 4.22G and 4.22H

3 & 4 Brazil

1 & 2 Thailand and 13 & 14 Indonesia

9 & 10 Indonesia

5 & 6 Indonesia

7, 8, 11 & 12 Australia

9 & 10 Indonesia

11 & 12 Australia

7 & 8 Australia

5 & 6 Indonesia

13 & 14 Indonesia

G H

Figure 4.17 G – H LDA comparison of the normalized data for all paper and ash samples based on reduced analyte suite (Fig. 4.17G) and Australian and Indonesian samples only (Fig. 4.17H): (refer reduced analyte suite below). Plotted with validation samples.

Page 163: Development of Novel Physical (Electrostatic Detection

163

4.2 Ballpoint pen ink

4.2.1 Reproducibility of elemental signature of ballpoint pen inks.

Having been able to determine the provenance of the paper so successfully, and if this

technology is going to be of use to forensic investigations, it is obviously necessary to try and

determine the provenance of both ink and pencil markings that have been applied to the

paper to a similar degree of precision. If this can be achieved it should also be possible to

determine the origin of ink and pencil markings on paper without having to remove them

from the paper surface or significantly damage evidence in order to obtain a sample for

analysis. In this series of experiments both ballpoint pen ink and fountain pen ink have been

investigated separately. Pencils have obviously also been investigated separately.

For the initial experiment with respect to ballpoint pen ink, twelve packets of ballpoint pens

(each containing between 5 and 50 pens) were selected randomly. Three red, five blue and

four black batches were chosen to represent the colours for this study (Section 3.3.3.1;

(Table 3.7)). Sample preparation and dissolution for this experiment has been described in

Section 3.4.3.1 and detailed data are given in Appendix 2; Table 1. With the exception of Blue

Pilot (China), Blue Pilot 2 (China), Black Pilot (China) and BIC Black, where four pens were

taken from each packet, five pens were selected randomly for analysis from each of these

packets. The reason for only selecting four pens for some groups was that these groups had

packets that only contained five pens (while all other contained between ten and fifty) and it

was decided to leave one complete and untouched pen in the packets of five for future

reference. All the inks from the 56 ballpoint pens used were analysed using ICP-MS, and ICP-

AES techniques that have already been described in detail. Three different brands of blue ball

point inks were used in this part of the experiment to investigate how reproducible the

elemental profiles of the inks are. Data are detailed in Appendix 2 Table 1. It was found that

the trace metal elemental concentrations for most of the elements within one brand of

ballpoint ink were extremely reproducible. The samples used for the initial study were Blue

BIC made in China samples 1-5, Blue Office Works made in China (Figure 4.18A), samples 10-

14 (Figure 4.18B), and Blue Paper Mate made in Malaysia samples 15-19 (Figure 4.18C). It is

almost impossible to determine the differences between the trace and major element

signatures for each individual ink for the five reference samples from each batch.

Page 164: Development of Novel Physical (Electrostatic Detection

164

Figures 4.18A and B. A) Results obtained for the analysis of Samples (1-5) Blue BIC ink made in China. B): Results obtained for the analysis of Samples (10-14) Blue Office Works made in China.

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb).

A

B

Page 165: Development of Novel Physical (Electrostatic Detection

165

0.100

1.000

10.000

100.000

1000.000

10000.000

100000.000

1000000.000

10000000.000

*Na

*Mg

*Al

*Si

*P *S *K *Ca

*Fe Li Be Sc Ti V Cr M

n Co Ni

Cu Zn Ga Ge As Se Rb Sr Y Zr Nb

Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd

Sm Gd Hf W Pb Bi U

Blue BIC Blue Office Works Blue Papermate

Figure 4.18C and D. C) Results obtained for the analysis of Samples (15-19) Blue PaperMate (Malaysia). D) Comparison between the values of the average elemental concentration for the three different inks samples (1-5) Blue BIC ink (China), samples (10-14) Blue Office Works (China), and samples (15-19) Blue PaperMate (Malaysia).

(N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb).

C

D

Page 166: Development of Novel Physical (Electrostatic Detection

166

Total analyte elemental suite (A)

*Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge

As Se Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd

Sm Gd Hf W Pb Bi U

Reduced analyte elemental suite (B)

Figure 4.19 LDA plot of the data for the three ballpoint pen inks investigated in the initial survey.

However, there are significant differences between each of the inks (Figure 4.18D). The

generic signature for all of the inks is somewhat similar as all inks contain the same element

suite and the relative proportions between the elements are not expected to be very

different. However, there are sufficient differences between the total elemental signature for

the individual brands to be clearly separated when the data are plotted using LDA. (Figure

4.19). The choice of analytes, used for constructing the reduced analyte set LDA, is based on

the most important analytes facilitating the separation of sub-groups of samples given in the

original “Total analyte” based LDA. The analytes are ranked in order of usefulness for

separation purposes by the software used and this list facilitates selection of the most

relevant analytes that can be used for separation and grouping purposes. In choosing the

appropriate analytes to use as a reduced set it is essential that analytes at or near the

detection limit of the technique are excluded as their inclusion could inappropriately bias the

*Na *Mg *Al *S *Ca *Fe Li B Ti V Mn Co Cu Zn Rb Sr Y Mo Ba La Ce Pr Nd Sm Eu Gd W Pb

Blue Office Works China

Blue BIC China

Blue Paper Mate Malaysia

A B

Blue Paper Mate Malaysia

Blue Office Works China

Blue BIC China

Page 167: Development of Novel Physical (Electrostatic Detection

167

end result as differences may simply reflect analytical precision near the detection limit and

not represent real differences in analyte concentrations between samples. This screening

procedure has been adopted for all LDA procedures where a reduced data set of analytes has

been used.

4.2.2 Comparison of the elemental distribution patterns for the same colour and

manufacturer of selected ballpoint pen inks. (Appendix 2 Tables 2-4).

Five ink tubes were selected from ten different batches of ballpoint ink of BIC BLUE CRYSTAL

made in France, five tubes from ten batches of BIC BLACK CRYSTAL made in Mexico, and five

tubes from six batches of BIC RED CRYSTAL made in China, (Section 3.3.3.2; (Table 3.8);

Samples (57-186)). These samples were digested chemically and analysed using the ICP AES-

MS. Sample preparation and dissolution for this experiment have been described in Section

3.4.3.1 and results are detailed in Appendix 2; Table 2-4. Having established that the

elemental distribution patterns for the blue ballpoint pen inks were essentially reproducible

within manufacturing batch an additional nine batches of inks, two blue, three red and four

black, were incorporated into the trial data set to try and establish if there was the possibility

of a generic signature for the inks relating back to country or manufacturer of origin. The

data for the inks is described in Appendix 2 Table 2-4.

It was decided to use LDA plots to investigate these data as it was considered that the initial

experiments in this area had established that individual batches of ink would have essentially

the same or very similar inter-element association patterns and the scatter of data in an LDA

plot should therefore be minimal. When the data are plotted (Figure 4.20), it is obvious that,

while certain sets of samples are separated, there are some that are relatively closely

associated with each other. It is potentially significant that samples from blue Paper mate ink

made in China (4) and red BIC ink, also from China (7) are closely associated in the plot and

that both populations produce data sets that are extremely reproducible and do not overlap

(Figure 4.20 A). This observation may be significant in terms of generic elemental signatures

in the inks. In addition, the wide distribution of the data for group 9 (black Officeworks made

in china) samples is simply because the software has chosen to use three of the five replicate

Page 168: Development of Novel Physical (Electrostatic Detection

168

samples to develop the association algorithm. Consequently, the data will not be well defined

and will spread within the cluster representing these samples. This lack of ability for the

software to define the population will, in the case of this plot, result in a less well defined

separation for other groups and this will affect the general population separation algorithm.

This is not a situation that is often repeated and additional plots of the data (Figure 4.20B),

define a much more realistic grouping for the data sets.

Group Colour Manufacturer Brand

1 Blue China BIC

2 Blue China Pilot

3 Blue Malaysia Officeworks

4 Blue China PaperMate

5 Blue Malaysia Pilot

6 Red Mexico PaperMate

7 Red China BIC

8 Red China Burrows

9 Black China Officeworks

10 Black Malaysia PaperMate

11 Black China Pilot

12 Black Mexico BIC

Sample Groups 7 & 4

Figure 4.20A LDA plots of blue, red and black ballpoint pen inks indicating associations of make and manufacturer

Page 169: Development of Novel Physical (Electrostatic Detection

169

If the data for only the elemental distribution of black and red inks is plotted (Figure 4.21), it

is quite apparent that there is complete separation of all the relevant inks from each other

and that the grouping of data points is extremely good.

Figure 4.21 LDA plot for elemental data in black and red ballpoint pen inks

From these data, it is apparent that there appears to be no specific grouping associated with

colour, probably indicating that the colour is organic in nature, or to any remarkable extent is

the grouping associated with country of origin of the inks. The data also imply that there is no

Group Colour Manufacturer Brand 6 Red Mexico PaperMate 7 Red China BIC 8 Red China Burrows 9 Black China Officeworks

10 Black Malaysia PaperMate 11 Black China Pilot 12 Black Mexico BIC

Red Burrows China Black PaperMate Malaysia

Black Pilot China

Red PaperMate Mexico

Black BIC Mexico

Black Officeworks China

Red PaperMate China

Figure 4.20B Additional LDA plots of blue, red and black ballpoint pen inks indicating better discrimination between make and manufacturer

Page 170: Development of Novel Physical (Electrostatic Detection

170

generic signature associated with county of origin of ballpoint pen inks and that the only

association is within specific batches. This really is not a problem and confirms that each

individual batch of ink (to the extent that the study has so far investigated) has a unique

elemental signature which will lead to its definitive identification in any trace back situation.

4.2.3 Variations in elemental signature within batches for the three study ink colours

In this section five replicate samples of the inks from ten batches of BIC Crystal blue ballpoint

pens produced in France (samples were collected from different stores in France over a six

month period), five replicate samples of the inks from ten batches of BIC Crystal black

ballpoint pens produced in Mexico (samples were collected from different stores in Mexico

over a two month period) and five replicate samples of the inks from six batches of BIC

Crystal red ballpoint pen inks produced in China (samples were collected from different

stores in China over a two week period), were analysed. Data are presented in Appendix 2

Table 2. This set of experiments were designed to confirm that it would be possible to

determine the differences between batches of the same colour ink in a much larger set of

samples. Each different study ink colour was produced in a different country and the fact that

multiple outlets were used to collect each set of samples from, together with the period of

time taken to collect the samples, essentially increased the probability that the same batches

of ink were not present in any two replicate set of samples. A preselected study suite of

analytes was used for each of these studies and is indicated as a key to each of the LDA

diagrams detailed in the text. Although the use of LDA to identify sub-populations of each

batch of manufacture is extremely strong the initial investigation was to simply determine

the degree of co-association of the trace element assemblage in each ink colour to establish

whether there was a general trace element signature for each colour of ink in each country of

manufacture studied. This experiment was necessary because it is probable that the ink

colour is organic in nature and therefore trace element association patterns may represent a

country of origin only and not a batch of manufacture. If this was the case different colours of

ink coming from the same country would have a similar signature which quite obviously

would invalidate the technology. Consequently, a single LDA plot was undertaken to include

all sample data of all batches of the three colours of ink investigated (Figure 4.22).

Page 171: Development of Novel Physical (Electrostatic Detection

171

Figure 4.22 LDA plot of the three different colours of ballpoint pen ink used in this study.

From the LDA detailed in (Figure 4.22), it is apparent that the three different ballpoint pen ink

colours can be easily differentiated from each other and that the groups representing ach

colour are extremely closely associated indicating that the manufacturing process is

sufficiently well established and employed that generically all blue BIC Crystal inks made in

France will have the same generic signature. Consequently, the close association of the

elemental association patterns for the different colour inks within individual batches of the

same ink colour makes it even more necessary to be able to distinguish batches of ink for this

technique to have value in forensic investigations. Following this initial investigation, the fifty

samples of BIC Crystal blue ballpoint pen ink manufactured in France were tested using LDA

(Figure 4.23).

Analyte set used

*Na *Mg *Al *Si *P *S

*K *Ca *Fe Li Be Sc

Ti V Cr Mn Co Ni

Cu Zn Ga Ge As Se

Rb Sr Y Zr Nb Mo

Ru Rh Pd Ag Cd In

Sn Sb Te Cs Ba La

Ce Pr Nd Sm Gd Hf

W Pb Bi U

China BIC Crystal Red

Mexico BIC Crystal Black

France BIC Crystal Blue

Page 172: Development of Novel Physical (Electrostatic Detection

172

Figure 4.23 LDA plot of fifty samples (ten batches of five individual pen ink samples) of BIC Crystal blue ballpoint pen ink manufactured in France (Group numbers refer to the individual samples of ink detailed in Appendix 2 Table 2).

From the data detailed in this figure it is apparent that one group (Group 1, Appendix 2 Table

2), are isolated from the rest of the data set. All other samples, while showing some degree

of separation from each other are, however, closely associated and consequently it is

necessary to undertake a series of LDA plots using reduced data sets to see if it is possible to

resolve the groups back to individual batches of ink. Consequently, a series of iterative LDA

lots was undertaken, firstly the samples representing Group 1 were removed and the data

replotted (Figure 4.24). In this figure it can be easily determined that Groups 2 and 4 from

well clustered and very separate groups from the rest of the data. Again, if the data from

these two groups are removed and the remaining data replotted (Figure 4.25A), it is apparent

that essentially three groups (Groups 3, 5 and 6) separate from the rest of the data set. These

groups are not as tightly clustered as was apparent in previous LDA plots, probably because

the data are not so significantly different from each other. Nonetheless, if the data for these

groups are removed and the data replotted all remaining groups separate (Figure 4.25B). The

relative lack of cohesion of the groups representing the final data sets (Groups 7, 8, 9 and

10), is obviously expected as they are essentially all black ballpoint pen inks from the same

brand and made in the same country. However, it is still apparent that the batches can be

distinguished from each other which is extremely encouraging as it strongly indicates that

Analyte set used

*Na *Mg *Al *Si *P *S

*K *Ca *Fe Li Be Sc

Ti V Cr Mn Co Ni

Cu Zn Ga Ge As Se

Rb Sr Y Zr Nb Mo

Ru Rh Pd Ag Cd In

Sn Sb Te Cs Ba La

Ce Pr Nd Sm Gd Hf

W Pb Bi U

Group 1 samples

Page 173: Development of Novel Physical (Electrostatic Detection

173

each batch of inks can be uniquely identified and that terms of LDA plots in the analytical and

interpretive protocol has a significant potential to be useful in forensic investigations.

Figure 4.24 First iterative LDA plot of forty five samples (nine batches of five individual pen ink samples) of BIC Crystal blue ballpoint pen ink manufactured in France (Group numbers refer to the individual samples of ink detailed in Appendix 2 Table 2).

Figure 4.25 A) Second iterative LDA plot of thirty five samples (seven batches of five individual ballpoint pen ink samples) of BIC Crystal blue, manufactured in France; B) Third iterative LDA plot of twenty samples (four batches of five individual ballpoint pen ink samples) of BIC Crystal blue manufactured in France (Group numbers refer to the individual samples of ink detailed in Appendix 2 Table 2).

Analyte set used

*Na *Mg *Al *Si *P *S

*K *Ca *Fe Li Be Sc

Ti V Cr Mn Co Ni

Cu Zn Ga Ge As Se

Rb Sr Y Zr Nb Mo

Ru Rh Pd Ag Cd In

Sn Sb Te Cs Ba La

Ce Pr Nd Sm Gd Hf

W Pb Bi U

Group 4 samples

Group 2 samples

Analytes used

Group 6 samples

Group 3 samples

Group 5 samples

A B

Group 7 samples

Group 9 samples

Group 8 samples

Group 10 samples

Page 174: Development of Novel Physical (Electrostatic Detection

174

Having established that it is possible to uniquely identify a selection of blue ballpoint pen inks

made in France, fifty black ballpoint pen inks (ten batches each of five samples) made in

Mexico, was investigated. Interpretational data are reported in Figures 4.32 and 4.33.

It was extremely difficult to find ten supplies of the same brand of ballpoint pen ink made in

Mexico, however, two individual scientists on two different trips to the country some five

months apart (Groups 1-4 and Groups 5-10) made the purchases and consequently it is

logical that, while there may be some overlap of batches that could not be established, at

least ten different packages of ballpoint pens were obtained on different occasions and can

therefore be used to confirm that there was little or no bias in sampling procedures used in

this study.

From the data detailed in Figure 4.26, it is obvious that there is one group (Group 4), that

stands completely apart from the other nine groups. The other groups from three other

separated clusters in the LDA plot (Figure 4.26) essentially representing in Groups 1, 2 and 3,

the remaining batches of ballpoint pens purchased by scientist one, while the remaining five

groups of samples, purchased by scientist two, from two other isolated groups. In order to

determine if these groups can be further separated, an additional iterative LDA plot was

undertaken having first removed all data associated with Group 4 samples (Figure 4.27A).

From this figure it is apparent that seven of the nine groups can easily be identified and from

well associated clusters in the LDA diagram (Figure 4.27A). However, samples from Groups 8

and 9 still appear to cluster closely together even though they can actually be distinguished

from each other. Consequently, it was necessary to replot the data having first removed

seven of the nine groups of samples. When a replot of the remaining data was undertaken

(Figure 4.27B), all three groups are easily separated and formed tight clusters within the LDA

plot (Figure 4.27B). From these plots (Figures 4.26 and 4.27), it is obvious that all individual

samples cluster well into their respective groups and that all batches can be identified

unambiguously.

Page 175: Development of Novel Physical (Electrostatic Detection

175

Figure 4.26 LDA plot of fifty samples (ten batches of five individual ballpoint pen ink samples) of BIC Crystal black manufactured in Mexico (Group numbers refer to the individual samples of ink detailed in Appendix 2 Table 2).

Figure 4.27 A) Second iterative LDA plot of forty five samples (nine batches of five individual ballpoint pen ink samples) of BIC Crystal black, manufactured in Mexico; B) Third iterative LDA plot of fifteen samples (three batches of five individual ballpoint pen ink samples) of BIC Crystal black manufactured in Mexico (Group numbers refer to the individual samples of ink detailed in Appendix 2 Table 2).

Analyte set used

*Na *Mg *Al *Si *P *S

*K *Ca *Fe Li Be Sc

Ti V Cr Mn Co Ni

Cu Zn Ga Ge As Se

Rb Sr Y Zr Nb Mo

Ru Rh Pd Ag Cd In

Sn Sb Te Cs Ba La

Ce Pr Nd Sm Gd Hf

W Pb Bi U

Group 4 samples

Groups 1, 2 and 3 samples

Groups 7, 8, 9 and 10 samples

Groups 5 and 6 samples

Groups

1 2 3

Groups

5 6

Groups

10 7 8&9Group 7 samples Group 8 samples

Group 9 samples

A B

Page 176: Development of Novel Physical (Electrostatic Detection

176

The final set of ballpoint pen inks that was investigated in this preliminary study was a series

of red BIC Crystal Ballpoint pen inks from China. Unfortunately, it was only possible to obtain

six packets of these pens during a single visit to China. However, the data were treated in the

same manner as for the black and blue ballpoint pen inks and the resulting LDA plot (Figure

4.28) shows that again the individual samples within the groups are extremely closely

associated and that essentially all six groups can be distinguished from one another.

From the data that have been used to develop Figures 4.18 to Figure 4.27, it is obvious that

all the ballpoint pen inks in this study can be classified into their correct manufacturing

groups and that individual colours of ink, manufactured in a specific country by a specific

manufacturer, have a very significant probability of exhibiting a similar generic elemental

signature.

Group 5 samples

Group 4 samples

Group 1 samples

Group 3 samples

Group 2 samples

Group 6 samples

Figure 4.28 LDA plot of thirty samples (six batches of five individual ballpoint pen ink samples) of BIC Crystal red manufactured in China (Group numbers refer to the individual samples of ink detailed in Appendix 2 Table 2).

Analyte set *Na *Mg *Al *Si *P *S*K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U

Page 177: Development of Novel Physical (Electrostatic Detection

177

4.3 Fountain Pen Ink

4.3.1 Effect of Sample Size on Reproducibility of Fountain Pen Ink.

Seven different inks were used in this study. The description of samples used in this study is

detailed in Section 3.3.3.3 and Table 3.9). Sample preparation and dissolution techniques for

this experiment have been described in Section 3.4.3.1. Data are detailed in Appendix 2;

Table 5 and statistical data are detailed in Appendix 3 Tables 1-5. While it is obvious that

when checking ink on documents a significant amount of ink will not be available, this series

of experiments is designed to establish the elemental distribution patterns in any reference

bulk ink that may be available and to have that as a reference for comparison of inks on

paper. In any analysis it is recognised that the nearer the detection limit the data is the less

robust and more imprecise it also is, consequently it is first necessary to establish whether or

not small quantities of ink could be used to provide accurate data in the case of establishing a

reference sample with which to compare any recovered ink to. In this experiment, four

different volumes of ink (20, 50, 100 and 200μL) were trialled to establish if, for example, a

single drop of ink (approximately 100μL) could provide a reference trace element signature.

Because the ink “hangs up” inside the pipette tips of the micro syringes used, which if only

volumes were used would lead to imprecision in the final data, the mass of each ink sample

used was also determined to four decimal places. Initially, two fountain pen inks (Black Parker

samples 187-198 made in France and Blue Schaeffer samples 247-258 made in Slovenia)

were selected for this investigation. Samples were taken in triplicate.

When data were plotted graphically (Figures 4.29A and B), it was found that the elemental

concentrations were exceptionally reproducible for all volumes/masses of ink used. The only

“exceptions” were analytes below concentrations of a few ngL-1 in the ink and this essentially

means only some of the more “heavy” rare earth elements. Analytes with concentrations

above 1μgL-1 all had excellent reproducibility.

From the data detailed in Figures 4.29A and 4.29B, it is apparent that the elemental

signatures of the two black fountain pen inks, made in two different countries, are

significantly different and that they could obviously be uniquely identified. However, in order

to confirm this observation, and to also confirm that the same reproducibility of a trace

Page 178: Development of Novel Physical (Electrostatic Detection

178

element signature could be achieved with different bottles of ink, an additional experiment

was undertaken using a second bottle of Shaeffer black ink made in Slovenia, a second bottle

of Shaeffer blue ink made in Slovenia and two new (different) bottles of Shaeffer red ink also

made in Slovenia (Appendix 2 Table 5). The two bottles of red ink were bought together in

the same store.

The data for the eight different bottles of ink were plotted together using the same LDA plot

(Figures 4.30 A to C). The elements used and the description of the inks are included in the

diagram. In Figure 4.30A, only two groups of samples (Groups 1 and 5; black Parker ink from

France and blue Shaeffer ink for Slovenia respectively), could easily be separated.

Consequently, an iterative approach was again introduced and the data for these two groups

removed before replotting the remaining data for the other six groups using a separate LDA.

In this plot (Figure 4.30B), only Group 4 and 6 samples (the second bottle of Shaeffer black

ink from Slovenia and the second bottle of Shaeffer blue ink also from Slovenia respectively),

formed discrete separate sub-groups. This left four bottles of ink with still overlapping each

other. These inks are Groups 2 and 3 (Parker blue ink from France and Shaeffer black ink from

Slovenia respectively), which is unusual and the two bottles of Shaeffer red ink from Slovenia,

bought in the same store at the same time. These latter two samples are impossible to

separate and it is highly likely that, as they were purchased together at the same store they

come from the same order from the store and are from the same batch. This makes things

extremely interesting as if this is the case then it confirms that it is not possible to separate

inks from the same batch of manufacture and significantly strengthens the suitability of the

technique as a forensic investigational tool.

In an attempt to split the data from the two red ink samples, a third iterative LDA plot was

undertaken using sample Groups 2, 3, 7 and 8 (Figure 4.30C). In this plot it is now apparent

that Groups 2 and 3 inks are easily identified while Groups 7 and 8 still are inseparable.

Throughout the entire series of these LDA plots it has been quite apparent that the data

representing the individual groups of samples (albeit within groups they are simply repeat

analyses of the same ink using different volumes) cluster extremely closely together. This

adds significantly to the assertion that the analytical methodology is extremely reproducible

and that the differences between bottles of ink, possibly representing manufacturing

Page 179: Development of Novel Physical (Electrostatic Detection

179

batches, are real. The latter point is further emphasised by the almost exact reproducibility of

the two elemental signatures from the Shaeffer red ink manufactured in Slovenia.

4.3.2 Comparison of the Elemental Signatures of Brands of Fountain Pen Ink

Having established that it was theoretically possible to identify the signatures of individual

brands of fountain pen ink, a further thirty five bottles of ink were purchased from around

the world to verify this initial assumption. Each sample was analysed three times and 200μL

of sample were used as the analytical volume. The masses of each sample were also taken

and used as the definitive parameter when determining the concentrations of all analytes

(the use of a micropipette was simply a convenient means of introducing roughly the same

mass/volume of ink). Data for this investigation can be found in Appendix 2 Table 6.

Page 180: Development of Novel Physical (Electrostatic Detection

180

Figure 4.29 A-B Elemental concentrations following the digestion of various volumes of black fountain pen ink. (N.B., Analytes attributed with an asterisk * were determined using ICP-AES and are recorded as parts per million (ppm), while analytes without the asterisk were determined using ICP-MS and are recorded in parts per billion (ppb). Ti and Mn have been recorded in the diagrams for both methods of analysis as comparison, however, in the Appendices only data for these elements determined using ICP-MS are recorded to avoid confusion)

0.1

0.01

0.001

Concentrations of selected analytes using various volumes/masses of Parker black fountain pen ink

made in France

Concentrations in μgmL-1* and μgL-1

Concentrations of selected analytes using various volumes/masses of Shaeffer black fountain pen inkmade in Slovenia

0.1

0.01

0.001

Concentrations in μgmL-1* and μgL-1

Analytes

Analytes

A

B

Page 181: Development of Novel Physical (Electrostatic Detection

181

Description of inks Manufactured Group

Black Parker France 1

Black Shaeffer Slovenia 2

Black Shaeffer Bottle 2 Slovenia 3

Blue Parker France 4

Blue Shaeffer Slovenia 5

Blue Shaeffer Bottle 2 Slovenia 6

Red Shaeffer Slovenia 7

Red Shaeffer Bottle 2 Slovenia 8

Analytes used in these plots

*Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V

Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr Y Zr

Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La

Ce Pr Nd Eu Sm Gd Tb Dy Ho Er Tm Yb Lu Hf

Ta W Tl Pb Bi Th U

A B CInk Groups 7 & and 8

Ink Groups 4 and 6

Ink Group 1

Ink Group 5

Ink Groups 2 and 3

Ink Groups 2 and 3

Ink Groups 7 & and 8

Ink Group 6

Ink Group 4

Ink Groups 7 & and 8

Ink Group 2

Ink Group 3

Figure 4.30 LDA Plots of analytical data for eight different bottles of fountain pen ink. Fig. 4.30A eight groups of ink; Fig. 4.30B iterative LDA plot of six groups of ink following removal of Groups 1 and 5 data; Figure 4.30C iterative LDA plot of four groups

Page 182: Development of Novel Physical (Electrostatic Detection

182

The data for each colour ink was investigated using LDA. Initially data for sixteen different

black inks were plotted using a single LDA (Figure 4.31A), and because there were only three

replicates of each ink it was decided not to use validation samples in any of these plots. This

removal of validation samples does not compromise the interpretation of data as all

replicates plot extremely close together confirming the reproducibility of the analytical data.

In Figure 4.31A, nine groups, Groups 2, 5, 7, 11, 21, 23, 25, 30 and 34 all plot as separate

distinct groups, while seven groups, Groups 8, 13, 14, 17, 19, 28 and 32 are not easily

separable. Consequently, it was necessary to undertake an iterative approach to separation

and re-plot an additional LDA with the separable nine groups of data removed (Figure 4.31B).

Again, after this iteration it was possible to separate all but four of the remaining groups and

it was therefore necessary to plot a second iterative replot of the LDA (Figure 4.31C) to

confirm the separation of all black ink groups in this study. From these plots it is apparent

that all the black fountain pen inks (16) in this study could be separated from each other and

back to individual bottles of ink.

The same approach was undertaken when investigating whether it was possible to distinguish

between sixteen bottles of blue fountain pen ink using their trace element signatures. Using

data for all these samples to plot an LDA (Figure 4.32A); it was apparent that only four groups

(Groups 9, 10, 15 and 22) could be easily distinguished. When data for these groups were

removed and a second LDA plotted using the data for the remaining samples (Figure 4.32B),

all groups with the exception of Groups 1, 29, 31 and 33 could be individually identified. It is

interesting to note that these four groups represent Pelican ink manufactured in Germany

and three different brands of ink (Camel, Parker and Chelpark) manufactured in India. This

observation leads to the possibility that inks for different companies could be being produced

in one country and simply re-bottled prior to sale.

When data for groups 1, 29, 31 and 33 were replotted using a third LDA, it was easy to see

that Group 1 samples formed a distinctive separate group but that the three remaining sets

of data (blue ink made for Camel, Parker and Chelpark in India) still remained closely

associated adding further to the concept that a single supplier of ink could distribute their

products to a number of different outlets with the initial ink being rebranded before sale.

Page 183: Development of Novel Physical (Electrostatic Detection

183

Description of inks Manufactured Group

Pelikan Black Germany 2 Waterman Black France 5 Cross Black Germany 7 LAMY Black Germany 8 WATERMAN Black France 11 WATERMAN Blue Black France 13 OMAS Black Italy 14 AURORA Black Italy 17 PARKER Black France 19 CARAN d'ACHE Carbon Switzerland 21 GRAF VON FABER-CASTELL Black Germany 23 CROSS Black Germany 25 Waterman Black France 28 Parker Quink Black India 30 Chelpark Black India 32 Chelpark Blue-Black India 34

Analytes used in these plots

*Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V

Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr Y Zr

Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La

Ce Pr Nd Eu Sm Gd Tb Dy Ho Er Tm Yb Lu Hf

Ta W Tl Pb Bi Th U

Groups 8, 13, 14, 17, 19, 28 and 32

Groups 28 and 32

Groups 17 and 19

Group 13

Group 8

Group 14

Group 17

Group 28

Group 19

Group 32

Figure 4.31 LDA Plots of analytical data for sixteen different bottles of black fountain pen ink. Fig. 4.31A all sixteen groups of ink; Fig. 4.31B iterative LDA plot of seven groups of ink data following removal of Groups 2, 5, 7, 11, 18, 21, 23, 25, 30 and 32 data; Figure 4.31C iterative LDA plot of four groups of ink data following the removal of Groups 8, 13 and 14 data. Groups refer to data detailed on Appendix 2 Table 6.

A B C

Page 184: Development of Novel Physical (Electrostatic Detection

184

Analytes used in these plots

*Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V

Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr Y Zr

Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La

Ce Pr Nd Eu Sm Gd Tb Dy Ho Er Tm Yb Lu Hf

Ta W Tl Pb Bi Th U

Description of inks Manufactured Group Pelikan Blue Germany 1 Waterman Blue France 4 LAMY Light Blue Germany 9 LAMY Dark Blue Germany 10 WATERMAN STH Sea Blue France 12 WATERMAN Blue Black France 13 OMAS Blue Italy 15 AURORA Blue Italy 18 PARKER Blue France 20 CARAN d'ACHE BlueSky Switzerland 22 GRAF VON FABER-CASTELL Royal Blue Germany 24 CROSS Blue Germany 26 PARKER Blue France 27 Camel Royal Blue India 29 Parker Quink Blue India 31

Chelpark Royal Blue India 33

Group 10

Group 15

Group 22

Group 9

Groups 1, 4, 12, 13, 18, 20, 24, 26, 27, 29, 31 and 33 Groups 1, 29,

31 and 33

Groups 29, 31 and 33

Group 1

Figure 4.32 LDA Plots of analytical data for sixteen different bottles of blue fountain pen ink. Fig. 4.32A all sixteen groups of ink; Fig. 4.32B iterative LDA plot of twelve groups of ink data following removal of Groups 9, 10 and 22 data; Figure 4.32C iterative LDA plot of four groups of ink data following the removal of Groups 4, 12, 13, 18, 20, 24, 26 and 27. Groups refer to data detailed on Appendix 2 Table 6.

Page 185: Development of Novel Physical (Electrostatic Detection

185

Figure 4.33 LDA Plot of analytical data for four different bottles of red fountain pen ink.

To a large extent this is a problem as the purchaser would obviously be paying a premium for

a specific brand of ink and therefore be wasting their money on a brand name and not on a

better product.

The final series of red fountain pen inks was also investigated. However, in this case only four

samples were able to be purchased. Nonetheless it is still valid to determine if it is possible to

differentiate between the trace element signatures of these four brands. The discrimination

between these four red inks should be relatively easy as the inks were supposedly

manufactured in four different countries. When the data are plotted as an LDA plot (Figure

4.33), it is quite obvious that separation of the four groups has been achieved and again that

the reproducibility of data is excellent with really no discernible scatter of replicate points.

The same analytes were used to construct Figure 4.33 as previously used for Figures 4.31 and

4.32. From the data detailed in Figure 4.33 it is, as expected, relatively simple to distinguish

between the four red inks studied, however it is anticipated that if more inks had been

available it would have taken a number of iterative LDA investigations to unambiguously

identify the individual makes.

Description of inks Manufactured Group

Pelikan Red Germany 3

Waterman Red France 6

OMAS Red Italy 16

Chelpark Crimson Violet India 35

Group 3

Group 6

Group 16

Group 35

Page 186: Development of Novel Physical (Electrostatic Detection

186

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Comparability Index Plot for Chelpark Crimson Violet Ink made in India

88.00

90.00

92.00

94.00

96.00

98.00

100.00

102.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Comparability Index Plot for Pelikan Black Ink made in Germany

Product Manufactured Number: Index Table 4.5 Fig.4.40A Comparability Percent

Chelpark Crimson Violet India 43 1 100 Chelpark Royal Blue India 41 2 97.48 Parker Quink Blue India 39 3 97.46 Camel Royal Blue India 37 4 97.11 Waterman Black France 36 5 96.78 Chelpark Black India 40 6 96.72 Parker Quink Black India 38 7 95.96 Chelpark Blue Black India 42 8 95.04 PARKER Blue France 35 9 79.28 OMAS Red Italy 24 10 77.83 CROSS Blue Germany 34 11 74.95 PARKER Blue France 28 12 74.04 OMAS Black Italy 22 13 73.87 PARKER Black France 27 14 73.76 Pelikan Red Germany 11 15 73.53 Blue Parker France 2 16 73.52 Waterman Red France 14 17 72.09 Blue Sheaffer (Bottle 2) Slovenia 6 18 72.01 WATERMAN STH Sea Blue France 20 19 71.47 CARAN d'ACHE BlueSky Switzerland 30 20 69.75 Blue Sheaffer Slovenia 5 21 69.06

Product Manufactured Number: Appendix Table 4.5

Figure 4.40B

Comparability Percent

Pelikan Black Germany 10 1 100 Cross Black Germany 15 2 98.12 LAMY Black Germany 16 3 98.07 GRAF VON FABERCASTELL Black Germany 31 4 98.03 CROSS Black Germany 33 5 97.46 Black Sheaffer (Bottle 2) Slovenia 4 6 96.79 CARAN d'ACHE Carbon Switzerland 29 7 96.55 Black Sheaffer Slovenia 3 8 96.44 Waterman Blue France 12 9 95.53 LAMY Light Blue Germany 17 10 95.26 AURORA Black Italy 25 11 95.18 WATERMAN Blue Black France 21 12 94.95 Waterman Black France 13 13 94.85 Pelikan Red Germany 11 14 94.85 Pelikan Blue Germany 9 15 94.75 WATERMAN Black France 19 16 94.26 GRAF VON FABERCASTELL Royal Blue Germany 32 17 93.61 Black Parker France 1 18 93.61 Waterman Red France 14 19 93.57 OMAS Black Italy 22 20 93.38 OMAS Blue Italy 23 21 93.24

Figure 4.34 Comparability plots for Chelpark crimson – violet ink made in India (Figure 4.34A) and Pelikan black ink made in Germany (Figure 4.34B). Samples refer to Appendix 2 Table 7.

Break in Slope

Breaks in Slope

A

B

Page 187: Development of Novel Physical (Electrostatic Detection

187

This investigation has been able to essentially prove that it is possible to identify batches and

manufacturers of fountain pen inks. However, the possibility of also finding a generic

signature for inks made in the same country but ultimately sold under different brand names

has been raised and therefore has to be investigated. To undertake this investigation average

values for each individual fountain pen ink thus far investigated were produced and data

compared using a Comparability Index Plot to establish to what extent any of the trace

element signatures of the inks compare between brands.

From the data presented in Figure 4.34A where a single Indian ink has been compared to the

remaining ink samples in the data base, the trace elements signature indicates that there is a

significant degree if comparability between all Indian inks. The most interesting aspect of this

plot is that there is a single Waterman Black ink (Sample 36 in Appendix 2 Table 7), made in

France, that appears in the middle of the Indian data. This could easily imply that this ink was

made in India and then sold in France as being made in France. The making of inks in India is

easily understandable as the cost of labour in that country is significantly less than in the

more Westernised countries of Europe. There is a significant break in slope detailed in Figure

4.34A. The significance of this break is that all samples coming after the break are unlikely to

be associated with the same generic signature of those before. The corresponding drop in

the comparability index percent from 94.04 to 79.28 is also extremely significant and strongly

indicates that any ink occurring after the break is in no way associated with the generic

elemental signature of the inks before the break. Again, this is extremely interesting as, apart

from the one French ink in the initial data before the break in slope, all the inks on the initial

data set are made in India and no Indian ink occurs after the break in slope.

In Figure 4.34B, the data for a German made ink, Pelikan Black, is compared with the data for

the data set of the remaining ink samples. In this graph, the initial break in slope is not nearly

as pronounced as it was in Figure 4.34A. This indicates that there can be some degree of

overlap of populations before and after the initial break in slope. The data seem to indicate

that Pelikan, Cross, Lamy and Graff von Faber Castell black inks all have a significant potential

of being made by the same manufacturer and only bottled and sold with a “theoretical

manufacturers” mark on the bottle.

Page 188: Development of Novel Physical (Electrostatic Detection

188

Based on that observation it could be suggested that all these brands of black ink are made in

Germany, with the manufacturer being the same for all four. Obviously, all the inks can be

identified at batch level, as has already been determined. However, if there is indeed a

generic signature in the inks (as appears to be the case in Figure 4.34A), then it is equally

possible that these four “manufacturers” can be simply making varying amounts of profit on

the basis of the “name” on the bottle rather than anything more special in the ink itself.

Perhaps it is naïve to assume anything different in the first place.

The second break in slope in Figure 4.34B comes at a point beyond which there is essentially

no significant probability that the inks after this point have any relationship whatsoever with

the initial sample even though the comparability index is above 95%.

From the data detailed in this section it is apparent that, using elemental fingerprint patterns,

it is possible to distinguish between different batches of the same colour inks. However, it is

apparent that generic elemental fingerprints can be used to determine similarities and

differences between inks, the extremely high probability that inks are bulk manufactured in

specific countries around the world and shipped to different “branded” companies where

they are re-labelled and rebottled with that company’s specific brand and then resold as if

they were manufactured by that company. This means that country of origin is difficult to

determine unless reference data bases of inks that can be 100% guaranteed to come from a

specific manufacturer, in a specific country, can be constructed and used. Nonetheless, by

using the elemental fingerprint of an ink there is an extremely high probability of determining

whether or not the same batch of ink has been used to produce marks on a document and

whether or not the marks on a document are made with the same batch of ink as is present

in a reference bottle or ink cartridge.

4.4 Pencils

4.4.1 Analytical Technique

Analysis of the pencil lead samples following a dissolution procedure was not considered

appropriate as it was not possible to remove pencil lead debris from paper by scraping

Page 189: Development of Novel Physical (Electrostatic Detection

189

without entraining a considerable amount of paper into the final sample. Consequently, any

scraped paper could not represent the pencil lead used and therefore could not be related

back to the dissolved pencil lead sample. Therefore, all pencil samples were analysed using

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA ICP-MS) only. The

analytical methodology is detailed in Section 3.1.3 and sample description is detailed in

Section 3.3.4 and Table 3.11 and 3.12. Data are detailed in Appendix 4.

4.4.2 Samples

Five different brands of pencils of three different hardnesses, manufactured in a combination

of nine different countries, amounting in total to 97 individual pencils plus an additional five

samples from each of three boxes and three samples from each of an additional five boxes of

pencils were used in the initial reproducibility study. Analytical data from all experiments in

this section are detailed in Appendix 4, Tables 1-2.

4.4.3 Analytical Reproducibility.

Three boxes (12 pencils in each box) of PaperMate 2B pencils were chosen for the

preliminary reproducibility study (Appendix 4 Table 1 boxes 1-3 inclusive) and an additional

five boxes of 2B pencils were chosen as a validation study to confirm reproducibility data

initially determined (Appendix 4 Table 1 Boxes 4-8 inclusive). All data produced are expressed

as counts per second and no data have been normalized to an internal standard as there was

no absolute or known concentration analyte available that had a standard concentration

throughout all the pencil leads. The interpretation principle of inter-element association

pattern recognition is based on the fact that internal standardization is unnecessary as it is

the relationship between all the analytes that determined the “fit” of the data and not the

absolute concentrations of analytes.

When the results for samples taken from boxes 1-3 inclusive are compared (Figure 4.35), it is

obvious that the analytical data are extremely reproducible and that the trace element

signature of each of the five pencil leads in each of the three boxes of pencils appears

generically similar. Of the three sets of data the data from the pencil leads bought in Australia

show signs of a greater degree of variation than the pencil leads in the other two boxes.

Page 190: Development of Novel Physical (Electrostatic Detection

190

However, even this set of data could not be said to have significant differences between each

of the components (Appendix 4 Table 1).

In order to confirm the similarities and differences between the sets of data, the average CPS

data for each of the three boxes of pencils is calculated and plotted together (Figure 4.36A).

From this diagram it is apparent that the boxes of PaperMate 2B pencils, bought in the UK

and China both appear to have similar generic trace element signatures while the equivalent

box of pencils bought in Australia has a different trace element signature with element CPS

data appearing lower for the majority of the analytes. This observation is important because,

while the differences between the trace element signatures of pencil leads from different

countries may be a reflection of batch number, the similarities between the signatures may

lead to confusion in assigning specific provenance as if trace element signatures appear the

same for the same batch the fact that one batch was bought in the UK and the other in China

could easily be a source of an alibi. If these closely related signatures cannot be distinguished

between there may be a significant provenance establishment problem.

Consequently, an LDA plot was produced to represent all fifteen pencil leads (Figure 4.36B).

In this plot, it is apparent that the three different boxes of pencils form into three distinctive

and unambiguous sub-groups and that their validation samples are associated correctly with

each sub-group. Therefore, while there is a close association of the PaperMate 2B pencils

sold in the UK and China (Figure 4.36A), using an LDA plot it is easily possible to distinguish

between them with no ambiguity whatsoever (Figure 36B).

Page 191: Development of Novel Physical (Electrostatic Detection

191

Figure 4.35A-C Plots of counts per second (CPS) with respect to analyte isotope for PaperMate 2B pencil leads made in China but purchased in three different countries. Each graph represents data for five replicate pencil leads selected from boxes of twelve leads.

A

B

C

Page 192: Development of Novel Physical (Electrostatic Detection

192

Figure 4.36A-B Diagram of the average values for the three sets of samples detailed in Figure 4.35A-C (Figure 4.36A), and an LDA plot of the values for the same samples using the entire analyte isotope data set (Figure 4.36B).

Analytes used in LDA

Li7 Be9 B11 Na23 Mg24 Al27 P31 S34 K39

Ca44 Sc45 Ti49 V51 Cr52 Mn55 Fe57 Co59 Ni60

Cu65 Zn66 Ga71 Ge73 As75 Rb85 Sr88 Y89 Zr90

Nb93 Mo98 Ag109 Cd111 In115 Sn120 Sb121 Cs133 Ba138

Ho165 Er166 Tm169 La139 Ce140 Pr141 Nd146 Sm152 Eu153

Gd158 Tb159 Dy162 Th232 U238 Yb174 Lu175 Hf178 Ta181

W182 Hg202 Tl205 Pb208 Bi209

Group No. Manufactured Purchased Samples Brand

1 China Australia Box 1 PaperMate 2B

2 China UK Box 2 PaperMate 2B

3 China China Box 3 PaperMate 2B

Group 1 Purchased Australia

Group 3 Purchased China

Group 2 Purchased UK

A

B

Page 193: Development of Novel Physical (Electrostatic Detection

193

On the basis of the initial reproducibility study it can be confirmed that the comparability of

pencil lead data from an individual batch appears to be excellent and it is therefore possible

not only to confirm that the reproducibility of the LA-ICP-MS technique is excellent and

entirely suitable for this type of investigation, but also that batch to batch identification, and

consequently batch specific provenance determination for pencil leads, also has a high

degree of probability of being forensically viable. Furthermore, it is also probable that a single

pencil mark can be traced back to an equivalent pencil with a very high degree of probability

and little to no chance of a false positive or false negative result (Figure 4.37).

KEY:

Box No. Description Sold in

Box 1 PaperMate 2B Australia

Box 2 PaperMate 2B UK

Box 3 PaperMate 2B China

Box 4 PaperMate 2B Batch 2 Australia

Box 5 PaperMate 2B Batch 3 Australia

Box 6 PaperMate 2B Batch 4 UK

Box 7 PaperMate 2B Batch 5 UK

Box 8 PaperMate 2B Batch 6 China

Figure 4.37 LDA Plots of pencil lead samples from eight boxes of PaperMate 2B pencils, made in China but sold in different countries. LDA plot of all eight sets of samples (Fig. 4.37A); LDA Plot of seven sets of data with outlier data from Box 1 samples removed before re-plotting (Fig. 4.37B).

8

7

4

6 1

3

5

2

5

8

7

2

3 6

4

A B

Page 194: Development of Novel Physical (Electrostatic Detection

194

4.4.4 Differences in the Elemental Fingerprint of Different Pencil Brands of Different

Hardnesses and Manufactured in Different Countries.

This study was designed to investigate the possibility of using trace element inter-

relationships to determine country of origin of pencils. While pencils are not generally used

for signing documents in day to day activities, and documents signed in this manner are not

accepted as legal because pencil marks can be easily removed and written over, they are

nonetheless a significant part of the falsification of documents and as such are included for

completeness sake.

A total of 97 different pencils were used in this study. The samples are grouped according to

two categories of hardness HB and 2B (Appendix 4 Table 2), and although it was ultimately

determined that the majority of the HB pencils used in this study were manufactured in China

(China (40 pencils) and Mexico (21 pencils)), they were sold by four different suppliers in

three different countries. The data for the HB and 2B pencils are plotted together (on the

same LDA graphs) because if there was a generic similarity between countries this would

show up as a close association of groups on the plot (Figure 4.38). In this diagram, it should

be noted that while Groups 7 and 8 were both manufactured in China, but pencils included in

this group were bought in Australia (Group 7) and the United Kingdom (Group 8)

independently. Consequently, it is deemed appropriate to subdivide the data for these two

“groups” into two sub-groups before plotting.

From the data detailed in Figure 4.38A it is apparent that, when data are subjected to LDA,

there is both co-association and separation of sample groups. However, while Groups 3 and 8

appear to cluster quite strongly together (Figure 4.38A), and Groups 1 and 4 cluster, albeit

slightly less closely, there is no obvious generic reason for them so to do as they are

theoretically made in three different countries and the “clusters” contain data from both HB

and 2B pencil leads. Consequently, it is necessary to undertake an additional iterative LDA to

determine if this clustering reflects a generic co-association of elements superimposed into

the pencils during manufacture or not. In order to establish whether or not the initial

groupings can be verified, it is necessary to undertake a further iterative LDA on a reduced

data set. Therefore, the data for Groups 2, 5, 6 and 7 were removed and the data for Groups

Page 195: Development of Novel Physical (Electrostatic Detection

195

1, 3, 4 and 8 replotted (Figure 4.38B). In this plot (Figure 4.38B), it is quite apparent that all

four replotted groups can be easily separated and each forms a distinct separate cluster of

data with validation samples plotting in the correct group. Consequently, it appears that

again, the separation of samples is associated more with production batch and far less with a

specific manufacturing process or country of manufacture. This aspect further validates the

ability of the LA-ICP-MS technique to provide definitive data sets that can be used in accurate

data interpretation initiatives.

Figures 4.38A and 4.38B. LDA plot of HB and 2B pencil lead data (detailed in Appendix 4, Table 2) manufactured in three different countries. Fig. 4.38A data for all seven Groups of samples. Fig. 4.38B iterative LDA plot of Groups 1, 4 and 7.

Country of Brand Pencil group

Manufacture shown in Figure 4.44

Indonesia Columbia 2B 1

China PaperMate 2B 2

China PaperMate 2B 3

Mexico Ticonderoga HB 4

China Dixon HB 5

China Sainsbury's HB 6

China PaperMate HB 7

China PaperMate HB 8

Analytes

Li7 Be9 B11 Na23 Mg24 Al27

P31 S34 K39 Ca44 Sc45 Ti49

V51 Cr52 Mn55 Fe57 Co59 Ni60

Cu65 Zn66 Ga71 Ge73 As75 Rb85

Sr88 Y89 Zr90 Nb93 Mo98 Ag109

Cd111 In115 Sn120 Sb121 Cs133 Ba138

La139 Ce140 Pr141 Nd146 Sm152 Eu153

Gd158 Tb159 Dy162 Ho165 Er166 Tm169

Yb174 Lu175 Hf178 Ta181 W182 Hg202

Tl205 Pb208 Bi209 Th232 U238

2

3 & 8

6

5

4

7 8

1 3

1

4

A B

Page 196: Development of Novel Physical (Electrostatic Detection

196

4.5 Differentiation Between Ballpoint Pen Inks on Paper using LA-ICP-MS.

4.5.1 Introduction

Determining the chemical composition of ink that has already been transferred to paper, i.e.

a signature on a document is often extremely difficult. Generally, some form of

chromatographic separation is used to determine the composition of the ink involved and the

resulting chromatogram is compared with that of reference inks to achieve a match.

However, it is necessary to first remove a sample of the ink from the paper it is on before

analysis can proceed. This process can be extremely difficult to achieve without “damaging”

the document, especially if any significantly sized sample is required to achieve accurate

comparison. Additionally, basic chromatography of the ink may yield a result that does not

separate the ink of use from that already present on the paper as the organic components

that make up the ink signatures are often generic and cannot easily be distinguished from

one another. In addition, the mass of ink available for testing is extremely small and there

may not be sufficient to determine unambiguous differences even if a large part of the

sample is used. In here is another problem in that removal of material from a document for

testing is an aspect that every forensic scientist seeks to avoid. Consequently, a methodology

that does not remove the sample from its original matrix and, to a very large extent, is non-

destructive, would be an important addition to the forensic arsenal of every document

examiner.

The ability of LA-ICP-MS to only require extremely small samples to achieve accurate analysis

of a wide variety of analytes makes this technique really appropriate for the analysis of inks

on paper samples. The technique is almost 100% non-destructive and consequently is even

more universally acceptable in forensic document examination as even though sample is

consumed during analysis the mass of material is so small that it requires a microscope to see

what has been destroyed. Results detailed so far on this thesis with respect to solution

analysis using ICP-MS, indicate that the basic technique is capable of rigorous and extremely

accurate specification of individual batches of paper, ballpoint and fountain pen ink and

pencil marks. However, the problem remains as to how this technique could be used to

determine the elemental signature of inks that have actually been deposited on paper.

Page 197: Development of Novel Physical (Electrostatic Detection

197

If it was possible to use LA-ICP-MS to differentiate between blank paper and paper on which

ink has been deposited without having to remove the ink this would be an extremely useful

breakthrough and a significant step forward in identifying differences between inks used to

forge or modify documents. The technique, used in association with luminescence data,

chromatography and graphological analysis, could then be used to give an indication of the

batch of paper and of ink used and serve to unambiguously provide evidence to ensure that

false positives and false negatives, generated as a result of the often extremely limited

sample mass available for analysis, could be ruled out of an investigation.

What is more is that if the technique of LA-ICP-MS was as specific in identifying inks and

papers as it appears to be able to be from the preliminary research on the separate matrices

using solution based ICP-MS, it could be used to identify these materials and trace them back

to actual sources thus eliminating any ambiguity there could be of identifying provenance of

the materials and identification of persons of interest.

4.5.2 Preliminary Study of Ink on Paper Analysis using LA-ICP-MS.

Initially it is extremely important to be able to prove that the paper on which ink has been

deposited is uniform in its trace element distribution parent across an individual sheet. This

aspect has been studied in Chapter 4, Section 4.1 and conclusively proven. In addition, and

possibly the most important aspect is that if a laser ablation traverse is run across an ink mark

then the trace element profile across that mark is as near as possible uniform. The reason for

this is that unless the signature of the paper and ink:paper combined is uniform identification

of the components of each and tracing those signatures back to original batches of paper and

ink will be extremely difficult. This will be made even more difficult if the document is of

historical importance or is in any other way precious and cannot be destroyed, even partially,

to obtain a paper blank. Consequently, a number of ablation lines were run across various ink

marks on sheets of paper to determine if differences were significant and related to analysis

position on the paper. An example of a typical data traverse line is detailed in Figure 4.39.

From this figure it is apparent that while there are small differences across the ink mark,

largely associated with inclusions of dust etc. in the paper or incorporated in the ink when in

use, largely the elemental signature across the ink mark is uniform.

Page 198: Development of Novel Physical (Electrostatic Detection

198

1

10

100

1000

10000

100000

1000000

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778

Intensity Vs Time

Li7

Na23

Mg24

Mg25

Al27

K39

Figure 4.39 Typical diagram of an LA-ICP-MS traverse across an ink line on paper from background to background across the ink line (Data are expressed as counts per second (CPS)).

4.5.3 Reproducibility of the Elemental Composition of Ballpoint Pen Ink on Paper

Based on the uniformity of elemental profiles across ink marks it was decided to establish the

robustness of the procedures used and the precision of analytical data obtained using this

method for three different types of paper and nine different inks. Initial studies of laser

traverses on the paper and knowing the concentrations of elements in the various inks

studied made it appropriate to identify the most realistic analytes that could be used for this

study. Many of the analytes present in paper and ink were in concentrations that were at or

near the detection limits for solution based ICP-MS techniques and consequently would be

below the detection limits for LA-ICP-MS techniques. Consequently, a final list of appropriate

analytes was chosen and is detailed in Table 4.7.

Table 4.7 A list of the analytes used in the paper-ink study

Analytes used in this studyLi7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49

V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88

Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208

A description of the inks and paper used in this study is given in Appendix 5. Each ink was

applied on three different paper samples, paper sample one (Double A premium: Thailand),

paper sample two (Reflex Recycled Pure White: Australia) and paper sample three (Paper

Time scale representing 90 seconds and a distance of approximately two millimetres

Page 199: Development of Novel Physical (Electrostatic Detection

199

One Premium Presentation: Indonesia). Nine different ink samples were applied in replicates

of six to each of the paper samples making a total of 180 samples in all. In addition, paper

analytical blanks were determined in replicates of six for each of the three paper samples

used. The inks used were: blue, black and red BIC, blue black and red PaperMate and blue

and black Officeworks, and red J.B. An individual single line was drawn on a single sheet of

paper for each sample. Sixty sheets of each different paper were used and data represent LA-

ICP-MS analysis of each if these lines. Data were accumulated in “Time Resolved” mode.

However, it was considered analytically incorrect to accept computer software interpretation

of the data using Glitter™ as inclusions were not able to be identified using this software. In

the event that inclusions occurred, the resulting data, if interpreted using Glitter™ would be

inaccurate and lead to incorrect data being produced. Consequently, data for each analyte

for each sample were examined by the analyst and calculations of the CPS data made on the

Page 200: Development of Novel Physical (Electrostatic Detection

200

Blue Office Works

Black Office Works

Red BIC

Figure 4.40 Replicate LA-ICP-MS elemental distribution patterns for three different coloured inks on the same paper. Each ink was analysed six times

A

B

C

Page 201: Development of Novel Physical (Electrostatic Detection

201

basis of reviewed interpretation between the analyst and supervisor, a process taking

approximately two hours for each scan. Analytical data are detailed in Appendix 5 Table 1. A

blank correction for each paper was made for each scan and the resulting elemental

fingerprint (trace element association pattern) for each of the ink samples has been compiled

in Appendix 5 Table 2. Trace element signatures for cross sections of each of the inks studied

are detailed in Figure 4.40. Once background subtraction of the paper has been undertaken

there are some values that are less than zero. This is because variations in high values for the

background for any specific paper may, when averaged be above the values that are reported

for the paper:ink signal. In all cases these numbers have been given a value of 1CPS in

Appendix 5 Table 3.

The data detailed in Figure 4.46 confirms that the reproducibility of the ink signatures is, in

the majority of cases, the same for all six repeat analyses of the same ink. Major differences

usually only occur where the concentrations (in terms of counts per second (CPS)), are at or

close to the detection limits of the technique which is approximately 100CPS for all analytes.

Detection limit in this thesis is defined where the coefficient of variation percentage is

greater than 50% relative. Data detailing the coefficients of variation for all inks on all papers

studied are detailed in Appendix 5 Table 3 to give an idea as to how confident the analyst can

be in the data provided.

Unfortunately, it is not possible to cross compare the solution data for an ink with laser

ablation data for the same ink on paper as response characteristics for the same element

using the different techniques are entirely different. Consequently, it is necessary, when

tracing back an ink to a specific pen, that a mark on paper is made using that pen, must give

reproducible results, and it must be statistically realistic to be able to accurately compare the

trace element profiles of individual inks with the mark being investigated to be able to

eliminate inks that do not match the profile of the one being investigated. Therefore, the

most important aspect of this type of investigation is that the trace element association

pattern should be the same for the same ink on different sorts of paper. In this way a number

of suspect pens can be used to make a mark on a reference piece of paper and the blank

subtracted data obtained used to compare with the results obtained by the reference ink on

Page 202: Development of Novel Physical (Electrostatic Detection

202

a completely different sheet of paper. This may seem an obvious observation. However, it

has to be remembered that the background contribution of the elemental values for the

paper blank, to the paper:ink combined elemental profile, may be relatively very and as such

the resulting blank corrected ink elemental profile stands a chance of being either

overcorrected or under-corrected and consequently blank subtraction may lead to a final

data set for an individual ink being less precise than could be hoped for. Under these

circumstances cross comparison of reference inks to an investigation ink sample may be less

robust than hoped for and it is therefore essential to obtain the best results possible for all

analyses. This is especially difficult for this type of analytical protocol as laser ablation is not a

quantitative e technique and even between samples there can be different ablation and

ionization conditions giving rise to variations in the CPS data for each analyte. It is therefore

essential that an experienced analyst interprets all data at all stages. This is especially true of

the use of patented software to “normalize” the resulting time resolved scans, and it is the

author’s opinion that normalization must be undertaken personally by the analyst before a

valid cross comparison can be expected.

Consequently, a detailed investigation was undertaken into the comparison of corrected

elemental profiles for the inks studied when deposited on all three papers. Each data set for

this study are detailed in Figures 4.41 – 4.45.

Initially the reproducibility of the individual inks was investigated. Three different blue inks

contained in three different manufacturer’s pens were used for the initial blue ink study.

Each ink was used to mark a single line on six different sheets of paper from each of three

different manufacturers. The blank paper corrected results are plotted in Figure 4.41A-C.

Each of the three diagrams in Figure 4.41 confirms that the element plots exhibit a

remarkable degree of comparability for each ink and the three different papers. This of

course was to be hoped for but was not expected as each paper type has a different

elemental signature leading to different background subtraction data for each paper. From

the data, it is also apparent that BIC and Paper Mate blue ballpoint pen ink have a relatively

similar signature to each other while the signature for the Office Works ballpoint pen ink is

somewhat different. This backs up the solution data already detailed. As mentioned

previously, it is not possible to compare the quantitative data for solution work with the

Page 203: Development of Novel Physical (Electrostatic Detection

203

qualitative data for laser work. Nonetheless it is quite obvious when comparing the data from

the laser work that the signatures are very similar and the inter-elemental relationship

patterns, on which the principle of elemental fingerprinting is based, are extremely robust.

The same procedure is undertaken for black inks (Figures 4.42A-C). However, in the case of

these inks there are more analytes that do not have good reproducibility than in the case of

the blue inks. Notable amongst these analytes are Mg, Rb, Cr, Mo and Zr. With one notable

exception, Mg in black Paper Mate ink on paper 3. This is because the value of the blank for

paper 3 is approximately ten million CPS and the value for the combined paper:ink signal is

very similar, also approximately ten million CPS, leading to a wide variability of the corrected

ink signal(ten to fifty thousand CPS or 0.5% relative residual) when the background is

removed.

Nonetheless all three black inks on the three different papers have a characteristic analyte

fingerprint which appears, even with visual inspection, to be different for each of the inks.

The black Office Works ink (Figure 4.42C) has an analyte fingerprint that appears to be much

more precise than the other two. However, the concentrations of analytes in this ink are

considerably higher than in the other two inks and consequently background correction does

not have such a significant influence on the final data for the ink. This aspect has to be

remembered when interpretation of data is required and it again worth noting that the

interpretation of data should also be undertaken by an experienced analyst who is trained in

this sort of work for the results to be valid.

Page 204: Development of Novel Physical (Electrostatic Detection

204 Figure 4.41 Inter element association pattern plots blue inks for six replicate analyses of: Fig. 4.41A - BIC; Fig. 4.41B Paper Mate and

Fig. 4.41C Office Works on three different paper samples. Data are recorded in Appendix 5 Table 3.

A

C

B

Page 205: Development of Novel Physical (Electrostatic Detection

205 Figure 4.42 Inter element association pattern plots black inks for six replicate analyses of: Fig. 4.42A - BIC; Fig. 4.42B Paper Mate and

Fig. 4.42C Office Works on three different paper samples. Data are recorded in Appendix 5 Table 3.

A

C

B

Page 206: Development of Novel Physical (Electrostatic Detection

206

The final set of inks to be investigated was red in colour. In this case it was not possible to

have the same three brands of ink as those for blue and black inks. Nonetheless three

individual manufacturers’ pens were used to obtain the data on the same three different

varieties of paper. The data for this series of experiments are given in Figure 4.43A-C. The

data in these figures would appear to be less precise than data for blue and black ballpoint

pen inks, probably because the values for the CPS data are also lower and, as detailed

previously, blank correction forms a very significant reduction in the overall combined

paper:ink LA-ICP-MS values. Obviously, it would be preferable if only the ink could be

analysed using LA-ICP-MS and there was no incorporation of any analyte signal from the

paper. However, this is not possible with the current equipment as the laser crater is over

50μm deep and will penetrate the paper. Future generations of lasers may be able to be

controlled better and not add so much of the paper signature to the combined signal.

Nonetheless, it is quite obvious from the data detailed in Figure 4.43A-C that each red ink

gives its own individual trace element pattern (fingerprint) and as such can be recognised

from the other two inks. However, what is represented in Figures 4.41 to 4.43 is a graphical

representation of the data and interpretation is therefore subjective. This approach is not

really acceptable in a court of law and therefore it is essential that a statistical or

chemometrical interpretation is applied to the data to determine if the values obtained can

stand up to rigorous scrutiny and can still be interpreted and classified accurately. In order to

achieve this LDA plots were undertaken of all the data (Figure 4.44A-C), initially of each

colour of inks separately and finally all samples of all inks together (Figure 4.45 A and B). Even

though the colours of inks can be easily differentiated by eye, it was felt necessary to

compare all the study inks analysed together as in some instances the lack of ink on a

questioned docuemtn may lead to confusion of colour and in some cases there may be some

comparability of an elemental profile related to generic similarities in a country of origin or a

mnufacturer not yet studied. In this event it would be essential to ensure that any colour ink

could be used in the statistical cross comparison and still result in accurate apportionation of

the evidence ink with that for a reference data base sample.

Page 207: Development of Novel Physical (Electrostatic Detection

207 Figure 4.43 Inter-element association pattern plots red inks for six replicate analyses of: Fig. 4.43A - BIC; Fig. 4.43B Paper Mate and

Fig. 4.43C Office Works on three different paper samples. Data are recorded in Appendix 5 Table 3.

A

C

B

Page 208: Development of Novel Physical (Electrostatic Detection

208

A B C

Figure 4.44 LDA plots of analytical data from LA-ICP-MS scans of blue, black and red inks on three paper types. Fig. 4.44A: Blue ink, 4.44B: Black ink and Fig. 4.44C: Red ink. Each cluster represents the analysis of eighteen sub-samples of the same ink on the three different paper types. Analyte element isotopes are given in Table 4.7 and all analytes are used for each plot.

Page 209: Development of Novel Physical (Electrostatic Detection

209

As can be seen from the data in the three LDA plots (Figure 4.44A-C), all samples of all the

inks separate perfectly into their relevant sub groups and all validation samples compare

exactly with their equivalent groups. This result indicates that the technique and

interpretational protocols have an extremely high probability of being extemely useful in any

document based forensic investigation.

Key: Red BIC 1 Blue BIC 4 Black BIC 7

Red Paper Mate 2 Blue Paper Mate 5 Black Paper Mate 8

Red JB 3 Blue OfficeWorks 6 Black Office Works 9

Figure 4.45 LDA plots of analytical data from LA-ICP-MS scans of all blue, black and red inks combined. Fig. 4.45A: all inks and papers used in this study, Figure 4.45B: iterative LDA plot of the data set after the removal of data for ink groups 1, 4, 7 and 9.

The data further confirm that if an ink mark is made on a document it is possible to develop a

reference set of marks from a wide range of different ballpoint pen inks on another

document and subtract background counts from the paper of the documents that have been

quantitatively obtained using LA-ICP-MS to give an elemental association pattern signature of

the original inks that can be accurately compared using LDA. This conclusion indicates in the

strongest terms that LA-ICP-MS analysis and LDA interpretation of ballpoint pen inks is at

present an embryo technology for document examination that has significant possibilities in

this area of forensic science and crime scene investigation.

A B

3

2

1

4

8

5 & 6

9

7

2

6

5

8

3

Page 210: Development of Novel Physical (Electrostatic Detection

210

Chapter 5 Conclusions and Recommendations 5.1 ESDA

Since it was first developed and introduced as a device for detecting indented impressions in

England in 1978, the role and operation of ESDA in Forensic Science has been extensively

studied and researched by scholars and forensic scientists all over the world.

The current study, into the possibility of modifying the ESDA technique and extending its

useful application range, is designed to highlight the need for, and provide a methodological

contribution to, an overall change in the forensic investigational approach to the study of ink

and pencil marks on paper, and is meant to provide a rational new approach to the science of

document examination using ESDA in combination with chemical solution based analysis of

the various components present in these types of investigations and LA-ICP-MS analysis of

original material, where “destruction” of the paper or marking material is not allowed.

Data produced using the ESDA are extremely sensitive to paper grade and variations in

ambient humidity. It was established that the paper quality on which the ESDAtesta process

was conducted could significantly influence the quality of the ability of the ESDA to produce

results. The strongest ESDAtesta indented impressions were obtained on the heavier grades

of paper, in particular 110gsm paper and less so in the lower gsm papers.

The results detailed in this thesis also indicate that humidifying the document, on which the

ESDAtesta impressions have been made before the ESDA process was conducted, could also

affect the quality of the ESDA results. It was found that humidifying the document for a

period as short as three minutes could significantly reduce the intensity of the developed

ESDAtesta indentations and therefore limit the ability of the investigator in unambiguously

distinguishing marks. This is a somewhat controversial conclusion and it is obvious that as this

“ambiguity” in the generally “recommended” protocol has now been highlighted, there has

to be significantly more investigation into this aspect before a definitive protocol for the use

of ESDA can be promulgated and the technique made routine.

Page 211: Development of Novel Physical (Electrostatic Detection

211

In addition, applying low <40oC heat to the document can improve the visibility of the

indentations. However, temperatures above this, where the document is exposed to

temperatures at which the cellulose itself could become denatured (>200oC), cause changes

in the paper where the eventual ESDA image will become progressively unsatisfactory until at

temperatures above 400oC, when the paper becomes significantly carbonized, the image

becomes impossible to read as the paper is impossible to place on the ESDA test bed without

breakage and crumbling. However, it has been possible to obtain decipherable ESDA images

from paper that has been partially carbonized at temperatures below 300oC.

While it is obvious that the ESDA based system of investigating the nature of marks on paper

may be used to determine their written content, it is also necessary to be able to determine

whether or not a particular mark was made by a specific writing implement. In addition, there

would be a considerable advantage to a document examiner if it was possible to trace the

composition of the inks or pencils used to make that specific mark back to an individual brand

of pen or ink or even to an individual batch of ink in that pen. Furthermore, to be able to

trace an individual sheet of paper back to a country of origin, batch of manufacture or even

ream of paper would allow the forensic document examiner to provide a statistically robust

and significant identification of provenance of all the components of a forged document.

5.2 The Chemical Investigation into the Unique Composition of Paper, Ink and

Pencils using ICP-AES, ICP-MS and LA-ICP-MS

The investigation into the provenance determination of paper, ink and pencil leads, detailed

in this thesis, was designed to establish chemically based analytical protocols to solve

problems associated with provenance determination of these components of a questioned

document that would allow the greatest possible preservation of forensic evidence and still

provide unambiguous results.

Investigations into the provenance of paper were able to confirm that the trace element

distribution pattern within single sheets and single reams of paper were statistically

indistinguishable and that individual batches of paper had the same chemical signature. In

Page 212: Development of Novel Physical (Electrostatic Detection

212

addition, it was able to be confirmed that Australian paper has a generic signature that can

distinguish it from paper made in other countries around the world. It is strongly believed

that this type of generic signature exists for other countries of manufacture of paper but

insufficient numbers of different samples from other countries need to be analysed before

this aspect can be confirmed.

In addition, paper that has been completely ashed can be traced back to the original paper

and it is therefore possible to unambiguously confirm whether or not ashed papers have or

have not a common chemical signature with un-ashed material that may also be recovered in

the course of a criminal investigation. It is also appears to be possible to determine whether

or not “old-growth” forest has been used to produce paper, which is an extremely important

environmental safeguard for the preservation of indigenous forest throughout the world.

Individual ballpoint pen inks can be chemically analysed to determine their inorganic

“fingerprint” (their inter-element association pattern). This chemical pattern is also

unambiguously associated with a batch of manufacture and can be used to relate specific

pens back to recovered evidence. Although it may appear obvious what colour an ink is by

simple visual comparison, it must be stated that all similar coloured inks are not the same

and determining the individual inter element association pattern of an ink will facilitate

unambiguous comparison to a reference data base of inks with the equivalent colour and

overcome any false positive and false negative identification. Even with the same colour inks

and the same manufacturer, differences in the trace element signatures of the individual inks

occur and can be easily identified. Consequently, an individual ink can be traced back to its

batch of origin or compared with recovered relevant material from the crime scene or from

follow up investigations to determine matches.

While there are obvious differences in the trace element association patterns for individual

batches of ballpoint pen ink, at this stage there appears to limited data that could confirm

the existence of a generic trace element signatures for the same colour ballpoint pen inks

from individual countries.

Page 213: Development of Novel Physical (Electrostatic Detection

213

Research into the unique identification of fountain pen inks has confirmed that the chemical

signature of these inks from the same manufacturer and same batch are statistically

indistinguishable. In addition, it is statistically possible to identify batch differences between

inks and to determine the country of origin, and, perhaps more surprisingly, to determine

that some very expensive inks (for example Cross and Pelikan) are made in the same county,

by the same manufacturer and are identical in chemical composition. This aspect identifies

the gullibility of the general public in buying products, not because of their better quality but

simply because they carry a “must have” market brand or some perceived difference, and

also the greed of manufacturers in allowing this deception to take place.

Although it was not deemed sensible to undertake dissolution based analysis for pencil leads,

the use of LA-ICP-MS facilitated just as definitive an identification mechanism. Elements in

individual batches of the same manufacturer have discernible differences on their chemical

fingerprint while there is excellent reproducibility between the chemical signatures of pencil

leads from the same batch. There is also a noticeable difference between the chemical

signatures of different harnesses of pencils form the same manufacturer. It is therefore

equally as easy to robustly identify the chemical signatures of pencil leads and to assign these

signatures to specific pencils or to pencil lead data that have been entered into a data bases.

The fact that pencils are not accepted for signing legal documents means that this research

has somewhat limited use in forensic investigations. However, it does represent a

completeness in the methodology that has been developed to determine the provenance of

hand held writing instruments.

The final proof of usefulness in forensic document examination is the application of direct ink

on paper analysis of documents. In this investigation, a laser was used to traverse across

drawn lines in ballpoint pen ink on different manufacturer’s brands of paper. The data

produced obviously incorporated the trace element signature of the paper and the ink and it

was not a simple matter of blank subtraction to remove the signal of the one from that of the

other to obtain the ink signature Only a limited set of twenty-seven analytes from the sixty-

two determined were present in sufficient concentrations to be useful for determining the

chemical composition of the inks involved in the study. In addition, because of variations in

the background major analyte composition of the paper, due to fillers and dust

Page 214: Development of Novel Physical (Electrostatic Detection

214

incorporation, it was necessary to interpret all data manually and to use subjective

(experience) background definition to determine blanks for each analyte in each sample. This

resulted in the manual correction of nearly four and a half thousand data points to obtain the

final data set.

Nonetheless once the data had been obtained, albeit in such a labour-intensive manner, it

was possible to unambiguously identify the individual inks on all the different paper samples,

and to obtain excellent differentiation for each one. This study confirmed that a single

traverse (100μm wide) across an ink mark is capable of providing a chemical signature of the

ink involved and that that chemical signature can be traced back, irrespective of the paper it

is written on, to a unique batch of ballpoint pen ink. This aspect is of major significance to

document examiners as it provides indisputable proof of origin of these types of ink and can

also be used in cross comparison in the case of different pens, even the same brand, being

used to falsify documents.

A combination of the protocols detailed in this thesis add a significant arsenal, to that already

available to the forensic document examiner, in investigations of both falsification and

unique but fraudulent generation of documents, both modern and antique.

5.3 Recommendations

The research detailed in this thesis represents only a preliminary investigation and general

validation of the use of a series of new approaches to document examination and

verification. It is essential that the work be enhanced by future studies that will increase the

statistical robustness of these techniques. These future investigations should include:

• Analysis of more and varied sources of paper, inks and pencils, together with

investigation of photocopier inks (to trace back photocopies to potentially a

photocopier).

• Development and testing of new statistical investigative and interpretive protocols for

potentially more robust provenance determination.

Page 215: Development of Novel Physical (Electrostatic Detection

215

• Trialling different varieties of femtosecond lasers to establish if they would be more

capable of producing a chemical signature of pen-ink on paper without as much

incorporation of the paper chemical signature into the initial data signal and thereby

decreasing the need for such complicated and time consuming background correction

measures.

• Development and upkeep of data bases for papers, inks and pencils sin order to try

and establish generic links between countries of manufacture and to identify use of

“old growth” forest pulp in the manufacture of paper.

Page 216: Development of Novel Physical (Electrostatic Detection

216

Chapter 6 Bibliography

Achtemeier, P. J., Green, J. B. and Thompson, M. M. (2001). Introducing the New Testament: Its literature and theology. Wm. B. Eerdmans Publishing.

Agilent (2010). Collision/Reaction Cells in ICP-MS. I. Agilent Technologies. 5990-5955EN.

Agilent (2011). Qualifier Ions in ICP-MS. I. Agilent Technologies. 5990-7576EN.

Anan Y, Kunito T, Watanabe I, Sakai H, Tanabe S. (2001). Trace Element Accumulation in Hawksbill Turtles (Eretmochelys imbricata) and Green Turtles (Chelonia mydas) from Yaeyama Islands, Japan. Environmental Toxicology and Chemistry 20(12): 2802-2814.

Ariyama, K., Horita, H. and Yasui, A. (2004). Chemometric Techniques on Inorganic Elements Composition for the Determination of the Geographic Origin of Welsh Onions. Analytical Sciences 20(5): 871-877.

Asunción, J. (2003). The complete book of papermaking. Lark Books. A division of Sterling publishing Company Inc. New York, ISBN 1-57990-456-4

Attard, A. E., Giessen, B. C. and Polk, D. E. (1977). Forensic characterization of papers. II: determination of batch differences by scanning electron microscopic elemental analysis of the inorganic components. Journal of Forensic Science, 22(3): 524-533.

Baier, P. (1983) Application of experimental variables to the use of the electrostatic detection apparatus. Journal of Forensic sciences, 28(4): 901-910.

Barnard, J. A. W., Polk, D. E. and Griessen, B. C. (1975). Forensic identification of papers by elemental analysis using scanning electron microscopy. Scanning Electron Microscopy/1975/Part II: 5: 19-520.

Bartle, E. K. and Watling R. J. (2007) Provenance Determination of Oriental Porcelain using LA-ICP-MS, Journal of Forensic Sciences, 52(2): 341-348

Bednar, A. J. (2009). Determination of Vanadium by Reaction Cell Inductively Coupled Plasma Mass Spectrometry. Talanta 78: 453-457.

Biro, L. J. (1938). Fountain pen for pulpy ink. US Patent No 2265055A.

Blanchard, D. B. and Harrison, S. H. (1978). Trace Element Profiles and Ratios Determined by Instrumental Neutron Activation Analysis for Fine Paper Identification. Journal of Forensic Sciences, 23(4): 679-686.

Blaxland, W. (2008). Pencils, Macmillan Education AU. ISBN 9781420264128.

Boggia, R., Zunin, P., Lanteri, S., Rossi, N. and Evangelisti, F. (2002). Classification and Class-Modeling of Riviera Ligure Extra-Virgin olive Oil using Chemical-Physical Parameters. Journal of Agricultural and Food Chemistry 50(8): 2444-2449.

Page 217: Development of Novel Physical (Electrostatic Detection

217

Boumans, P. W. J. M., (Ed), (1987). Inductively Coupled Plasma Emissison Spectroscopy; Part 1 Methodology, Instrumentation and Performance. Wiley Interscience Vol. 90.

Boyd, R. K., Basic, C. and Bethem, R. A. (2011). Trace quantitative analysis by mass spectrometry. John Wiley & Sons.

Brenner, J. C. (2004). Forensic science: an illustrated dictionary, CRC (pub).

Brown, R. J., Yardley, R. E., Brown, A. S. and Milton, M. J. (2004). Sample Matrix and Critical Interference Effects on the Recovery and Accuracy of Concentration Measurements of Arsenic in Ambient Particulate Samples using ICP-MS. Journal of Analytical Atomic Spectrometry 19: 703-705.

Brunelle, R. L. and Crawford K. R. (2003). Advances in the forensic analysis and dating of writing ink, Charles C Thomas Pub Limited.

Brunelle, R. L. and Reed, R. W. (1984). Forensic examination of ink and paper, CC Thomas.

Brunelle, R. L., Washington, W. D., Hoffman, C. M. and Pro, M. J. (1971). Use of neutron activation analysis for the characterization of paper. Internal Revenue Service, Washington, DC.

Budnar, M., Uršič, M., Simčič, J., Pelicon, P., Kolar,J., Šelih, V. S. and Strlič, M. (2006). Analysis of iron gall inks by PIXE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 243(2): 407–416.

Burgelman, J. C. (1994). Petroski (Henry). The Pencil. A History of Design and Circumstance. Revue belge de philologie et d'histoire 72(4): 929-930.

Bush, V. J., Moyer, T. P., Batts, K. P. and Parisi, J. E. (1995). Essential and Toxic Element Concentrations in Fresh and Formalin-Fixed Human Autopsy Tissues. Clinical Chemistry 41(2): 284-294.

Cain, S., Cantu, A. A. and Brunelle, R. (1978). A scientific study of pencil lead components. Journal of Forensic Science 23: 622 - 671.

Catarino, S., Curvelo-Garcia, A. S. and de Sousa, R. B. (2006). Measurements of Contaminant Elements of Wines by Inductively Coupled Plasma-Mass Spectrometry: A Comparison of Two Calibration Approaches. Talanta 70 (5): 1073-1080.

Cavendish, M. (2002). How It Works: Science and Technology. Cavendish Square Publishing; 3 edition (November 2002), ISBN-10: 0761473149.

Christensen, W. and Wegner, J. (2009). Empire of Ancient Egypt, Infobase Publishing, ISBN 978-1-60413-160-4.

de Hoffman, E., and Stroobant, V. (2007). Mass Spectrometry. Principles and Applications, 3rd Edition edn. West Sussex: Wiley & Sons, ISBN: 978-0-470-03310-4.

Page 218: Development of Novel Physical (Electrostatic Detection

218

Denman , J. A., Kempson, I. M., Skinner, W. M. and Kirkbride, K. P. (2008). Discrimination of pencil markings on paper using elemental analysis: An initial investigation. Forensic Science International 175(2–3): 123–129.

Denman, J. A., Skinner, W. M., Kirkbride, K. P. and Kempson, I. M. (2010). Organic and inorganic discrimination of ballpoint pen inks by ToF-SIMS and multivariate statistics. Applied Surface Science 256(7): 2155–2163.

Dhara, S., Misra, N. L. Maind, S. D., Kumar, S.A., Chattopadhyay, N. and Aggarwal, S. K. (2010). Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples. Spectrochimica Acta Part B: Atomic Spectroscopy. (65)2: 167–170.

Dines, J. E. (1998). Document Examiner Textbook. Pantex International Limited, ISBN 0-9627666-3-1: 576.

Duewer, D. and Kowalski, B. (1975). Forensic data analysis by pattern recognition. Categorization of white bond papers by elemental composition. Analytical Chemistry 47(3): 526-530.

Ellen, D. (2005). Scientific examination of documents: methods and techniques, CRC. ISBN 0-8943-3925-1.

Ellen, D. M., Foster, D. J. and Morantz, D. J. (1980). The use of electrostatic imaging in the detection of indented impressions. Forensic Science International, 15(1): 53-60.

Erol, B., Hull, J. J., Graham, J. and Dar-Shyang, l. (2004). Multimedia document creation with document image matching. Proceedings of the 17th Intenational Conference on Pattern Recognition, 675-678.

Forina, M., Boggia, R. and Casale, M. (2007). The Information Content of Visible Spectra of Extra Virgin Olive Oil in the Characterization of its Origin. Annali di Chimica 97(8): 615-633.

Furia, E., Naccarato, A., Sindona, G., Stabile, G. and Tagarelli, A. (2011). Multielement Fingerprinting as a Tool in Origin Authentication of PGI Food Products: Tropea Red Onion. Journal of Agricultural and Food Chemistry 59(15): 8450-8457.

García-Ruiz, S., Moldovan, M., Fortunato, G., Wunderli, S. and García Alonso, J. I. (2007). Evaluation of Strontium Isotope Abundance Ratios in Combination with Multi-Element Analysis as a Possible Tool to Study the Geographical Origin of Ciders. Analytica Chimica Acta 590(1): 55-66.

Gerber, N., Brogioli, R., Hattendorf, B., Scheeder. M. R. L., Wenk, C. and Günther, D. (2009). Variability of Selected Trace Elements of Different Meat Cuts Determined by ICP-MS and DRC-ICP-MS. Animal 3(1): 166-172.

Gnanadesikan, R. (1997). Methods for Statistical Data Analysis of Multivariate Observations, 2nd edn. New York: John Wiley and Sons.

Gonzálvez, A., Llorens, A., Cervera, M. L., Armenta, S. and de la Guardia, M. (2009). Element Fingerprint of Wines from the Protected Designation of Origin Valencia. Food Chemistry 112(1): 26-34.

Page 219: Development of Novel Physical (Electrostatic Detection

219

Green, R. S. and Watling R. J. (2007). Trace Element Fingerprinting of Australian Ocher Using Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) for the Provenance Establishment and Authentication of Indigenous Art. Journal of Forensic Sciences, 52: 851-859.

Günther, D. and Hattendorf, B. (2005). Solid Sample Analysis using Laser-Ablation- Inductively Coupled Plasma Mass Spectrometry. Trends in Analytical Chemistry 24(3): 255-265.

Günther, D. and Heinrich, C. A. (1999). Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier. . Journal of Analytical Atomic Spectrometry 14: 1363-1368.

Hamilton, C. (2009). The Hitler Diaries - Fakes that fooled the world. University of Kentucky Press, 210p.

Hand, D. J. (1997). Construction and assessment of classification rules (Vol. 15). Chichester: Wiley.

Harris, R. (2009). Selling Hitler. Arrow Books, 402p.

Heath, J. S. (1983) ‘The Effects of ESDA Examination and Photocopying on the Recovery of latent Fingerprints on Documents’, presented to the 3rd Scientific Meeting of the Australian Society of Forensic Document Examiners, 25/26 June, 1983. Australia: Melbourne, Victoria.

Hechtle, E. (1965). Fibre Tipped Pen. US Patent No. 3353899A.

Herbert, H. (2006). Handbook of Paper and Board, Wiley-VCH Verlag Gmbh and Company: Germany. ISBN: 978-3-527-33184-0

Hilton, O. (1992). Scientific examination of questioned documents. New York : Elsevier. ISBN: 0-444-00628-1.

Holler, F. J., Skoog, D. A. and Crouch, S. R. (2007). Chapter 1. Principles of Instrumental Analysis (6th ed.). Cengage Learning, p.9.

Ikemoto, T., Kunito, T., Watanabe, I., Yasunaga, G., Baba, N., Miyazaki, N. and Petrov, E. A. (2004). and Tanabe, S. Comparison of Trace Element Accumulation in Baikal Seals (Pusa sibirica), Caspian Seals (Pusa caspica) and Northern Fur Seals (Callorhinus ursinus). Environmental Pollution 127(1): 83-97.

Karjala, D. S. (1971). The Evidentiary Uses of Neutron Activation Analysis.California Law Review, 59(4): 997-1080.

Kobilinsky, L. F. (2012). Forensic chemistry handbook, Wiley Online Library. ISBN: 978-0-471-73954-8

Koppenhaver, K. (2007). Forensic document examination: Principles and practice, Humana Press. ISBN: 1-58829-743-8

Page 220: Development of Novel Physical (Electrostatic Detection

220

Korsrud, G. O., Meldrum, J. B., Salisbury, C. D., Houlahan, B. J., Saschenbrecker, P. W. and Tittiger, F. (1985). Trace Element Levels in Liver and Kidney from Cattle, Swine and Poultry Slaughtered inCanada. Canadian Journal of Comparative Medicine 49: 159-163.

Kreitals, N. M. and Watling, R. J. (2014). Multi-element analysis using inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectroscopy for provenancing of animals at the continental scale. Forensic Science International 244: 116–121.

Krushevska, A., Waheed, S., Nóbrega, J., Amarisiriwardena, D. and Barnes, R. M. (1998). Reducing polyatomic interferences in the ICP-MS determination of chromium and vanadium in biofluids and tissues. Applied spectroscopy, 52(2): 205-211.

Lander, D. (1988). The Write Stuff, Popular Mechanic, 165 Issue 5

Langmyhr, F. J., Thomassen, Y. and Massoumi, A. (1974). Atomic-absorption spectrometric determination of copper, lead, cadmium and manganese in pulp and paper by the direct-atomization technique. Analytica Chimica Acta 68(2): 305-309.

Lewis, G. W. (1981). Examining indented writing using the electrostatic detection apparatus. In Meeting of the American Society of Questioned Document Examiners, Houston, Texas.

Linge, K. L. and Javis, K. (2009). Quadrupole ICP-MS: Introduction to Instrumentation, Measurement Techniques and Analytical Capabilities. Geostandards and Geoanalytical Research 33(4): 445-467.

Lo Feudo, G., Naccarato, A., Sindona, G., Tagarelli, A. (2010). Investigating the Origin of Tomatoes and Triple Concentrated Tomato Pastes through Multielement Determination by Inductively Coupled Plasma Mass Spectrometry and Statistical Analysis. Journal of Agricultural and Food Chemistry 58(6): 3801-3807.

López-Alonso, M., García-Vaquero, M., Benedito, J. L., Castillo, C. and Miranda, M. (2012). Trace Mineral Status and Toxic Metal Accumulation in Extensive and Intensive Pigs in NW Spain. Livestock Science 146(1): 47-53.

López-Alonso, M., Miranda, M., Castillo, C., Hernández, J., García-Vaquero, M. and Benedito, J. L. (2007). Toxic and Essential Metals in Liver, Kidney and Muscle of Pigs at Slaughter in Galicia, North-West Spain. Food Additives and Contaminants 24(9): 943-954.

Ludwick, T. P., Poppenga, R. H., Green, P. G., Puschner, B., Melton, L. A., Hoar, B. R., Nyberg, N. L, and Maas, J. (2008). The Correlation of Potassium Content and Moisture in Bovine Liver Samples Analyzed for Trace Mineral Concentrations. Journal of Veterinary Diagnostic Investestigation 20(3): 314-320.

Luykx, D. M. A. M. and van Ruth, S. M. (2008). An Overview of Analytical Methods for Determining the Geographical Origin of Food Products. Food Chemistry 107(2): 897-911.

Lyter, A., Cantu, A.A., Brunnelle, R. and Cain, S. (1978). A scientific study of pencil lead components. Journal of Forensic Sciences, 23(4): 643-661.

Page 221: Development of Novel Physical (Electrostatic Detection

221

Mahan, D. C. and Shields, R. G. (1998). Macro- and Micromineral Composition of Pigs from Birth to 145 Kilograms of Body Weight. Journal of Animal Science 76(2): 506-512.

Maind, S. D., Chattopadhyay, N., Gandhi, Ch., Kumar, S. C. and Sudersanan, M. 2008. Science & Justice Quantitative evaluation of europium in blue ballpoint pen inks/offset printing inks tagged with europium thenoyltrifluoroacetonate by spectrofluorimetry and ICP-AES. 48(2): 61–66.

Maind, S. D., Kuma, S. A., Chattopadhyay, N., Gandhi, Ch. and Sudersanan, M. (2006). Analysis of Indian blue ballpoint pen inks tagged with rare-earth thenoyltrifluoroacetonates by inductively coupled plasma–mass spectrometry and instrumental neutron activation analysis. Forensic Science International. 159(1): 32–42.

Martin, A. E., Watling, R. J. and Lee, G. S. (2012). The Multi-Element Determination and Regional Discrimination of Australian Wines. Food Chemistry 133(3): 1081-1089.

Martin, D. (1997). Grading Pencils. Retrieved March 10, 2009. fromhttp://www.pencilpages.com/articles/grades.htm

May, C. J. and Watling, R. J. (2009). A comparison of the use of refractive index (RI) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for the provenance establishment of glass evidence. Forensic Sci. Med. Path. 5: 66-76.

May, C. J. and Watling, R. J. (2011). The Development of Analytical and Interpretational Protocols to Facilitate the Provenance Establishment of Polycarbonate Headlamp Lens Material. Journal of Forensic Sciences, 56: S47-57.

McGaw, E. A., Szymanski, D. W. and Smith, R. W. (2009). Determination of Trace Elemental Concentrations in Document Papers for Forensic Comparison Using Inductively Coupled Plasma–Mass Spectrometry. 54(5): 1163–1170.

Michel, L. and Baier, P. E. (1985). The Diaries of Adolf Hitler. Implication for Document Examiners. Journal of the Forensic Science Society, 25(3): 167-178.

Moore, D. S. (1988). The Electrostatic Detection Apparatus (ESDA) and its effects on latent prints on paper. Journal of Forensic Science, 33(2): 357-377.

Naes, B. E. (2009). Elemental analysis of glass and ink by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser induced breakdown spectroscopy (LIBS). FIU Electronic Theses and Dissertations: 207.

Nardi, E. P., Evangelista, F. S., Tormen, L., SainťPierre, T. D., Curtius, A. J., Souza, S. S. D., and Barbosa, Jr. F. (2009). The use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for the Determination of Toxic and Essential Elements in Different Types of Food Samples. Food Chemistry 112(3): 727-732.

Noblett, M and James E. (1983). Optimum conditions for examination of documents using an electrostatic detection apparatus (ESDA) device to visualize indented writings. Journal of Forensic Sciences, 28(3): 697-712.

Page 222: Development of Novel Physical (Electrostatic Detection

222

Oliveri, P. and Downey, G. (2012). Multivariate Class Modeling for the Verification of Food-Authenticity Claims. TrAC Trends in Analytical Chemistry 35: 74-86.

Padín, P. M., Peña, R. M., García, S., Iglesias, R., Barro, S. and Herrero, C. (2001). Characterization of Galician (N.W. Spain) Quality Brand Potatoes: A Comparison Study of Several Pattern Recognition Techniques. Analyst 126(1): 97-103.

Pellerano, R. G., Uñates, M. A., Cantarelli, M. A. and Marchevsky, E. J. (2012). Analysis of Trace Elements in Multifloral Argentine Honeys and their Classification According to Provenance. Food Chemistry 134(1): 578-582.

Pilgrim, S., Watling, R. J. and Grice, K. 2010 Application for trace element and stable isotope signatures to determine the provenance of tea (camellia sinensis) samples. Food Chemistry 118: 921-926.

Saltman, D. (1978). Paper basics: forestry, manufacture, selection, purchasing, mathematics and metrics, recycling.; Book. Publisher Van Nostrand Reinhold.; New York.

Scadding, R., Winton, V. and Brown, V. (2015). An LA-ICP-MS trace element classificatoin of ochres in the Weld Range environ, Mid West Region, Western Australia. Journal of Archaeological Science, 54: 300-312.

Schlesinger, H. L., and Settle, D. M. (1971). Large scale study of paper using neutron-activation analysis. Journal of Forensic Science 16(3): 309-330.

Siegel, J. A., Saukko, P. J. and Houck, M. M. eds. (2013) Encyclopedia of Forensic Sciences 3V.

Simon, P. J., Giessen, B. C. and Copeland, T. R. (1977). Categorization of papers by trace metal content using atomic absorption spectrometric and pattern recognition techniques. Analytical Chemistry, 49(14): 2285-2288.

Skoog, D. A., Holler, F. J. and Nieman, T. A. (1998). Principles of Instrumental Analysis, ; Thomson Learning. Inc.: Toronto, ON.

Soltanpour, P. N., Johnson, G. W., Workman, S. M., Jones, J. B. and Miller, R. O. (1996). Inductively Coupled Plasma Emission Spectrometry and Indictively Coupled Plasma Mass Spectrometry. In: Methods of Soil Analysis: Part 3 - Chemical Methods. Edited by Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpout, P. N., Tabatabai, M. A,, Johnston, C. T., Sumner, M. E. Soil Science Society of America, Inc. 91-139.

Spence, L. D., Baker, A. T. and Byrne, J. P. (2000). Characterization of document paper using elemental compositions determined by inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 15(7): 813-819.

Steward, G. (1999). Practical Implications of Charge Transport Model for Electrostatic Detection Apparatus (ESDA). Journal of Forensic Sciences 44(4): 832-836.

Page 223: Development of Novel Physical (Electrostatic Detection

223

Tanase, I. Gh., Udriştioiu, F. M. and Bunaciu. A. A. (2012). Analysis of trace elements in paper using inductively coupled plasma - mass spectrometry (ICP - MS) Gazi University Journal of Science 25(4): 843-851.

Thomas, A. G., Herbert, H. K. and Watling, R. J. (1993). The use of statistical and graphical methods to recognise patterns and classify materials from multivariate chemical analyses. 12th Australian Symposium on Analytical Chemistry. 3rd Environmental Chemistry Divisional Conference, Perth, September-October, 1993. Roy. Aust. Chem. Inst., Anal. Chem. Div., Paper 122, Disk 1: 6pp.

Trejos, T. and J. R. Almirall (2005). Sampling strategies for the analysis of glass fragments by LA-ICP-MS: Part I: Microhomogeneity study of glass and its application to the interpretation of forensic evidence. Talanta, 67: 388-395.

Trejos, T., Flores, A. R. and Almirall, J. R. (2010). Micro-spectrochemical analysis of document paper and gel inks by laser ablation inductively coupled plasma mass spectrometry and laser induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy. Volume 65(11): 884–895.

Twede, D., Selke, S. E., Kamdem, D. P. and Shires, D. (2014). Cartons, crates and corrugated board: handbook of paper and wood packaging technology. DEStech Publications, Inc. ISBN: 978-1-60595-135-5

Valentin, J. L. and Watling, R. J. (2013) Provenance establishment of coffee using solution ICP-MS and ICP-AES. Food Chemistry, 141: 98-104.

van Es, A., de Koeijer, J. and van der Peijl, G. (2009). Discrimination of document paper by XRF, LA–ICP–MS and IRMS using multivariate statistical techniques. Science & Justice. Special Issue: Forensic application of isotope ratio mass spectrometry (IRMS). 49(2): 120–126.

Verma, R. S., Prasad, K. N. and Misra, G. J. (1979). Thin layer chromatographic analysis of fibre-tip pen inks. Forensic Science International, 13: 65-70.

Wanxiang, L. and Xiaoling, C. (1988). A study of the principle of the electrostatic imaging technique. Journal of the Forensic Science Society 28(4): 237-242.

Watling, R. J. (1977). The Use of Slotted Quartz Tube for the Determination of Arsenic, Antimony, Selenium and Mercury. Analytica Chimica Acta 94: 181-186.

Watling, R. J. (1998). Sourcing the provenance of cannabis crops using inter-element association patterns ‘fingerprinting’ and laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 13: 917-926.

Watling, R. J. (1999). Novel Application of Laser Ablation Inductively Coupled Plasma Mass Spectrometry in Forensic Science and Forensic Archaeology. Spectroscopy 14(6): 16-34.

Watling, R. J., Herbert, H. K., Delev, D. and Abell, I. D. (1993). Gold fingerprinting by laser ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta 49B: 305-319.

Page 224: Development of Novel Physical (Electrostatic Detection

224

Watling, R. J., Lee G. S., Scadding C. J., Pilgrim T. S., Green R. L., Martin A. E., May C. D. and Valentin J. L. (2010). The Application of Solution and Laser Ablation Based ICP-MS and Solution Based AES for the Provenance Determination of Selected Food and Drink Produce. The Open and Biomedical Methods Journal 3: 177-194.

Watling, R. J., Lynch B. F. and Herring D. (1997). Use of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Fingerprinting Scene of Crime Evidence. Journal of Analytical Atomic Spectrometry, 12: 195-203.

Watling, R. J., Scadding, C.J. and Dixon, R. (2011). Gold – Identifying its provenance. Chapter 88A, 88-1 – 88-13054, in - Expert Evidence, Freckleton and Selby Eds, Law Book Company, SydneyNSW.

Watling, R. J., Scadding, C. J. and May, C. D. (2014). Chemical fingerprinting of gold using laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS). Journal of the Royal Society of Western Australia, 97(1): 87–96.

Watling, R. J., Taylor, J. J., Shell, C. A., Chapman, R. J., Warner, R. B., Cahill, M. and Leake, R. C. (1999). The Application of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) for Establishing the Provenance of Gold Ores and Artefacts. British Archaeological Reports Series BAR 792, 53-63. Young, S. M. M., Pollard, M. A., Budd, P. and Ixer, R. A. (Editors).

Wiedeman, H. G. and Bayer, G. (1983). Papyrus, the paper of Ancient Egypt. Analytical Chemistry, 55(12): 1220 - 1230.

Zhou, H. and J. Liu (1997). The Simultaneous Determination of 15 Toxic Elements in Foods by ICP-MS. Atomic Spectroscopy, 18(4): 115-118.

Zoro, J. A., and Totty, R. N. (1980). The Application of Mass Spectrometry to the Study of Pencil Marks. Journal of Forensic Sciences, 25(3): 675-678.

Page 225: Development of Novel Physical (Electrostatic Detection

225

Appendix 1 Paper and Ash Experiments

Page 226: Development of Novel Physical (Electrostatic Detection

226

Appendix 1 Analytical Data Base for all Paper used in this study Appendix 1

Sample Brand Origin *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu Table 1A Within sheet study ppm

1 A Paper One-Premium All purpose Indonesia Ream 1 558.53 697.49 330.86 28.09 2346.84 73.54 71991.53 9.32 6.68 67.32 989.75 11.09 27578.98 64.78 4966.20 389.24 1086.99 5425.57 202.87 2653.81 1018.101 B Paper One-Premium All purpose Indonesia Ream 1 593.64 683.71 317.01 26.10 2325.84 90.14 71411.51 9.05 6.32 71.15 951.59 14.93 25077.48 72.30 5111.71 312.52 1278.34 5267.12 157.02 2752.21 1047.131 C Paper One-Premium All purpose Indonesia Ream 1 534.43 654.14 273.85 25.43 2162.53 73.31 65385.06 8.32 5.94 58.90 1045.30 16.44 34465.41 78.82 4840.89 415.37 1103.31 5568.54 160.70 2973.78 1215.792 A Paper One-Premium Copier Indonesia Ream 1 504.05 967.80 326.61 28.42 2498.96 33.95 92590.48 9.53 10.23 86.19 1016.82 17.19 47488.44 104.29 5717.66 443.62 1350.97 8626.94 225.99 3825.08 1316.332 B Paper One-Premium Copier Indonesia Ream 1 176.61 897.55 294.33 27.29 2294.91 27.18 85945.44 8.56 9.10 73.66 1022.71 18.30 38912.98 103.27 5612.13 393.03 1220.92 8234.36 212.76 3872.63 1211.822 C Paper One-Premium Copier Indonesia Ream 1 193.75 950.31 331.69 32.46 2483.33 35.14 94361.57 9.26 9.60 78.61 1111.94 17.11 34591.15 111.95 5677.14 382.05 1097.59 8506.13 235.74 4138.23 1366.703 A Reflex-Acid Free (Ream A) Australia Ream 1 1163.51 684.06 341.73 26.40 2281.97 90.35 88506.98 19.30 64.77 220.60 180.88 3.62 40611.45 156.95 14156.63 433.45 1956.17 59092.91 287.20 4368.18 857.513 B Reflex-Acid Free (Ream A) Australia Ream 1 1035.72 721.72 310.52 22.90 2292.99 66.33 89249.10 19.76 66.66 229.77 160.56 4.84 45968.51 163.37 14077.43 437.85 2031.43 61206.02 295.91 4501.32 808.823 C Reflex-Acid Free (Ream A) Australia Ream 1 1080.08 754.18 319.90 21.46 2286.20 82.75 88786.07 20.24 67.11 224.72 161.58 3.93 33946.25 149.33 14227.17 436.56 1848.63 60240.97 285.86 4549.40 880.044 A Fuji Xerox-Business + China Ream 1 1183.86 1195.38 412.80 15.73 2812.19 85.08 88218.22 18.83 5.41 144.03 424.61 8.66 22557.99 117.57 13878.20 736.07 883.83 5049.47 271.15 4171.49 1557.034 B Fuji Xerox-Business + China Ream 1 1119.01 1129.77 381.24 14.52 2787.54 96.50 81294.56 17.42 4.67 128.28 418.62 7.95 23098.15 111.01 12978.75 556.64 944.23 4910.55 243.40 4098.09 1487.294 C Fuji Xerox-Business + China Ream 1 1168.06 1256.69 438.07 16.89 2995.85 103.12 92668.06 20.24 5.65 145.20 416.80 7.78 27130.93 111.46 13491.62 508.09 965.10 4926.77 257.70 4206.61 1603.305 A Perfect Print Indonesia Ream 1 24.32 896.00 284.99 24.16 2409.00 30.10 89374.01 9.61 8.26 67.12 989.20 20.13 12209.40 107.55 6022.43 543.63 1451.73 7717.15 237.39 4531.50 1486.615 B Perfect Print Indonesia Ream 1 33.91 860.92 274.77 24.13 2338.78 33.54 82431.02 8.54 8.08 67.56 974.66 20.07 12419.14 114.01 5652.84 555.61 1165.29 7579.30 251.81 4245.69 1528.105 C Perfect Print Indonesia Ream 1 61.14 949.83 297.75 26.29 2551.67 37.89 90801.05 9.93 8.89 74.41 936.96 18.61 12392.65 111.01 5751.51 539.61 1285.21 7416.00 236.73 4152.38 1583.016 A Excellent Copy Paper Indonesia Ream 1 180.12 959.83 300.83 24.53 2444.80 31.35 87409.68 9.17 9.79 76.65 1048.13 26.72 39617.38 112.85 5573.63 537.30 1113.48 8752.59 242.44 4236.49 1401.636 B Excellent Copy Paper Indonesia Ream 1 134.29 913.86 300.30 22.18 2317.69 39.49 83130.75 9.92 9.21 72.41 1035.56 27.48 45062.22 115.02 6594.68 574.15 1071.62 8939.65 240.19 4241.58 1441.716 C Excellent Copy Paper Indonesia Ream 1 179.39 1035.72 339.26 26.32 2639.02 28.54 95968.67 9.57 10.33 83.46 1076.76 29.48 39489.12 117.16 5606.33 547.63 1055.79 8958.78 247.97 4380.32 1400.087 A Victory Thailand Ream 1 570.26 337.53 67.17 12.84 1436.34 73.76 51774.34 4.84 7.27 26.55 59.06 2.28 4165.18 68.03 2625.81 429.72 1604.99 6683.19 149.18 2803.60 757.597 B Victory Thailand Ream 1 554.28 345.97 70.43 12.99 1477.49 64.40 54365.05 4.98 7.53 25.07 70.84 2.15 3516.31 69.72 2866.87 385.66 1775.05 7046.25 151.60 2835.79 756.587 C Victory Thailand Ream 1 506.75 326.65 69.17 12.74 1419.05 67.17 52439.22 4.41 7.20 30.23 65.15 2.15 3306.57 70.08 2683.38 416.46 1776.42 7015.19 152.80 2787.52 852.998 A Double A/Advance Agro Thailand Ream 1 919.95 587.74 85.03 20.92 1530.82 49.66 53420.30 4.29 7.73 28.85 52.55 2.62 32458.75 69.58 2673.62 281.85 1091.59 6948.53 163.25 2682.28 1727.898 B Double A/Advance Agro Thailand Ream 1 1061.19 649.99 88.03 23.42 1568.87 61.60 59575.71 5.63 8.61 25.76 56.47 2.52 22951.74 66.65 2605.88 283.87 1036.30 6814.02 164.79 2592.65 1553.548 C Double A/Advance Agro Thailand Ream 1 835.46 446.01 73.66 20.56 1382.71 63.51 49219.20 4.77 7.82 23.28 54.36 2.35 35299.07 69.77 2730.81 258.00 1079.31 7546.45 142.94 2687.34 1680.019 A Yes-Bronze Copy/Print China Ream 1 1664.03 1799.42 435.22 13.15 3019.02 77.69 94214.98 18.22 6.34 156.94 478.16 8.64 16032.60 114.73 13225.51 689.52 913.63 5816.09 264.61 4352.06 1247.749 B Yes-Bronze Copy/Print China Ream 1 1679.08 1776.12 449.63 14.13 3073.14 93.37 96604.81 18.54 6.57 158.59 485.76 8.83 16282.86 119.96 13494.19 624.39 969.86 5988.30 267.69 4471.13 1285.169 C Yes-Bronze Copy/Print China Ream 1 1927.66 1910.65 469.57 14.77 3277.26 78.33 98383.77 19.56 6.93 168.51 465.01 9.04 15537.39 118.15 13069.87 683.82 1001.66 5955.53 274.86 4347.22 1261.40

10 A Copy & Laser Paper Indonesia Ream 1 400.75 1144.92 326.84 31.43 2585.53 53.63 101341.69 10.14 10.14 88.82 971.20 22.26 15791.76 111.77 5711.30 372.58 1282.07 7698.49 236.61 4207.99 1438.9910 B Copy & Laser Paper Indonesia Ream 1 364.38 1004.77 284.52 26.57 2333.84 28.38 87776.54 9.50 8.67 74.53 966.63 24.15 15161.30 114.72 6059.52 331.14 1353.15 7929.22 288.54 4360.66 1481.2210 C Copy & Laser Paper Indonesia Ream 1 513.02 1198.81 326.69 29.44 2676.53 45.63 104275.13 9.86 10.46 91.36 926.73 18.66 20905.62 106.41 5299.62 325.84 1014.55 7404.03 231.68 4085.73 1340.2211 A Pacesetter-Premium All Purpose Indonesia Ream 1 2611.75 657.33 416.38 18.18 1659.31 45.57 49396.44 12.42 2.29 50.01 883.20 7.01 30382.72 54.54 7054.87 178.29 693.69 1748.56 128.30 2131.67 623.9411 B Pacesetter-Premium All Purpose Indonesia Ream 1 3293.92 700.19 414.20 16.70 1625.30 47.03 52678.98 10.64 2.19 48.23 845.27 5.88 28387.42 58.22 6261.95 108.18 866.59 1787.79 118.23 2165.11 633.4411 C Pacesetter-Premium All Purpose Indonesia Ream 1 3099.23 640.14 370.25 16.67 1574.30 48.42 46822.85 11.14 2.14 46.51 850.07 4.29 27058.61 62.58 6326.56 139.21 848.16 1780.07 121.15 2261.71 773.8012 A TNPL Copier-Sugar Cane Waste India Ream 1 92.40 3325.93 4788.89 34.01 829.56 39.24 715.01 37.96 2.59 328.69 359.52 5.15 2200.96 73.17 25771.24 1367.20 2175.78 2341.25 115.49 1219.56 464.7712 B TNPL Copier-Sugar Cane Waste India Ream 1 89.48 3590.89 5267.37 35.15 852.57 32.32 619.98 41.03 2.52 362.34 357.59 7.26 2199.24 78.18 26817.51 1335.57 2749.05 2356.94 98.93 1160.39 269.3612 C TNPL Copier-Sugar Cane Waste India Ream 1 47.72 3343.44 4798.21 32.84 812.64 27.33 753.11 37.32 2.42 328.64 351.88 5.63 2442.81 73.20 25721.77 1298.07 2265.48 2333.26 98.12 1099.94 277.4813 A Office Works-Economy Copy/Laser Paper Australia Ream 1 1542.54 698.47 238.66 17.46 1901.34 41.19 75807.51 14.42 68.95 153.51 138.62 3.25 26423.60 110.26 9486.11 280.98 1246.71 59331.23 205.58 3636.35 920.5813 B Office Works-Economy Copy/Laser Paper Australia Ream 1 1794.66 790.95 239.95 14.56 2090.73 48.52 82353.27 15.95 78.18 174.64 144.58 3.44 32624.55 108.56 9135.00 258.18 1058.89 57380.57 209.96 3749.54 636.7313 C Office Works-Economy Copy/Laser Paper Australia Ream 1 1555.74 703.22 221.24 8.57 1959.27 56.51 76769.85 15.06 70.50 158.93 425.81 4.51 36154.38 113.71 9947.32 301.49 1438.08 60862.50 246.84 3913.31 816.5814 A Economy-WA Salvage unknow n Ream 1 1136.84 982.63 269.02 12.17 2460.99 28.24 99961.03 10.04 10.28 100.63 216.26 8.18 18253.54 113.06 5802.26 556.57 729.17 7777.24 229.81 4087.47 482.2814 B Economy-WA Salvage unknow n Ream 1 941.43 857.22 229.82 8.78 2287.62 21.27 84383.09 9.26 8.73 85.85 220.63 9.51 14484.30 116.89 5480.06 647.75 881.35 7964.70 242.49 4568.85 598.7614 C Economy-WA Salvage unknow n Ream 1 964.69 890.17 236.50 11.76 2224.86 16.52 85826.57 8.27 8.65 88.56 210.48 10.19 25929.06 115.07 5529.80 606.50 1355.08 7707.42 237.48 4322.74 493.8515 A Post Off ice Supplies Australia Ream 1 1344.87 694.02 229.08 12.86 1896.01 49.79 76058.76 13.98 74.20 145.34 134.84 3.67 37675.82 121.91 10072.34 214.46 1503.08 67290.38 242.94 4069.61 484.0715 B Post Off ice Supplies Australia Ream 1 1702.38 819.89 270.20 11.97 2125.86 69.01 86780.58 16.00 85.66 171.68 138.72 2.45 29397.57 108.55 8989.70 252.56 1262.18 59305.29 217.02 3746.76 548.7115 C Post Off ice Supplies Australia Ream 1 1505.89 737.71 247.95 17.40 1990.69 51.75 80870.63 14.86 79.43 157.15 125.04 2.46 24145.98 118.95 9305.50 256.02 1289.06 61999.94 223.54 4085.83 473.3116 A Victory Thailand Ream 2 1457.95 1081.44 417.28 25.63 1847.43 31.29 75254.90 12.13 6.65 38.23 189.60 3.61 34352.28 81.80 7518.47 1260.22 2119.30 5492.39 195.45 3896.09 385.4716 B Victory Thailand Ream 2 1253.46 973.61 346.23 20.61 1691.00 23.76 64153.00 10.42 5.23 39.28 210.72 3.41 38480.99 77.10 7614.64 1609.95 1925.00 5117.72 192.69 3848.52 343.0116 C Victory Thailand Ream 2 1423.22 1061.81 392.68 23.58 1832.91 25.31 70389.84 11.58 6.01 41.06 195.80 4.45 18635.14 78.57 7479.81 1577.04 2101.97 5233.75 187.58 3651.89 330.7717 A Presstik Malaysia Ream 1 237.34 7817.50 1254.28 15.62 146.83 34.33 802.38 16.81 2.50 240.51 319.99 8.81 16786.61 77.46 12635.38 953.74 2375.99 2334.23 62.59 1814.17 311.7717 B Presstik Malaysia Ream 1 276.13 6947.79 1347.46 13.39 133.64 34.98 403.67 17.64 2.16 229.94 374.01 9.26 16261.32 83.01 14168.87 985.93 2764.98 2206.12 55.08 1820.77 336.7517 C Presstik Malaysia Ream 1 209.23 7152.76 1280.60 13.35 130.23 21.85 408.62 16.85 2.11 226.92 376.77 10.36 15906.51 81.83 14019.53 950.90 2572.30 2217.64 56.98 1778.51 312.32

Page 227: Development of Novel Physical (Electrostatic Detection

227

Appendix 1 continued Appendix 1

Sample Brand Origin Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce Table 1A Within sheet study

1 A Paper One-Premium All purpose Indonesia Ream 1 5278.62 33.95 9.25 233.53 127.84 171.78 22157.87 579.55 598.24 112.54 2234.28 8.00 130.18 0.18 33.32 11.07 0.21 26.80 775.99 224.02 215.651 B Paper One-Premium All purpose Indonesia Ream 1 5402.20 31.13 10.02 255.92 133.46 166.27 21571.46 560.89 642.32 96.78 2231.18 8.31 114.31 0.16 41.62 11.40 0.28 25.21 748.19 222.95 210.161 C Paper One-Premium All purpose Indonesia Ream 1 6550.71 32.54 9.80 215.53 143.60 184.32 22682.20 581.08 598.13 82.75 2255.80 8.13 104.18 0.17 32.73 11.08 0.28 26.37 780.92 244.44 223.672 A Paper One-Premium Copier Indonesia Ream 1 13321.98 35.83 12.32 698.39 139.21 163.63 28783.85 833.21 940.93 109.92 2686.63 18.94 125.48 0.22 47.74 17.98 0.39 26.01 762.31 336.21 297.812 B Paper One-Premium Copier Indonesia Ream 1 6711.61 34.56 11.65 789.37 166.63 152.21 28162.83 814.04 766.68 96.99 2643.69 16.37 123.08 0.16 41.94 15.36 0.42 25.88 817.22 348.22 291.732 C Paper One-Premium Copier Indonesia Ream 1 11545.15 37.79 8.27 689.08 163.00 158.30 29441.16 885.82 671.00 98.58 2872.92 12.31 137.53 0.17 46.75 15.84 0.53 26.16 832.00 357.10 284.803 A Reflex-Acid Free (Ream A) Australia Ream 1 3414.54 36.74 7.28 191.70 173.28 122.50 38466.33 367.13 29560.52 100.20 411.03 11.73 60.97 0.17 19.78 4.58 0.57 4.47 665.85 137.47 231.063 B Reflex-Acid Free (Ream A) Australia Ream 1 3522.09 35.02 7.70 263.11 163.63 111.67 39204.83 376.15 29328.43 80.59 334.56 10.04 55.45 0.17 16.01 6.32 0.30 4.27 668.66 120.29 198.633 C Reflex-Acid Free (Ream A) Australia Ream 1 3326.21 36.70 4.74 293.90 166.95 108.29 38469.27 370.80 29472.43 84.65 317.52 8.16 25.97 0.16 19.35 3.69 0.34 4.08 721.46 125.82 201.164 A Fuji Xerox-Business + China Ream 1 4611.22 51.86 8.15 1.42 146.65 179.01 37777.75 150.47 1365.70 84.66 554.99 13.96 12.05 0.14 14.22 10.74 0.11 8.75 1807.16 172.97 341.614 B Fuji Xerox-Business + China Ream 1 5215.04 50.96 8.32 1.94 168.87 174.57 36256.69 141.89 1168.81 99.18 554.71 9.21 10.15 0.19 10.69 10.11 0.13 8.22 1738.33 163.17 321.024 C Fuji Xerox-Business + China Ream 1 6559.47 49.43 8.01 1.95 182.22 163.25 36726.71 144.87 1182.75 95.57 543.97 12.11 10.80 0.17 11.42 10.30 0.15 7.98 1722.28 165.98 327.925 A Perfect Print Indonesia Ream 1 8087.27 35.94 11.76 1.64 182.15 193.54 31421.27 768.26 940.46 89.69 1870.65 8.57 123.23 0.16 37.68 12.97 0.38 28.72 746.09 333.69 292.285 B Perfect Print Indonesia Ream 1 7972.98 35.08 10.59 1.60 179.54 212.28 30751.37 751.14 876.26 76.79 1816.66 12.87 128.40 0.16 35.24 13.97 0.43 29.02 806.02 317.32 268.735 C Perfect Print Indonesia Ream 1 7474.09 35.88 11.25 1.53 161.10 189.32 31136.33 751.19 886.84 75.91 1820.61 9.40 124.87 0.15 31.47 12.19 0.62 27.62 768.02 324.81 269.626 A Excellent Copy Paper Indonesia Ream 1 5932.92 38.26 10.68 553.24 136.13 233.61 31706.74 785.42 1095.80 113.07 1663.49 9.04 120.05 0.16 48.14 15.45 0.40 34.67 774.60 322.09 289.096 B Excellent Copy Paper Indonesia Ream 1 6627.70 40.02 11.07 406.77 169.81 240.42 32871.19 796.43 976.84 100.19 1622.17 7.70 120.87 0.17 45.74 13.00 0.44 35.93 793.49 352.94 312.166 C Excellent Copy Paper Indonesia Ream 1 8318.48 39.11 12.82 428.27 175.24 250.16 33703.13 825.46 809.69 97.76 1667.24 9.24 118.48 0.17 50.24 14.83 0.56 37.10 785.16 349.35 307.487 A Victory Thailand Ream 1 5846.70 10.38 2.95 1.28 108.49 138.41 22060.02 597.41 224.25 25.61 28.69 6.37 97.50 0.13 11.64 8.81 0.24 4.12 1157.83 225.17 106.987 B Victory Thailand Ream 1 6090.26 10.99 3.61 1.10 125.27 128.37 23114.59 626.88 243.67 28.92 31.75 5.63 105.68 0.13 12.36 8.96 0.35 3.78 1194.96 236.00 110.407 C Victory Thailand Ream 1 9196.72 10.58 4.43 1.50 111.41 128.99 22255.32 602.68 223.75 28.25 28.93 7.02 100.79 0.15 17.74 8.12 0.32 3.71 1194.00 240.75 111.628 A Double A/Advance Agro Thailand Ream 1 6082.85 11.33 5.63 81.45 135.97 70.24 18916.48 478.89 1844.75 38.51 41.12 8.23 109.13 0.14 49.74 2.96 0.12 1.81 1145.22 186.73 92.978 B Double A/Advance Agro Thailand Ream 1 6674.40 9.37 4.93 81.42 107.22 66.10 18219.63 459.98 2312.19 35.68 34.76 8.16 112.01 0.10 51.38 3.10 0.11 1.71 1098.48 178.69 87.538 C Double A/Advance Agro Thailand Ream 1 4837.14 10.22 5.69 82.28 101.67 70.58 18753.61 460.10 1881.54 38.02 35.77 9.03 109.25 0.16 54.40 3.77 0.13 1.64 1130.49 180.02 88.669 A Yes-Bronze Copy/Print China Ream 1 3380.49 49.97 7.95 1.49 197.24 190.94 38642.07 147.00 692.38 74.98 1448.65 12.78 11.55 0.15 133.48 10.84 0.29 7.81 2828.59 163.52 315.059 B Yes-Bronze Copy/Print China Ream 1 3469.85 53.07 7.98 1.68 186.56 194.23 39267.93 151.06 627.67 73.91 1527.29 11.43 11.15 0.15 122.45 8.28 0.42 8.62 2875.20 175.56 329.439 C Yes-Bronze Copy/Print China Ream 1 3250.32 51.63 8.76 1.66 185.68 205.10 38634.41 149.68 696.13 75.66 1486.11 10.56 13.69 0.17 131.26 7.68 0.33 9.21 3016.09 173.67 326.50

10 A Copy & Laser Paper Indonesia Ream 1 5871.47 35.47 12.59 229.57 189.29 258.08 28053.37 801.17 607.92 84.78 1735.70 11.74 127.88 0.17 35.96 11.41 0.32 39.86 717.56 349.66 296.9710 B Copy & Laser Paper Indonesia Ream 1 6757.32 36.49 12.72 254.82 198.11 229.62 29414.84 839.50 540.27 48.28 1797.41 10.98 138.35 0.15 33.98 10.69 0.24 40.00 883.50 356.08 285.3210 C Copy & Laser Paper Indonesia Ream 1 5678.76 33.10 12.24 371.82 170.17 210.92 27191.65 780.58 538.06 68.73 1723.20 9.32 125.27 0.14 29.48 11.11 0.42 37.65 628.76 323.83 256.1011 A Pacesetter-Premium All Purpose Indonesia Ream 1 1868.95 38.92 4.79 577.54 91.28 87.81 9855.39 147.09 3684.20 135.49 24.17 11.18 14.49 0.45 28.06 10.37 0.36 5.49 1388.89 90.21 161.8711 B Pacesetter-Premium All Purpose Indonesia Ream 1 2959.39 39.34 4.57 733.74 96.08 92.66 10416.13 151.21 4003.42 121.84 30.25 14.17 18.82 0.42 24.29 10.81 0.30 5.75 1283.13 91.71 158.5411 C Pacesetter-Premium All Purpose Indonesia Ream 1 2040.97 41.42 5.20 728.35 105.74 93.19 10592.12 151.01 3827.29 132.01 26.30 7.98 15.97 0.42 25.19 10.64 0.37 5.74 1313.46 90.69 162.7912 A TNPL Copier-Sugar Cane Waste India Ream 1 3661.31 529.18 26.39 1.64 14.54 69.23 2356.11 179.40 1186.39 130.42 46.32 17.76 6.76 0.16 33.43 10.89 0.63 0.82 2305.19 730.08 1425.6412 B TNPL Copier-Sugar Cane Waste India Ream 1 3001.78 501.83 26.20 1.30 9.94 58.03 2155.48 179.37 1050.96 138.28 47.89 15.00 3.23 0.15 30.89 6.22 0.24 1.49 2196.03 693.51 1360.8312 C TNPL Copier-Sugar Cane Waste India Ream 1 3002.95 503.25 24.32 1.65 8.58 57.04 2270.49 171.06 1103.42 128.25 38.90 19.13 5.98 0.17 34.52 7.22 0.64 0.83 1971.37 685.30 1330.3913 A Office Works-Economy Copy/Laser Paper Australia Ream 1 2804.65 27.32 5.11 1.51 155.37 75.19 30593.07 308.87 31569.87 47.95 556.69 10.75 54.51 0.15 23.49 6.07 0.45 4.21 491.39 88.63 141.7213 B Office Works-Economy Copy/Laser Paper Australia Ream 1 2630.15 25.22 4.89 1.49 124.17 69.93 29506.68 298.86 21965.22 34.10 551.86 8.32 43.77 0.15 18.55 2.56 0.43 3.79 470.82 91.50 132.2113 C Office Works-Economy Copy/Laser Paper Australia Ream 1 7488.26 27.61 4.17 1.41 150.32 81.50 31164.33 314.93 9432.06 29.05 595.60 9.79 33.81 0.14 22.62 5.84 0.32 4.14 549.01 95.75 143.1114 A Economy-WA Salvage unknow n Ream 1 6013.91 24.69 5.97 1.30 165.92 50.36 106685.39 382.84 9288.57 65.84 40.36 8.95 39.88 0.13 14.24 5.79 0.50 2.40 2116.18 178.40 289.9314 B Economy-WA Salvage unknow n Ream 1 4513.24 25.66 5.66 1.77 191.32 55.07 109187.26 390.04 4160.60 36.53 42.33 8.15 47.79 0.18 10.10 4.51 0.59 2.84 2350.14 195.73 301.5814 C Economy-WA Salvage unknow n Ream 1 3514.04 26.06 6.54 1.26 160.84 46.25 108870.41 390.38 9455.01 59.05 22.12 9.55 39.03 0.13 8.63 4.93 0.32 2.48 2176.70 200.90 296.8415 A Post Off ice Supplies Australia Ream 1 4043.04 29.39 6.40 1.16 155.11 77.06 33818.45 325.03 16048.27 23.98 866.02 12.50 33.96 0.12 17.99 2.36 0.55 4.12 622.79 97.37 150.6115 B Post Off ice Supplies Australia Ream 1 3115.39 27.56 4.36 1.22 132.22 89.21 30109.25 291.43 19023.00 25.18 796.92 9.10 27.98 0.12 12.46 2.37 0.37 3.99 675.32 94.23 138.7715 C Post Off ice Supplies Australia Ream 1 2312.72 27.66 4.68 1.14 154.43 65.63 31342.18 303.29 26723.90 35.06 838.08 7.69 46.14 0.11 15.95 2.80 0.40 3.71 552.58 93.12 142.6316 A Victory Thailand Ream 2 4031.80 54.24 7.53 1.42 129.30 41.83 42877.29 129.83 3179.19 63.97 56.03 9.33 38.60 0.11 82.46 8.10 0.31 1.88 960.90 102.25 153.0916 B Victory Thailand Ream 2 3135.56 52.60 6.22 1.21 137.60 50.55 44194.13 136.16 746.21 42.89 44.67 6.08 39.33 0.12 55.29 7.07 0.34 2.31 921.07 117.63 150.9216 C Victory Thailand Ream 2 3736.57 52.88 6.79 1.30 133.43 41.02 43666.83 131.68 3013.25 52.70 40.26 7.54 39.96 0.13 81.84 9.10 0.29 1.66 855.86 111.67 138.5917 A Presstik Malaysia Ream 1 5675.62 172.72 55.47 1.70 15.19 59.17 2314.11 42.70 704.79 122.16 44.74 10.08 5.52 0.56 26.71 9.49 0.41 4.61 1371.14 177.86 352.5317 B Presstik Malaysia Ream 1 6082.31 194.86 54.31 0.92 12.20 59.55 2381.25 41.43 453.03 182.66 34.50 5.61 4.54 0.40 21.76 4.98 0.56 4.91 1288.92 176.74 351.0317 C Presstik Malaysia Ream 1 5907.11 193.69 53.94 1.23 20.32 49.51 2365.29 41.74 426.23 183.42 25.13 9.20 8.46 0.32 18.01 4.14 0.40 4.76 1192.27 176.00 347.03

Page 228: Development of Novel Physical (Electrostatic Detection

228

Appendix 1 continued Appendix 1

Sample Brand Origin Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U Table 1A Within sheet study

1 A Paper One-Premium All purpose Indonesia Ream 1 40.42 162.54 33.70 6.23 41.72 8.50 51.00 10.92 31.76 4.93 25.39 4.11 18.68 3.66 31892.82 1.96 434.39 30.04 17.90 39.101 B Paper One-Premium All purpose Indonesia Ream 1 39.98 160.09 33.01 6.17 42.20 8.36 48.80 10.81 31.19 4.45 24.99 4.09 19.50 4.15 33682.26 1.59 456.57 26.48 19.43 35.561 C Paper One-Premium All purpose Indonesia Ream 1 43.59 171.26 33.63 6.33 45.61 8.29 51.21 11.30 32.25 4.84 26.32 3.65 17.12 4.15 31594.83 1.63 490.52 25.95 18.68 37.142 A Paper One-Premium Copier Indonesia Ream 1 56.71 223.03 47.69 8.62 59.82 11.81 71.70 15.16 44.52 5.77 35.42 5.47 27.25 5.95 20041.39 0.87 1085.32 42.95 28.43 29.822 B Paper One-Premium Copier Indonesia Ream 1 57.27 229.35 44.98 8.56 59.80 11.18 68.33 14.83 42.55 5.68 34.20 5.07 21.75 4.95 19665.32 1.34 830.68 35.83 27.03 28.672 C Paper One-Premium Copier Indonesia Ream 1 58.72 246.84 48.99 9.71 66.61 12.41 75.80 15.89 47.30 6.47 35.61 5.34 21.27 5.35 20720.92 1.71 917.06 37.52 35.83 31.783 A Reflex-Acid Free (Ream A) Australia Ream 1 30.46 104.35 19.60 5.14 26.82 5.20 32.97 8.06 25.49 4.12 25.73 4.41 584.97 1.74 12422.41 0.69 371.02 2.99 24.41 20.973 B Reflex-Acid Free (Ream A) Australia Ream 1 26.53 95.84 21.83 5.13 28.06 5.31 34.70 8.34 26.43 4.03 28.34 4.76 572.52 1.66 9539.52 0.66 383.61 2.71 25.27 21.673 C Reflex-Acid Free (Ream A) Australia Ream 1 25.95 95.95 19.90 4.92 26.28 4.95 34.33 8.24 25.52 4.30 28.02 4.71 535.45 1.60 7652.60 0.64 322.79 1.28 23.11 20.764 A Fuji Xerox-Business + China Ream 1 36.41 131.88 24.77 5.83 27.71 4.59 24.87 4.99 13.80 1.42 12.59 1.42 29.87 3.89 13808.86 0.57 451.78 14.64 27.12 41.254 B Fuji Xerox-Business + China Ream 1 35.47 122.30 24.89 6.08 27.34 5.00 23.05 5.22 14.22 1.94 12.11 1.94 31.01 4.34 13283.50 0.78 536.93 15.84 24.84 44.324 C Fuji Xerox-Business + China Ream 1 34.25 124.73 24.84 5.86 28.27 4.64 24.97 5.13 13.39 1.83 11.78 1.83 29.08 4.34 13587.41 0.73 496.77 15.93 25.87 42.365 A Perfect Print Indonesia Ream 1 56.25 216.40 41.71 7.58 57.42 10.46 65.72 14.21 39.72 5.81 32.43 4.94 26.35 3.83 20731.32 1.33 723.69 34.03 22.27 30.795 B Perfect Print Indonesia Ream 1 55.93 211.84 42.96 8.60 55.89 10.58 63.34 13.44 40.07 5.50 31.52 4.73 23.32 3.44 20581.14 1.52 729.82 31.97 16.65 29.865 C Perfect Print Indonesia Ream 1 57.14 211.14 44.21 8.56 55.75 10.35 65.02 14.09 40.04 5.56 31.22 4.96 22.85 3.06 19276.32 1.42 714.75 31.65 16.35 30.426 A Excellent Copy Paper Indonesia Ream 1 57.42 221.82 45.05 9.02 61.38 10.94 68.67 15.06 42.18 5.59 33.82 4.89 30.25 7.10 20111.26 1.49 859.14 58.87 20.26 31.846 B Excellent Copy Paper Indonesia Ream 1 65.82 224.49 46.50 8.37 63.21 11.08 69.88 15.75 42.68 5.95 33.05 5.49 24.32 4.29 15517.37 0.68 889.47 64.81 16.35 34.096 C Excellent Copy Paper Indonesia Ream 1 62.83 233.95 47.16 9.23 60.85 11.51 70.82 15.47 43.30 5.94 34.61 4.94 23.18 6.29 22013.25 1.75 880.12 68.31 21.80 33.677 A Victory Thailand Ream 1 32.96 129.32 24.61 5.83 34.79 6.61 41.29 9.48 27.29 3.57 17.76 2.63 5.57 1.28 304.45 0.51 563.89 3.91 3.34 40.707 B Victory Thailand Ream 1 35.30 137.23 26.04 5.95 36.57 7.07 44.30 9.53 27.01 3.54 19.39 3.00 5.30 1.29 269.00 0.52 636.55 3.84 3.73 41.127 C Victory Thailand Ream 1 36.59 133.60 25.13 6.20 35.91 7.06 41.78 9.44 27.01 3.83 17.80 2.50 5.44 1.50 243.12 0.60 670.36 4.45 3.14 41.298 A Double A/Advance Agro Thailand Ream 1 31.14 119.60 23.54 5.76 30.41 6.05 37.29 8.01 22.89 3.21 16.53 1.45 39.45 1.45 365.62 0.58 443.84 4.20 5.00 27.558 B Double A/Advance Agro Thailand Ream 1 33.61 114.54 22.51 6.30 31.00 6.66 34.63 8.48 23.47 3.88 18.05 1.40 39.12 1.42 368.19 0.57 380.03 3.88 5.05 27.438 C Double A/Advance Agro Thailand Ream 1 29.08 114.61 23.07 5.68 31.80 6.06 36.09 8.02 22.65 3.24 16.32 1.60 37.78 1.60 316.56 0.64 501.82 4.44 5.35 27.549 A Yes-Bronze Copy/Print China Ream 1 32.13 119.66 23.51 5.51 25.44 4.67 24.46 5.81 13.86 1.49 12.30 1.49 16.84 1.34 13240.40 0.60 446.48 18.04 15.58 70.159 B Yes-Bronze Copy/Print China Ream 1 35.24 121.47 24.53 5.99 25.62 4.37 25.65 5.02 14.38 1.49 12.62 1.49 14.78 1.49 13347.85 0.59 486.38 17.07 20.00 69.609 C Yes-Bronze Copy/Print China Ream 1 35.36 123.35 24.98 5.77 26.54 4.37 25.29 5.08 14.94 1.66 12.78 1.66 15.61 1.66 14074.77 0.66 482.54 17.28 21.03 70.09

10 A Copy & Laser Paper Indonesia Ream 1 59.90 229.77 45.14 8.79 61.46 10.72 67.84 14.82 42.33 5.47 33.86 5.17 15.39 3.67 14903.16 1.68 534.04 76.76 24.64 33.7010 B Copy & Laser Paper Indonesia Ream 1 59.81 229.75 44.68 8.80 60.54 11.69 69.04 14.53 43.97 5.98 32.11 5.05 13.94 3.47 14070.23 1.21 497.32 77.54 17.00 33.1510 C Copy & Laser Paper Indonesia Ream 1 57.39 215.79 42.13 8.22 58.46 10.30 66.20 14.31 40.51 5.49 31.67 4.80 13.60 3.36 16023.74 1.25 458.38 74.86 20.03 32.5911 A Pacesetter-Premium All Purpose Indonesia Ream 1 21.16 72.16 18.86 2.93 18.96 4.82 26.01 4.72 13.74 1.57 13.47 1.57 80.95 8.73 224.55 0.63 741.88 7.20 77.75 56.5011 B Pacesetter-Premium All Purpose Indonesia Ream 1 19.23 71.55 18.69 2.76 21.55 4.82 24.49 5.15 14.53 2.40 13.60 2.36 84.76 8.34 220.29 1.00 589.25 5.18 81.63 58.9011 C Pacesetter-Premium All Purpose Indonesia Ream 1 20.11 74.44 18.76 3.26 21.24 4.19 24.80 5.09 13.62 1.51 13.85 1.51 82.24 8.68 211.08 0.60 782.52 6.62 83.75 60.6112 A TNPL Copier-Sugar Cane Waste India Ream 1 145.60 507.07 95.74 16.19 93.63 15.22 71.32 10.16 22.95 1.64 13.52 1.64 34.47 6.10 263.51 0.66 1037.49 5.51 172.26 41.8012 B TNPL Copier-Sugar Cane Waste India Ream 1 139.22 495.52 86.96 15.65 92.43 15.23 67.45 9.27 20.86 1.47 12.56 1.47 38.08 6.50 171.02 0.59 1298.56 6.69 161.97 40.2712 C TNPL Copier-Sugar Cane Waste India Ream 1 137.71 489.74 85.48 15.02 89.06 15.64 66.04 8.95 21.23 1.65 11.87 1.65 36.33 6.46 167.71 0.66 1001.80 7.68 164.44 40.2113 A Office Works-Economy Copy/Laser Paper Australia Ream 1 17.83 66.93 15.17 4.00 19.84 5.43 29.11 7.46 24.76 4.48 30.02 5.84 643.85 1.51 438.41 0.60 329.63 4.54 29.38 26.6413 B Office Works-Economy Copy/Laser Paper Australia Ream 1 18.83 63.35 14.58 3.69 20.02 5.13 28.26 7.67 23.80 4.42 27.16 5.35 419.94 1.49 344.30 0.60 189.29 4.65 23.98 25.4413 C Office Works-Economy Copy/Laser Paper Australia Ream 1 16.23 69.41 15.21 4.32 20.29 5.42 29.24 7.42 25.91 4.05 28.27 5.56 148.56 1.41 626.75 0.56 250.85 4.45 23.89 27.1714 A Economy-WA Salvage unknow n Ream 1 37.85 147.58 31.30 7.60 36.80 7.52 41.86 9.57 28.04 4.09 24.74 4.33 188.35 1.30 176.16 0.52 543.77 7.91 35.89 191.6614 B Economy-WA Salvage unknow n Ream 1 40.84 155.18 32.71 8.23 38.33 8.15 45.51 9.57 29.20 4.20 27.31 3.98 96.52 1.77 188.25 0.71 196.32 8.56 34.99 199.6514 C Economy-WA Salvage unknow n Ream 1 41.58 152.70 31.65 7.94 38.33 7.27 43.02 9.63 27.40 4.22 24.32 4.08 188.08 3.31 116.76 0.50 342.67 3.66 35.64 193.7715 A Post Off ice Supplies Australia Ream 1 20.92 66.66 14.19 4.22 20.74 5.05 28.53 7.92 25.99 4.72 30.92 5.82 303.08 1.16 397.02 0.47 298.74 2.79 24.51 26.9315 B Post Off ice Supplies Australia Ream 1 15.85 59.57 13.28 3.77 17.95 4.37 27.69 7.59 23.44 4.17 27.52 5.22 358.55 1.22 369.84 0.49 210.73 3.08 22.81 25.1315 C Post Off ice Supplies Australia Ream 1 17.23 62.96 13.38 4.04 19.23 4.62 27.77 7.11 24.62 4.37 27.62 5.54 505.73 1.14 398.57 0.46 223.27 2.91 23.45 26.0816 A Victory Thailand Ream 2 21.69 66.47 12.23 4.62 14.04 3.53 16.49 3.61 9.90 1.36 9.14 1.36 61.57 1.44 109.13 0.54 694.52 4.91 15.09 215.7016 B Victory Thailand Ream 2 22.91 65.51 12.52 3.68 14.79 3.54 14.84 4.46 10.51 1.21 9.17 1.21 56.13 1.21 169.37 0.48 391.30 3.86 12.69 215.6316 C Victory Thailand Ream 2 24.06 59.99 11.82 3.65 14.25 2.83 14.17 4.13 9.11 1.30 9.20 1.30 62.36 1.30 76.25 0.52 542.12 3.69 13.18 205.2417 A Presstik Malaysia Ream 1 36.11 122.57 19.49 3.87 18.99 4.31 11.50 1.18 5.32 1.18 4.30 1.18 17.62 13.66 116.35 0.47 255.11 3.99 73.77 24.9517 B Presstik Malaysia Ream 1 35.79 121.66 18.79 3.99 18.15 3.53 11.49 2.38 7.05 0.92 4.07 0.92 14.81 14.72 121.83 0.37 225.83 4.07 112.22 45.7717 C Presstik Malaysia Ream 1 34.45 119.59 17.81 3.73 18.93 2.99 11.02 1.23 5.22 1.23 4.54 1.23 16.31 16.90 123.48 0.49 234.89 2.71 92.86 32.07

Page 229: Development of Novel Physical (Electrostatic Detection

229

Appendix 1 continued Appendix 1

Sample Brand Origin *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu Table 1A Within sheet study ppm

18 A Office One-Copy/Laser Australia Ream 1 1529.36 1499.91 1593.02 70.66 2201.75 77.51 83860.66 29.80 11.10 90.08 1121.08 12.37 41821.38 118.42 17760.29 393.04 1395.01 8112.94 219.61 3789.18 1133.9918 B Office One-Copy/Laser Australia Ream 1 1357.75 1423.53 1408.15 68.03 2172.82 45.39 83442.63 24.18 10.34 85.51 1093.80 12.31 30292.01 116.69 16054.24 364.84 1170.04 8420.22 226.74 3890.85 1020.9018 C Office One-Copy/Laser Australia Ream 1 1562.76 1580.57 1649.97 75.13 2366.95 55.94 86986.38 30.53 12.18 95.56 1068.74 10.87 28914.29 115.65 16714.66 391.00 1019.46 7995.99 207.66 3536.70 1015.4619 A Ultima-Laser Paper Australia Ream 1 1166.81 606.05 239.09 16.79 2597.12 64.93 72120.89 12.70 50.58 153.85 180.47 2.18 45357.77 118.24 10888.26 306.56 1328.65 50212.80 218.05 4052.06 661.9019 B Ultima-Laser Paper Australia Ream 1 1051.04 612.54 290.27 14.39 1829.04 57.87 70736.42 14.73 54.63 160.16 184.56 3.62 40274.21 111.72 10839.19 340.36 1223.67 51381.58 250.32 4245.43 610.9819 C Ultima-Laser Paper Australia Ream 1 1235.27 631.11 301.37 19.38 1840.73 68.89 73678.59 15.14 55.42 158.75 143.69 2.52 37634.23 98.00 9344.44 295.49 987.39 43263.21 189.48 3465.02 507.5720 A S Tudor-Laser (Ream A) Australia Ream 1 1299.71 637.88 180.01 27.16 1927.77 72.59 73194.39 13.13 56.52 151.10 90.89 2.48 46367.91 82.89 7077.41 246.98 770.80 40666.34 184.95 3341.24 459.7620 B S Tudor-Laser (Ream A) Australia Ream 1 1392.01 552.93 164.90 21.77 1755.56 64.00 63543.31 11.99 48.45 131.27 104.25 1.92 51203.84 95.10 7749.06 285.31 1264.01 45493.22 214.07 3874.74 499.6120 C S Tudor-Laser (Ream A) Australia Ream 1 1215.84 605.87 181.45 27.66 1918.42 60.67 69805.35 11.91 53.25 143.19 112.10 2.53 35352.98 101.52 8610.19 332.09 1253.42 49895.93 228.06 4203.51 559.3221 A Economy-WA Salvage unknow n Ream 1 674.49 706.50 202.15 7.89 1977.45 13.97 75475.15 8.57 7.46 74.76 190.13 8.51 25390.82 103.20 4870.71 582.47 613.62 7146.10 217.18 4364.67 404.7421 B Economy-WA Salvage unknow n Ream 1 1063.64 934.42 267.91 10.75 2428.10 19.75 98003.34 9.28 9.87 102.12 206.36 7.73 30436.09 110.57 5600.14 571.57 683.58 7980.63 241.87 4620.68 452.2821 C Economy-WA Salvage unknow n Ream 1 1129.76 1000.32 282.83 9.72 2548.07 18.33 105767.90 10.62 10.21 107.59 199.25 9.39 31385.65 108.20 5469.92 702.10 734.63 7665.53 238.25 4535.88 424.6922 A X Fuji Xerox (Ream A) Australia Ream 1 1418.71 571.46 202.65 15.22 1687.52 38.46 66784.91 21.76 52.78 135.44 108.64 2.82 37077.13 93.33 14330.09 247.52 1635.21 42843.28 181.24 3416.53 447.5822 B X Fuji Xerox (Ream A) Australia Ream 1 1424.89 623.33 223.22 12.25 1805.93 43.67 71457.79 30.21 57.61 148.73 140.82 2.60 33080.83 125.78 14221.34 337.37 1675.79 56943.08 235.85 4422.84 536.1622 C X Fuji Xerox (Ream A) Australia Ream 1 1536.76 628.87 226.89 12.34 1824.22 44.34 72782.97 23.44 58.23 148.02 137.63 2.44 20394.98 117.19 17427.27 307.62 1711.44 54169.23 222.07 4241.23 541.9323 A X Fuji Xerox (Ream B) Australia Ream 2 1550.10 747.04 259.73 12.55 2054.86 51.28 87034.69 18.42 79.41 179.47 128.28 3.10 41375.52 120.55 11545.45 324.56 1808.23 61959.72 241.22 4475.80 474.1223 B X Fuji Xerox (Ream B) Australia Ream 2 1760.53 756.01 242.52 8.15 1991.26 53.17 85909.45 17.69 77.58 182.35 130.84 2.45 36017.63 117.26 10564.62 240.21 1737.78 59081.18 224.41 4203.86 555.8523 C X Fuji Xerox (Ream B) Australia Ream 2 1295.20 669.55 231.83 9.74 1930.24 35.86 75316.10 16.19 70.31 160.21 125.02 3.14 42953.54 122.70 11441.73 301.57 1752.95 64739.09 246.04 4538.23 467.1724 A Reflex (Ream A) Australia Ream 1 1759.03 720.62 258.82 22.07 1981.51 74.96 81553.13 19.35 60.71 185.89 133.25 3.03 19851.75 117.09 11630.60 288.25 1355.06 47599.43 221.73 4265.95 603.7124 B Reflex (Ream A) Australia Ream 1 1741.84 716.96 254.64 20.55 2016.55 71.79 80760.82 18.69 60.52 179.14 132.51 3.07 25614.49 123.59 11690.53 365.58 1144.91 50096.41 232.75 4483.53 589.6224 C Reflex (Ream A) Australia Ream 1 2246.27 856.69 303.41 21.76 2322.23 68.37 94515.26 22.25 72.45 220.11 120.16 2.33 22657.26 111.66 11072.75 315.42 1499.89 44680.46 214.39 4080.82 565.6925 A Australian Australia Ream 1 1094.86 682.01 263.92 15.44 2039.85 43.49 81614.44 116.37 73.32 174.01 134.15 2.45 63544.90 123.19 90691.14 324.65 1797.63 62798.54 249.90 4778.48 688.2525 B Australian Australia Ream 1 1395.31 773.85 326.66 18.23 2074.09 52.53 90477.68 167.73 80.13 190.62 121.54 2.59 50414.62 110.51 107606.32 261.67 1242.09 57693.50 229.11 4268.65 596.9525 C Australian Australia Ream 1 1304.15 773.58 294.24 24.26 2192.66 62.88 90163.68 146.17 80.65 191.27 121.13 2.13 42217.34 114.58 90185.98 313.20 1487.54 56105.79 224.32 4256.87 623.1026 A X Fuji Xerox (Ream C) Australia Ream 3 1076.44 914.57 311.71 15.04 2426.83 92.18 93663.66 20.80 89.94 254.16 174.22 4.38 3517.60 190.39 14490.40 497.54 2599.33 80640.36 369.60 6114.37 649.5826 B X Fuji Xerox (Ream C) Australia Ream 3 1077.24 930.72 412.93 15.44 2961.42 78.88 120688.51 25.22 93.42 313.17 195.97 6.22 3542.49 178.01 15348.76 538.61 2683.11 87964.46 394.55 6582.57 651.4026 C X Fuji Xerox (Ream C) Australia Ream 3 1086.23 899.96 360.94 17.92 2654.96 105.80 106734.35 22.58 92.27 260.77 144.60 4.00 3593.57 166.16 14465.46 470.22 2138.70 78179.92 361.69 6302.04 744.3227 A Reflex-Blue Australia Ream 1 1532.87 719.61 235.28 32.77 2112.12 63.60 84570.54 17.89 60.29 204.52 120.53 2.68 53915.53 100.98 10039.28 257.04 1264.69 42956.06 214.28 4075.62 15936.5527 B Reflex-Blue Australia Ream 1 1508.74 640.80 196.24 31.46 1843.18 49.98 70816.41 15.36 52.44 174.55 121.07 2.13 49889.72 94.25 8686.32 337.66 1282.29 40794.00 206.59 3958.54 15629.6627 C Reflex-Blue Australia Ream 1 1218.37 565.32 172.95 32.49 1734.06 61.47 63483.99 13.84 46.82 156.69 123.78 2.32 52808.85 104.80 9402.24 329.88 1449.89 42066.39 210.45 4070.15 16471.4228 A Australian Archive Paper Australia Ream 1 224.16 561.22 326.78 16.18 1520.97 28.38 53766.15 53.32 3.23 38.05 64.64 2.44 31045.67 57.58 34898.04 131.30 1360.62 2775.62 140.00 2891.05 454.4128 B Australian Archive Paper Australia Ream 1 168.47 576.08 302.40 16.53 1534.09 36.02 52736.22 53.52 3.24 41.00 63.15 1.84 42463.20 55.59 34438.92 131.80 1493.05 2661.83 137.52 2773.22 406.4428 C Australian Archive Paper Australia Ream 1 152.17 571.11 303.22 14.40 1524.10 44.63 53470.28 53.43 3.31 38.53 92.18 2.31 35256.68 54.40 34042.95 134.38 1218.70 2688.93 131.63 2612.18 420.7929 A Reflex-A3 Australia Ream 1 1069.86 1515.48 782.77 59.69 2338.33 57.51 87125.69 15.35 11.24 65.06 638.56 10.84 39407.00 111.32 8935.55 354.64 1455.16 9275.11 231.37 4533.50 1167.4429 B Reflex-A3 Australia Ream 1 1075.92 1505.47 789.96 59.70 2271.75 57.05 85059.25 15.28 10.80 61.27 652.26 12.41 39769.16 104.87 9137.43 319.49 1273.04 8878.30 239.49 4473.76 1134.8029 C Reflex-A3 Australia Ream 1 1024.22 1460.33 759.07 59.45 2135.86 52.51 81050.04 14.83 10.51 61.12 656.03 9.76 44538.86 103.35 9049.54 313.27 956.54 8981.08 232.36 4465.61 1083.4630 A Reflex Acid Free (Ream B) Australia Ream 2 1176.16 805.87 381.98 12.03 2646.04 90.48 107263.58 115.66 75.07 268.77 140.55 4.79 16385.52 149.57 80291.81 373.49 2765.14 58739.99 308.16 5905.53 783.8530 B Reflex Acid Free (Ream B) Australia Ream 2 1140.72 829.57 389.48 15.47 2725.21 110.88 112452.28 116.15 77.70 276.83 128.51 4.32 16617.38 145.14 77505.79 409.81 2062.45 57732.80 300.89 5717.23 810.5530 C Reflex Acid Free (Ream B) Australia Ream 2 1097.97 843.76 400.83 17.43 2772.21 91.97 113604.18 118.68 79.84 274.72 131.66 4.76 16379.37 149.64 79057.03 423.78 2066.06 59358.70 307.61 5987.30 782.2531 A Ultima-Laser Paper Finland Ream 1 1828.93 1861.99 377.27 18.66 3367.47 25.31 102055.57 18.07 9.86 284.04 142.20 8.36 30938.12 109.20 8929.26 743.87 3053.47 6731.94 274.97 7269.66 400.2031 B Ultima-Laser Paper Finland Ream 1 1690.04 1768.27 352.80 15.46 3235.31 25.31 95710.12 16.48 9.30 270.26 182.95 10.97 34434.27 122.27 9674.85 753.78 4253.33 7462.86 339.20 8131.07 401.6331 C Ultima-Laser Paper Finland Ream 1 1822.69 1722.17 355.10 15.00 3102.89 26.43 96663.92 15.91 9.18 272.62 175.67 9.35 29777.34 117.76 9930.90 838.53 4333.92 7571.69 319.78 8020.98 364.3732 A Yes-Color Copy Finland Ream 1 510.30 842.60 1493.59 17.33 1947.23 45.41 71911.86 74.31 11.64 123.20 1629.43 9.64 264.19 153.20 52952.07 981.19 1705.10 10144.67 240.75 4755.41 1153.9032 B Yes-Color Copy Finland Ream 1 540.35 856.65 1514.96 15.75 1927.76 49.34 71373.02 92.15 12.05 125.39 1647.56 9.93 301.01 136.55 66869.15 952.27 1836.31 10005.85 227.41 4547.63 1122.1632 C Yes-Color Copy Finland Ream 1 518.86 841.69 1526.90 16.59 1929.84 43.19 73394.93 64.03 11.62 125.30 1543.93 9.25 277.90 137.44 40439.30 831.41 1858.11 9275.20 213.04 4279.45 1051.3333 A Laser IT Indonesia Ream 1 248.95 1012.47 380.84 25.93 2674.51 28.62 98632.61 11.60 10.92 104.09 818.26 22.70 8245.99 98.76 5340.14 361.28 509.14 7788.29 218.84 4661.83 1190.9633 B Laser IT Indonesia Ream 1 204.33 902.61 339.84 25.13 2439.55 24.15 84363.21 11.17 9.73 88.01 847.15 20.03 8690.27 103.41 5428.39 365.20 575.79 8183.71 223.82 4989.99 1234.8533 C Laser IT Indonesia Ream 1 244.23 842.08 295.85 21.96 2291.31 26.27 79874.88 10.38 9.09 80.38 886.47 22.86 7840.59 106.64 6055.18 361.47 540.75 8254.41 232.65 5108.89 1225.1234 A Viking-Premium Paper Indonesia Ream 1 607.52 459.81 393.44 21.22 1301.62 45.50 39227.35 3167.12 2.45 30.51 39.97 0.55 190.96 42.92 1022771.35 125.32 459.48 1995.14 99.83 2077.48 1326.5834 B Viking-Premium Paper Indonesia Ream 1 648.42 537.37 434.94 19.35 1576.10 49.06 44054.82 3135.65 2.70 33.73 32.80 0.61 220.60 41.67 1037673.73 140.46 681.63 1899.22 91.44 1934.32 1405.6234 C Viking-Premium Paper Indonesia Ream 1 731.79 562.32 388.68 22.54 1627.70 52.07 48834.48 2959.38 2.88 30.27 35.97 0.50 182.60 37.50 1087902.89 134.31 531.48 1893.52 91.99 1963.73 1932.01

Page 230: Development of Novel Physical (Electrostatic Detection

230

Appendix 1 continued Appendix 1

Sample Brand Origin Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce Table 1A Within sheet study

18 A Office One-Copy/Laser Australia Ream 1 4432.30 185.36 12.00 99.51 138.59 235.77 28829.70 418.96 427.89 133.28 77.67 7.61 29.39 0.49 75.12 11.14 0.43 41.51 629.84 253.74 295.0618 B Office One-Copy/Laser Australia Ream 1 4607.39 181.76 11.56 96.34 156.63 230.65 30208.77 444.64 385.90 120.98 72.65 10.30 32.24 0.68 63.03 9.76 0.64 44.43 598.99 258.60 298.0418 C Office One-Copy/Laser Australia Ream 1 4293.55 182.42 10.46 101.07 135.49 217.29 28355.40 406.87 520.11 126.08 56.04 9.16 26.90 0.55 56.26 11.82 0.41 41.78 544.05 254.36 297.9619 A Ultima-Laser Paper Australia Ream 1 3685.61 34.36 4.69 2.00 168.37 94.90 30410.70 336.03 15909.58 65.79 1090.70 9.90 24.47 0.61 14.76 10.40 0.64 4.69 603.52 96.99 154.6719 B Ultima-Laser Paper Australia Ream 1 3948.13 34.00 5.13 1.60 164.56 86.01 31116.83 350.66 18757.59 53.12 1058.59 6.42 29.26 0.66 11.67 11.12 0.63 4.51 601.81 106.32 161.3019 C Ultima-Laser Paper Australia Ream 1 4272.48 28.31 5.02 1.35 122.89 70.45 26278.56 292.08 16770.51 43.00 941.64 8.86 35.04 0.59 15.36 10.42 0.38 3.48 496.07 86.42 131.4720 A S Tudor-Laser (Ream A) Australia Ream 1 3584.20 18.27 6.07 1.77 116.72 61.23 24954.74 183.87 1454.28 64.35 1579.44 7.86 18.41 0.48 18.46 15.51 0.14 2.72 429.26 93.50 123.5520 B S Tudor-Laser (Ream A) Australia Ream 1 15880.23 20.99 5.56 1.50 137.13 67.35 28435.35 237.85 1320.17 78.31 1704.39 8.55 24.77 0.47 16.13 11.67 0.15 2.56 485.85 118.05 161.3920 C S Tudor-Laser (Ream A) Australia Ream 1 9158.89 24.42 5.61 1.95 160.92 70.15 31155.89 244.76 1429.55 43.37 1909.97 7.52 26.03 0.41 20.78 13.48 0.15 2.74 577.44 114.57 144.5121 A Economy-WA Salvage unknow n Ream 1 7016.34 22.29 5.22 2.06 141.52 41.58 94847.91 340.39 1668.43 38.86 31.77 12.02 28.37 0.21 10.85 2.89 1.69 2.03 2004.74 185.33 279.2521 B Economy-WA Salvage unknow n Ream 1 7087.04 26.34 7.99 1.65 190.26 46.57 107252.25 384.35 1388.89 60.03 31.94 11.67 30.56 0.17 9.08 4.03 1.43 2.66 2155.03 194.14 302.8021 C Economy-WA Salvage unknow n Ream 1 7254.20 24.14 5.91 1.84 200.01 50.27 105615.68 373.95 1336.83 39.00 31.90 9.06 28.12 0.18 10.96 2.73 1.41 2.36 2246.95 203.79 289.4322 A X Fuji Xerox (Ream A) Australia Ream 1 4918.41 23.24 5.79 1.67 169.15 74.14 24387.79 246.64 12735.28 44.65 492.41 10.99 30.99 0.47 17.68 1.34 0.40 3.63 418.37 76.33 115.3422 B X Fuji Xerox (Ream A) Australia Ream 1 6709.66 28.99 5.92 2.19 207.59 90.99 32150.71 333.12 12835.97 44.22 524.76 10.40 32.70 0.58 19.08 1.53 0.38 4.72 526.63 95.74 147.8122 C X Fuji Xerox (Ream A) Australia Ream 1 4843.44 30.01 6.59 1.87 157.88 82.38 31115.87 321.17 16703.35 45.21 624.46 14.09 35.42 0.41 17.48 2.76 0.40 4.61 507.31 94.18 147.3123 A X Fuji Xerox (Ream B) Australia Ream 2 10313.21 30.23 6.67 1.70 172.86 84.19 32829.48 327.20 26026.15 78.97 422.88 9.96 46.46 0.35 29.88 4.37 0.42 4.89 596.65 90.63 143.7023 B X Fuji Xerox (Ream B) Australia Ream 2 10208.72 28.75 5.07 1.33 182.48 82.75 31205.76 314.56 20509.81 59.05 416.32 9.33 40.90 0.39 28.41 4.53 0.29 4.85 522.91 90.15 137.5623 C X Fuji Xerox (Ream B) Australia Ream 2 10183.37 32.79 5.96 1.76 179.95 80.20 33721.67 342.55 24107.81 48.30 413.55 9.37 34.51 0.38 27.93 3.27 0.42 5.27 604.63 94.83 147.5724 A Reflex (Ream A) Australia Ream 1 9857.77 29.15 5.63 1.87 174.20 99.68 31364.01 323.04 8608.31 64.96 704.21 9.07 37.56 1.09 12.27 1.31 0.35 5.37 578.30 99.91 155.6924 B Reflex (Ream A) Australia Ream 1 8495.82 30.13 6.42 1.48 163.11 99.26 32566.23 340.34 8587.67 49.88 739.09 7.48 31.47 1.11 14.10 1.43 0.30 5.64 584.10 125.20 173.3224 C Reflex (Ream A) Australia Ream 1 9285.04 27.20 6.17 1.83 154.25 87.29 29611.38 300.69 8813.03 47.32 672.06 7.53 27.20 1.18 11.06 1.39 0.35 4.93 535.76 92.90 147.7825 A Australian Australia Ream 1 7566.01 30.11 5.54 42.01 180.12 67.62 32716.49 318.63 7180.24 41.61 355.84 14.96 31.07 0.88 40.37 4.21 0.58 3.36 548.15 110.75 152.0925 B Australian Australia Ream 1 7852.08 29.91 6.93 49.07 180.41 61.15 30159.99 287.16 8987.10 42.28 364.63 14.00 29.72 0.82 35.53 3.90 0.44 3.19 502.19 107.03 135.8125 C Australian Australia Ream 1 9339.41 28.43 8.14 46.51 160.18 59.04 29467.03 283.83 8252.79 57.01 334.97 16.69 47.55 0.96 46.50 6.60 0.61 2.90 498.91 94.89 136.0726 A X Fuji Xerox (Ream C) Australia Ream 3 8322.69 40.12 7.87 2.25 216.42 118.44 40359.34 484.32 3652.37 35.50 628.40 8.28 25.40 0.22 21.84 1.63 0.59 4.98 850.82 144.23 211.2626 B X Fuji Xerox (Ream C) Australia Ream 3 8163.84 43.32 8.73 2.44 290.65 144.84 43892.01 522.70 3985.13 39.47 676.13 8.51 35.98 0.24 21.94 1.71 0.56 5.56 919.03 157.73 242.7026 C X Fuji Xerox (Ream C) Australia Ream 3 7814.43 42.01 8.58 2.46 225.64 110.77 41894.40 451.88 3367.10 27.46 799.81 8.37 29.75 0.28 21.35 1.93 0.62 4.52 701.33 138.24 230.0627 A Reflex-Blue Australia Ream 1 7858.28 22.37 6.40 2.20 161.88 79.20 27475.33 195.07 595.37 53.59 46.58 12.44 18.32 0.48 27.05 5.90 0.46 3.30 616.37 83.42 118.4127 B Reflex-Blue Australia Ream 1 9134.77 22.17 7.13 2.04 164.37 60.41 25992.67 183.39 609.28 61.71 33.25 12.82 18.39 0.50 28.05 8.33 0.61 3.24 581.54 88.86 117.7727 C Reflex-Blue Australia Ream 1 7522.45 22.40 5.73 2.57 176.77 67.06 27063.83 189.82 804.00 79.78 45.24 12.93 16.83 0.54 36.64 5.84 0.70 3.24 632.87 83.05 120.6628 A Australian Archive Paper Australia Ream 1 5076.69 24.37 7.17 23.86 110.04 73.91 12756.15 113.91 5071.90 69.79 15.73 17.57 12.99 0.21 25.53 6.41 0.40 1.12 566.78 65.53 87.9428 B Australian Archive Paper Australia Ream 1 5467.12 23.06 7.40 24.05 133.17 63.90 12211.60 109.72 4911.73 64.93 16.94 15.21 13.55 0.20 17.63 6.38 0.35 1.02 586.25 67.48 89.4528 C Australian Archive Paper Australia Ream 1 4819.92 23.23 7.12 26.90 106.30 64.30 11884.83 108.75 3474.97 48.92 15.28 19.05 18.75 0.21 25.57 6.02 0.37 1.05 575.59 72.88 91.6029 A Reflex-A3 Australia Ream 1 9127.72 103.31 7.59 2.74 194.32 245.17 31268.85 443.95 314.26 88.25 31.75 9.61 34.04 0.27 67.09 5.67 0.55 50.49 595.32 234.94 239.8329 B Reflex-A3 Australia Ream 1 9677.72 103.19 9.71 2.31 192.30 241.95 31022.13 443.98 370.72 78.54 38.57 9.11 37.38 0.22 64.78 7.01 0.41 49.19 566.06 233.98 238.6629 C Reflex-A3 Australia Ream 1 8086.02 111.11 8.37 2.14 163.37 238.38 31284.21 449.86 336.80 67.56 31.37 8.91 34.62 0.21 56.61 7.27 0.49 49.98 590.45 244.02 244.8530 A Reflex Acid Free (Ream B) Australia Ream 2 18756.35 38.57 7.93 54.83 182.17 116.03 39064.52 370.28 27640.34 54.76 227.92 13.30 31.00 0.49 37.77 5.25 0.55 3.86 756.68 163.94 229.7130 B Reflex Acid Free (Ream B) Australia Ream 2 28662.87 35.50 7.12 51.99 234.04 109.70 38704.06 372.28 23764.26 57.86 221.90 9.54 34.07 0.50 55.07 5.29 0.34 4.30 706.17 121.44 207.9530 C Reflex Acid Free (Ream B) Australia Ream 2 24272.56 37.89 8.05 52.03 229.05 109.77 39447.83 381.10 24281.62 66.94 228.82 11.98 44.39 0.74 42.13 9.32 0.40 4.33 720.19 128.29 210.3631 A Ultima-Laser Paper Finland Ream 1 12075.46 46.66 9.33 228.71 187.13 36.89 47588.50 329.68 1595.16 338.98 25.82 4.74 40.27 0.26 28.32 8.35 0.41 1.30 2029.24 238.28 433.0031 B Ultima-Laser Paper Finland Ream 1 9505.09 53.81 12.59 220.13 253.56 41.21 54474.43 377.54 1661.93 423.76 31.81 4.74 50.00 0.28 24.73 8.61 0.45 1.18 2515.14 275.91 519.8231 C Ultima-Laser Paper Finland Ream 1 6373.94 50.81 9.68 221.66 203.83 41.56 55550.55 377.63 1741.78 415.45 26.39 4.54 47.82 0.27 26.21 9.40 0.39 1.85 2304.11 247.67 475.6732 A Yes-Color Copy Finland Ream 1 7945.93 255.05 19.33 1.97 175.48 72.97 145896.23 353.23 26480.84 275.01 28.55 9.49 50.26 0.18 57.58 8.09 0.34 17.91 1978.40 346.81 640.7832 B Yes-Color Copy Finland Ream 1 6014.41 252.86 17.20 1.81 150.24 71.52 145008.92 353.27 28145.28 206.79 25.94 7.39 55.87 0.18 58.32 9.02 0.42 17.59 2020.11 396.62 717.1932 C Yes-Color Copy Finland Ream 1 6032.99 234.71 19.01 2.01 190.97 63.89 136157.71 323.90 32491.72 209.38 26.66 9.32 57.31 0.20 56.91 10.82 0.47 16.91 1844.74 339.48 603.0633 A Laser IT Indonesia Ream 1 4260.36 37.29 10.63 127.34 204.10 189.31 27885.91 721.24 668.13 105.70 1124.21 11.20 121.75 0.24 46.56 9.20 0.59 29.72 804.13 361.25 291.7733 B Laser IT Indonesia Ream 1 4237.26 39.36 11.54 138.34 218.67 227.86 29025.95 738.15 620.32 119.02 1197.16 10.99 120.32 0.27 55.73 9.49 0.51 30.10 856.47 359.04 321.0633 C Laser IT Indonesia Ream 1 3878.57 40.77 11.83 118.43 229.58 193.58 29779.42 761.69 824.02 111.90 1206.77 14.01 125.83 0.29 51.84 8.38 0.53 30.58 892.85 370.56 327.8134 A Viking-Premium Paper Indonesia Ream 1 12542.06 16.86 3.31 1.78 95.17 53.40 9180.61 80.08 2798.50 262.75 3.24 7.60 9.23 0.18 16.97 16.60 0.14 0.89 559.54 50.07 69.9834 B Viking-Premium Paper Indonesia Ream 1 9519.69 23.52 3.18 1.95 92.28 62.23 9270.73 77.02 3183.39 224.08 3.50 5.09 7.56 0.20 19.26 20.18 0.16 0.98 547.40 52.17 60.0834 C Viking-Premium Paper Indonesia Ream 1 13144.36 19.27 2.67 1.62 99.32 52.26 8974.83 81.62 2797.44 372.09 3.99 6.56 9.72 0.16 14.59 18.88 0.13 1.69 558.16 48.57 62.69

Page 231: Development of Novel Physical (Electrostatic Detection

231

Appendix 1 continued Appendix 1

Sample Brand Origin Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U Table 1A Within sheet study

18 A Office One-Copy/Laser Australia Ream 1 42.29 157.53 30.25 7.35 38.62 8.88 41.79 9.57 22.27 3.12 17.94 2.05 12.10 9.19 312.36 0.61 540.79 46.27 33.58 30.5918 B Office One-Copy/Laser Australia Ream 1 46.88 162.06 30.29 7.87 38.56 8.37 41.36 8.78 25.26 3.42 16.62 1.44 10.51 8.28 232.78 0.58 628.21 33.80 32.15 29.9718 C Office One-Copy/Laser Australia Ream 1 45.05 156.30 27.69 7.29 35.95 7.35 38.01 8.37 22.42 3.31 17.10 2.78 12.68 9.42 279.51 0.39 571.45 47.73 30.92 27.6219 A Ultima-Laser Paper Australia Ream 1 19.93 75.56 16.42 4.65 22.30 5.88 32.23 8.53 27.09 5.21 30.56 5.97 163.28 2.00 558.76 0.80 231.99 6.89 26.17 27.7519 B Ultima-Laser Paper Australia Ream 1 22.64 76.99 17.59 5.93 24.32 7.56 34.29 10.06 29.79 6.05 34.73 7.19 178.65 1.60 466.12 0.64 216.16 6.33 24.48 29.3319 C Ultima-Laser Paper Australia Ream 1 16.74 62.59 13.14 4.15 19.80 4.99 29.20 7.32 23.66 4.40 27.44 5.28 142.89 1.35 394.44 0.54 162.79 6.19 20.79 24.0520 A S Tudor-Laser (Ream A) Australia Ream 1 15.27 54.02 11.06 3.07 13.94 4.77 17.65 4.32 10.82 1.77 8.89 1.77 30.10 1.77 1062.10 0.71 213.39 5.42 8.25 5.3520 B S Tudor-Laser (Ream A) Australia Ream 1 20.41 70.58 15.73 3.62 19.21 4.83 23.42 5.88 15.88 1.89 14.25 1.89 29.33 1.89 1017.18 0.76 174.45 4.67 9.57 8.1120 C S Tudor-Laser (Ream A) Australia Ream 1 17.47 69.96 15.00 3.63 18.61 4.37 23.94 5.61 15.15 1.95 14.84 1.95 31.31 1.95 1147.95 0.78 215.83 6.33 12.11 9.8721 A Economy-WA Salvage unknow n Ream 1 40.58 137.46 28.97 7.19 35.35 7.31 40.91 8.43 24.91 2.06 22.87 2.06 54.75 2.06 229.54 0.82 317.01 5.35 29.87 167.9521 B Economy-WA Salvage unknow n Ream 1 44.28 152.61 31.14 7.86 39.47 8.06 43.75 9.47 28.84 4.49 24.77 4.25 95.51 4.21 102.23 0.66 155.41 3.85 36.30 192.6621 C Economy-WA Salvage unknow n Ream 1 38.53 153.61 30.27 7.94 39.11 8.19 43.06 9.61 29.55 4.28 25.21 4.01 40.95 1.84 320.87 0.73 173.93 3.32 34.21 191.4722 A X Fuji Xerox (Ream A) Australia Ream 1 14.04 53.77 11.92 3.92 15.26 4.50 25.17 5.99 21.50 4.12 24.74 4.71 278.91 1.92 204.99 0.77 180.39 4.89 19.50 22.2022 B X Fuji Xerox (Ream A) Australia Ream 1 21.74 70.61 15.44 4.64 23.30 5.66 31.32 7.93 28.34 5.17 33.77 6.68 277.10 2.19 180.34 0.88 240.06 4.34 23.92 30.6122 C X Fuji Xerox (Ream A) Australia Ream 1 19.71 68.45 14.68 4.15 21.03 4.69 32.08 8.08 27.51 4.92 32.38 6.50 373.25 1.87 271.69 0.75 167.30 4.42 24.41 28.7823 A X Fuji Xerox (Ream B) Australia Ream 2 17.61 66.87 15.11 3.85 20.87 5.73 30.21 8.13 27.92 5.21 32.84 6.26 491.48 1.70 201.25 0.68 173.40 7.95 27.51 30.4923 B X Fuji Xerox (Ream B) Australia Ream 2 22.98 64.79 15.18 4.87 20.25 5.51 29.51 8.16 29.45 5.39 31.21 6.45 377.84 2.14 201.15 0.58 153.13 7.11 24.91 29.6423 C X Fuji Xerox (Ream B) Australia Ream 2 19.93 70.73 15.30 4.43 21.55 5.69 32.43 8.42 30.10 5.06 31.92 6.86 385.14 1.76 174.76 0.71 151.46 7.41 27.66 31.7024 A Reflex (Ream A) Australia Ream 1 18.08 73.00 16.66 4.66 22.04 5.55 30.73 8.44 24.77 4.86 30.31 5.62 272.29 1.87 327.81 0.75 124.99 1.52 22.31 26.1824 B Reflex (Ream A) Australia Ream 1 20.66 83.18 17.65 4.07 25.80 5.79 33.73 8.58 27.77 5.12 31.62 5.29 223.65 2.04 329.74 0.82 125.55 1.63 25.21 28.7024 C Reflex (Ream A) Australia Ream 1 18.22 69.49 15.41 4.46 20.47 5.27 31.89 7.70 25.25 4.39 30.46 5.23 193.10 1.83 279.24 0.73 127.22 1.46 22.35 24.9025 A Australian Australia Ream 1 21.09 76.23 15.69 4.94 21.40 6.63 30.10 8.37 26.32 4.82 26.80 5.14 151.32 2.01 199.66 0.81 217.86 4.24 21.18 24.4625 B Australian Australia Ream 1 19.12 68.05 13.76 4.51 18.99 4.89 28.39 7.38 23.13 4.23 26.44 4.77 194.77 1.78 206.11 0.71 185.91 5.21 19.59 22.5225 C Australian Australia Ream 1 20.94 66.03 14.43 4.45 19.94 5.13 26.86 7.41 23.37 4.13 26.23 4.88 173.55 2.00 178.36 0.80 190.42 4.85 19.87 21.6126 A X Fuji Xerox (Ream C) Australia Ream 3 27.14 104.57 21.08 6.12 29.57 7.30 45.37 10.41 37.04 6.39 41.07 8.12 1116.15 2.73 1605.81 0.90 392.14 3.97 33.38 37.0226 B X Fuji Xerox (Ream C) Australia Ream 3 29.73 117.34 26.36 7.16 35.48 7.39 48.78 12.90 41.04 6.83 47.31 9.12 1136.62 2.44 1323.64 0.98 286.11 4.24 37.01 41.5626 C X Fuji Xerox (Ream C) Australia Ream 3 37.14 111.12 24.69 5.86 32.06 7.70 42.37 10.66 36.36 6.03 40.47 8.84 1150.17 2.76 1607.01 1.10 321.32 5.20 34.11 35.6227 A Reflex-Blue Australia Ream 1 16.86 58.26 11.68 3.48 14.42 2.20 19.59 2.20 12.47 2.20 10.06 2.20 12.89 2.20 81.02 0.88 1964.48 4.76 8.97 5.4827 B Reflex-Blue Australia Ream 1 16.64 54.80 12.69 4.17 15.56 2.17 20.56 2.70 12.38 2.02 10.70 2.02 11.84 2.02 81.53 0.81 2129.12 4.90 8.80 6.0527 C Reflex-Blue Australia Ream 1 21.28 56.92 12.76 4.42 15.66 2.57 19.11 2.57 12.08 2.57 9.28 2.57 14.40 2.57 79.29 1.03 2170.31 4.78 9.98 6.2328 A Australian Archive Paper Australia Ream 1 16.02 49.77 10.70 1.53 13.17 2.07 16.32 2.07 10.67 2.07 9.45 2.07 94.82 2.13 10.13 0.83 125.87 3.53 12.20 63.3328 B Australian Archive Paper Australia Ream 1 12.72 50.43 10.34 1.52 13.40 2.05 14.79 2.05 9.31 2.05 11.53 2.05 96.70 2.05 10.97 0.82 96.12 3.64 11.27 60.3028 C Australian Archive Paper Australia Ream 1 16.12 51.82 10.50 1.55 14.90 2.10 16.16 2.10 9.70 2.10 9.90 2.10 91.11 2.10 10.67 0.84 108.39 4.79 13.29 60.1229 A Reflex-A3 Australia Ream 1 39.48 150.42 27.60 6.63 38.33 7.07 40.29 8.49 26.57 2.74 17.44 2.74 8.08 7.74 152.38 1.10 662.47 33.33 21.61 29.8829 B Reflex-A3 Australia Ream 1 37.90 148.68 28.22 6.44 38.65 7.57 40.61 9.12 25.57 2.31 18.46 2.31 7.74 8.64 153.57 0.92 554.63 33.84 22.41 27.5729 C Reflex-A3 Australia Ream 1 39.12 153.23 28.10 6.22 38.09 7.99 41.73 9.43 24.86 2.14 18.53 2.14 8.89 8.14 187.79 0.85 583.08 31.40 23.68 29.9130 A Reflex Acid Free (Ream B) Australia Ream 2 28.53 104.73 22.21 6.34 29.50 6.48 37.83 9.41 29.33 4.73 30.71 5.67 351.50 2.08 6899.31 0.83 236.79 3.66 27.40 22.4430 B Reflex Acid Free (Ream B) Australia Ream 2 27.16 97.62 21.61 5.26 28.95 5.74 36.42 8.83 28.18 4.71 30.46 5.07 370.43 1.97 7243.03 0.79 208.07 3.90 27.43 22.4230 C Reflex Acid Free (Ream B) Australia Ream 2 25.89 99.02 21.86 6.01 30.41 5.81 38.26 8.95 28.34 4.84 31.53 5.62 465.78 2.03 7724.82 0.81 267.69 3.96 26.08 23.3531 A Ultima-Laser Paper Finland Ream 1 53.17 193.29 38.21 9.67 45.77 8.72 48.35 9.62 27.75 5.60 23.35 4.60 33.94 20.49 94.60 1.04 347.20 2.08 32.04 170.4931 B Ultima-Laser Paper Finland Ream 1 67.34 228.81 46.78 10.84 56.93 12.18 59.62 12.87 33.98 6.58 30.31 6.01 37.85 24.30 92.38 0.94 350.68 2.94 38.70 199.1131 C Ultima-Laser Paper Finland Ream 1 64.06 214.29 45.28 9.08 52.43 9.85 57.21 10.65 31.27 5.52 26.64 4.77 38.73 23.14 92.10 0.96 335.38 3.52 36.55 190.2432 A Yes-Color Copy Finland Ream 1 69.89 247.57 47.12 10.84 53.82 9.55 55.44 10.92 33.66 5.70 31.38 5.74 461.37 8.87 130.11 0.79 519.44 10.13 95.52 146.1432 B Yes-Color Copy Finland Ream 1 80.96 271.01 49.28 10.42 58.05 9.77 55.83 11.61 34.14 5.88 34.43 6.05 427.57 8.75 127.68 0.70 534.79 7.70 91.06 150.6932 C Yes-Color Copy Finland Ream 1 63.92 231.58 46.25 9.38 51.09 8.60 49.91 10.09 29.83 4.89 29.48 4.91 436.44 7.69 132.23 0.80 414.57 7.24 89.03 137.3133 A Laser IT Indonesia Ream 1 58.65 216.80 45.02 8.89 59.66 10.90 66.43 14.40 39.91 5.95 32.82 5.06 16.47 9.11 12184.06 0.97 252.32 82.71 33.39 26.4733 B Laser IT Indonesia Ream 1 64.18 236.99 46.71 9.51 61.01 11.60 64.10 14.67 43.30 6.27 35.25 5.37 16.60 9.10 11219.87 1.06 377.65 82.20 31.28 27.0633 C Laser IT Indonesia Ream 1 70.41 241.12 45.37 9.55 62.52 11.47 72.42 14.37 42.40 6.03 34.59 5.93 21.00 10.21 13077.24 1.17 304.34 87.45 37.82 26.2334 A Viking-Premium Paper Indonesia Ream 1 9.86 40.11 7.72 1.32 10.18 1.78 12.52 1.78 7.16 1.78 6.22 1.78 55.99 13.36 35.67 0.71 91.32 1.91 9.97 49.6534 B Viking-Premium Paper Indonesia Ream 1 12.29 33.58 7.25 1.45 9.72 1.95 9.73 1.95 6.06 1.95 5.11 1.95 82.94 17.14 41.19 0.78 54.93 1.56 8.73 49.8234 C Viking-Premium Paper Indonesia Ream 1 12.13 36.53 8.02 1.20 10.01 1.62 11.01 1.62 6.49 1.62 5.34 1.62 74.72 16.75 38.58 0.65 84.81 1.25 10.45 51.53

Page 232: Development of Novel Physical (Electrostatic Detection

232

Appendix 1 continued Appendix 1

Sample Brand Origin *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu Table 1A Within sheet study ppm

35 A Office Works-Recycled Copy/Laser Germany Ream 1 2146.93 1228.34 9472.12 49.68 2963.64 399.02 82091.12 238.97 18.62 523.54 2406.39 56.87 2489.63 203.51 123086.42 1403.40 2600.80 12273.90 494.27 4166.83 1548.7935 B Office Works-Recycled Copy/Laser Germany Ream 1 2288.30 1189.27 7009.99 39.57 2435.55 361.11 63238.98 172.03 14.65 406.93 2313.58 45.68 2095.96 205.92 120608.40 1468.08 2437.09 12484.35 504.53 4237.89 1545.4335 C Office Works-Recycled Copy/Laser Germany Ream 1 2741.15 1391.14 8546.14 48.13 2665.31 434.98 70763.75 186.89 15.12 465.41 2460.90 53.16 1960.24 221.22 123051.58 1447.55 2578.77 11828.53 542.62 4297.82 1562.5836 A Double A/Advance Agro Thailand Ream 2 1180.39 626.18 101.74 25.12 1792.02 36.00 65348.74 8.38 6.82 27.04 29.73 2.20 2082.70 53.76 3545.58 199.82 997.37 4601.12 126.05 2827.99 1440.2136 B Double A/Advance Agro Thailand Ream 2 1133.63 623.58 91.92 26.76 1741.29 34.94 63264.23 7.51 6.91 31.74 32.43 2.87 2119.50 59.86 3616.68 252.11 1106.70 4772.21 138.94 3076.79 1480.9636 C Double A/Advance Agro Thailand Ream 2 1120.36 641.97 106.67 26.78 1797.77 30.35 64683.72 6.74 7.18 32.17 28.99 2.65 1738.35 63.21 2884.53 190.15 1027.10 4853.25 137.61 3046.39 1510.5937 A HP-Every day Hi White Brazil Ream 1 265.75 441.96 384.49 76.42 2263.44 37.97 77994.91 8.48 4.34 41.20 64.24 3.31 40451.42 73.44 4219.15 456.08 631.22 3752.19 206.64 4517.04 342.9737 B HP-Every day Hi White Brazil Ream 1 275.01 445.80 383.45 70.42 2476.13 48.03 89279.39 8.96 4.89 49.17 72.22 3.90 42375.15 77.44 3667.62 511.49 624.66 3802.47 225.05 4584.06 372.7237 C HP-Every day Hi White Brazil Ream 1 273.67 482.34 354.95 66.17 2117.34 36.32 69420.46 8.44 3.93 37.11 59.01 3.63 38282.78 72.28 3903.41 507.84 604.51 3405.42 193.46 4112.89 328.7538 A Double A/Advance Agro Thailand Ream 3 1221.65 697.60 83.65 26.80 1790.56 45.63 68510.06 6.76 8.41 38.66 43.71 1.75 14312.94 73.47 2957.32 280.45 1356.01 6117.19 188.86 3048.20 1813.2338 B Double A/Advance Agro Thailand Ream 3 1020.43 582.31 90.35 22.82 1551.21 48.09 57284.52 6.08 7.23 23.71 26.88 3.31 10984.19 61.06 2758.30 250.08 1017.38 5470.12 110.93 2500.20 1362.1738 C Double A/Advance Agro Thailand Ream 3 1030.25 594.71 95.93 23.19 1623.47 34.77 58465.33 5.72 6.73 21.47 56.88 2.64 12309.72 60.27 2707.40 234.64 800.02 5913.60 123.01 2724.59 1420.7939 A HP-Every day Paper Brazil Ream 1 860.52 529.11 451.08 78.90 2861.42 46.32 74785.18 12.79 3.66 43.46 42.53 1.81 28836.78 33.98 2419.47 328.73 694.13 2742.61 114.79 2715.85 283.0439 B HP-Every day Paper Brazil Ream 1 964.87 606.29 447.15 89.48 3057.21 52.93 86210.80 14.60 4.68 52.34 53.86 1.79 26948.98 36.87 3391.58 337.96 785.52 2887.56 187.50 3006.46 237.1239 C HP-Every day Paper Brazil Ream 1 808.53 597.71 406.22 90.08 3013.58 57.35 80720.77 14.40 4.06 52.77 42.21 2.03 28543.52 33.94 2719.37 305.75 700.93 2906.43 143.43 3127.09 253.6340 A Laser IT Indonesia Ream 2 228.04 970.34 383.40 24.37 2648.12 36.91 91644.68 11.80 10.88 99.87 803.57 22.94 5941.81 103.50 5336.90 391.09 495.34 7550.37 203.98 4556.04 1184.8340 B Laser IT Indonesia Ream 2 238.71 1000.42 391.39 27.60 2607.67 39.81 95034.77 11.95 11.05 102.78 826.25 20.79 6133.84 94.94 5630.38 357.10 569.67 8088.41 210.50 4669.53 1159.3840 C Laser IT Indonesia Ream 2 225.24 925.53 338.51 23.06 2491.81 30.57 88275.52 11.18 9.87 88.50 858.39 24.66 7527.91 103.86 5488.84 419.63 358.62 7838.84 218.60 5035.21 1270.7341 A Laser IT Indonesia Ream 3 226.05 844.12 310.52 21.95 2233.98 20.39 80290.40 9.81 9.10 79.48 842.86 20.43 9283.15 100.90 5744.96 340.51 555.61 8062.53 239.95 4845.76 1165.9441 B Laser IT Indonesia Ream 3 246.50 888.15 314.64 24.71 2313.31 17.83 84465.41 9.39 9.93 90.97 897.18 18.41 8989.99 102.38 5585.43 368.20 528.18 8385.24 231.61 4995.19 1249.1341 C Laser IT Indonesia Ream 3 236.97 912.58 339.17 24.31 2445.10 22.13 86971.62 10.91 9.89 90.69 994.18 26.46 13216.90 110.84 5750.01 346.71 600.23 8267.15 232.72 4994.70 1273.0642 A Office Works-Recycled Copy/Laser Germany Ream 2 2306.68 1229.08 8096.48 46.13 2676.00 403.24 71102.14 193.24 15.70 444.53 2595.51 59.57 2092.27 224.95 132044.89 1624.23 2576.99 12739.22 538.13 4543.62 1649.2442 B Office Works-Recycled Copy/Laser Germany Ream 2 2554.57 1319.75 8698.66 46.31 2678.38 405.71 74414.85 206.93 16.92 489.62 2390.47 49.64 1802.46 211.92 127912.70 1372.48 2540.19 12351.29 529.25 4199.69 1572.8042 C Office Works-Recycled Copy/Laser Germany Ream 2 2315.13 1259.92 8233.10 44.95 2710.11 386.16 70576.87 197.72 15.77 461.74 2194.90 46.48 2651.11 193.78 106788.81 1322.32 2499.48 11496.27 474.04 3959.22 1434.7643 A Office Works-High White Copy/Laser Australia Ream 1 1685.57 981.80 461.95 7.25 3417.28 99.78 107807.41 29.05 72.72 273.94 118.53 3.89 47777.62 89.01 9713.91 227.17 1515.75 46519.35 184.66 4453.11 413.6343 B Office Works-High White Copy/Laser Australia Ream 1 1269.32 791.47 320.72 5.35 3007.23 94.32 86556.33 24.72 59.36 215.38 126.72 3.35 46096.75 98.49 10804.35 261.74 1171.80 51114.54 186.53 4389.43 392.3243 C Office Works-High White Copy/Laser Australia Ream 1 1485.67 880.65 413.16 9.27 3244.62 101.51 97312.55 27.34 65.60 242.63 159.47 3.47 48772.24 99.14 11166.77 145.89 1829.35 50877.14 187.65 4243.17 423.2144 A Office Works-Premium Copy/Laser Australia Ream 1 1638.48 1158.01 443.18 9.12 3801.83 109.72 123550.10 29.57 81.95 349.85 113.90 4.12 47647.80 90.14 8850.60 195.12 1505.49 47792.09 184.24 4092.09 476.0044 B Office Works-Premium Copy/Laser Australia Ream 1 1338.21 956.25 374.05 7.77 3254.16 97.42 102216.06 24.95 67.21 243.39 143.42 4.89 41154.33 108.45 11276.29 217.52 1484.86 58682.43 226.71 5424.78 584.0644 C Office Works-Premium Copy/Laser Australia Ream 1 1402.53 973.82 370.68 17.21 3363.21 79.32 102816.25 26.82 66.63 249.65 133.56 2.00 46544.13 98.53 10224.71 253.12 1710.50 52153.00 204.20 4721.21 532.8545 A Paper One-Premium Copier Indonesia Ream 1 168.14 1011.51 337.67 30.73 2565.61 36.38 97255.36 9.51 12.60 91.05 1051.83 15.29 38388.60 102.84 4682.00 359.20 905.12 10423.00 247.24 3992.71 1362.7345 B Paper One-Premium Copier Indonesia Ream 1 154.23 904.83 305.23 28.95 2363.24 33.86 87792.27 9.74 8.21 76.63 1056.91 13.01 40832.02 108.42 7210.01 395.40 1280.43 7454.69 214.17 3826.27 1202.6745 C Paper One-Premium Copier Indonesia Ream 1 152.06 899.32 309.74 28.49 2348.36 26.03 87849.87 8.10 8.12 70.78 1042.73 24.30 41771.94 108.25 5114.91 464.10 1483.93 7489.75 213.08 4016.96 1329.4546 A Paper One-Presentation Indonesia Ream 1 833.66 583.18 368.11 27.80 3452.86 111.90 94700.75 14.41 5.60 80.37 994.71 9.64 34173.59 76.99 4379.89 248.81 1532.57 4593.20 170.05 4645.10 853.4346 B Paper One-Presentation Indonesia Ream 1 732.28 522.48 325.76 24.63 3197.36 85.56 84995.16 13.04 4.46 63.30 870.95 6.02 32476.58 66.80 3533.80 232.38 1102.00 3768.19 138.83 3950.49 704.5446 C Paper One-Presentation Indonesia Ream 1 731.85 530.79 320.88 24.21 3192.46 77.65 87179.21 12.10 4.73 65.09 924.16 7.71 25380.52 70.11 3902.68 241.12 1163.34 4146.44 151.54 4540.94 749.1647 A Paper One-Premium All Purpose Indonesia Ream 2 877.27 668.19 299.28 25.40 2673.58 83.82 70303.63 11.68 5.94 66.13 978.85 11.66 39405.11 57.35 4253.31 158.51 1558.38 5457.92 142.74 3941.34 860.5847 B Paper One-Premium All Purpose Indonesia Ream 2 957.48 724.85 325.41 27.81 2881.00 104.49 76719.47 11.85 6.39 67.29 879.13 12.74 40121.55 53.59 3854.45 100.13 1215.26 5072.06 122.80 3402.25 738.1947 C Paper One-Premium All Purpose Indonesia Ream 2 874.00 662.49 297.97 27.47 2790.01 83.02 70384.35 12.59 5.67 65.43 912.77 12.01 42575.20 59.25 3654.61 125.07 1037.12 5153.05 121.67 3396.54 752.7448 A Reflex-Recycled Pure White Australia Ream 1 1220.79 879.49 515.66 23.10 3235.05 119.49 102921.83 31.18 65.81 247.95 198.27 5.31 7136.84 123.89 16063.21 176.60 1954.47 56191.65 247.90 5329.09 504.8448 B Reflex-Recycled Pure White Australia Ream 1 1277.53 898.89 532.41 15.61 3457.05 115.79 105820.16 33.70 67.89 252.39 183.15 2.34 6358.15 107.74 15398.18 245.40 1458.07 50801.57 228.97 4964.19 484.2548 C Reflex-Recycled Pure White Australia Ream 1 1198.74 812.39 476.31 18.31 3230.00 100.13 94634.42 29.97 61.31 224.19 191.92 6.13 8073.20 111.11 14459.88 195.88 1345.94 55217.31 233.28 5044.19 515.9149 A Reflex-Laser Carbon Neutral Australia Ream 1 2079.25 1093.41 253.95 68.68 2663.84 137.11 71269.38 11.73 9.76 47.36 391.75 22.33 6035.16 56.55 3955.30 98.77 945.17 9168.81 158.17 3743.85 880.0249 B Reflex-Laser Carbon Neutral Australia Ream 1 2091.98 1108.61 251.32 67.93 2658.27 157.57 72167.13 12.82 9.71 49.51 334.12 16.26 5759.38 55.29 4152.14 90.67 854.34 8777.00 137.64 3635.51 869.6249 C Reflex-Laser Carbon Neutral Australia Ream 1 2092.05 1045.41 246.47 69.83 2619.23 137.64 67925.86 11.69 9.18 43.98 299.01 16.40 4325.86 49.20 3747.82 127.33 916.55 8197.10 124.70 3302.99 948.6650 A Reflex-New Ultra White Australia Ream 1 1424.00 936.75 336.10 23.68 3260.14 134.47 97144.61 22.76 64.27 238.99 158.20 4.24 34697.90 105.66 11015.29 176.63 1964.79 56073.48 229.55 5237.06 489.8650 B Reflex-New Ultra White Australia Ream 1 1424.34 997.34 351.86 14.14 3328.98 135.25 103406.45 23.93 67.64 249.57 144.65 5.09 23229.60 106.33 10724.20 198.94 1743.44 54836.73 219.96 5166.84 484.2850 C Reflex-New Ultra White Australia Ream 1 1344.46 954.90 334.98 11.86 3395.49 148.62 98292.32 24.69 66.04 245.62 176.73 3.72 54244.79 115.78 10662.12 189.72 1376.94 55826.98 231.83 5409.16 530.3251 A Reflex-100% Recycled Pure White Australia Ream 1 1413.31 676.72 521.52 34.17 2541.17 99.85 68112.74 33.53 43.34 181.19 193.22 3.19 21331.85 85.90 17558.79 176.98 1157.65 38595.22 190.79 3990.39 600.8551 B Reflex-100% Recycled Pure White Australia Ream 1 1495.12 738.15 564.61 35.54 2603.28 94.59 72906.39 34.51 44.86 193.76 193.14 3.03 22492.15 84.26 16595.64 180.83 1076.77 37219.52 183.62 3689.33 563.9751 C Reflex-100% Recycled Pure White Australia Ream 1 1496.98 726.65 565.94 35.77 2587.67 115.89 71784.00 33.14 44.63 191.41 197.38 4.15 23033.94 83.95 16215.03 115.90 1124.91 37270.94 187.62 3737.59 524.38

Page 233: Development of Novel Physical (Electrostatic Detection

233

Appendix 1 continued Appendix 1

Sample Brand Origin Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce Table 1A Within sheet study

35 A Office Works-Recycled Copy/Laser Germany Ream 1 31894.49 842.25 28.43 52.06 201.66 2826.24 75012.03 748.45 15818.31 396.67 64.02 11.86 55.19 0.58 246.36 42.87 0.65 203.57 7154.01 935.69 1616.3935 B Office Works-Recycled Copy/Laser Germany Ream 1 32578.80 832.25 29.96 46.85 158.64 2641.56 76255.01 744.19 17027.09 343.01 62.22 9.33 59.85 0.76 218.98 37.86 0.60 187.63 6846.11 947.21 1635.9935 C Office Works-Recycled Copy/Laser Germany Ream 1 30672.63 902.40 28.69 56.75 181.83 2899.43 74838.06 773.65 19918.55 374.81 65.83 10.26 73.31 0.68 257.45 47.06 0.50 213.95 7965.99 968.49 1643.9236 A Double A/Advance Agro Thailand Ream 2 3106.41 9.09 4.23 134.44 140.31 54.66 11659.33 521.00 408.62 52.91 14.62 12.13 127.16 0.20 50.91 7.15 0.46 1.00 1053.48 223.39 83.7636 B Double A/Advance Agro Thailand Ream 2 2806.04 8.36 4.52 150.44 135.63 52.20 11947.93 525.81 410.51 44.43 12.27 10.88 125.81 0.21 53.51 6.75 0.48 1.07 1082.91 222.15 81.7036 C Double A/Advance Agro Thailand Ream 2 2910.01 10.57 5.51 160.85 99.25 50.48 11917.53 525.10 239.30 47.01 15.22 10.98 119.59 0.22 47.71 6.14 0.60 1.09 1096.48 255.84 81.0137 A HP-Every day Hi White Brazil Ream 1 2971.13 22.51 8.00 2.60 176.59 47.76 236907.73 126.53 184.17 50.59 16.34 12.51 2.33 0.26 47.98 4.84 0.63 1.29 3055.19 50.91 104.8137 B HP-Every day Hi White Brazil Ream 1 3134.77 24.98 8.25 2.42 191.16 48.85 241264.94 133.23 224.93 53.55 19.68 15.51 2.80 0.24 40.28 6.89 0.39 1.21 3103.65 51.21 102.0137 C HP-Every day Hi White Brazil Ream 1 3216.26 21.27 8.56 2.93 162.87 45.87 217035.93 114.79 211.29 52.87 15.20 14.36 2.64 0.28 51.81 5.22 0.50 1.46 2808.99 43.88 96.9638 A Double A/Advance Agro Thailand Ream 3 4049.18 7.58 5.91 97.94 138.07 75.56 19233.98 532.86 1221.79 38.65 30.03 11.05 116.19 0.20 47.97 6.37 0.27 1.36 1070.52 258.52 82.9238 B Double A/Advance Agro Thailand Ream 3 3811.29 12.54 4.04 99.95 93.75 53.01 12790.05 474.27 781.33 41.18 22.90 8.03 112.69 0.13 68.42 2.47 0.24 1.28 1071.95 170.24 79.2538 C Double A/Advance Agro Thailand Ream 3 4054.86 9.27 5.71 127.20 132.45 52.58 13227.30 492.71 1379.77 44.56 22.05 10.80 118.52 0.21 37.06 6.03 0.38 1.46 1149.97 184.55 94.7739 A HP-Every day Paper Brazil Ream 1 852.87 16.49 4.80 1075.92 153.95 49.95 196845.65 112.10 308.91 30.63 41.17 1.03 60.15 0.45 50.43 27.88 0.94 2.07 2874.61 74.79 126.3139 B HP-Every day Paper Brazil Ream 1 576.69 15.33 2.84 898.08 153.83 49.90 218589.50 116.25 357.13 40.52 45.37 1.04 63.10 0.60 51.02 25.43 1.11 1.43 2940.95 65.85 112.4039 C HP-Every day Paper Brazil Ream 1 632.66 14.47 2.78 1011.96 127.21 39.88 207754.21 137.84 372.16 31.40 40.70 1.04 77.33 0.31 75.38 26.07 1.36 2.13 2904.06 66.78 118.1540 A Laser IT Indonesia Ream 2 3639.46 37.72 12.58 126.70 248.81 199.16 27605.34 692.68 431.73 83.78 1098.48 14.17 123.18 0.35 46.61 11.33 0.40 28.86 897.57 356.81 304.9240 B Laser IT Indonesia Ream 2 3475.01 41.30 12.37 149.25 212.41 202.37 29353.24 750.00 509.52 112.66 1197.70 15.86 116.56 0.28 47.56 9.36 0.58 30.93 871.50 370.11 320.0040 C Laser IT Indonesia Ream 2 4924.93 39.03 10.17 114.21 222.49 197.97 28997.31 730.92 559.58 84.73 1187.75 11.43 113.89 0.31 52.27 10.52 0.37 30.14 884.24 367.79 307.1041 A Laser IT Indonesia Ream 3 4219.16 39.17 10.30 129.37 224.30 205.32 28136.12 713.42 848.74 114.30 1118.85 10.51 136.41 0.23 78.33 8.36 0.51 29.48 797.82 337.29 293.4341 B Laser IT Indonesia Ream 3 4031.63 39.11 12.38 131.30 191.62 214.23 30646.64 797.25 1042.82 111.76 1223.66 10.26 127.89 0.25 72.07 8.34 0.78 30.12 830.80 378.47 350.6341 C Laser IT Indonesia Ream 3 4284.47 39.86 9.83 123.13 155.33 204.80 28796.88 749.80 919.93 116.30 1164.34 12.71 122.09 0.18 50.48 8.68 0.90 31.38 820.25 359.45 332.3342 A Office Works-Recycled Copy/Laser Germany Ream 2 31523.55 876.52 33.10 56.37 207.66 2929.00 79518.15 815.40 18977.77 408.33 74.27 11.70 67.50 0.59 254.71 45.62 0.77 206.66 7387.64 962.47 1645.0042 B Office Works-Recycled Copy/Laser Germany Ream 2 32255.55 887.72 31.17 55.07 145.63 2798.17 77381.39 775.44 19434.71 388.56 53.35 11.37 65.10 0.75 249.35 43.30 0.51 208.42 7681.59 998.21 1724.6042 C Office Works-Recycled Copy/Laser Germany Ream 2 31366.82 812.66 22.81 44.22 188.83 2640.05 69205.56 675.45 14351.48 317.60 64.46 8.38 55.74 0.67 218.73 38.87 0.47 190.07 6896.88 890.70 1526.7043 A Office Works-High White Copy/Laser Australia Ream 1 1156.63 29.42 4.28 756.17 252.73 102.84 33329.92 347.53 11746.09 31.85 135.67 0.72 21.93 0.21 16.50 4.74 0.25 4.79 684.65 132.12 230.5543 B Office Works-High White Copy/Laser Australia Ream 1 1227.52 29.31 4.53 844.49 273.47 99.80 33992.92 346.96 12001.79 33.20 130.05 0.64 18.48 0.22 19.90 2.62 0.54 4.33 646.90 113.52 200.3443 C Office Works-High White Copy/Laser Australia Ream 1 1153.44 27.63 3.99 1119.44 188.40 96.25 33029.03 354.44 12689.62 34.60 129.85 0.58 26.87 0.31 21.83 3.12 0.43 3.93 623.32 118.18 211.9144 A Office Works-Premium Copy/Laser Australia Ream 1 584.75 24.49 1.82 913.08 153.92 80.70 31492.48 300.44 3030.34 13.46 162.01 0.24 16.29 0.06 18.20 3.48 0.09 3.94 563.39 126.14 226.9744 B Office Works-Premium Copy/Laser Australia Ream 1 1342.96 30.49 4.75 1019.67 221.36 104.72 39707.16 388.41 6240.48 34.14 193.38 0.44 26.37 0.13 27.80 3.43 0.18 4.54 715.39 140.76 254.0444 C Office Works-Premium Copy/Laser Australia Ream 1 875.50 28.95 4.12 891.63 198.36 94.59 33660.85 313.29 16193.65 19.33 173.30 0.47 29.46 0.12 20.93 5.92 0.26 4.16 637.84 123.01 202.4345 A Paper One-Premium Copier Indonesia Ream 1 10774.32 36.81 9.51 690.93 141.11 145.83 27722.30 808.12 857.92 106.35 2602.49 12.60 140.63 0.16 40.27 18.79 0.45 24.27 752.61 329.46 286.0845 B Paper One-Premium Copier Indonesia Ream 1 10500.81 34.33 12.89 925.89 164.66 168.36 29252.48 863.48 814.78 104.73 2774.29 20.49 122.35 0.15 53.09 14.68 0.51 26.53 831.70 359.97 299.4745 C Paper One-Premium Copier Indonesia Ream 1 10303.62 37.03 9.84 560.03 163.07 159.95 29413.05 861.48 705.91 94.41 2826.47 14.55 123.10 0.24 43.07 15.73 0.38 27.26 827.21 352.10 288.7846 A Paper One-Presentation Indonesia Ream 1 1459.68 31.30 7.53 1256.59 196.80 94.51 22590.24 798.22 521.18 63.02 2364.43 0.20 182.25 0.06 22.55 13.64 0.21 19.20 879.80 349.80 264.7846 B Paper One-Presentation Indonesia Ream 1 1786.30 25.63 4.51 874.96 152.15 77.29 18527.02 651.18 583.62 67.25 1941.33 0.06 144.62 0.05 18.20 11.99 0.24 15.31 721.85 295.28 230.7146 C Paper One-Presentation Indonesia Ream 1 824.53 25.76 6.76 1028.85 217.44 82.07 20789.85 724.23 742.21 76.63 2168.88 0.09 158.74 0.07 18.63 10.41 0.23 15.97 760.97 330.64 261.2947 A Paper One-Premium All Purpose Indonesia Ream 2 1365.07 27.45 5.68 1117.50 164.08 169.05 22549.30 561.52 1230.60 117.39 2231.13 0.67 85.64 0.21 35.57 13.91 0.22 32.79 889.67 286.95 308.7847 B Paper One-Premium All Purpose Indonesia Ream 2 1415.39 25.81 7.64 1054.40 150.20 145.47 20166.35 515.42 1000.98 99.91 1966.64 0.55 87.78 0.12 36.27 13.30 0.10 30.23 794.90 272.98 281.8047 C Paper One-Premium All Purpose Indonesia Ream 2 999.68 26.34 6.07 890.48 192.85 139.69 20065.65 509.82 1013.51 96.13 1995.07 0.66 91.17 0.08 31.43 11.13 0.14 29.11 759.53 260.24 285.0848 A Reflex-Recycled Pure White Australia Ream 1 1205.71 45.00 4.51 1254.72 233.62 108.15 39676.64 397.44 19619.01 66.37 405.34 1.21 50.95 0.06 33.37 18.14 0.24 5.00 837.20 184.85 315.3748 B Reflex-Recycled Pure White Australia Ream 1 1082.52 43.50 5.62 1006.87 187.95 103.60 36113.89 363.19 11636.79 73.68 347.89 0.50 32.26 0.02 19.63 16.51 0.23 4.82 763.23 172.05 316.0548 C Reflex-Recycled Pure White Australia Ream 1 1212.93 43.62 4.09 881.86 192.54 104.72 34628.94 363.78 19511.73 67.89 345.09 0.70 36.70 0.03 27.88 11.95 0.35 4.69 764.26 169.51 308.9849 A Reflex-Laser Carbon Neutral Australia Ream 1 1688.98 24.46 3.68 1105.03 143.90 176.38 27720.74 383.08 1401.63 65.11 21.57 0.64 34.97 0.16 82.07 19.78 0.20 34.23 420.89 187.66 232.5349 B Reflex-Laser Carbon Neutral Australia Ream 1 1205.99 25.22 2.98 1165.81 144.02 183.94 27964.22 419.51 1312.41 53.26 18.04 0.68 32.42 0.16 98.09 22.74 0.11 35.28 438.14 225.64 306.8849 C Reflex-Laser Carbon Neutral Australia Ream 1 1878.21 23.03 4.12 1417.68 154.17 161.43 25887.09 363.73 831.72 47.28 13.96 0.66 26.25 0.19 114.37 13.55 0.22 33.76 419.23 201.99 261.3650 A Reflex-New Ultra White Australia Ream 1 559.82 29.42 3.46 923.99 239.86 99.25 36086.05 352.47 7331.15 54.56 334.70 0.73 43.56 0.07 12.75 10.68 0.43 4.32 665.56 134.68 239.9450 B Reflex-New Ultra White Australia Ream 1 818.06 30.31 5.24 1145.28 205.16 98.32 35887.04 376.50 8152.49 87.39 295.23 0.36 28.70 0.06 13.02 11.97 0.29 4.41 654.97 153.10 290.9650 C Reflex-New Ultra White Australia Ream 1 908.20 27.42 4.67 1036.03 259.40 101.39 36474.03 343.72 6899.28 32.22 278.44 0.51 23.21 0.04 13.03 10.29 0.62 4.43 643.14 139.82 245.4651 A Reflex-100% Recycled Pure White Australia Ream 1 2428.83 49.08 5.44 751.26 169.20 101.61 27408.93 237.28 3275.93 75.31 864.34 1.45 20.73 0.18 33.22 28.96 0.47 5.32 894.70 188.16 386.1351 B Reflex-100% Recycled Pure White Australia Ream 1 1774.18 49.25 5.63 648.38 160.91 122.03 26086.13 290.15 2958.68 139.65 732.32 1.04 15.48 0.08 35.42 27.49 0.43 4.80 846.18 216.18 406.0951 C Reflex-100% Recycled Pure White Australia Ream 1 1555.82 49.05 4.56 828.48 144.77 108.58 26373.33 357.14 3484.81 148.84 779.88 1.08 18.05 0.09 35.11 28.86 0.42 5.40 888.92 214.13 429.54

Page 234: Development of Novel Physical (Electrostatic Detection

234

Appendix 1 continued Appendix 1

Sample Brand Origin Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U Table 1A Within sheet study

35 A Office Works-Recycled Copy/Laser Germany Ream 1 182.79 637.61 121.55 24.40 136.14 22.89 125.13 22.75 67.10 9.87 55.89 9.43 283.11 16.06 591.75 7.35 961.91 115.49 271.97 146.7435 B Office Works-Recycled Copy/Laser Germany Ream 1 185.44 637.64 123.97 24.94 132.51 23.26 121.93 22.53 65.57 10.41 59.33 9.80 313.98 14.12 524.81 7.29 982.59 104.13 257.04 143.5635 C Office Works-Recycled Copy/Laser Germany Ream 1 190.04 657.81 127.30 25.14 143.46 24.77 127.93 23.49 63.88 9.62 62.35 10.28 302.59 14.61 683.08 6.61 1020.03 116.01 290.04 153.0736 A Double A/Advance Agro Thailand Ream 2 33.69 136.60 28.24 6.45 40.29 7.39 44.07 9.68 25.47 2.00 20.42 2.00 9.06 2.00 74.81 0.80 130.20 3.66 5.28 10.9036 B Double A/Advance Agro Thailand Ream 2 36.21 142.63 27.33 6.93 40.00 7.32 43.27 9.76 25.86 2.15 18.89 2.15 9.80 2.15 59.57 0.86 107.17 3.53 4.63 10.5036 C Double A/Advance Agro Thailand Ream 2 39.08 149.59 28.20 6.60 40.80 6.93 42.13 9.72 25.90 2.19 19.92 2.19 9.19 2.19 65.38 0.88 96.13 3.84 3.99 10.6937 A HP-Every day Hi White Brazil Ream 1 17.70 42.43 11.95 4.39 12.81 2.59 15.70 2.59 11.46 2.59 9.51 2.59 2.59 2.59 61.88 1.03 183.43 2.07 51.24 119.6037 B HP-Every day Hi White Brazil Ream 1 19.49 52.39 11.70 4.13 13.46 2.42 17.64 2.42 10.93 2.42 10.89 2.42 2.42 2.42 67.33 0.97 156.36 2.56 59.05 120.7237 C HP-Every day Hi White Brazil Ream 1 16.11 39.58 11.29 4.17 11.64 2.93 14.69 2.93 9.02 2.93 8.04 2.93 2.93 2.93 59.08 1.17 132.42 2.01 42.06 103.6438 A Double A/Advance Agro Thailand Ream 3 44.79 111.34 33.37 8.37 45.14 8.29 47.03 10.12 27.56 2.93 20.58 2.12 27.45 1.53 234.29 0.51 261.84 3.61 5.04 18.9838 B Double A/Advance Agro Thailand Ream 3 26.39 130.60 20.07 5.12 30.09 5.85 33.31 7.94 20.81 2.39 16.39 1.45 20.17 1.76 166.04 0.52 190.29 2.78 4.81 18.0538 C Double A/Advance Agro Thailand Ream 3 29.77 142.36 22.86 5.64 32.47 6.25 38.79 9.17 25.04 2.77 18.44 1.84 23.74 2.12 186.73 1.14 313.22 5.17 5.22 20.4739 A HP-Every day Paper Brazil Ream 1 12.77 48.06 11.24 3.49 13.22 6.04 15.69 4.22 11.72 1.55 15.70 1.92 6.36 3.04 45.05 0.43 344.24 16.66 37.34 128.9539 B HP-Every day Paper Brazil Ream 1 11.38 42.64 12.69 4.66 14.66 6.66 18.60 4.46 13.18 1.98 13.24 2.40 5.90 4.02 55.65 0.45 271.61 13.65 49.60 143.6739 C HP-Every day Paper Brazil Ream 1 12.37 48.02 12.36 4.75 24.03 5.71 24.65 4.60 16.05 2.19 21.59 2.36 6.58 5.94 36.57 0.45 299.22 12.44 46.68 150.4940 A Laser IT Indonesia Ream 2 59.61 212.53 41.73 8.24 57.53 11.33 62.64 12.58 37.40 5.69 32.70 4.87 16.99 6.87 11789.67 1.26 305.61 81.08 36.10 23.6240 B Laser IT Indonesia Ream 2 64.48 231.51 45.19 9.88 60.80 10.87 67.56 14.41 42.02 5.96 34.03 5.51 18.34 8.66 12676.92 0.64 317.25 79.25 42.81 28.2040 C Laser IT Indonesia Ream 2 64.35 231.76 46.21 9.25 61.52 11.32 67.74 16.69 41.71 6.20 34.40 5.40 14.57 7.63 11944.44 0.83 324.99 91.93 33.18 25.5141 A Laser IT Indonesia Ream 3 57.83 211.97 42.12 8.16 55.44 10.29 63.89 13.25 40.06 5.51 31.66 5.15 17.71 10.30 11411.34 1.17 290.13 76.21 33.02 27.4741 B Laser IT Indonesia Ream 3 66.54 247.05 49.50 9.52 62.36 11.88 72.36 15.06 43.99 6.94 36.69 6.18 22.37 12.51 12376.34 1.04 301.32 87.38 35.15 25.7141 C Laser IT Indonesia Ream 3 67.67 249.73 48.02 9.38 61.33 11.93 74.76 14.55 44.67 6.69 37.73 5.68 20.16 11.89 12750.46 1.10 352.39 87.16 31.79 30.2942 A Office Works-Recycled Copy/Laser Germany Ream 2 190.20 655.01 128.26 24.94 141.93 24.81 128.23 23.50 69.09 10.57 62.19 9.49 318.87 17.74 687.91 6.72 1069.41 110.69 262.24 152.1242 B Office Works-Recycled Copy/Laser Germany Ream 2 194.08 678.60 130.84 26.49 144.83 25.19 131.81 24.45 68.09 10.36 62.73 11.19 339.78 18.47 705.79 7.17 1165.33 123.83 304.09 156.1242 C Office Works-Recycled Copy/Laser Germany Ream 2 173.99 599.45 113.71 23.04 125.35 20.92 114.95 20.81 59.35 8.98 52.65 8.83 241.03 8.58 405.93 7.35 729.78 101.11 252.72 135.1443 A Office Works-High White Copy/Laser Australia Ream 1 27.28 114.97 25.20 6.35 32.59 7.50 49.76 11.59 40.69 6.88 45.15 9.12 269.52 2.18 5050.56 0.42 353.25 1.94 43.69 42.4043 B Office Works-High White Copy/Laser Australia Ream 1 22.55 101.60 23.08 4.96 30.36 6.34 43.34 10.11 38.84 5.64 44.83 10.06 284.99 2.51 3774.15 0.42 197.99 1.21 32.81 34.9143 C Office Works-High White Copy/Laser Australia Ream 1 25.66 110.06 23.89 5.24 30.13 6.72 45.19 9.94 39.47 6.06 44.35 8.49 274.97 1.89 3816.62 0.34 295.08 1.67 34.99 36.2044 A Office Works-Premium Copy/Laser Australia Ream 1 25.95 110.25 22.72 4.18 29.57 6.43 38.50 9.16 27.37 4.12 30.87 5.60 161.51 0.90 5603.83 0.44 410.70 2.37 24.80 24.0944 B Office Works-Premium Copy/Laser Australia Ream 1 30.12 122.50 27.62 6.46 36.23 7.51 49.49 11.86 37.10 6.29 39.90 7.30 182.76 2.48 7191.44 0.35 414.29 3.13 31.33 28.8844 C Office Works-Premium Copy/Laser Australia Ream 1 22.72 100.17 21.99 5.17 26.00 6.02 39.53 8.93 27.90 4.75 32.00 5.60 441.87 2.40 7540.94 0.32 340.92 1.98 25.93 23.7745 A Paper One-Premium Copier Indonesia Ream 1 53.98 214.92 44.07 8.66 61.91 10.84 65.91 14.17 41.77 5.45 33.23 5.20 23.72 5.83 24000.59 1.37 835.86 37.36 36.18 28.5545 B Paper One-Premium Copier Indonesia Ream 1 60.23 243.99 49.92 9.60 60.38 12.71 73.87 15.99 48.91 6.18 36.89 5.53 23.78 5.90 16140.11 1.28 927.29 42.56 27.78 30.8545 C Paper One-Premium Copier Indonesia Ream 1 58.49 240.30 47.67 8.62 63.94 11.86 76.04 15.73 43.70 6.30 35.12 5.15 22.78 4.51 20286.92 1.27 1069.92 36.38 27.34 30.8746 A Paper One-Presentation Indonesia Ream 1 62.22 259.11 53.67 9.75 69.96 13.05 81.43 17.91 50.04 7.03 40.45 6.27 16.31 4.98 20453.37 0.85 271.28 7.50 30.38 46.5546 B Paper One-Presentation Indonesia Ream 1 53.65 216.76 48.28 8.22 62.09 11.50 69.95 16.06 42.26 6.42 36.80 6.02 17.39 6.57 17504.77 0.70 210.81 9.47 23.48 36.2146 C Paper One-Presentation Indonesia Ream 1 61.35 247.30 51.05 9.52 66.90 12.45 77.14 16.52 45.69 6.52 40.23 5.89 23.29 8.01 20735.94 0.96 279.92 7.80 26.59 40.7647 A Paper One-Premium All Purpose Indonesia Ream 2 59.21 225.04 47.17 8.02 60.82 12.07 72.37 15.94 44.21 6.03 37.59 6.24 40.06 12.83 41572.12 1.89 687.90 34.22 32.68 56.7447 B Paper One-Premium All Purpose Indonesia Ream 2 50.51 198.76 43.15 7.39 56.63 10.67 69.27 14.21 42.76 5.96 34.83 7.97 37.13 9.87 32097.54 1.52 332.31 32.63 37.44 52.0347 C Paper One-Premium All Purpose Indonesia Ream 2 48.04 206.12 43.10 7.91 57.34 10.48 66.88 13.93 40.62 5.71 33.59 5.29 33.08 10.31 34308.63 2.08 570.45 27.64 27.97 45.9648 A Reflex-Recycled Pure White Australia Ream 1 36.22 144.97 31.63 6.93 38.98 8.01 49.29 11.72 37.35 6.13 42.98 7.18 811.57 6.73 19709.94 1.08 321.14 3.17 55.37 34.0248 B Reflex-Recycled Pure White Australia Ream 1 35.82 149.47 30.99 6.28 37.41 7.77 48.52 11.19 36.34 6.07 39.49 6.63 387.36 6.88 16045.03 0.77 223.38 2.32 44.02 31.2648 C Reflex-Recycled Pure White Australia Ream 1 36.30 149.96 32.55 6.52 38.97 7.42 53.63 12.43 40.35 6.09 42.03 7.28 596.16 6.77 17290.43 0.52 237.04 1.32 46.48 30.6249 A Reflex-Laser Carbon Neutral Australia Ream 1 36.69 143.10 29.55 5.82 39.05 7.13 45.81 9.13 27.61 3.76 23.56 3.48 32.99 7.58 492.74 1.38 473.08 56.60 17.97 30.4649 B Reflex-Laser Carbon Neutral Australia Ream 1 42.56 177.50 34.35 6.39 48.44 8.79 53.87 11.81 32.29 5.82 25.57 3.99 35.09 7.95 420.35 1.67 965.68 55.85 18.57 33.4549 C Reflex-Laser Carbon Neutral Australia Ream 1 36.38 149.19 29.36 5.93 41.36 7.77 51.75 11.23 28.62 4.16 24.40 3.74 20.44 7.07 490.74 1.31 571.95 61.29 16.95 32.8750 A Reflex-New Ultra White Australia Ream 1 27.09 118.97 25.16 6.69 31.42 7.07 45.00 13.38 37.23 5.47 44.45 6.84 220.06 5.19 16488.82 1.07 549.66 2.27 30.51 26.3150 B Reflex-New Ultra White Australia Ream 1 34.00 137.44 31.36 6.59 38.10 7.62 51.10 12.23 39.79 6.42 43.71 7.33 205.35 8.49 12385.63 0.61 560.25 1.31 30.08 28.2850 C Reflex-New Ultra White Australia Ream 1 30.40 119.55 25.16 5.53 33.20 6.75 43.44 9.46 32.19 5.65 39.76 6.16 189.87 3.57 12405.11 0.49 869.39 1.44 27.01 26.6051 A Reflex-100% Recycled Pure White Australia Ream 1 42.63 172.59 33.44 6.51 37.97 7.49 44.83 8.18 26.32 3.46 24.27 3.32 82.73 8.12 19488.54 0.63 285.22 7.48 47.34 19.5451 B Reflex-100% Recycled Pure White Australia Ream 1 45.22 180.40 35.95 6.71 44.22 8.44 51.35 11.00 33.27 4.59 28.34 4.15 80.19 12.68 17099.21 0.32 376.85 3.87 45.25 17.4151 C Reflex-100% Recycled Pure White Australia Ream 1 48.65 188.92 43.42 7.40 56.59 11.61 79.27 16.59 45.28 7.27 43.32 6.53 100.10 16.26 18372.72 0.73 409.18 9.55 47.23 20.75

Page 235: Development of Novel Physical (Electrostatic Detection

235

Appendix 1 continued Appendix 1

Table 1B Within ream study Origin Sample *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu 52 A Hotel stationery (generic brand) Argentina Ream 1 1512.07 752.79 453.76 27.96 1853.65 63.68 52610.06 14.96 5.30 79.15 126.82 4.32 32273.57 66.85 8721.72 157.39 3952.96 6405.71 183.70 3579.38 499.1552 B Hotel stationery (generic brand) Argentina Ream 1 1661.03 829.79 413.10 32.84 2038.70 64.19 58645.25 16.06 6.51 83.56 104.47 3.53 30178.80 66.84 8491.70 177.44 4093.51 6352.71 182.81 3545.27 538.1252 C Hotel stationery (generic brand) Argentina Ream 1 1252.21 681.08 347.23 25.23 1790.43 60.25 47831.19 17.97 5.26 70.96 101.48 3.24 37612.02 70.05 10886.91 167.66 4436.00 7133.02 196.15 3838.97 502.3352 D Hotel stationery (generic brand) Argentina Ream 1 1524.94 790.87 397.23 29.06 2002.09 53.57 55327.45 18.35 6.24 93.22 133.07 4.21 33620.27 63.98 10300.20 173.69 4106.35 6795.89 186.85 3508.02 475.8552 E Hotel stationery (generic brand) Argentina Ream 1 1262.41 675.45 336.33 24.49 1787.08 43.49 47996.58 13.31 4.75 74.08 107.19 4.27 30584.84 69.70 9064.14 171.36 4576.73 7185.11 202.71 3847.28 507.6853 A PaperOne-Premium All Purpose Indonesia Ream 3 941.81 786.10 466.89 28.13 2899.86 99.78 78617.38 12.69 6.99 74.02 1022.95 12.14 40700.62 57.24 3831.59 128.75 1257.91 5227.68 135.42 3580.05 783.8453 B PaperOne-Premium All Purpose Indonesia Ream 3 856.01 685.18 307.55 26.89 2781.53 97.30 72469.15 11.77 5.88 66.28 929.48 12.21 43834.74 57.88 4062.31 127.90 1303.43 5311.43 140.77 3754.82 823.3253 C PaperOne-Premium All Purpose Indonesia Ream 3 854.27 669.14 287.60 23.55 2716.52 68.65 70890.03 11.88 5.85 61.52 923.58 10.45 42707.48 55.73 4343.72 167.70 1341.50 5339.66 129.07 3607.59 801.4253 D PaperOne-Premium All Purpose Indonesia Ream 3 902.91 673.80 284.57 25.28 2777.88 66.18 71691.76 12.04 6.13 62.62 868.35 12.65 38711.42 56.73 3920.79 113.01 1270.25 4888.58 122.41 3469.15 745.8853 E PaperOne-Premium All Purpose Indonesia Ream 3 1031.15 754.16 322.76 29.71 2968.41 90.45 79740.76 12.18 6.00 75.24 848.41 9.72 33914.70 52.98 3741.83 124.79 1194.90 4890.20 124.29 3562.02 698.6654 A Reflex-Recycled Pure w hite Australia Ream 2 1067.38 783.51 444.46 16.79 3102.05 112.01 92150.45 29.44 60.27 227.01 190.66 4.80 6791.05 119.49 16432.81 229.82 1707.76 57997.82 242.11 5174.67 489.7854 B Reflex-Recycled Pure w hite Australia Ream 2 1296.79 895.59 500.34 19.44 3345.52 102.74 104263.58 31.78 67.59 240.27 140.63 3.63 6814.82 107.11 14630.60 198.43 1492.64 52725.88 225.69 5028.38 440.9154 C Reflex-Recycled Pure w hite Australia Ream 2 1308.64 928.77 566.48 20.36 3475.82 126.90 107714.97 34.08 69.52 264.76 223.63 5.43 8176.57 117.36 15103.72 198.88 1513.46 53187.70 230.81 4788.82 455.2654 D Reflex-Recycled Pure w hite Australia Ream 2 1278.27 845.01 524.74 19.60 3263.45 92.77 98709.23 30.84 63.01 235.22 211.09 4.44 7518.87 111.76 14746.42 204.35 1622.02 52294.60 232.00 5417.53 513.4854 E Reflex-Recycled Pure w hite Australia Ream 2 1210.68 865.07 504.60 18.86 3349.99 124.59 102789.13 31.93 64.62 240.29 189.55 4.68 6645.68 115.52 15621.92 198.32 1594.91 54144.89 252.99 5153.04 608.9055 A Double A Premium Thailand Ream 1 811.96 320.56 291.70 28.44 1489.24 83.31 52079.05 3.63 4.75 24.73 147.39 2.43 49898.58 51.65 3826.44 137.09 1653.66 4201.71 114.49 1309.69 1470.9955 B Double A Premium Thailand Ream 1 682.57 284.07 102.74 24.65 1410.85 73.34 46257.90 1.50 4.10 30.00 81.98 1.23 56463.11 58.45 3044.78 192.23 1809.36 4251.67 101.93 1244.54 1402.1755 C Double A Premium Thailand Ream 1 720.94 311.40 89.25 25.42 1505.74 69.85 50821.12 2.23 4.67 40.01 75.54 1.78 34887.80 59.12 2837.10 142.94 1857.94 3948.53 100.65 1282.74 1437.5155 D Double A Premium Thailand Ream 1 684.02 284.29 74.31 24.82 1410.32 59.74 45878.56 2.48 3.74 18.07 53.70 1.74 65144.03 63.66 3506.56 158.12 1904.13 4654.64 108.35 1451.65 1446.2755 E Double A Premium Thailand Ream 1 709.96 303.56 81.88 23.89 1434.92 69.30 48683.99 2.10 4.45 33.74 57.78 2.00 58801.09 64.41 3446.98 211.14 1859.51 4477.03 102.91 1422.14 1431.0356 A HP Everyday Brazil Ream 2 811.30 350.66 332.76 79.83 1919.49 33.94 60183.19 1.74 3.49 54.35 88.20 3.10 74107.93 63.15 3801.95 271.46 2029.16 4159.40 148.04 1794.58 349.4956 B HP Everyday Brazil Ream 2 879.70 344.64 308.19 83.20 1825.96 33.22 56582.43 1.27 4.34 33.17 75.51 3.00 65192.10 66.10 12251.84 251.16 1967.50 4423.42 149.89 1808.06 357.7456 C HP Everyday Brazil Ream 2 795.62 360.18 343.71 77.19 1892.61 24.79 62223.40 1.10 3.61 27.51 87.86 2.58 78067.91 65.70 3938.56 187.17 1945.57 4185.90 152.82 1885.75 296.3356 D HP Everyday Brazil Ream 2 904.70 398.24 364.45 92.74 2077.31 24.77 65851.38 1.71 3.68 32.46 85.23 3.69 65258.99 75.65 3758.65 220.25 2124.35 4842.57 167.87 2013.50 337.5756 E HP Everyday Brazil Ream 2 767.57 327.45 316.82 75.33 1793.09 32.28 56448.89 2.24 4.00 43.98 83.68 3.17 58181.52 59.18 3810.06 191.81 1995.98 3963.30 146.01 1793.89 315.7057 A Laser IT Indonesia Ream 4 827.68 570.96 284.82 24.92 2131.33 39.21 71386.15 3.84 6.85 79.69 917.61 22.61 11192.83 98.53 5814.51 274.16 2388.15 8535.66 191.92 2212.49 1235.0257 B Laser IT Indonesia Ream 4 763.13 552.48 281.00 26.00 1943.88 33.82 69001.14 1.91 6.27 71.57 1060.37 24.31 94339.71 99.68 5871.42 247.08 2462.28 8642.99 206.91 2375.30 1049.1157 C Laser IT Indonesia Ream 4 717.70 516.34 249.95 22.60 2022.90 3.44 66888.51 3.64 5.71 66.75 888.90 18.82 16425.04 88.69 5730.70 268.63 2355.01 8059.60 186.73 2126.15 1123.2857 D Laser IT Indonesia Ream 4 706.35 520.99 260.98 21.82 2026.95 15.78 66634.12 2.77 6.80 70.07 1008.78 21.71 69941.55 96.03 5581.52 241.01 2394.08 8739.92 197.33 2258.81 1168.5757 E Laser IT Indonesia Ream 4 674.00 500.56 269.39 22.88 1985.09 36.51 64775.65 3.15 6.59 73.18 2035.95 22.84 82315.81 95.36 6453.59 292.23 2495.78 8805.40 200.91 2353.80 1150.8658 A Office Works UltraWhite Premium Australia Ream 1 1433.60 602.92 297.03 9.36 2191.75 69.87 74852.46 11.80 56.12 239.30 220.82 5.25 62773.77 148.05 14705.82 223.50 3685.65 74217.30 303.82 3079.12 883.7558 B Office Works UltraWhite Premium Australia Ream 1 1089.33 462.52 212.19 6.16 1637.42 77.86 56010.04 8.15 41.58 170.73 215.39 3.27 61838.36 108.84 10321.76 174.04 2725.35 56343.54 230.12 2333.96 581.4758 C Office Works UltraWhite Premium Australia Ream 1 1475.44 635.92 295.42 9.26 2073.73 83.78 76092.48 11.94 59.12 210.01 213.74 4.36 116168.27 146.59 14869.48 299.97 3578.42 68291.94 278.59 2749.68 643.8458 D Office Works UltraWhite Premium Australia Ream 1 1482.20 652.41 292.68 8.51 2165.16 70.27 78171.22 11.84 59.34 227.14 250.04 5.42 94184.42 151.19 14860.98 269.89 3765.15 74789.44 315.43 3061.46 693.9858 E Office Works UltraWhite Premium Australia Ream 1 1418.97 628.69 298.00 8.58 2097.29 81.54 78018.86 12.05 60.13 220.13 243.34 6.63 65800.20 151.02 14831.12 308.19 3730.31 73230.66 305.79 3058.53 753.5359 A PaperOne Premium Presentation Indonesia Ream 2 837.07 380.76 285.99 30.09 2456.52 66.22 73168.29 3.18 4.11 72.15 1571.20 15.82 104493.96 126.49 6937.57 244.29 3450.29 6569.74 263.47 3098.63 1195.0259 B PaperOne Premium Presentation Indonesia Ream 2 796.11 361.84 286.02 25.56 2327.37 96.61 69085.07 3.52 4.51 60.59 1462.80 15.47 107803.67 114.91 7304.45 302.19 3288.21 6303.42 248.50 2854.89 1120.3359 C PaperOne Premium Presentation Indonesia Ream 2 750.12 348.37 270.00 26.63 2321.66 70.63 67035.31 3.03 4.28 51.57 1421.11 14.63 103892.71 119.84 6260.44 288.50 3277.12 6157.32 245.22 2821.92 1101.5259 D PaperOne Premium Presentation Indonesia Ream 2 824.82 392.78 304.01 27.35 2429.05 87.90 74306.21 4.39 4.98 75.95 1493.18 15.74 114559.29 119.14 8136.99 324.71 3216.61 6069.95 246.26 2884.72 1140.2359 E PaperOne Premium Presentation Indonesia Ream 2 823.70 421.13 310.64 34.38 2730.93 99.15 81975.82 4.72 4.95 71.11 1551.86 15.35 108778.65 119.73 8375.63 358.90 3443.71 6363.66 248.74 2829.39 1162.3160 A Reflex Recycled Pure White Australia Ream 2 1248.68 581.79 418.10 13.89 2313.11 86.36 79308.72 16.10 58.29 197.14 308.84 6.35 65723.44 168.11 21290.84 368.27 3770.54 74678.79 357.20 3176.00 791.7660 B Reflex Recycled Pure White Australia Ream 2 1135.08 545.06 392.95 14.43 2150.69 81.11 73011.02 14.84 55.53 216.42 303.19 6.21 70912.54 163.58 19100.38 286.05 3609.86 70048.82 338.47 3099.95 794.1060 C Reflex Recycled Pure White Australia Ream 2 1187.03 579.86 425.59 14.51 2229.50 94.55 76447.91 17.56 57.08 196.85 310.26 7.50 63098.63 163.99 19807.66 349.89 3613.23 69851.60 348.28 3136.72 718.2960 D Reflex Recycled Pure White Australia Ream 2 1299.38 629.62 436.81 12.63 2317.21 80.74 81823.29 17.06 60.83 210.42 308.35 5.31 78159.02 168.12 19760.87 401.47 3553.75 69175.61 334.96 2996.51 697.0960 E Reflex Recycled Pure White Australia Ream 2 1338.93 632.30 464.15 12.44 2424.26 83.59 76426.04 20.35 65.38 225.56 274.82 7.70 66404.14 164.45 18566.42 287.09 3225.04 64410.01 310.94 2847.21 643.90

Page 236: Development of Novel Physical (Electrostatic Detection

236

Appendix 1 continued Appendix 1

Table 1B Within ream study Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce 52 A Hotel stationery (generic brand) Argentina Ream 1 1641.69 53.23 8.83 741.59 78.57 130.71 34038.25 87.68 282.56 66.81 94.86 8.34 3.92 0.26 58.22 10.23 0.27 7.16 5554.98 329.83 221.7252 B Hotel stationery (generic brand) Argentina Ream 1 1555.60 52.15 10.31 1080.66 100.63 129.73 33809.30 88.44 335.61 69.07 105.51 9.68 3.34 0.21 55.86 7.38 0.33 8.35 5745.04 320.51 264.7052 C Hotel stationery (generic brand) Argentina Ream 1 1691.89 47.76 10.02 907.92 96.51 121.33 34513.17 91.89 405.41 83.34 150.65 8.13 2.53 0.22 57.25 7.56 0.30 10.15 6145.35 289.88 227.4552 D Hotel stationery (generic brand) Argentina Ream 1 1481.24 45.80 10.72 1050.06 81.48 119.85 32958.56 87.22 324.92 75.15 141.87 7.13 3.00 0.37 45.02 6.21 0.55 7.95 5711.94 336.79 215.6452 E Hotel stationery (generic brand) Argentina Ream 1 1478.42 47.73 8.51 733.12 78.83 123.33 34935.42 88.59 314.34 81.63 144.46 7.57 4.07 0.27 49.78 6.92 0.41 6.24 6397.09 299.77 223.6753 A PaperOne-Premium All Purpose Indonesia Ream 3 1138.66 31.25 6.47 913.50 178.64 159.95 21756.42 528.92 1152.45 115.70 2109.29 0.57 138.01 0.18 37.40 13.29 0.24 66.89 1072.38 292.05 329.4553 B PaperOne-Premium All Purpose Indonesia Ream 3 1674.43 26.53 6.30 1020.79 169.05 156.65 21299.02 564.81 1081.70 96.33 2064.28 0.51 102.45 0.13 34.43 12.78 0.19 30.71 880.18 273.39 291.8853 C PaperOne-Premium All Purpose Indonesia Ream 3 997.81 26.86 6.78 1485.50 167.94 151.40 20927.10 584.01 1888.28 228.66 2082.18 0.91 87.85 0.11 35.31 12.17 0.14 27.45 814.70 284.96 332.6653 D PaperOne-Premium All Purpose Indonesia Ream 3 1408.80 25.62 6.46 898.27 176.16 145.97 19663.79 524.65 965.63 104.48 1914.76 0.63 88.20 0.06 30.30 12.91 0.15 22.40 776.05 255.20 271.4753 E PaperOne-Premium All Purpose Indonesia Ream 3 1260.05 25.14 6.18 1112.41 165.00 144.95 19482.26 516.34 909.29 95.00 1928.66 0.76 80.97 0.35 27.24 12.34 0.13 34.80 772.80 266.47 266.8354 A Reflex-Recycled Pure w hite Australia Ream 2 1060.79 44.44 5.28 1103.57 212.62 111.32 39306.24 399.67 2891.59 52.99 391.63 0.67 34.89 0.02 23.43 16.42 0.29 4.27 797.43 205.48 328.7954 B Reflex-Recycled Pure w hite Australia Ream 2 1170.14 39.68 4.46 1029.32 189.28 102.23 34996.55 350.26 3592.06 44.12 337.99 1.12 31.64 0.13 17.19 12.71 0.22 1.71 695.11 149.60 274.4854 C Reflex-Recycled Pure w hite Australia Ream 2 855.55 45.94 4.78 1024.39 213.17 97.27 36154.80 370.58 2789.29 70.98 360.10 0.53 32.49 0.01 26.84 15.07 0.30 2.36 806.73 158.48 309.1754 D Reflex-Recycled Pure w hite Australia Ream 2 1500.52 45.01 4.61 1002.76 195.62 104.34 36132.15 370.18 2676.02 118.61 364.81 0.79 31.74 0.01 44.53 17.49 0.25 10.66 798.76 170.50 316.4454 E Reflex-Recycled Pure w hite Australia Ream 2 1248.27 45.12 4.56 1079.06 212.83 112.30 37442.72 383.33 2663.58 59.89 376.01 0.91 69.10 0.02 22.81 15.98 0.30 5.18 843.12 193.29 338.4555 A Double A Premium Thailand Ream 1 1687.77 24.56 3.33 397.31 53.02 126.17 19269.50 602.56 436.33 28.49 20.73 0.97 179.64 0.55 68.85 14.99 0.51 20.18 1708.66 326.49 280.7255 B Double A Premium Thailand Ream 1 1695.75 14.32 7.11 530.13 62.96 110.51 16716.90 607.35 402.93 25.23 20.84 0.89 185.91 0.44 65.38 11.52 0.83 21.55 1207.16 294.68 202.3855 C Double A Premium Thailand Ream 1 2093.00 13.33 3.69 367.35 43.28 104.46 15314.89 603.84 308.25 25.58 18.49 0.93 156.48 0.41 59.46 11.73 0.46 16.53 945.58 269.74 169.0155 D Double A Premium Thailand Ream 1 1634.20 13.36 4.29 414.71 96.45 113.23 16714.93 629.85 615.33 48.87 18.44 0.85 168.10 0.38 62.69 11.15 0.28 16.20 1165.70 286.82 184.8255 E Double A Premium Thailand Ream 1 1831.18 14.16 6.57 579.98 73.58 104.07 15929.20 610.33 426.69 27.13 19.11 0.98 158.23 0.42 67.41 18.42 0.06 14.48 1080.51 270.19 172.1656 A HP Everyday Brazil Ream 2 1329.71 22.20 6.08 713.49 73.67 53.99 242619.45 126.22 168.61 35.12 10.64 1.16 17.27 0.37 58.46 4.84 0.27 12.80 2721.75 195.95 343.4556 B HP Everyday Brazil Ream 2 1382.83 23.28 7.26 725.04 91.74 68.46 251938.12 159.86 650.29 91.82 14.06 0.87 9.17 0.29 70.94 7.12 0.11 15.35 2958.50 104.98 202.1856 C HP Everyday Brazil Ream 2 930.80 20.29 4.34 436.90 102.17 46.23 246265.34 128.63 197.90 39.28 11.33 0.74 11.93 0.36 48.76 3.84 0.34 9.95 2694.95 77.05 146.4256 D HP Everyday Brazil Ream 2 1200.28 20.88 6.48 536.49 78.81 44.88 267764.42 151.28 152.36 43.22 12.60 0.81 11.14 0.37 50.19 4.37 0.29 6.65 2939.46 106.33 159.8356 E HP Everyday Brazil Ream 2 1330.98 19.12 5.45 468.61 75.56 49.81 231471.26 123.28 183.70 39.44 9.90 0.86 8.11 0.28 46.37 5.84 0.25 9.43 2606.51 82.90 156.6557 A Laser IT Indonesia Ream 4 2280.08 40.59 13.35 1003.43 115.37 179.35 29434.32 842.90 604.72 85.71 1374.62 1.31 145.69 0.45 68.95 16.74 1.69 40.69 867.49 374.94 349.4757 B Laser IT Indonesia Ream 4 2109.05 37.73 12.23 948.78 123.61 162.59 28056.15 815.29 609.60 82.10 1364.69 0.71 58.64 0.38 88.89 14.84 0.29 32.90 670.14 346.19 321.0957 C Laser IT Indonesia Ream 4 1648.78 36.13 15.26 1008.25 90.21 164.00 27151.46 782.71 670.16 85.98 1326.68 0.90 137.47 0.38 69.59 19.05 0.29 50.85 683.27 336.23 301.1157 D Laser IT Indonesia Ream 4 1829.99 38.41 13.30 865.48 116.82 178.91 29223.33 838.17 625.47 82.76 1397.99 0.75 146.89 0.33 55.16 14.38 0.27 38.45 694.52 347.78 307.5357 E Laser IT Indonesia Ream 4 2418.26 40.71 15.70 1108.15 108.06 175.17 29752.37 870.10 703.65 89.27 1439.60 0.91 143.58 0.30 59.52 15.55 0.12 40.27 720.36 356.76 311.6158 A Office Works UltraWhite Premium Australia Ream 1 2121.22 37.61 11.31 782.80 101.84 138.79 40763.80 400.15 513.14 21.35 303.93 0.71 34.36 0.37 37.14 6.98 2.96 9.27 725.05 203.73 250.2158 B Office Works UltraWhite Premium Australia Ream 1 1442.21 27.06 8.99 619.05 84.72 97.94 30604.40 296.73 540.15 12.58 177.80 0.79 26.78 0.29 29.55 3.72 0.13 10.28 491.78 137.55 155.9358 C Office Works UltraWhite Premium Australia Ream 1 1094.65 35.47 13.75 678.52 109.53 110.39 36322.98 358.67 633.70 28.72 202.25 1.03 30.48 0.37 33.56 4.85 0.24 9.99 579.79 169.96 191.2358 D Office Works UltraWhite Premium Australia Ream 1 1187.29 38.35 10.69 621.08 110.61 122.41 40106.54 394.58 605.28 22.65 203.07 0.75 38.52 0.26 29.26 5.13 0.26 11.66 599.14 135.35 208.6658 E Office Works UltraWhite Premium Australia Ream 1 1590.85 39.43 13.57 568.21 124.65 120.30 39261.98 386.28 592.62 24.90 201.00 0.93 33.50 0.31 37.09 11.18 0.25 11.05 626.69 164.08 229.9859 A PaperOne Premium Presentation Indonesia Ream 2 2553.68 42.17 13.54 1271.15 92.04 123.73 25365.94 925.00 767.20 92.54 2399.64 0.77 180.61 0.25 35.07 14.45 0.39 29.37 799.45 349.22 273.5259 B PaperOne Premium Presentation Indonesia Ream 2 1962.14 43.69 14.06 1188.03 128.93 116.00 24539.90 887.14 653.98 88.61 2427.98 0.73 181.15 0.27 31.29 12.50 0.31 21.82 760.38 354.28 289.6159 C PaperOne Premium Presentation Indonesia Ream 2 1849.72 39.74 15.30 1144.09 99.80 110.67 24407.54 886.42 573.41 83.67 2379.15 0.61 169.74 0.21 29.49 11.90 0.21 21.20 756.21 309.70 228.9759 D PaperOne Premium Presentation Indonesia Ream 2 2342.44 42.64 17.88 1302.78 95.05 114.94 23695.10 879.01 615.58 94.20 2349.29 0.93 171.81 0.31 36.42 13.76 0.25 24.83 743.61 325.85 265.8359 E PaperOne Premium Presentation Indonesia Ream 2 1831.85 44.19 20.46 1479.61 110.55 116.23 24722.53 911.31 642.22 96.66 2436.07 0.91 174.42 0.29 38.77 17.20 0.14 24.21 767.91 327.55 252.3660 A Reflex Recycled Pure White Australia Ream 2 2877.13 57.87 12.82 958.40 134.56 126.91 39908.28 394.72 785.16 25.97 459.04 1.29 24.34 0.32 32.61 8.55 0.33 14.53 677.02 190.98 312.1860 B Reflex Recycled Pure White Australia Ream 2 2262.65 53.09 10.52 892.16 100.65 116.36 37398.73 375.53 694.94 18.75 357.74 1.07 23.23 0.26 43.87 6.75 0.25 14.39 693.72 140.51 242.6260 C Reflex Recycled Pure White Australia Ream 2 2243.11 57.67 14.07 1193.32 103.34 114.59 37515.87 376.88 635.28 30.77 349.73 1.25 28.68 0.31 49.08 6.47 0.25 10.37 606.07 141.78 239.1460 D Reflex Recycled Pure White Australia Ream 2 2595.72 57.44 15.63 1027.43 91.15 110.14 38102.00 378.44 811.93 34.12 340.84 1.32 30.87 0.27 36.67 7.85 0.22 8.33 613.83 134.43 230.9360 E Reflex Recycled Pure White Australia Ream 2 2898.59 50.18 11.59 848.40 81.60 110.75 34684.23 349.72 850.65 21.27 310.33 1.34 24.60 0.30 23.29 7.39 0.20 10.22 582.76 154.80 259.85

Page 237: Development of Novel Physical (Electrostatic Detection

237

Appendix 1 continued Appendix 1

Table 1B Within ream study Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U 52 A Hotel stationery (generic brand) Argentina Ream 1 25.53 93.83 23.39 5.78 21.23 3.49 19.39 3.34 8.87 1.36 7.73 1.25 8.81 5.18 31.20 0.49 647.19 12.01 22.66 79.8352 B Hotel stationery (generic brand) Argentina Ream 1 29.46 105.68 23.48 6.00 21.86 3.58 20.71 3.48 8.97 1.28 9.04 1.10 9.68 4.63 41.33 0.53 485.61 10.34 24.60 79.9552 C Hotel stationery (generic brand) Argentina Ream 1 27.50 96.46 22.70 6.01 21.40 3.46 20.17 3.32 10.18 1.42 8.97 1.26 10.51 4.41 51.82 0.48 475.28 7.88 23.37 78.6352 D Hotel stationery (generic brand) Argentina Ream 1 25.12 94.01 21.66 5.66 21.53 3.41 19.78 3.30 8.76 1.33 8.96 1.18 8.55 5.25 28.91 0.44 516.54 10.49 23.98 73.9152 E Hotel stationery (generic brand) Argentina Ream 1 26.29 96.28 23.98 6.07 21.77 3.35 18.82 3.41 9.75 1.24 8.47 1.21 7.36 5.98 46.16 0.57 715.47 7.01 24.36 77.4053 A PaperOne-Premium All Purpose Indonesia Ream 3 52.58 215.37 45.31 8.33 59.81 11.08 69.40 14.77 41.43 5.90 34.75 6.58 40.19 13.16 37890.63 1.83 749.50 29.37 32.70 51.5353 B PaperOne-Premium All Purpose Indonesia Ream 3 55.31 209.97 44.47 7.84 57.03 11.33 72.00 14.69 43.63 6.23 38.57 6.50 33.92 10.46 35992.76 2.41 530.22 31.50 34.19 52.7653 C PaperOne-Premium All Purpose Indonesia Ream 3 58.36 226.46 48.94 7.77 62.57 12.17 77.28 16.87 50.05 6.43 41.31 7.08 59.15 27.01 40599.76 2.17 584.18 34.95 43.71 55.9853 D PaperOne-Premium All Purpose Indonesia Ream 3 47.56 202.61 43.25 7.43 58.26 10.58 69.51 14.27 42.53 5.70 35.34 6.42 36.76 11.01 35615.92 1.73 440.95 29.02 29.24 50.3753 E PaperOne-Premium All Purpose Indonesia Ream 3 47.61 197.82 41.42 6.93 55.51 10.15 66.46 13.81 41.05 5.39 35.12 6.20 31.68 10.48 35055.06 1.77 459.47 35.38 29.63 51.5854 A Reflex-Recycled Pure w hite Australia Ream 2 40.47 159.16 33.96 7.14 41.34 8.20 54.69 12.27 40.15 6.46 44.53 6.80 92.28 1.58 18265.07 0.75 211.57 2.09 45.13 33.5054 B Reflex-Recycled Pure w hite Australia Ream 2 32.53 128.94 28.61 5.90 35.59 7.03 45.62 10.61 35.18 5.69 36.26 6.68 91.89 2.30 14875.42 0.73 177.82 1.85 43.11 28.9854 C Reflex-Recycled Pure w hite Australia Ream 2 34.93 146.79 31.35 6.62 39.33 7.66 49.19 12.57 38.01 6.36 41.22 7.39 99.51 2.09 19114.44 0.89 276.06 1.72 54.44 31.2454 D Reflex-Recycled Pure w hite Australia Ream 2 34.19 151.40 31.52 6.26 36.97 7.60 49.60 11.78 38.48 5.54 42.20 6.71 108.81 2.84 19925.97 0.66 313.22 2.59 57.80 33.3754 E Reflex-Recycled Pure w hite Australia Ream 2 38.45 154.38 33.18 6.96 39.04 8.16 53.30 11.65 38.24 6.44 43.29 7.58 109.34 3.15 16228.09 0.92 323.93 3.09 42.65 32.7655 A Double A Premium Thailand Ream 1 54.15 206.80 37.98 8.93 51.42 9.68 56.53 13.42 38.20 5.35 26.40 4.61 16.32 12.77 87.05 1.33 258.97 12.33 13.62 22.3755 B Double A Premium Thailand Ream 1 47.21 184.41 33.86 7.78 46.59 9.01 53.29 11.48 36.53 4.70 24.56 4.22 15.12 12.49 86.59 1.24 237.94 10.89 9.66 17.9755 C Double A Premium Thailand Ream 1 41.80 167.57 30.67 7.19 42.52 8.00 49.68 11.59 34.33 4.44 23.11 4.03 13.43 10.61 63.13 1.25 181.88 8.41 7.87 15.7855 D Double A Premium Thailand Ream 1 46.11 171.19 33.09 7.24 46.12 8.52 51.88 11.82 33.94 4.75 24.57 3.84 18.40 12.84 70.86 1.28 173.53 7.80 8.05 16.3755 E Double A Premium Thailand Ream 1 41.93 171.42 31.10 6.77 43.72 8.04 50.66 11.76 32.36 4.16 22.82 3.84 13.67 10.85 84.91 1.31 154.27 8.67 7.51 14.0356 A HP Everyday Brazil Ream 2 19.90 88.25 11.12 2.66 14.67 2.72 15.95 3.76 11.75 1.89 11.09 1.74 6.25 6.15 48.40 1.27 192.54 5.64 46.24 132.4856 B HP Everyday Brazil Ream 2 16.79 57.63 12.50 3.58 14.25 3.22 21.23 4.95 15.72 2.52 14.78 2.29 21.91 9.64 206.75 1.01 221.13 6.04 63.00 144.6256 C HP Everyday Brazil Ream 2 13.50 48.78 9.67 2.94 12.37 2.61 16.35 3.81 11.35 2.04 10.49 1.62 6.78 6.59 52.02 1.48 470.49 4.36 47.27 127.4456 D HP Everyday Brazil Ream 2 14.40 53.63 11.85 3.28 14.54 2.89 17.60 3.99 12.69 2.25 11.48 1.85 5.38 6.35 40.80 1.64 181.21 5.26 56.94 142.6256 E HP Everyday Brazil Ream 2 14.73 50.24 10.57 2.62 12.58 2.26 16.08 3.72 10.65 1.70 9.98 1.73 5.91 5.17 50.88 1.16 159.67 4.86 45.28 120.3957 A Laser IT Indonesia Ream 4 63.98 243.35 48.49 9.39 63.92 11.59 72.25 15.81 47.89 6.34 33.69 5.93 18.49 10.34 13244.41 2.45 448.45 51.79 25.87 24.6257 B Laser IT Indonesia Ream 4 59.92 227.86 44.85 7.63 57.87 10.68 66.67 14.41 41.07 5.66 31.26 4.96 15.39 6.30 13016.08 1.95 299.95 40.02 26.02 24.6157 C Laser IT Indonesia Ream 4 60.02 227.31 43.37 7.87 58.56 10.65 65.46 14.14 43.68 5.93 31.39 5.19 18.03 9.09 12719.30 1.96 357.27 48.81 23.83 25.0857 D Laser IT Indonesia Ream 4 60.03 233.50 45.10 8.41 62.54 10.89 68.99 15.10 44.10 5.98 34.28 5.27 17.70 7.98 13964.39 2.18 362.94 50.40 30.07 26.6757 E Laser IT Indonesia Ream 4 61.14 233.85 46.39 8.43 60.61 10.96 71.93 15.48 47.03 6.15 33.04 5.49 18.68 8.44 15366.48 2.17 328.55 52.56 35.85 25.7558 A Office Works UltraWhite Premium Australia Ream 1 26.84 101.05 22.05 4.98 26.23 5.92 37.85 8.37 27.48 4.39 27.90 5.09 3.97 3.42 6137.24 1.35 252.28 7.95 22.51 20.1058 B Office Works UltraWhite Premium Australia Ream 1 22.53 68.43 15.78 3.86 18.63 4.20 26.73 6.14 20.73 3.22 20.30 3.96 1.56 2.12 3763.26 1.19 187.61 4.56 16.60 15.2058 C Office Works UltraWhite Premium Australia Ream 1 21.47 84.86 18.63 4.45 22.50 4.42 31.93 7.12 22.93 4.00 23.79 4.60 2.04 3.10 4618.93 1.67 439.26 5.69 19.17 17.2158 D Office Works UltraWhite Premium Australia Ream 1 24.16 91.76 19.53 4.78 24.57 4.97 33.55 7.44 26.03 4.19 25.01 4.75 3.49 2.59 4902.77 1.28 201.37 4.77 20.36 18.5958 E Office Works UltraWhite Premium Australia Ream 1 25.73 96.43 19.35 4.65 23.79 5.27 31.96 7.85 24.88 3.98 25.36 4.52 2.31 2.05 4992.73 1.38 210.37 4.79 22.13 19.3959 A PaperOne Premium Presentation Indonesia Ream 2 58.43 222.43 42.47 7.82 56.77 10.28 66.82 14.10 39.60 5.25 29.23 4.60 13.32 4.94 11568.82 1.28 273.02 8.32 26.47 29.3459 B PaperOne Premium Presentation Indonesia Ream 2 55.59 212.85 42.69 7.84 56.72 10.10 61.28 13.27 39.80 5.54 29.09 4.34 13.20 5.21 15656.47 1.47 217.74 8.98 32.47 29.1459 C PaperOne Premium Presentation Indonesia Ream 2 54.02 206.33 40.53 7.75 54.90 9.90 61.78 13.33 39.72 5.03 27.68 4.54 12.91 5.35 14057.31 1.33 213.75 7.84 30.57 27.5159 D PaperOne Premium Presentation Indonesia Ream 2 53.83 206.79 39.48 7.60 54.82 9.81 61.31 13.35 37.97 5.15 28.46 4.34 14.06 6.35 11457.05 1.57 229.80 7.64 27.51 27.0659 E PaperOne Premium Presentation Indonesia Ream 2 54.88 212.97 41.79 8.18 56.47 10.11 64.41 13.74 41.39 5.25 30.17 4.58 14.06 5.77 14044.07 1.74 216.36 9.10 33.22 27.3660 A Reflex Recycled Pure White Australia Ream 2 28.93 106.21 20.76 4.49 28.01 5.18 32.20 7.44 23.90 3.83 24.54 4.18 16.39 1.22 7995.19 1.40 250.32 5.40 29.92 18.8560 B Reflex Recycled Pure White Australia Ream 2 26.52 93.10 18.96 4.21 23.56 4.41 29.10 6.78 23.22 3.44 22.52 3.96 11.55 0.93 7153.28 1.50 214.09 4.56 26.42 17.1960 C Reflex Recycled Pure White Australia Ream 2 25.80 94.14 18.23 4.43 23.47 4.48 30.46 6.92 22.21 3.60 22.39 4.29 13.51 1.95 7404.94 1.62 189.44 5.00 24.62 18.5760 D Reflex Recycled Pure White Australia Ream 2 29.71 97.66 19.55 4.47 23.94 4.46 28.84 7.18 22.24 3.60 21.66 4.04 12.94 1.35 7750.33 1.26 206.50 4.02 25.89 17.7360 E Reflex Recycled Pure White Australia Ream 2 27.55 94.68 17.90 4.04 23.42 4.53 26.66 6.41 19.95 2.99 21.57 3.64 15.14 1.46 7118.95 1.42 186.33 4.46 23.84 15.80

Page 238: Development of Novel Physical (Electrostatic Detection

238

Appendix 1 continued

Appendix 1Table 1C *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu

52 A Hotel stationery (generic brand) Argentina Ream 1Average 1440.00 746.00 390.00 27.90 1890.00 57.00 52500.00 16.10 5.61 80.20 115.00 3.92 32900.00 67.50 9490.00 170.00 4230.00 6770.00 190.00 3660.00 505.00

Stdev 179.00 67.60 48.40 3.34 119.00 8.68 4690.00 2.10 0.73 8.73 14.30 0.50 3000.00 2.48 1050.00 7.65 261.00 391.00 8.66 166.00 22.30RSD % 12.40 9.06 12.40 11.90 6.27 15.20 8.93 13.00 13.10 10.90 12.50 12.60 9.11 3.67 11.00 4.51 6.17 5.77 4.55 4.52 4.42

53 A PaperOne-Premium All Purpose Indonesia Ream 3Average 1230.00 864.00 508.00 19.00 3310.00 112.00 101000.00 31.60 65.00 242.00 191.00 4.59 7190.00 114.00 15300.00 206.00 1590.00 54100.00 237.00 5110.00 502.00

Stdev 99.70 54.80 44.20 1.35 138.00 14.50 5970.00 1.70 3.66 14.10 31.70 0.65 648.00 4.90 738.00 13.60 86.90 2300.00 10.90 229.00 66.40RSD % 8.09 6.35 8.69 7.11 4.16 12.90 5.90 5.37 5.63 5.83 16.60 14.20 9.01 4.29 4.82 6.59 5.48 4.25 4.59 4.49 13.20

54 A Reflex-Recycled Pure w hite Australia Ream 2Average 1230.00 864.00 508.00 19.00 3310.00 112.00 101000.00 31.60 65.00 242.00 191.00 4.59 7190.00 114.00 15300.00 206.00 1590.00 54100.00 237.00 5110.00 502.00

Stdev 99.70 54.80 44.20 1.35 138.00 14.50 5970.00 1.70 3.66 14.10 31.70 0.65 648.00 4.90 738.00 13.60 86.90 2300.00 10.90 229.00 66.40RSD % 8.09 6.35 8.69 7.11 4.16 12.90 5.90 5.37 5.63 5.83 16.60 14.20 9.01 4.29 4.82 6.59 5.48 4.25 4.59 4.49 13.20

55 A Double A Premium Thailand Ream 1Average 722.00 301.00 128.00 25.40 1450.00 71.10 48700.00 2.39 4.34 29.30 83.30 1.84 53000.00 59.50 3330.00 168.00 1820.00 4310.00 106.00 1340.00 1440.00

Stdev 53.00 16.30 92.10 1.76 44.70 8.48 2730.00 0.78 0.42 8.40 37.70 0.43 11500.00 5.11 392.00 32.10 97.20 270.00 5.74 90.10 24.90RSD % 7.34 5.42 72.00 6.93 3.08 11.90 5.60 32.80 9.68 28.60 45.30 23.60 21.70 8.59 11.80 19.10 5.35 6.28 5.43 6.72 1.73

56 A HP Everyday Brazil Ream 2Average 832.00 356.00 333.00 81.70 1900.00 29.80 60300.00 1.61 3.82 38.30 84.10 3.11 68200.00 66.00 5510.00 224.00 2010.00 4320.00 153.00 1860.00 331.00

Stdev 58.00 26.30 22.30 6.87 110.00 4.62 3970.00 0.45 0.35 10.80 5.16 0.40 7910.00 6.08 3770.00 36.70 69.90 337.00 8.72 94.30 25.20RSD % 6.97 7.39 6.68 8.41 5.81 15.50 6.60 27.80 9.07 28.20 6.13 12.90 11.60 9.22 68.40 16.40 3.48 7.81 5.70 5.07 7.60

57 A Laser IT Indonesia Ream 4Average 738.00 532.00 269.00 23.60 2020.00 25.80 67700.00 3.06 6.45 72.30 1180.00 22.10 54800.00 95.70 5890.00 265.00 2420.00 8560.00 197.00 2270.00 1150.00

Stdev 59.50 28.70 14.30 1.75 69.70 15.50 2530.00 0.77 0.47 4.79 482.00 2.04 38500.00 4.28 333.00 20.80 58.00 296.00 7.82 103.00 67.70RSD % 8.07 5.39 5.32 7.38 3.45 60.10 3.74 25.00 7.25 6.62 40.80 9.25 70.20 4.47 5.66 7.87 2.40 3.46 3.97 4.53 5.92

58 A Office Works UltraWhite Premium Australia Ream 1Average 1380.00 596.00 279.00 8.37 2030.00 76.70 72600.00 11.20 55.30 213.00 229.00 4.99 80200.00 141.00 13900.00 255.00 3500.00 69400.00 287.00 2860.00 711.00

Stdev 165.00 77.00 37.40 1.29 226.00 6.38 9390.00 1.68 7.79 26.20 16.80 1.25 24200.00 18.20 2010.00 56.20 437.00 7720.00 34.50 323.00 115.00RSD % 11.90 12.90 13.40 15.50 11.10 8.32 12.90 15.10 14.10 12.30 7.36 25.10 30.20 12.90 14.50 22.00 12.50 11.10 12.00 11.30 16.20

59 A PaperOne Premium Presentation Indonesia Ream 2Average 806.00 381.00 291.00 28.80 2450.00 84.10 73100.00 3.77 4.57 66.30 1500.00 15.40 108000.00 120.00 7400.00 304.00 3340.00 6290.00 250.00 2900.00 1140.00

Stdev 34.80 28.20 16.20 3.54 166.00 15.00 5770.00 0.75 0.39 10.00 62.10 0.47 4270.00 4.15 868.00 42.60 106.00 194.00 7.44 115.00 36.50RSD % 4.32 7.40 5.55 12.30 6.79 17.80 7.89 20.00 8.56 15.10 4.14 3.05 3.95 3.46 11.70 14.00 3.17 3.08 2.97 3.96 3.19

60 A Reflex Recycled Pure White Australia Ream 2Average 1240.00 594.00 428.00 13.60 2290.00 85.30 77400.00 17.20 59.40 209.00 301.00 6.62 68900.00 166.00 19700.00 339.00 3550.00 69600.00 338.00 3050.00 729.00

Stdev 82.40 37.00 26.10 0.99 103.00 5.66 3330.00 2.05 3.85 12.40 14.90 0.99 5910.00 2.27 1020.00 50.90 201.00 3650.00 17.40 132.00 64.30RSD % 6.64 6.23 6.10 7.25 4.50 6.63 4.30 11.90 6.48 5.95 4.96 14.90 8.58 1.37 5.19 15.00 5.66 5.24 5.16 4.33 8.82

Page 239: Development of Novel Physical (Electrostatic Detection

239

Appendix 1 continued

Appendix 1Table 1C Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce

52 A Hotel stationery (generic brand) Argentina Ream 1Average 1570.00 49.30 9.68 903.00 87.20 125.00 34100.00 88.80 333.00 75.20 127.00 8.17 3.37 0.27 53.20 7.66 0.37 7.97 5910.00 315.00 231.00

Stdev 95.50 3.19 0.96 164.00 10.50 4.95 750.00 1.83 45.30 7.34 25.40 0.97 0.64 < 0.100 5.64 1.53 < 0.100 1.46 348.00 19.90 19.50RSD % 6.08 6.46 9.92 18.20 12.10 3.96 2.20 2.07 13.60 9.76 19.90 11.90 19.00 23.50 10.60 20.00 30.80 18.30 5.89 6.32 8.46

53 A PaperOne-Premium All Purpose Indonesia Ream 3Average 1170.00 44.00 4.74 1050.00 205.00 105.00 36800.00 375.00 2920.00 69.30 366.00 0.81 40.00 < 0.100 27.00 15.50 0.27 4.84 788.00 175.00 313.00

Stdev 238.00 2.49 0.33 41.90 11.40 6.32 1640.00 18.30 386.00 29.30 19.90 0.22 16.30 < 0.100 10.40 1.80 < 0.100 3.55 55.30 23.50 24.50RSD % 20.40 5.66 6.86 3.99 5.57 5.99 4.47 4.87 13.20 42.20 5.43 27.80 40.90 135.00 38.60 11.60 14.20 73.30 7.01 13.40 7.82

54 A Reflex-Recycled Pure w hite Australia Ream 2Average 1170.00 44.00 4.74 1050.00 205.00 105.00 36800.00 375.00 2920.00 69.30 366.00 0.81 40.00 < 0.100 27.00 15.50 0.27 4.84 788.00 175.00 313.00

Stdev 238.00 2.49 0.33 41.90 11.40 6.32 1640.00 18.30 386.00 29.30 19.90 0.22 16.30 < 0.100 10.40 1.80 < 0.100 3.55 55.30 23.50 24.50RSD % 20.40 5.66 6.86 3.99 5.57 5.99 4.47 4.87 13.20 42.20 5.43 27.80 40.90 135.00 38.60 11.60 14.20 73.30 7.01 13.40 7.82

55 A Double A Premium Thailand Ream 1Average 1790.00 15.90 5.00 458.00 65.90 112.00 16800.00 611.00 438.00 31.10 19.50 0.92 170.00 0.44 64.80 13.60 0.43 17.80 1220.00 290.00 202.00

Stdev 185.00 4.84 1.73 92.00 20.50 9.00 1510.00 11.10 111.00 10.00 1.18 < 0.100 12.90 < 0.100 3.76 3.12 0.28 2.95 290.00 23.30 46.00RSD % 10.40 30.30 34.50 20.10 31.10 8.06 8.97 1.81 25.40 32.30 6.06 5.96 7.63 14.50 5.80 23.00 66.10 16.60 23.70 8.03 22.80

56 A HP Everyday Brazil Ream 2Average 1240.00 21.20 5.92 576.00 84.40 52.70 248000.00 138.00 271.00 49.80 11.70 0.89 11.50 0.33 54.90 5.20 0.25 10.80 2780.00 113.00 202.00

Stdev 183.00 1.63 1.10 136.00 12.20 9.50 13300.00 16.60 213.00 23.70 1.65 0.16 3.55 < 0.100 10.00 1.30 < 0.100 3.33 156.00 47.90 82.10RSD % 14.80 7.69 18.60 23.50 14.40 18.00 5.38 12.00 78.70 47.60 14.10 18.00 30.80 13.40 18.30 25.00 33.30 30.80 5.62 42.20 40.70

57 A Laser IT Indonesia Ream 4Average 2060.00 38.70 14.00 987.00 111.00 172.00 28700.00 830.00 643.00 85.20 1380.00 0.92 126.00 0.37 68.40 16.10 0.53 40.60 727.00 352.00 318.00

Stdev 317.00 1.95 1.46 88.90 12.80 8.13 1090.00 32.80 42.70 2.87 41.80 0.24 38.10 < 0.100 13.00 1.87 0.65 6.50 80.60 14.60 18.90RSD % 15.40 5.04 10.50 9.01 11.50 4.73 3.79 3.95 6.65 3.37 3.03 26.10 30.10 16.10 19.00 11.60 122.00 16.00 11.10 4.13 5.95

58 A Office Works UltraWhite Premium Australia Ream 1Average 1490.00 35.60 11.70 654.00 106.00 118.00 37400.00 367.00 577.00 22.00 218.00 0.84 32.70 0.32 33.30 6.37 0.77 10.50 604.00 162.00 207.00

Stdev 406.00 4.98 2.01 81.90 14.60 15.10 4170.00 42.50 49.20 5.98 49.40 0.13 4.40 < 0.100 3.86 2.93 1.22 0.93 84.20 27.90 36.20RSD % 27.30 14.00 17.20 12.50 13.70 12.80 11.10 11.60 8.53 27.20 22.70 15.50 13.40 15.30 11.60 46.10 160.00 8.91 13.90 17.20 17.50

59 A PaperOne Premium Presentation Indonesia Ream 2Average 2110.00 42.50 16.20 1280.00 105.00 116.00 24500.00 898.00 650.00 91.10 2400.00 0.79 176.00 0.27 34.20 14.00 0.26 24.30 766.00 333.00 262.00

Stdev 323.00 1.73 2.89 130.00 15.00 4.71 601.00 19.50 72.20 5.10 35.60 0.13 5.15 < 0.100 3.78 2.07 < 0.100 3.23 20.90 18.30 22.90RSD % 15.30 4.07 17.80 10.20 14.20 4.05 2.45 2.17 11.10 5.59 1.49 16.50 2.93 14.50 11.10 14.80 36.00 13.30 2.73 5.49 8.73

60 A Reflex Recycled Pure White Australia Ream 2Average 2580.00 55.30 12.90 984.00 102.00 116.00 37500.00 375.00 756.00 26.20 364.00 1.25 26.30 0.29 37.10 7.40 0.25 11.60 635.00 153.00 257.00

Stdev 318.00 3.46 2.01 135.00 20.00 6.76 1880.00 16.20 88.40 6.39 56.30 < 0.100 3.27 < 0.100 10.00 0.84 < 0.100 2.76 48.00 22.80 32.60RSD % 12.30 6.26 15.60 13.70 19.50 5.84 5.00 4.31 11.70 24.40 15.50 8.73 12.40 9.34 27.00 11.30 19.70 23.90 7.57 14.90 12.70

Page 240: Development of Novel Physical (Electrostatic Detection

240

Appendix 1 continued Appendix 1

Table 1C Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U 52 A Hotel stationery (generic brand) Argentina Ream 1

Average 26.80 97.30 23.00 5.91 21.60 3.46 19.80 3.37 9.31 1.33 8.64 1.20 8.98 5.09 39.90 0.50 568.00 9.55 23.80 77.90Stdev 1.75 4.87 0.90 0.17 0.26 < 0.100 0.72 < 0.100 0.63 < 0.100 0.56 < 0.100 1.19 0.61 9.74 < 0.100 107.00 2.05 0.78 2.48RSD % 6.54 5.00 3.90 2.94 1.20 2.48 3.66 2.27 6.74 5.39 6.42 5.41 13.30 12.00 24.40 9.83 18.90 21.50 3.29 3.18

53 A PaperOne-Premium All Purpose Indonesia Ream 3Average 36.10 148.00 31.70 6.58 38.50 7.73 50.50 11.80 38.00 6.10 41.50 7.03 100.00 2.39 17700.00 0.79 261.00 2.27 48.60 32.00

Stdev 3.25 11.60 2.06 0.50 2.23 0.48 3.60 0.75 1.79 0.45 3.18 0.43 8.51 0.62 2090.00 < 0.100 63.80 0.57 7.01 1.90RSD % 9.01 7.85 6.49 7.65 5.79 6.18 7.12 6.37 4.71 7.34 7.67 6.04 8.48 25.90 11.80 14.00 24.50 25.00 14.40 5.94

54 A Reflex-Recycled Pure w hite Australia Ream 2Average 36.10 148.00 31.70 6.58 38.50 7.73 50.50 11.80 38.00 6.10 41.50 7.03 100.00 2.39 17700.00 0.79 261.00 2.27 48.60 32.00

Stdev 3.25 11.60 2.06 0.50 2.23 0.48 3.60 0.75 1.79 0.45 3.18 0.43 8.51 0.62 2090.00 < 0.100 63.80 0.57 7.01 1.90RSD % 9.01 7.85 6.49 7.65 5.79 6.18 7.12 6.37 4.71 7.34 7.67 6.04 8.48 25.90 11.80 14.00 24.50 25.00 14.40 5.94

55 A Double A Premium Thailand Ream 1Average 46.20 180.00 33.30 7.58 46.10 8.65 52.40 12.00 35.10 4.68 24.30 4.11 15.40 11.90 78.50 1.28 201.00 9.62 9.34 17.30

Stdev 5.05 16.10 2.92 0.84 3.43 0.71 2.67 0.80 2.30 0.44 1.43 0.32 2.05 1.09 10.90 < 0.100 44.80 1.91 2.53 3.16RSD % 10.90 8.96 8.75 11.00 7.44 8.20 5.10 6.63 6.55 9.45 5.88 7.84 13.30 9.17 13.90 2.83 22.30 19.90 27.10 18.30

56 A HP Everyday Brazil Ream 2Average 15.90 59.70 11.10 3.02 13.70 2.74 17.40 4.05 12.40 2.08 11.60 1.84 9.25 6.78 79.80 1.31 245.00 5.23 51.70 134.00

Stdev 2.56 16.30 1.10 0.41 1.12 0.36 2.21 0.51 1.98 0.32 1.89 0.26 7.10 1.69 71.10 0.25 128.00 0.66 7.84 10.20RSD % 16.10 27.30 9.89 13.60 8.16 12.90 12.70 12.70 15.90 15.20 16.30 14.10 76.80 24.90 89.20 19.00 52.20 12.60 15.10 7.64

57 A Laser IT Indonesia Ream 4Average 61.00 233.00 45.60 8.34 60.70 11.00 69.10 15.00 44.80 6.01 32.70 5.37 17.70 8.43 13700.00 2.14 359.00 48.70 28.30 25.30

Stdev 1.73 6.46 1.92 0.68 2.57 0.38 3.05 0.71 2.75 0.25 1.36 0.37 1.33 1.48 1060.00 0.20 55.80 5.07 4.77 0.87RSD % 2.84 2.77 4.21 8.13 4.23 3.45 4.41 4.70 6.14 4.22 4.15 6.85 7.51 17.60 7.74 9.51 15.50 10.40 16.90 3.44

58 A Office Works UltraWhite Premium Australia Ream 1Average 24.10 88.50 19.10 4.54 23.10 4.95 32.40 7.38 24.40 3.96 24.50 4.58 2.68 2.66 4880.00 1.38 258.00 5.55 20.20 18.10

Stdev 2.21 12.70 2.25 0.43 2.86 0.69 3.99 0.84 2.65 0.44 2.77 0.41 1.02 0.60 853.00 0.18 104.00 1.41 2.41 1.94RSD % 9.16 14.40 11.80 9.47 12.40 13.90 12.30 11.30 10.80 11.20 11.30 8.99 37.90 22.60 17.50 13.10 40.30 25.40 11.90 10.70

59 A PaperOne Premium Presentation Indonesia Ream 2Average 55.40 212.00 41.40 7.83 55.90 10.00 63.10 13.60 39.70 5.25 28.90 4.48 13.50 5.53 13400.00 1.48 230.00 8.38 30.10 28.10

Stdev 1.86 6.50 1.36 0.21 0.99 0.18 2.44 0.36 1.21 0.19 0.93 0.13 0.52 0.55 1810.00 0.19 24.80 0.66 2.98 1.07RSD % 3.36 3.06 3.29 2.72 1.77 1.83 3.87 2.63 3.05 3.61 3.21 2.87 3.88 9.98 13.50 12.70 10.80 7.85 9.90 3.82

60 A Reflex Recycled Pure White Australia Ream 2Average 27.70 97.20 19.10 4.33 24.50 4.61 29.50 6.95 22.30 3.49 22.50 4.02 13.90 1.38 7490.00 1.44 209.00 4.69 26.10 17.60

Stdev 1.62 5.34 1.14 0.20 1.98 0.32 2.05 0.39 1.50 0.32 1.20 0.25 1.89 0.37 381.00 0.13 25.70 0.53 2.35 1.22RSD % 5.87 5.49 5.97 4.51 8.10 6.92 6.97 5.64 6.71 9.04 5.31 6.20 13.60 27.00 5.09 9.26 12.30 11.20 8.97 6.90

Page 241: Development of Novel Physical (Electrostatic Detection

241

Appendix 1 continued

Appendix 1 *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu Table 1D Betw een ream study61 A PaperOne All Purpose Indonesia Ream 1 885.54 502.30 295.20 32.77 2078.37 107.56 58379.40 19.05 6.59 87.79 320.01 7.72 64375.84 104.19 6419.58 314.75 2830.44 7289.04 394.42 2171.26 1126.2961 B PaperOne All Purpose Indonesia Ream 2 921.02 500.47 266.98 46.12 2151.25 77.49 61413.94 22.93 5.70 74.18 365.95 7.22 69479.28 102.58 6358.11 322.89 2923.21 6837.14 391.79 2484.30 1102.9961 C PaperOne All Purpose Indonesia Ream 3 1010.13 499.92 274.36 38.73 2078.03 101.22 63889.47 20.59 6.60 84.01 364.26 8.01 66148.61 116.05 6498.04 348.83 3033.41 6994.82 393.25 2305.42 1170.5862 A 4CC Sw eden Ream 1 446.08 964.30 234.05 15.40 2484.23 60.63 69232.75 1772.13 7.15 71.89 70.91 2.09 26124.99 84.45 1416756.90 276.75 940.69 5931.32 186.49 4516.69 681.4462 B 4CC Sw eden Ream 2 562.23 945.91 198.67 18.72 2540.39 49.87 69953.18 37.57 7.21 67.51 53.70 2.63 20024.87 57.56 16295.57 256.85 5184.80 5875.54 177.84 4139.04 571.8762 C 4CC Sw eden Ream 3 476.56 948.76 208.36 25.72 2552.17 64.62 69846.88 57.07 7.42 63.40 68.22 2.28 17426.91 57.18 31952.81 224.53 1648.42 5955.99 197.94 4546.90 598.3963 A Australian Australia Ream 2 1483.77 988.04 247.74 23.38 2088.62 52.82 90363.15 108.72 68.92 183.38 109.04 2.33 54223.03 115.46 69660.33 260.97 962.80 77218.55 294.03 5200.21 618.9663 B Australian Australia Ream 3 1598.67 1007.29 273.66 19.52 2108.67 55.47 91624.75 161.37 69.90 181.47 117.93 2.38 54172.91 104.69 106465.97 292.57 1736.96 76416.45 284.44 5527.84 693.5163 C Australian Australia Ream 4 1480.86 993.21 260.00 16.74 2109.32 50.62 89752.53 160.17 67.80 191.05 149.84 2.46 47780.91 128.13 112357.14 345.98 1827.51 78354.23 309.23 5755.72 595.8264 A Reflex Recycled Pure White Australia Ream 3 1445.05 805.28 361.41 25.00 3362.31 130.21 101453.88 33.58 69.79 197.96 195.07 4.81 6990.98 112.41 17527.00 186.53 884.43 54118.51 236.11 5427.37 507.7564 B Reflex Recycled Pure White Australia Ream 4 1411.39 797.72 364.70 23.51 3310.37 95.26 100971.44 26.59 68.50 201.15 193.32 3.77 7007.87 100.16 13465.93 191.56 1801.74 54083.96 233.42 5629.47 513.4264 C Reflex Recycled Pure White Australia Ream 5 1374.06 791.14 364.62 20.64 3249.42 109.94 100951.09 28.46 67.97 213.97 184.95 5.20 7569.34 130.17 14928.35 239.79 2072.31 54008.06 240.62 5655.98 483.8265 A Brilliant Australia Ream 1 1231.18 978.98 280.32 9.05 2224.41 116.12 86397.07 116.07 77.87 256.61 140.70 2.26 46654.45 141.80 73577.51 577.72 1805.80 69651.72 341.41 6414.03 488.4065 B Brilliant Australia Ream 2 1295.56 993.54 274.82 12.50 2217.30 114.21 89272.02 122.51 79.02 268.97 111.10 3.34 48077.43 125.27 81018.25 525.16 2204.47 72069.35 322.86 5673.01 507.0265 C Brilliant Australia Ream 3 1297.42 981.60 277.58 6.02 2237.20 114.54 88675.05 113.12 79.59 248.70 99.29 2.30 37449.43 124.48 74997.84 511.25 1942.90 71894.58 302.11 5296.35 440.2166 A Reflex Carbon Neutral Ultra White Australia Ream 1 1130.81 913.16 246.99 16.93 2294.26 64.91 86941.37 77.01 86.75 186.73 109.61 2.64 40128.35 120.10 49034.96 392.66 2146.74 80160.37 300.23 5773.67 416.5466 B Reflex Carbon Neutral Ultra White Australia Ream 2 1163.95 922.17 253.00 17.40 2239.53 53.70 87476.98 68.26 87.51 188.77 99.35 2.58 35469.75 118.14 43461.26 380.24 2205.85 79710.39 294.86 5712.99 381.9666 C Reflex Carbon Neutral Ultra White Australia Ream 3 1241.50 911.30 251.49 21.22 2286.55 89.56 87422.13 84.36 86.49 199.08 95.04 2.89 50702.79 123.96 54762.61 378.85 2365.76 77448.47 298.47 6067.14 438.8967 A Australian Australia Ream 1 1251.86 611.64 283.88 19.97 2089.36 47.89 87119.12 141.59 77.74 158.75 129.70 2.11 58712.60 115.24 96490.27 311.56 1320.51 53650.67 281.37 4905.80 955.6967 B Australian Australia Ream 2 1219.12 614.35 307.17 19.81 2137.57 63.33 87997.05 145.17 78.58 168.75 125.63 2.30 51523.15 95.21 94331.20 223.17 2630.48 52615.42 274.86 4719.01 455.1767 C Australian Australia Ream 3 1234.01 619.62 293.77 18.14 2079.67 46.67 87139.63 143.51 77.78 166.33 121.48 2.76 45941.11 137.83 97661.97 364.80 576.28 54685.99 284.70 5147.59 497.4468 A HP Bright White InkJet France Ream 1 669.76 900.52 257.18 49.39 2223.81 42.67 69662.49 84.77 8.69 95.87 91.73 5.40 38761.95 104.86 56767.35 277.20 1933.18 8468.69 216.70 4409.96 1007.3368 B HP Bright White InkJet France Ream 2 763.48 910.34 256.35 38.13 2146.38 21.66 69862.91 80.44 8.62 103.80 114.41 6.23 44707.56 131.39 537455.40 311.28 2025.31 8619.07 248.49 5113.80 1131.5768 C HP Bright White InkJet France Ream 3 779.95 898.53 258.66 40.88 2193.47 30.09 69560.59 85.21 8.57 102.45 116.56 5.72 47247.16 146.21 30697.25 339.28 2223.00 8547.58 253.55 5125.48 1090.9469 A HP Home and Office Brazil Ream 1 534.92 402.13 309.61 65.63 1743.03 29.43 64426.34 121.01 8.17 67.00 69.82 1.80 34503.54 129.65 84579.66 341.18 6210.58 7985.77 273.85 9133.08 375.4569 B HP Home and Office Brazil Ream 2 629.60 409.35 322.70 71.82 1818.01 24.25 66439.18 145.38 7.92 50.92 80.62 1.74 39898.06 138.00 18638.75 362.28 32.84 7264.40 245.58 5342.70 265.1269 C HP Home and Office Brazil Ream 3 607.03 401.23 312.21 68.14 1836.45 27.74 64895.31 126.12 7.40 42.80 85.78 3.07 43143.18 147.71 154653.71 387.71 2382.13 7243.30 255.29 5157.21 289.9470 A HP Home and Office France Ream 1 390.80 769.20 295.86 47.73 1846.53 3.95 68375.99 19.35 9.79 104.14 103.14 6.85 46651.38 143.67 19784.33 231.12 2569.54 9394.67 253.23 5602.20 257.7070 B HP Home and Office France Ream 2 391.95 756.59 298.47 43.68 1824.97 3.12 67968.20 23.46 8.91 100.30 115.04 7.54 46867.33 138.45 360726.47 272.75 1091.56 9359.20 252.31 5106.97 280.1570 C HP Home and Office France Ream 3 462.44 802.19 313.34 49.04 1870.68 2.82 69535.87 21.28 9.61 107.56 132.02 6.77 52918.79 165.44 68503.64 395.16 1254.47 9860.03 274.96 6053.34 275.3971 A Clarion Collection notepad India Ream 1 223.98 24632.97 1981.11 23.00 606.07 82.09 2373.72 24.46 13.38 1389.27 263.59 7.74 5410.19 57.15 18628.68 461.43 1600.10 10742.87 870.48 4387.74 437.3571 B Clarion Collection notepad India Ream 2 398.69 26557.41 1992.10 25.36 594.72 70.04 2226.60 32.87 13.75 1503.41 385.48 8.88 1655.31 58.52 21101.53 517.48 1583.18 10711.98 936.11 4131.08 499.0471 C Clarion Collection notepad India Ream 3 334.23 24564.20 1604.85 26.56 566.69 93.14 2635.75 27.00 15.41 1382.21 312.61 8.66 26053.98 59.31 18244.04 505.80 2582.08 12227.84 930.42 9821.12 558.0672 A PC Premier inkjet UK Ream 1 1763.89 682.79 204.25 37.46 2939.56 48.57 89354.38 38.71 6.87 103.32 91.35 4.26 9257.74 67.37 25295.95 410.87 686.04 6050.68 187.16 4928.10 490.0772 B PC Premier inkjet UK Ream 2 1862.52 701.90 217.06 39.46 3062.98 42.29 90218.81 40.60 7.81 111.02 102.01 4.34 28231.23 76.91 29520.85 468.52 946.21 6565.75 252.56 5626.62 517.3672 C PC Premier inkjet UK Ream 3 1836.29 700.99 206.07 37.07 3056.41 60.72 92199.44 38.52 6.72 108.80 138.64 4.48 41103.30 76.13 27171.05 455.76 960.93 6522.14 207.80 5456.61 515.59

Page 242: Development of Novel Physical (Electrostatic Detection

242

Appendix 1 continued

Appendix 1 Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce Table 1D Betw een ream study61 A PaperOne All Purpose Indonesia Ream 1 2143.22 39.41 16.91 959.55 90.34 199.35 32156.07 548.28 1015.37 85.26 1070.69 1.02 24.42 0.47 86.14 17.29 0.03 11.64 800.73 251.30 364.0161 B PaperOne All Purpose Indonesia Ream 2 1805.53 36.76 17.06 1073.78 71.84 174.40 31238.49 545.63 807.45 85.45 920.12 0.88 27.01 0.42 71.11 10.26 0.07 15.20 669.93 227.64 329.4661 C PaperOne All Purpose Indonesia Ream 3 1928.53 42.82 18.73 990.05 90.36 198.20 32511.61 567.88 893.83 94.59 1000.58 0.95 27.31 0.44 84.14 14.73 0.05 14.29 775.95 253.29 340.6262 A 4CC Sw eden Ream 1 9746.54 22.15 3.55 387.66 121.70 64.20 46662.76 240.01 943.82 421.51 1250.72 45.09 38.46 1.29 214.37 23.53 0.38 1.35 1161.04 417.02 170.0762 B 4CC Sw eden Ream 2 9067.64 18.41 2.69 416.94 96.47 43.29 45747.64 193.65 307.16 47.42 1214.39 46.32 27.79 0.41 20.73 4.97 0.28 1.06 1084.36 223.20 148.6662 C 4CC Sw eden Ream 3 12846.50 19.41 2.97 347.26 108.41 56.90 45369.87 196.27 364.98 59.13 1169.94 26.34 31.79 1.10 27.63 7.95 0.37 1.39 1124.83 169.06 138.2063 A Australian Australia Ream 2 9576.57 29.49 5.61 36.03 159.42 53.03 40295.14 354.39 8502.35 39.00 353.90 13.51 36.56 1.30 24.64 4.35 0.63 3.14 411.54 115.03 138.8163 B Australian Australia Ream 3 8445.18 27.02 6.40 46.53 181.35 68.43 40238.92 369.95 7662.06 49.70 376.15 14.01 30.17 1.01 51.20 4.40 0.61 3.14 614.97 109.43 151.4163 C Australian Australia Ream 4 6735.74 31.94 8.61 55.03 179.93 66.34 40573.65 373.05 8255.73 74.13 325.40 18.14 41.62 1.35 55.49 5.96 0.39 3.18 522.73 88.22 133.7564 A Reflex Recycled Pure White Australia Ream 3 1142.91 45.35 4.83 889.38 230.16 102.20 40433.58 320.53 15096.96 50.93 359.35 0.86 38.66 0.05 8.59 16.64 0.19 4.87 1158.48 132.82 309.4464 B Reflex Recycled Pure White Australia Ream 4 1177.75 41.84 4.47 1057.75 169.99 98.50 39438.70 317.68 12174.09 31.07 365.84 0.75 35.91 0.05 9.58 12.53 0.31 4.82 798.88 177.08 320.7664 C Reflex Recycled Pure White Australia Ream 5 1380.50 44.92 4.92 1196.33 213.96 96.96 40079.86 316.11 11738.08 65.95 373.13 0.80 45.34 0.02 7.71 17.43 0.32 4.83 749.82 140.22 310.1965 A Brilliant Australia Ream 1 5448.09 38.28 6.56 383.30 219.93 111.39 39726.95 357.36 4608.51 35.04 311.49 6.09 52.15 0.89 3.16 9.53 0.78 3.32 453.41 114.79 171.5265 B Brilliant Australia Ream 2 5402.93 31.00 6.69 701.71 171.16 110.32 41280.88 382.72 4573.46 47.10 341.22 6.06 34.51 0.83 2.44 8.29 0.55 3.13 859.96 106.02 197.9265 C Brilliant Australia Ream 3 5380.36 32.73 6.67 675.65 177.11 101.94 40834.50 370.90 4420.00 38.21 281.17 2.93 33.42 0.86 2.33 8.63 0.52 2.94 453.67 90.71 176.0766 A Reflex Carbon Neutral Ultra White Australia Ream 1 3077.81 32.55 7.18 677.59 201.08 85.92 41589.37 307.81 1747.84 28.43 601.89 5.99 34.37 0.89 10.63 8.09 0.59 3.41 356.90 93.15 173.5366 B Reflex Carbon Neutral Ultra White Australia Ream 2 2744.28 31.67 6.50 526.56 166.19 86.87 41442.33 307.39 1780.92 24.99 579.55 4.36 35.43 0.34 12.14 7.62 0.50 3.27 332.65 80.36 148.3366 C Reflex Carbon Neutral Ultra White Australia Ream 3 2683.35 33.93 7.35 636.61 191.85 96.61 41115.03 314.12 2115.09 20.65 642.99 6.08 35.38 0.72 16.83 7.76 0.55 2.87 406.57 81.46 153.1867 A Australian Australia Ream 1 6144.78 30.12 6.80 48.07 164.07 61.20 29111.35 296.55 9620.72 49.25 351.69 16.31 36.30 1.04 70.70 5.32 0.47 2.90 517.27 96.87 137.5067 B Australian Australia Ream 2 11695.39 26.62 5.55 34.86 147.27 63.01 29076.28 292.96 7465.28 43.63 338.81 15.59 30.89 1.03 24.27 4.43 0.56 3.30 508.23 107.36 134.0467 C Australian Australia Ream 3 6917.32 31.71 8.27 54.66 209.36 63.60 29497.62 300.11 7334.13 48.02 364.95 13.76 41.16 0.59 27.43 4.97 0.59 3.26 523.75 108.45 152.4368 A HP Bright White InkJet France Ream 1 12316.60 26.61 6.51 481.04 150.94 68.23 17176.41 495.92 220.30 77.26 92.40 6.85 32.78 0.19 66.03 13.81 0.58 1.43 652.79 139.01 187.8368 B HP Bright White InkJet France Ream 2 16457.85 33.68 7.67 457.21 191.81 53.12 17908.89 493.94 217.95 89.50 89.28 7.62 38.05 0.64 29.33 11.79 0.48 1.47 626.46 139.59 182.4068 C HP Bright White InkJet France Ream 3 13792.24 35.92 8.75 511.50 196.00 52.24 17697.99 496.69 195.35 52.54 76.60 12.54 37.32 0.87 28.16 11.20 0.45 1.74 616.71 139.34 182.9869 A HP Home and Office Brazil Ream 1 3955.93 35.65 8.27 394.28 197.68 63.71 355361.71 154.50 117.66 80.45 133.69 2.08 30.84 0.15 37.93 11.61 0.51 1.85 1788.36 48.90 90.9569 B HP Home and Office Brazil Ream 2 5023.97 34.28 8.16 417.19 213.14 51.60 361712.80 151.85 118.17 42.52 78.31 1.27 29.99 0.44 8.49 8.08 0.53 1.43 1781.74 55.08 88.1669 C HP Home and Office Brazil Ream 3 2857.88 39.41 8.26 438.82 231.44 53.25 356955.25 150.69 134.35 48.44 52.53 0.06 31.81 0.45 11.92 11.03 0.64 1.51 1775.12 36.81 84.2170 A HP Home and Office France Ream 1 5417.79 37.87 9.48 307.64 222.22 53.98 23152.53 335.44 571.13 133.60 63.22 2.32 38.95 0.28 18.38 11.43 0.48 1.37 382.73 108.30 126.5670 B HP Home and Office France Ream 2 6339.20 39.84 8.69 396.29 236.29 68.86 22479.86 341.06 413.30 132.32 71.50 1.16 39.81 0.66 58.67 15.58 0.55 1.71 428.19 116.35 134.2270 C HP Home and Office France Ream 3 11787.99 48.91 12.00 455.76 272.60 74.78 23255.90 375.18 577.93 123.46 103.07 2.78 41.77 0.83 119.59 20.33 0.72 1.81 495.38 142.29 141.1871 A Clarion Collection notepad India Ream 1 7790.43 135.68 137.26 210.93 33.98 134.23 2140.90 78.17 1320.04 23.21 494.14 5.72 14.18 16.20 29.30 28.10 0.46 8.20 1091.95 109.54 238.6971 B Clarion Collection notepad India Ream 2 6391.98 137.47 150.87 252.95 153.61 132.28 2075.99 82.16 1397.27 25.93 471.33 5.10 5.70 0.97 25.84 32.20 0.19 8.16 1192.80 93.49 210.9471 C Clarion Collection notepad India Ream 3 8619.89 123.17 139.61 245.72 18.19 144.52 2496.15 74.80 1286.06 20.47 461.25 6.70 9.00 2.74 28.05 25.23 0.27 8.70 1195.43 97.77 198.2972 A PC Premier inkjet UK Ream 1 2288.11 25.65 3.07 862.18 155.86 99.79 28337.14 486.04 705.45 20.22 27.55 1.44 9.54 0.30 6.20 10.48 0.36 9.75 1958.23 180.91 201.1772 B PC Premier inkjet UK Ream 2 2065.91 27.67 3.82 987.99 123.96 103.52 29883.15 506.67 575.53 23.35 42.38 0.76 12.46 0.62 7.19 9.49 0.41 10.56 2391.45 184.24 206.1772 C PC Premier inkjet UK Ream 3 2767.79 26.65 3.58 909.97 260.32 104.21 29313.52 503.13 573.52 21.93 30.18 0.28 11.76 0.35 12.48 10.16 0.09 10.56 2166.37 198.44 234.40

Page 243: Development of Novel Physical (Electrostatic Detection

243

Appendix 1 continued

Appendix 1 Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U Table 1D Betw een ream study61 A PaperOne All Purpose Indonesia Ream 1 40.83 143.44 27.30 4.74 36.47 6.28 38.04 7.26 24.11 3.47 19.99 2.98 17.49 5.28 19672.15 2.10 284.51 7.57 30.20 19.7361 B PaperOne All Purpose Indonesia Ream 2 36.79 138.63 27.10 4.63 34.29 6.06 39.51 7.77 25.15 3.17 18.75 2.89 13.71 5.62 17691.58 1.91 224.82 7.39 26.61 20.9661 C PaperOne All Purpose Indonesia Ream 3 42.36 143.11 26.56 4.72 34.25 6.51 43.33 7.64 24.75 3.42 20.79 3.30 17.54 5.32 19576.40 2.26 269.47 7.34 28.84 20.0962 A 4CC Sw eden Ream 1 28.77 137.44 14.28 5.70 37.13 4.24 33.86 10.53 25.85 5.99 21.00 6.30 29.50 8.95 17351.67 2.66 151.48 6.17 5.96 191.0762 B 4CC Sw eden Ream 2 19.41 114.80 13.03 3.93 32.74 2.64 27.05 6.08 20.97 3.98 14.18 3.55 20.34 3.25 12150.46 1.85 212.86 6.79 7.44 175.2662 C 4CC Sw eden Ream 3 21.46 114.29 11.42 3.98 33.18 3.38 27.88 6.85 20.04 4.26 17.51 4.66 32.42 3.91 12019.49 2.05 179.73 8.35 8.90 171.8063 A Australian Australia Ream 2 22.02 67.80 14.67 4.46 18.15 5.77 26.84 5.82 23.17 3.73 26.30 4.28 178.99 1.21 192.17 0.33 219.55 4.66 16.01 18.8563 B Australian Australia Ream 3 19.55 73.66 15.86 6.01 21.35 4.79 29.06 6.02 23.37 4.36 26.27 4.38 133.19 1.22 179.68 0.41 183.77 4.87 20.37 23.1563 C Australian Australia Ream 4 19.58 68.86 14.65 5.75 20.85 6.09 29.44 7.55 26.28 5.09 26.91 4.82 207.46 3.36 212.28 1.57 190.87 4.78 24.08 22.3964 A Reflex Recycled Pure White Australia Ream 3 34.18 136.28 29.89 5.46 40.76 8.14 52.94 11.81 37.76 6.82 36.30 7.63 726.99 3.24 16974.62 1.07 209.99 3.25 50.45 33.2664 B Reflex Recycled Pure White Australia Ream 4 36.05 136.96 34.69 6.02 39.70 8.28 50.33 12.30 37.32 6.71 34.67 7.12 661.57 3.18 17522.99 1.11 336.38 3.18 46.33 32.9264 C Reflex Recycled Pure White Australia Ream 5 38.11 138.20 30.59 3.88 44.82 6.78 48.18 11.22 38.96 4.76 33.87 6.35 706.53 2.95 18547.79 1.19 235.20 3.37 49.09 29.7265 A Brilliant Australia Ream 1 24.05 138.14 16.52 6.85 46.11 4.62 42.03 13.67 41.85 10.08 44.74 12.61 257.27 1.77 4143.41 0.43 187.61 1.48 23.17 44.0965 B Brilliant Australia Ream 2 25.17 144.60 16.31 5.57 42.37 4.28 47.48 13.68 41.41 9.82 46.67 11.47 300.00 1.16 4582.99 0.63 189.49 1.83 27.74 41.5765 C Brilliant Australia Ream 3 23.38 132.55 14.69 4.96 42.39 4.03 42.97 12.03 43.75 7.92 42.86 11.79 240.59 2.01 4230.25 0.50 125.28 1.22 24.53 37.8266 A Reflex Carbon Neutral Ultra White Australia Ream 1 22.30 108.30 12.47 4.84 39.48 3.76 33.70 10.71 33.20 6.92 31.31 8.60 231.50 1.26 8686.69 0.19 191.04 2.10 17.65 27.9966 B Reflex Carbon Neutral Ultra White Australia Ream 2 22.91 109.39 12.40 4.21 32.90 3.46 32.67 9.14 30.77 6.13 30.84 7.32 282.71 1.12 9814.27 0.15 151.91 1.67 17.17 27.0066 C Reflex Carbon Neutral Ultra White Australia Ream 3 21.54 113.14 11.92 3.66 36.12 2.88 34.88 9.68 31.09 5.95 32.27 7.54 224.39 1.39 8508.32 0.13 174.02 1.99 18.41 26.7067 A Australian Australia Ream 1 21.03 70.55 14.95 4.92 20.03 5.10 27.90 8.39 24.64 4.81 28.90 5.77 187.80 2.11 204.88 1.02 186.09 5.79 25.19 26.3367 B Australian Australia Ream 2 18.98 67.45 15.15 5.01 21.35 5.97 27.89 8.07 20.84 4.41 27.01 4.88 172.88 2.46 192.66 0.93 189.92 5.17 25.39 22.5567 C Australian Australia Ream 3 21.14 72.32 13.64 4.92 18.96 5.59 29.55 6.71 27.35 3.96 23.56 4.14 158.97 1.22 186.59 0.36 218.18 3.34 22.28 19.7168 A HP Bright White InkJet France Ream 1 35.07 199.53 21.63 7.45 56.96 4.71 51.05 13.43 41.09 6.38 29.93 6.90 10.41 6.82 220.27 0.19 1497.23 0.64 16.56 50.5468 B HP Bright White InkJet France Ream 2 34.73 200.35 23.09 6.25 57.54 4.61 49.65 13.75 39.89 6.62 29.71 7.03 9.26 5.05 229.02 0.96 1384.87 2.84 11.26 47.9468 C HP Bright White InkJet France Ream 3 34.55 196.44 21.97 7.66 59.69 4.86 47.96 13.25 38.65 6.63 33.65 6.93 6.43 2.73 49.39 1.17 1460.70 4.21 10.37 46.6969 A HP Home and Office Brazil Ream 1 12.50 54.84 7.26 3.65 25.52 1.84 20.15 6.30 19.90 2.88 16.39 2.48 0.50 1.98 132.09 0.31 1595.11 0.16 63.18 196.8269 B HP Home and Office Brazil Ream 2 10.01 55.92 8.02 3.30 26.23 2.18 17.36 5.16 15.85 2.49 15.30 1.86 1.26 1.69 35.89 0.45 115.08 2.39 65.32 196.6269 C HP Home and Office Brazil Ream 3 9.80 53.93 8.75 3.65 22.06 2.18 19.31 4.61 16.44 3.13 12.94 2.27 0.74 2.21 68.45 0.22 125.01 1.63 64.57 198.1770 A HP Home and Office France Ream 1 24.20 132.61 16.02 4.51 46.22 4.08 34.94 8.85 25.98 4.11 19.56 3.51 0.15 0.91 65.12 0.33 24.20 1.28 7.95 63.1470 B HP Home and Office France Ream 2 24.71 140.00 15.52 4.25 45.10 3.98 31.18 9.99 27.60 4.05 21.92 4.69 0.44 0.72 84.08 0.57 68.30 3.55 8.91 67.2470 C HP Home and Office France Ream 3 27.35 153.20 18.73 5.64 50.68 4.49 41.96 11.47 29.37 5.63 27.57 5.56 0.51 0.76 68.29 1.04 38.46 4.15 8.63 77.5471 A Clarion Collection notepad India Ream 1 27.40 129.00 20.76 5.71 36.54 3.89 21.28 5.17 13.97 2.07 10.28 4.02 229.39 1.98 12579.32 1.93 132.62 7.69 55.05 474.5671 B Clarion Collection notepad India Ream 2 21.79 109.48 13.20 4.35 31.63 2.96 22.49 5.30 13.97 2.43 10.31 2.07 108.95 2.28 12498.58 1.83 160.56 6.29 49.94 475.4971 C Clarion Collection notepad India Ream 3 23.15 113.89 19.98 5.04 32.22 3.11 20.50 4.40 14.36 2.44 8.73 2.47 164.87 1.28 13169.85 2.43 160.28 7.66 44.37 475.7772 A PC Premier inkjet UK Ream 1 36.18 181.93 27.12 7.95 58.34 7.01 52.80 15.40 43.31 7.68 36.85 6.95 145.36 1.27 35.76 4.74 111.10 1.68 19.03 294.1172 B PC Premier inkjet UK Ream 2 38.11 188.42 24.78 7.88 60.08 7.08 59.37 14.83 44.43 7.54 33.93 7.26 74.45 3.02 34.20 4.48 143.10 0.86 18.44 294.0972 C PC Premier inkjet UK Ream 3 38.04 188.14 28.02 7.48 54.81 6.96 56.93 14.37 43.90 7.46 34.18 6.29 46.79 1.04 17.04 4.59 116.22 1.47 14.31 285.66

Page 244: Development of Novel Physical (Electrostatic Detection

244

Appendix 1 continued

Appendix 1 *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu Table 1D Betw een ream study

73 A Reflex Carbon Neutral Ultra White Australia Ream 1 1509.58 944.51 204.74 13.33 2841.57 132.91 103135.85 47.40 90.67 212.56 109.71 2.75 64243.29 118.21 32978.56 362.76 2171.74 77196.10 311.57 6620.21 442.9373 B Reflex Carbon Neutral Ultra White Australia Ream 2 1448.84 953.18 185.08 12.14 2861.85 124.15 101262.17 47.81 92.22 221.13 111.75 2.59 57046.91 121.40 31965.14 378.74 1709.47 78400.71 307.46 6120.74 374.4973 C Reflex Carbon Neutral Ultra White Australia Ream 3 1516.40 983.77 217.20 10.79 2938.82 149.54 105719.03 49.99 96.86 232.14 114.97 3.18 59945.82 126.26 38050.41 392.43 2355.88 80492.61 312.22 6151.45 383.0474 A Reflex Recycled Pure White® Australia Ream 3 1623.19 902.19 361.75 14.62 2873.21 68.30 102948.52 67.93 94.34 214.62 160.14 3.40 60606.30 128.32 50200.17 396.12 2421.63 80748.66 308.90 6106.16 419.3774 B Reflex Recycled Pure White® Australia Ream 4 1627.56 877.63 339.10 15.81 2826.88 70.99 101967.91 78.07 90.65 203.62 151.45 3.51 63211.01 125.99 55245.61 402.32 1886.83 78670.63 299.30 5767.07 452.9074 C Reflex Recycled Pure White® Australia Ream 5 1633.43 911.60 387.62 10.67 2833.19 94.65 101247.24 73.27 93.67 214.33 163.59 3.22 58041.82 120.02 52030.74 398.04 5333.35 81123.58 315.88 6239.36 465.3475 A Reflex 100% Recycled Pure White Australia Ream 2 1097.71 719.47 588.15 28.43 2419.70 88.14 77159.37 88.74 64.10 192.51 195.55 4.43 32134.75 103.97 62324.75 322.52 1509.37 53815.33 242.58 4784.45 579.3975 B Reflex 100% Recycled Pure White Australia Ream 3 1046.19 700.77 552.51 26.86 2396.72 84.33 75499.18 82.31 63.44 187.45 192.23 3.61 25344.80 97.94 59518.00 334.54 1427.22 52916.83 238.48 4461.26 532.0475 C Reflex 100% Recycled Pure White Australia Ream 4 1051.30 725.24 594.26 29.25 2454.62 89.01 78286.41 118.39 61.98 193.84 215.44 4.22 30060.78 102.57 67748.71 345.39 1362.17 54533.17 241.96 5027.48 578.1176 A Australian Bright White OfficePaper Australia Ream 1 1911.63 1120.21 218.01 10.43 2664.81 99.58 103685.39 50.28 91.45 232.13 133.23 2.53 49439.80 129.96 34540.02 366.16 1959.06 78407.91 302.23 6376.12 553.6776 B Australian Bright White OfficePaper Australia Ream 2 1750.96 1126.11 214.70 11.88 2682.08 98.13 101639.94 48.69 92.23 228.87 114.69 3.31 15827.76 130.59 36112.12 363.19 2163.63 79385.41 308.25 6344.20 544.2576 C Australian Bright White OfficePaper Australia Ream 3 1574.31 1131.76 225.12 11.36 2671.46 87.42 103127.24 48.66 93.88 235.34 117.46 2.57 58988.29 135.79 34292.75 382.13 1991.90 80281.31 316.92 6376.21 487.1077 A Tudor Multi White OfficePaper Australia Ream 1 1255.59 784.31 268.44 14.39 2739.12 94.17 108259.34 103.28 87.88 232.69 97.20 3.33 64426.28 140.16 73605.18 405.17 2218.77 76937.36 320.40 6506.82 369.4277 B Tudor Multi White OfficePaper Australia Ream 2 1262.81 759.20 249.26 14.42 2572.76 97.05 98231.85 92.13 83.60 223.24 92.80 2.23 23670.61 131.76 67582.89 397.44 2395.41 72873.11 295.13 6309.78 392.8877 C Tudor Multi White OfficePaper Australia Ream 3 1194.80 790.54 257.53 13.62 2692.63 95.10 104531.46 96.95 88.77 237.36 103.24 3.49 22943.26 137.41 70623.34 376.77 2336.59 76894.73 320.76 6278.11 383.2478 A Brilliant White CopyPaper Australia Ream 1 1451.50 1045.69 238.71 13.99 2593.03 96.20 103628.30 163.89 78.09 238.89 102.25 2.61 19987.89 141.70 60501.50 383.68 2754.60 70253.69 304.81 6789.03 440.9278 B Brilliant White CopyPaper Australia Ream 2 1435.67 1057.76 241.75 12.76 2632.51 91.24 104572.13 68.67 80.66 238.34 100.96 3.25 23657.92 148.79 50613.48 383.78 2338.82 72296.04 302.80 6209.12 448.8178 C Brilliant White CopyPaper Australia Ream 3 1430.37 1069.99 254.29 15.64 2667.22 98.69 105732.07 83.63 82.65 247.36 103.17 2.69 20621.78 152.26 61770.57 412.53 2203.07 73457.18 305.56 6318.26 441.4679 A Reflex-Acid Free (Ream C) Australia Ream 3 1071.81 487.02 282.37 28.75 2528.69 66.99 100315.00 23.46 49.65 211.91 185.39 4.15 32745.90 104.71 14877.33 375.61 2467.61 69758.20 361.97 4379.35 644.4279 B Reflex-Acid Free (Ream D) Australia Ream 4 1342.89 567.49 220.64 21.07 2305.31 66.89 102457.67 13.76 52.49 183.13 126.01 4.18 29762.46 132.22 17931.64 323.10 1629.57 58639.12 269.14 3035.18 662.7679 C Reflex-Acid Free (Ream E) Australia Ream 5 1012.28 467.66 306.81 34.07 2453.69 59.86 124153.00 27.44 35.95 176.14 198.75 4.71 33664.09 97.36 14280.67 414.68 2191.59 53244.93 389.98 3540.74 710.0680 A S Tudor-Laser (Ream B) Australia Ream 2 1299.71 637.88 180.01 27.16 1927.77 72.59 73194.39 13.13 56.52 151.10 90.89 2.48 46367.91 82.89 7077.41 246.98 770.80 40666.34 184.95 3341.24 459.7680 B S Tudor-Laser (Ream C) Australia Ream 3 1310.35 485.85 136.67 31.95 2158.73 83.08 86095.67 13.86 48.03 157.39 114.22 3.12 42015.84 93.56 8627.08 164.09 956.98 46530.84 222.55 3639.87 557.7980 C S Tudor-Laser (Ream D) Australia Ream 4 1717.54 706.25 190.70 15.50 1324.95 41.14 72218.62 10.19 60.23 113.32 102.61 1.92 43053.54 71.87 8686.88 205.28 1387.64 51780.89 262.17 2729.77 521.9681 A S Tudor-Laser (Ream E) Australia Ream 5 1276.11 770.38 153.87 33.18 2163.27 56.19 49326.26 9.83 36.41 144.98 117.85 2.95 28105.33 89.19 9815.88 423.31 1491.00 48776.00 240.65 2850.17 366.2281 B S Tudor-Laser (Ream F) Australia Ream 6 1068.04 556.79 119.47 32.15 1669.12 58.57 68741.85 16.10 67.80 157.34 64.19 1.83 30178.52 76.32 5881.46 281.10 592.15 30248.95 195.13 4198.06 538.6281 C S Tudor-Laser (Ream G) Australia Ream 7 1647.17 343.31 132.85 38.61 2616.06 88.57 101407.31 10.53 58.53 176.60 104.10 3.37 43448.84 81.03 5579.17 148.60 1177.84 53480.98 280.97 3582.95 430.2682 A X Fuji Xerox (Ream D) Australia Ream 4 1387.11 728.75 161.71 18.94 1659.37 28.75 56699.20 25.08 36.89 135.49 121.69 3.32 28517.60 94.73 11466.20 177.27 1437.69 51599.06 162.28 3647.62 524.1682 B X Fuji Xerox (Ream E) Australia Ream 5 1367.41 688.29 183.53 9.95 1639.65 38.11 48617.88 32.93 38.11 169.92 130.50 2.89 30945.82 160.66 10970.83 399.43 1530.81 51832.56 151.61 3900.39 578.0682 C X Fuji Xerox (Ream F) Australia Ream 6 1358.34 678.42 170.39 10.83 2253.65 40.87 79626.61 16.81 40.89 132.31 168.25 2.16 15694.90 136.56 13516.82 249.85 2097.72 65825.69 206.43 5270.24 347.8783 A X Fuji Xerox (Ream G) Australia Ream 7 991.39 598.33 180.05 20.14 1093.93 28.96 70604.57 20.69 36.15 160.25 92.79 2.41 33226.01 100.73 11003.25 126.56 951.66 35847.37 138.00 3302.43 396.1283 B X Fuji Xerox (Ream H) Australia Ream 8 1281.42 483.67 141.75 11.74 1717.90 43.57 36728.85 35.76 47.12 164.63 127.45 3.67 34443.81 185.76 12988.11 323.52 1851.04 35866.34 139.56 3007.98 542.6483 C X Fuji Xerox (Ream I) Australia Ream 9 1706.71 722.34 147.84 11.15 1955.54 39.59 52627.31 16.08 48.43 152.94 111.33 1.56 10827.53 97.63 12613.03 311.58 1383.75 61672.76 170.75 4566.88 415.5284 A X Fuji Xerox (Ream J) Australia Ream 10 1628.13 473.12 225.34 11.77 2339.16 38.23 88710.65 12.30 85.68 179.77 113.95 3.39 44418.52 106.27 7399.41 273.10 2157.52 74408.94 310.63 4467.26 360.3684 B X Fuji Xerox (Ream K) Australia Ream 11 1234.70 510.40 194.02 13.62 2611.53 28.38 88698.69 13.21 103.77 198.81 139.05 3.78 32508.51 111.85 6924.85 207.92 2331.59 75848.36 366.37 4081.84 311.9384 C X Fuji Xerox (Ream L) Australia Ream 12 975.71 539.74 170.85 13.83 2485.14 25.97 61920.49 15.14 103.09 201.31 165.15 3.15 35502.77 79.38 6395.78 247.37 2834.57 74946.02 465.78 4496.74 287.2185 A X Fuji Xerox (Ream M) Australia Ream 13 1030.63 481.59 192.35 9.85 1741.49 27.79 48358.16 16.18 74.28 216.95 176.48 3.37 30041.91 71.45 7927.48 159.09 2164.90 48053.65 395.98 5222.50 257.2885 B X Fuji Xerox (Ream N) Australia Ream 14 955.81 573.03 230.03 10.02 1579.39 27.80 38116.77 12.82 85.82 258.24 206.19 4.13 34150.50 58.63 9159.93 123.88 2365.18 44926.41 505.74 4871.89 216.0385 C X Fuji Xerox (Ream O) Australia Ream 15 869.13 631.82 157.62 12.24 1447.38 19.01 31043.74 15.98 72.84 200.13 237.82 4.67 36093.28 42.30 10362.65 110.88 1628.57 44588.76 477.21 6150.78 224.91

Page 245: Development of Novel Physical (Electrostatic Detection

245

Appendix 1 continued Appendix 1 Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce

Table 1D Betw een ream study73 A Reflex Carbon Neutral Ultra White Australia Ream 1 3515.17 26.05 4.77 846.80 228.76 82.15 41679.07 354.76 51606.32 19.39 448.74 5.34 47.61 0.54 8.41 12.13 0.40 3.03 486.33 95.21 162.7973 B Reflex Carbon Neutral Ultra White Australia Ream 2 3030.74 26.25 4.86 949.96 112.58 78.01 41660.99 349.38 60491.60 17.79 419.01 3.05 48.93 0.17 4.97 14.58 0.41 3.02 465.35 94.28 165.5273 C Reflex Carbon Neutral Ultra White Australia Ream 3 3087.08 27.73 5.54 1036.28 147.10 90.06 42983.90 358.00 61897.14 121.03 394.46 3.72 49.21 0.13 6.99 11.96 0.53 3.37 517.85 117.79 212.3674 A Reflex Recycled Pure White® Australia Ream 3 4218.48 46.30 5.42 716.37 109.09 87.43 45549.57 360.47 68260.07 42.15 1281.81 4.39 57.35 0.48 10.67 12.87 0.32 5.20 667.97 115.49 221.6374 B Reflex Recycled Pure White® Australia Ream 4 4415.57 47.37 5.98 858.41 278.31 90.11 43784.77 348.80 57448.60 44.67 1273.28 2.94 39.56 5.77 12.48 6.81 0.53 4.60 642.20 111.84 209.0074 C Reflex Recycled Pure White® Australia Ream 5 4962.26 50.94 6.95 867.32 260.77 106.77 45169.11 367.92 43260.86 30.99 1355.21 3.36 38.78 0.65 7.76 12.68 0.34 5.08 737.58 120.73 229.2575 A Reflex 100% Recycled Pure White Australia Ream 2 5736.02 70.90 7.75 652.08 108.55 118.47 36131.58 267.47 4992.68 48.25 1144.46 8.11 26.97 0.31 14.31 11.47 0.36 4.94 826.54 139.98 283.0475 B Reflex 100% Recycled Pure White Australia Ream 3 9687.03 64.28 6.74 532.99 212.86 121.10 34973.90 262.00 3700.12 44.49 1089.10 4.41 25.75 0.47 13.63 9.47 0.62 4.65 754.11 131.07 262.6775 C Reflex 100% Recycled Pure White Australia Ream 4 6926.93 70.21 7.09 623.09 307.08 121.88 36680.03 268.53 4698.58 46.64 1117.76 3.04 21.29 1.77 14.14 11.93 0.38 5.16 779.55 140.72 289.0576 A Australian Bright White OfficePaper Australia Ream 1 2391.13 28.03 6.07 1090.43 155.00 90.14 44045.99 382.69 76164.96 20.28 218.60 1.59 61.90 17.49 4.38 8.55 0.36 3.49 494.61 93.50 176.0076 B Australian Bright White OfficePaper Australia Ream 2 2384.53 25.86 7.31 1132.31 312.15 90.15 44844.14 389.23 79703.29 23.53 214.64 4.49 56.12 0.27 4.46 10.34 0.44 3.50 491.28 94.68 174.1576 C Australian Bright White OfficePaper Australia Ream 3 2505.86 28.91 7.11 1311.81 244.84 93.10 44810.43 400.59 89069.75 18.71 196.62 3.60 69.81 0.45 4.72 13.50 0.32 3.26 485.14 99.23 178.8177 A Tudor Multi White OfficePaper Australia Ream 1 3637.88 32.29 6.21 1005.57 257.46 115.18 45467.87 401.20 57365.63 38.72 122.03 2.64 43.65 7.69 6.44 10.82 0.37 3.48 588.12 107.70 198.0677 B Tudor Multi White OfficePaper Australia Ream 2 2916.24 31.69 6.26 1174.05 213.46 112.42 44268.15 385.35 51806.46 41.31 128.90 1.71 50.51 0.40 5.50 7.20 0.49 3.29 555.96 104.48 190.8877 C Tudor Multi White OfficePaper Australia Ream 3 3840.60 32.62 5.34 992.00 226.36 120.30 45725.14 400.02 59186.53 38.91 131.44 1.91 49.07 0.27 6.12 8.89 0.25 3.70 592.61 109.39 194.5578 A Brilliant White CopyPaper Australia Ream 1 3096.58 29.05 6.14 879.05 222.77 93.48 43597.23 388.20 77839.71 35.57 282.73 2.76 55.36 1.65 6.11 9.69 0.52 3.15 513.32 90.68 175.3478 B Brilliant White CopyPaper Australia Ream 2 2449.38 29.68 6.96 1043.98 208.61 97.76 45207.88 400.18 90943.11 21.07 229.13 3.37 61.98 1.31 5.41 7.54 0.46 3.14 528.51 96.63 185.3278 C Brilliant White CopyPaper Australia Ream 3 2771.63 31.52 7.73 954.96 215.65 103.02 45923.02 407.32 80516.69 25.21 249.34 4.00 65.11 1.11 6.45 9.89 0.58 3.06 554.27 101.91 187.6779 A Reflex-Acid Free (Ream C) Australia Ream 3 3395.20 25.80 8.72 190.63 204.05 102.08 46553.75 327.47 33366.13 87.37 406.33 6.71 55.65 0.16 17.03 7.25 0.36 2.76 530.95 116.33 206.8979 B Reflex-Acid Free (Ream D) Australia Ream 4 2471.34 46.65 4.75 364.64 182.11 101.00 48815.21 353.80 19366.86 105.42 379.54 9.44 25.79 0.15 21.93 4.68 0.37 4.12 662.69 110.39 133.6079 C Reflex-Acid Free (Ream E) Australia Ream 5 3233.97 24.56 8.46 218.76 177.21 129.89 55807.39 323.51 40543.81 56.06 279.22 4.54 61.13 0.15 13.06 5.48 0.41 1.80 461.47 127.92 242.4780 A S Tudor-Laser (Ream B) Australia Ream 2 3584.20 18.27 6.07 1.77 116.72 61.23 24954.74 183.87 1454.28 64.35 1579.44 7.86 18.41 0.48 18.46 15.51 0.14 2.72 429.26 93.50 123.5580 B S Tudor-Laser (Ream C) Australia Ream 3 3768.41 21.25 4.28 1.22 121.59 51.25 24909.33 130.93 1294.95 79.20 1075.19 7.10 12.37 0.36 19.23 10.36 0.14 3.20 507.65 95.06 88.0380 C S Tudor-Laser (Ream D) Australia Ream 4 16395.62 17.57 7.05 1.39 150.86 85.69 22306.87 277.07 886.46 74.56 1197.65 7.73 19.31 0.59 19.66 9.96 0.15 2.85 448.67 107.14 200.3681 A S Tudor-Laser (Ream E) Australia Ream 5 9359.83 21.35 3.95 1.44 134.00 85.59 32971.36 197.93 1777.40 50.72 2197.45 6.56 18.12 0.44 15.18 14.58 0.14 2.78 549.81 85.66 113.6581 B S Tudor-Laser (Ream F) Australia Ream 6 3037.00 14.07 6.49 2.02 90.76 73.90 19927.13 121.94 1332.78 77.71 1119.58 8.58 22.48 0.46 17.84 15.28 0.11 3.45 393.21 115.74 95.6881 C S Tudor-Laser (Ream G) Australia Ream 7 2539.79 21.50 5.46 1.28 99.59 34.83 17937.37 160.20 1398.81 98.73 1127.30 7.53 10.54 0.25 17.28 8.02 0.10 4.08 407.67 77.48 78.1882 A X Fuji Xerox (Ream D) Australia Ream 4 3390.61 22.38 5.32 1.44 185.66 87.99 20863.43 196.91 15179.16 39.86 499.98 10.57 35.25 0.58 21.00 1.32 0.46 3.19 452.78 93.55 73.8582 B X Fuji Xerox (Ream E) Australia Ream 5 8293.46 34.77 4.68 2.54 247.59 86.89 34860.64 366.06 13084.28 52.76 639.36 11.75 35.53 0.48 20.89 1.01 0.48 5.46 445.39 73.70 174.7482 C X Fuji Xerox (Ream F) Australia Ream 6 5550.07 35.90 6.95 1.61 168.36 53.23 28033.85 359.23 19442.58 55.20 658.85 10.62 35.53 0.29 15.73 2.14 0.27 4.47 499.07 62.71 154.6283 A X Fuji Xerox (Ream G) Australia Ream 7 3962.64 18.06 6.20 0.92 119.73 101.59 22201.49 135.78 14460.41 36.58 336.75 12.42 27.39 0.52 21.40 1.16 0.51 3.90 543.33 69.02 58.4283 B X Fuji Xerox (Ream H) Australia Ream 8 6978.67 28.92 5.00 2.13 264.37 96.91 31702.60 344.03 9649.61 59.51 545.18 11.07 35.47 0.53 25.09 0.92 0.39 4.09 321.41 78.92 157.1183 C X Fuji Xerox (Ream I) Australia Ream 9 3997.39 33.01 6.19 1.24 159.07 63.84 30209.71 363.84 12462.20 65.01 683.76 10.29 45.43 0.36 10.96 2.49 0.22 3.33 496.56 68.60 114.2884 A X Fuji Xerox (Ream J) Australia Ream 10 6863.27 33.17 7.60 1.84 147.39 54.51 24283.20 419.13 26041.50 60.21 433.59 9.94 29.41 0.26 25.10 2.53 0.29 6.71 485.55 77.29 131.0684 B X Fuji Xerox (Ream K) Australia Ream 11 7049.24 37.52 5.80 2.28 178.91 45.55 30468.57 460.73 29575.78 57.52 442.62 9.79 24.05 0.30 30.98 2.26 0.21 7.56 550.22 84.16 90.6084 C X Fuji Xerox (Ream L) Australia Ream 12 8420.74 33.10 4.09 2.20 163.58 56.57 23117.38 407.02 34839.66 69.07 523.73 10.99 22.79 0.29 39.47 1.68 0.26 7.49 413.31 93.27 90.1885 A X Fuji Xerox (Ream M) Australia Ream 13 6864.70 27.24 4.10 1.87 172.56 71.14 15331.86 514.84 41136.68 63.85 503.20 8.71 16.13 0.25 26.95 1.43 0.20 6.53 371.48 66.04 63.3685 B X Fuji Xerox (Ream N) Australia Ream 14 5126.08 29.79 4.13 1.87 216.32 69.47 16713.54 572.88 47423.91 76.61 481.53 8.92 11.14 0.30 27.07 1.60 0.20 7.64 320.98 75.43 46.9885 C X Fuji Xerox (Ream O) Australia Ream 15 4995.31 21.40 4.05 1.97 155.23 85.83 15504.19 572.80 58646.97 59.54 364.89 7.03 13.70 0.33 32.66 1.53 0.18 8.30 214.88 57.18 48.70

Page 246: Development of Novel Physical (Electrostatic Detection

246

Appendix 1 continued Appendix 1 Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U

Table 1D Betw een ream study73 A Reflex Carbon Neutral Ultra White Australia Ream 1 22.52 113.32 18.25 4.63 41.64 5.19 49.30 14.53 43.49 8.68 52.37 11.84 2259.34 1.42 9529.24 0.21 220.83 1.12 21.67 38.4573 B Reflex Carbon Neutral Ultra White Australia Ream 2 21.89 111.37 18.54 4.30 37.93 5.30 42.41 11.80 46.35 8.53 44.63 11.01 2352.33 1.60 9226.57 0.46 187.87 1.72 21.04 38.2973 C Reflex Carbon Neutral Ultra White Australia Ream 3 25.07 124.14 17.75 4.98 37.32 5.31 44.39 13.85 44.63 9.14 49.20 12.52 2549.98 1.32 9032.17 0.13 194.66 1.64 22.33 39.5374 A Reflex Recycled Pure White® Australia Ream 3 27.04 132.19 18.82 4.95 43.67 5.10 47.97 12.54 46.50 8.62 49.08 11.28 2575.35 1.84 7588.47 0.86 222.58 2.61 29.40 44.0074 B Reflex Recycled Pure White® Australia Ream 4 26.28 132.12 19.23 5.31 42.94 5.24 47.38 13.40 40.87 8.34 44.52 10.36 2328.10 1.80 7480.20 0.29 177.40 2.00 31.97 42.8074 C Reflex Recycled Pure White® Australia Ream 5 28.91 140.65 20.93 5.64 39.44 5.15 48.29 13.58 43.27 8.63 45.80 10.76 988.77 0.24 6076.80 0.81 259.29 2.97 31.22 45.5075 A Reflex 100% Recycled Pure White Australia Ream 2 33.96 155.76 23.57 5.53 39.96 4.70 36.16 9.10 25.51 4.76 22.23 5.30 275.87 3.15 15497.36 1.63 232.31 4.47 42.64 23.9875 B Reflex 100% Recycled Pure White Australia Ream 3 33.38 146.26 20.59 4.78 41.96 4.55 35.69 8.74 28.48 4.29 22.33 4.75 212.38 2.41 15061.22 0.55 194.83 4.11 38.68 22.6475 C Reflex 100% Recycled Pure White Australia Ream 4 33.73 156.50 20.95 5.34 41.11 5.22 38.58 8.84 25.85 4.69 22.57 4.79 255.09 2.64 15040.88 1.09 228.92 4.13 34.66 21.8176 A Australian Bright White OfficePaper Australia Ream 1 23.52 119.45 18.39 4.57 40.81 5.05 50.33 12.78 48.43 8.48 58.25 12.52 2937.48 1.13 4123.52 0.72 173.80 2.04 25.30 46.4876 B Australian Bright White OfficePaper Australia Ream 2 24.18 121.93 18.69 4.87 38.71 5.19 51.60 14.28 48.61 9.23 59.25 13.53 3211.98 1.36 4452.45 0.75 172.01 1.54 27.96 45.2976 C Australian Bright White OfficePaper Australia Ream 3 23.20 117.97 16.96 5.12 40.49 5.23 49.74 14.30 51.63 10.66 59.52 14.34 3462.22 0.89 3743.71 0.19 173.22 1.30 28.82 50.0777 A Tudor Multi White OfficePaper Australia Ream 1 26.71 132.05 20.21 5.52 41.95 5.55 50.88 13.26 44.19 8.93 46.40 10.59 2114.68 1.39 1699.46 1.10 186.43 1.42 27.09 36.9477 B Tudor Multi White OfficePaper Australia Ream 2 24.53 137.09 20.62 4.94 44.22 5.46 46.38 13.34 44.49 8.65 52.98 11.23 2180.12 1.09 1760.21 0.24 195.05 1.27 26.98 35.9477 C Tudor Multi White OfficePaper Australia Ream 3 25.21 130.41 20.42 5.44 45.67 5.98 48.45 14.09 45.08 8.39 45.87 11.06 2339.97 1.20 1910.81 1.14 220.85 2.29 26.79 35.1978 A Brilliant White CopyPaper Australia Ream 1 23.35 117.08 18.17 5.03 40.49 5.40 49.23 13.10 48.76 9.62 52.87 12.84 3064.20 1.72 5039.11 0.32 190.56 2.17 28.89 45.0578 B Brilliant White CopyPaper Australia Ream 2 26.62 117.99 18.55 5.51 39.15 5.72 49.52 14.25 46.44 9.90 59.00 12.60 3271.57 1.82 4595.25 0.44 163.51 1.22 25.91 46.5178 C Brilliant White CopyPaper Australia Ream 3 25.06 124.71 18.31 5.21 44.58 5.94 51.02 14.53 51.66 9.86 57.60 13.73 3844.28 1.44 5349.05 0.39 173.70 1.42 26.86 46.2879 A Reflex-Acid Free (Ream C) Australia Ream 3 30.58 118.89 17.43 5.86 22.84 6.65 24.10 9.40 20.37 3.27 24.96 5.39 613.11 1.22 11827.95 0.60 290.56 2.33 17.46 19.0279 B Reflex-Acid Free (Ream D) Australia Ream 4 20.62 105.81 13.42 3.18 26.35 3.95 39.05 7.93 30.02 4.20 22.35 5.75 521.55 1.17 5081.53 0.67 237.58 0.94 28.28 21.6779 C Reflex-Acid Free (Ream E) Australia Ream 5 37.32 89.30 19.23 5.84 27.88 5.96 16.73 9.15 18.73 2.73 23.89 3.64 659.63 0.82 14781.35 0.77 247.12 2.84 12.51 22.6080 A S Tudor-Laser (Ream B) Australia Ream 2 15.27 54.02 11.06 3.07 13.94 4.77 17.65 4.32 10.82 1.77 8.89 1.77 30.10 1.77 1062.10 0.71 213.39 5.42 8.25 5.3580 B S Tudor-Laser (Ream C) Australia Ream 3 16.47 65.64 8.20 2.30 17.47 4.09 17.39 3.43 10.38 1.79 9.04 1.19 22.73 1.34 1193.40 0.79 246.85 6.45 9.59 6.5280 C S Tudor-Laser (Ream D) Australia Ream 4 23.31 77.80 12.50 2.79 19.50 4.65 26.98 6.79 13.60 1.90 10.96 2.37 35.13 2.08 843.92 0.75 185.09 4.88 9.37 8.7181 A S Tudor-Laser (Ream E) Australia Ream 5 12.62 58.79 17.51 3.94 20.26 2.83 21.86 7.03 12.29 1.52 13.49 2.09 24.43 1.26 1200.06 0.60 217.03 5.98 8.05 6.6481 B S Tudor-Laser (Ream F) Australia Ream 6 12.80 42.66 12.59 3.82 10.31 5.29 17.01 5.24 13.77 1.98 8.29 1.76 20.45 2.24 1057.09 0.89 249.08 4.43 7.02 6.6981 C S Tudor-Laser (Ream G) Australia Ream 7 14.00 72.16 5.36 2.23 14.12 3.51 11.49 2.40 7.78 1.30 8.26 1.33 23.54 1.52 970.94 0.78 285.32 7.18 7.74 7.2382 A X Fuji Xerox (Ream D) Australia Ream 4 15.09 50.32 12.84 3.60 11.96 5.15 29.43 6.88 15.43 3.76 27.49 5.14 189.73 1.91 158.08 0.69 135.25 5.45 18.80 19.2082 B X Fuji Xerox (Ream E) Australia Ream 5 27.43 48.54 14.54 4.43 15.11 4.52 33.13 6.60 24.35 5.40 28.77 6.64 229.97 2.14 190.16 0.81 154.05 3.55 25.64 24.0282 C X Fuji Xerox (Ream F) Australia Ream 6 24.25 47.80 12.85 3.53 22.64 4.12 35.54 8.69 27.77 5.15 29.19 7.31 444.23 1.84 258.38 0.56 165.35 3.84 25.05 28.6383 A X Fuji Xerox (Ream G) Australia Ream 7 10.69 42.44 13.03 3.60 8.30 4.43 26.72 8.24 11.17 2.99 30.42 5.44 179.24 2.01 175.89 0.81 89.92 5.39 18.74 23.8083 B X Fuji Xerox (Ream H) Australia Ream 8 22.48 45.52 13.19 4.48 14.49 5.25 27.31 6.24 17.65 6.70 36.79 7.71 258.76 2.24 238.27 0.64 145.65 4.17 29.82 20.8383 C X Fuji Xerox (Ream I) Australia Ream 9 30.21 38.76 11.12 3.31 20.57 2.66 37.17 5.90 31.70 5.74 20.21 5.19 359.43 1.99 197.54 0.40 166.26 3.19 27.49 27.3584 A X Fuji Xerox (Ream J) Australia Ream 10 16.94 77.75 10.00 4.30 17.42 4.88 21.42 5.90 22.54 3.67 29.17 7.71 398.81 1.99 142.19 0.69 175.06 8.25 22.32 35.1384 B X Fuji Xerox (Ream K) Australia Ream 11 18.22 54.76 10.58 4.92 18.71 5.38 23.57 6.47 21.49 4.39 23.86 8.92 270.17 2.06 129.56 0.80 123.26 8.22 23.86 30.8284 C X Fuji Xerox (Ream L) Australia Ream 12 16.42 35.95 11.15 5.50 14.65 5.30 29.91 7.12 24.28 4.73 23.74 7.13 271.67 1.65 135.69 0.71 146.61 9.22 25.89 35.7085 A X Fuji Xerox (Ream M) Australia Ream 13 11.18 39.04 7.16 4.44 16.28 4.99 29.78 5.10 20.84 4.64 29.49 4.95 308.90 1.89 158.91 0.85 114.87 7.64 17.20 24.9085 B X Fuji Xerox (Ream N) Australia Ream 14 13.84 29.50 5.28 5.07 19.46 3.29 34.04 5.95 18.07 4.72 21.30 3.93 311.07 2.36 161.83 0.87 108.15 7.23 15.19 16.1185 C X Fuji Xerox (Ream O) Australia Ream 15 15.10 19.18 5.54 5.42 24.73 3.60 31.45 6.80 16.73 3.92 26.19 2.77 378.80 2.84 147.14 1.10 88.69 7.56 16.53 11.60

Page 247: Development of Novel Physical (Electrostatic Detection

247

Appendix 1 continued Appendix 1 *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu

Table 1E Betw een ream study64 A Reflex Recycled Pure White Australia Ream 3 1445.05 805.28 361.41 25.00 3362.31 130.21 101453.88 33.58 69.79 197.96 195.07 4.81 6990.98 112.41 17527.00 186.53 884.43 54118.51 236.11 5427.37 507.7564 B Reflex Recycled Pure White Australia Ream 4 1411.39 797.72 364.70 23.51 3310.37 95.26 100971.44 26.59 68.50 201.15 193.32 3.77 7007.87 100.16 13465.93 191.56 1801.74 54083.96 233.42 5629.47 513.4264 C Reflex Recycled Pure White Australia Ream 5 1374.06 791.14 364.62 20.64 3249.42 109.94 100951.09 28.46 67.97 213.97 184.95 5.20 7569.34 130.17 14928.35 239.79 2072.31 54008.06 240.62 5655.98 483.8266 A Reflex Carbon Neutral Ultra White Australia Ream 1 1130.81 913.16 246.99 16.93 2294.26 64.91 86941.37 77.01 86.75 186.73 109.61 2.64 40128.35 120.10 49034.96 392.66 2146.74 80160.37 300.23 5773.67 416.5466 B Reflex Carbon Neutral Ultra White Australia Ream 2 1163.95 922.17 253.00 17.40 2239.53 53.70 87476.98 68.26 87.51 188.77 99.35 2.58 35469.75 118.14 43461.26 380.24 2205.85 79710.39 294.86 5712.99 381.9666 C Reflex Carbon Neutral Ultra White Australia Ream 3 1241.50 911.30 251.49 21.22 2286.55 89.56 87422.13 84.36 86.49 199.08 95.04 2.89 50702.79 123.96 54762.61 378.85 2365.76 77448.47 298.47 6067.14 438.8973 A Reflex Carbon Neutral Ultra White Australia Ream 1 1509.58 944.51 204.74 13.33 2841.57 132.91 103135.85 47.40 90.67 212.56 109.71 2.75 64243.29 118.21 32978.56 362.76 2171.74 77196.10 311.57 6620.21 442.9373 B Reflex Carbon Neutral Ultra White Australia Ream 2 1448.84 953.18 185.08 12.14 2861.85 124.15 101262.17 47.81 92.22 221.13 111.75 2.59 57046.91 121.40 31965.14 378.74 1709.47 78400.71 307.46 6120.74 374.4973 C Reflex Carbon Neutral Ultra White Australia Ream 3 1516.40 983.77 217.20 10.79 2938.82 149.54 105719.03 49.99 96.86 232.14 114.97 3.18 59945.82 126.26 38050.41 392.43 2355.88 80492.61 312.22 6151.45 383.0474 A Reflex Recycled Pure White® Australia Ream 3 1623.19 902.19 361.75 14.62 2873.21 68.30 102948.52 67.93 94.34 214.62 160.14 3.40 60606.30 128.32 50200.17 396.12 2421.63 80748.66 308.90 6106.16 419.3774 B Reflex Recycled Pure White® Australia Ream 4 1627.56 877.63 339.10 15.81 2826.88 70.99 101967.91 78.07 90.65 203.62 151.45 3.51 63211.01 125.99 55245.61 402.32 1886.83 78670.63 299.30 5767.07 452.9079 A Reflex-Acid Free (Ream C) Australia Ream 3 1071.81 487.02 282.37 28.75 2528.69 66.99 100315.00 23.46 49.65 211.91 185.39 4.15 32745.90 104.71 14877.33 375.61 2467.61 69758.20 361.97 4379.35 644.4279 B Reflex-Acid Free (Ream D) Australia Ream 4 1342.89 567.49 220.64 21.07 2305.31 66.89 102457.67 13.76 52.49 183.13 126.01 4.18 29762.46 132.22 17931.64 323.10 1629.57 58639.12 269.14 3035.18 662.7679 C Reflex-Acid Free (Ream E) Australia Ream 5 1012.28 467.66 306.81 34.07 2453.69 59.86 124153.00 27.44 35.95 176.14 198.75 4.71 33664.09 97.36 14280.67 414.68 2191.59 53244.93 389.98 3540.74 710.0674 C Reflex Recycled Pure White® Australia Ream 5 1633.43 911.60 387.62 10.67 2833.19 94.65 101247.24 73.27 93.67 214.33 163.59 3.22 58041.82 120.02 52030.74 398.04 5333.35 81123.58 315.88 6239.36 465.3475 A Reflex 100% Recycled Pure White Australia Ream 2 1097.71 719.47 588.15 28.43 2419.70 88.14 77159.37 88.74 64.10 192.51 195.55 4.43 32134.75 103.97 62324.75 322.52 1509.37 53815.33 242.58 4784.45 579.3975 B Reflex 100% Recycled Pure White Australia Ream 3 1046.19 700.77 552.51 26.86 2396.72 84.33 75499.18 82.31 63.44 187.45 192.23 3.61 25344.80 97.94 59518.00 334.54 1427.22 52916.83 238.48 4461.26 532.0475 C Reflex 100% Recycled Pure White Australia Ream 4 1051.30 725.24 594.26 29.25 2454.62 89.01 78286.41 118.39 61.98 193.84 215.44 4.22 30060.78 102.57 67748.71 345.39 1362.17 54533.17 241.96 5027.48 578.1177 A Tudor Multi White OfficePaper Australia Ream 1 1255.59 784.31 268.44 14.39 2739.12 94.17 108259.34 103.28 87.88 232.69 97.20 3.33 64426.28 140.16 73605.18 405.17 2218.77 76937.36 320.40 6506.82 369.4277 B Tudor Multi White OfficePaper Australia Ream 2 1262.81 759.20 249.26 14.42 2572.76 97.05 98231.85 92.13 83.60 223.24 92.80 2.23 23670.61 131.76 67582.89 397.44 2395.41 72873.11 295.13 6309.78 392.8877 C Tudor Multi White OfficePaper Australia Ream 3 1194.80 790.54 257.53 13.62 2692.63 95.10 104531.46 96.95 88.77 237.36 103.24 3.49 22943.26 137.41 70623.34 376.77 2336.59 76894.73 320.76 6278.11 383.2480 A S Tudor-Laser (Ream B) Australia Ream 2 1299.71 637.88 180.01 27.16 1927.77 72.59 73194.39 13.13 56.52 151.10 90.89 2.48 46367.91 82.89 7077.41 246.98 770.80 40666.34 184.95 3341.24 459.7680 B S Tudor-Laser (Ream C) Australia Ream 3 1310.35 485.85 136.67 31.95 2158.73 83.08 86095.67 13.86 48.03 157.39 114.22 3.12 42015.84 93.56 8627.08 164.09 956.98 46530.84 222.55 3639.87 557.7980 C S Tudor-Laser (Ream D) Australia Ream 4 1717.54 706.25 190.70 15.50 1324.95 41.14 72218.62 10.19 60.23 113.32 102.61 1.92 43053.54 71.87 8686.88 205.28 1387.64 51780.89 262.17 2729.77 521.9681 A S Tudor-Laser (Ream E) Australia Ream 5 1276.11 770.38 153.87 33.18 2163.27 56.19 49326.26 9.83 36.41 144.98 117.85 2.95 28105.33 89.19 9815.88 423.31 1491.00 48776.00 240.65 2850.17 366.2281 B S Tudor-Laser (Ream F) Australia Ream 6 1068.04 556.79 119.47 32.15 1669.12 58.57 68741.85 16.10 67.80 157.34 64.19 1.83 30178.52 76.32 5881.46 281.10 592.15 30248.95 195.13 4198.06 538.6281 C S Tudor-Laser (Ream G) Australia Ream 7 1647.17 343.31 132.85 38.61 2616.06 88.57 101407.31 10.53 58.53 176.60 104.10 3.37 43448.84 81.03 5579.17 148.60 1177.84 53480.98 280.97 3582.95 430.2682 A X Fuji Xerox (Ream D) Australia Ream 4 1387.11 728.75 161.71 18.94 1659.37 28.75 56699.20 25.08 36.89 135.49 121.69 3.32 28517.60 94.73 11466.20 177.27 1437.69 51599.06 162.28 3647.62 524.1682 B X Fuji Xerox (Ream E) Australia Ream 5 1367.41 688.29 183.53 9.95 1639.65 38.11 48617.88 32.93 38.11 169.92 130.50 2.89 30945.82 160.66 10970.83 399.43 1530.81 51832.56 151.61 3900.39 578.0682 C X Fuji Xerox (Ream F) Australia Ream 6 1358.34 678.42 170.39 10.83 2253.65 40.87 79626.61 16.81 40.89 132.31 168.25 2.16 15694.90 136.56 13516.82 249.85 2097.72 65825.69 206.43 5270.24 347.8783 A X Fuji Xerox (Ream G) Australia Ream 7 991.39 598.33 180.05 20.14 1093.93 28.96 70604.57 20.69 36.15 160.25 92.79 2.41 33226.01 100.73 11003.25 126.56 951.66 35847.37 138.00 3302.43 396.1283 B X Fuji Xerox (Ream H) Australia Ream 8 1281.42 483.67 141.75 11.74 1717.90 43.57 36728.85 35.76 47.12 164.63 127.45 3.67 34443.81 185.76 12988.11 323.52 1851.04 35866.34 139.56 3007.98 542.6483 C X Fuji Xerox (Ream I) Australia Ream 9 1706.71 722.34 147.84 11.15 1955.54 39.59 52627.31 16.08 48.43 152.94 111.33 1.56 10827.53 97.63 12613.03 311.58 1383.75 61672.76 170.75 4566.88 415.5284 A X Fuji Xerox (Ream J) Australia Ream 10 1628.13 473.12 225.34 11.77 2339.16 38.23 88710.65 12.30 85.68 179.77 113.95 3.39 44418.52 106.27 7399.41 273.10 2157.52 74408.94 310.63 4467.26 360.3684 B X Fuji Xerox (Ream K) Australia Ream 11 1234.70 510.40 194.02 13.62 2611.53 28.38 88698.69 13.21 103.77 198.81 139.05 3.78 32508.51 111.85 6924.85 207.92 2331.59 75848.36 366.37 4081.84 311.9384 C X Fuji Xerox (Ream L) Australia Ream 12 975.71 539.74 170.85 13.83 2485.14 25.97 61920.49 15.14 103.09 201.31 165.15 3.15 35502.77 79.38 6395.78 247.37 2834.57 74946.02 465.78 4496.74 287.2185 A X Fuji Xerox (Ream M) Australia Ream 13 1030.63 481.59 192.35 9.85 1741.49 27.79 48358.16 16.18 74.28 216.95 176.48 3.37 30041.91 71.45 7927.48 159.09 2164.90 48053.65 395.98 5222.50 257.2885 B X Fuji Xerox (Ream N) Australia Ream 14 955.81 573.03 230.03 10.02 1579.39 27.80 38116.77 12.82 85.82 258.24 206.19 4.13 34150.50 58.63 9159.93 123.88 2365.18 44926.41 505.74 4871.89 216.0385 C X Fuji Xerox (Ream O) Australia Ream 15 869.13 631.82 157.62 12.24 1447.38 19.01 31043.74 15.98 72.84 200.13 237.82 4.67 36093.28 42.30 10362.65 110.88 1628.57 44588.76 477.21 6150.78 224.91

Page 248: Development of Novel Physical (Electrostatic Detection

248

Appendix 1 continued Appendix 1 Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce

Table 1E Betw een ream study64 A Reflex Recycled Pure White Australia Ream 3 1142.91 45.35 4.83 889.38 230.16 102.20 40433.58 320.53 15096.96 50.93 359.35 0.86 38.66 0.05 8.59 16.64 0.19 4.87 1158.48 132.82 309.4464 B Reflex Recycled Pure White Australia Ream 4 1177.75 41.84 4.47 1057.75 169.99 98.50 39438.70 317.68 12174.09 31.07 365.84 0.75 35.91 0.05 9.58 12.53 0.31 4.82 798.88 177.08 320.7664 C Reflex Recycled Pure White Australia Ream 5 1380.50 44.92 4.92 1196.33 213.96 96.96 40079.86 316.11 11738.08 65.95 373.13 0.80 45.34 0.02 7.71 17.43 0.32 4.83 749.82 140.22 310.1966 A Reflex Carbon Neutral Ultra White Australia Ream 1 3077.81 32.55 7.18 677.59 201.08 85.92 41589.37 307.81 1747.84 28.43 601.89 5.99 34.37 0.89 10.63 8.09 0.59 3.41 356.90 93.15 173.5366 B Reflex Carbon Neutral Ultra White Australia Ream 2 2744.28 31.67 6.50 526.56 166.19 86.87 41442.33 307.39 1780.92 24.99 579.55 4.36 35.43 0.34 12.14 7.62 0.50 3.27 332.65 80.36 148.3366 C Reflex Carbon Neutral Ultra White Australia Ream 3 2683.35 33.93 7.35 636.61 191.85 96.61 41115.03 314.12 2115.09 20.65 642.99 6.08 35.38 0.72 16.83 7.76 0.55 2.87 406.57 81.46 153.1873 A Reflex Carbon Neutral Ultra White Australia Ream 1 3515.17 26.05 4.77 846.80 228.76 82.15 41679.07 354.76 51606.32 19.39 448.74 5.34 47.61 0.54 8.41 12.13 0.40 3.03 486.33 95.21 162.7973 B Reflex Carbon Neutral Ultra White Australia Ream 2 3030.74 26.25 4.86 949.96 112.58 78.01 41660.99 349.38 60491.60 17.79 419.01 3.05 48.93 0.17 4.97 14.58 0.41 3.02 465.35 94.28 165.5273 C Reflex Carbon Neutral Ultra White Australia Ream 3 3087.08 27.73 5.54 1036.28 147.10 90.06 42983.90 358.00 61897.14 121.03 394.46 3.72 49.21 0.13 6.99 11.96 0.53 3.37 517.85 117.79 212.3674 A Reflex Recycled Pure White® Australia Ream 3 4218.48 46.30 5.42 716.37 109.09 87.43 45549.57 360.47 68260.07 42.15 1281.81 4.39 57.35 0.48 10.67 12.87 0.32 5.20 667.97 115.49 221.6374 B Reflex Recycled Pure White® Australia Ream 4 4415.57 47.37 5.98 858.41 278.31 90.11 43784.77 348.80 57448.60 44.67 1273.28 2.94 39.56 5.77 12.48 6.81 0.53 4.60 642.20 111.84 209.0079 A Reflex-Acid Free (Ream C) Australia Ream 3 3395.20 25.80 8.72 190.63 204.05 102.08 46553.75 327.47 33366.13 87.37 406.33 6.71 55.65 0.16 17.03 7.25 0.36 2.76 530.95 116.33 206.8979 B Reflex-Acid Free (Ream D) Australia Ream 4 2471.34 46.65 4.75 364.64 182.11 101.00 48815.21 353.80 19366.86 105.42 379.54 9.44 25.79 0.15 21.93 4.68 0.37 4.12 662.69 110.39 133.6079 C Reflex-Acid Free (Ream E) Australia Ream 5 3233.97 24.56 8.46 218.76 177.21 129.89 55807.39 323.51 40543.81 56.06 279.22 4.54 61.13 0.15 13.06 5.48 0.41 1.80 461.47 127.92 242.4774 C Reflex Recycled Pure White® Australia Ream 5 4962.26 50.94 6.95 867.32 260.77 106.77 45169.11 367.92 43260.86 30.99 1355.21 3.36 38.78 0.65 7.76 12.68 0.34 5.08 737.58 120.73 229.2575 A Reflex 100% Recycled Pure White Australia Ream 2 5736.02 70.90 7.75 652.08 108.55 118.47 36131.58 267.47 4992.68 48.25 1144.46 8.11 26.97 0.31 14.31 11.47 0.36 4.94 826.54 139.98 283.0475 B Reflex 100% Recycled Pure White Australia Ream 3 9687.03 64.28 6.74 532.99 212.86 121.10 34973.90 262.00 3700.12 44.49 1089.10 4.41 25.75 0.47 13.63 9.47 0.62 4.65 754.11 131.07 262.6775 C Reflex 100% Recycled Pure White Australia Ream 4 6926.93 70.21 7.09 623.09 307.08 121.88 36680.03 268.53 4698.58 46.64 1117.76 3.04 21.29 1.77 14.14 11.93 0.38 5.16 779.55 140.72 289.0577 A Tudor Multi White OfficePaper Australia Ream 1 3637.88 32.29 6.21 1005.57 257.46 115.18 45467.87 401.20 57365.63 38.72 122.03 2.64 43.65 7.69 6.44 10.82 0.37 3.48 588.12 107.70 198.0677 B Tudor Multi White OfficePaper Australia Ream 2 2916.24 31.69 6.26 1174.05 213.46 112.42 44268.15 385.35 51806.46 41.31 128.90 1.71 50.51 0.40 5.50 7.20 0.49 3.29 555.96 104.48 190.8877 C Tudor Multi White OfficePaper Australia Ream 3 3840.60 32.62 5.34 992.00 226.36 120.30 45725.14 400.02 59186.53 38.91 131.44 1.91 49.07 0.27 6.12 8.89 0.25 3.70 592.61 109.39 194.5580 A S Tudor-Laser (Ream B) Australia Ream 2 3584.20 18.27 6.07 1.77 116.72 61.23 24954.74 183.87 1454.28 64.35 1579.44 7.86 18.41 0.48 18.46 15.51 0.14 2.72 429.26 93.50 123.5580 B S Tudor-Laser (Ream C) Australia Ream 3 3768.41 21.25 4.28 1.22 121.59 51.25 24909.33 130.93 1294.95 79.20 1075.19 7.10 12.37 0.36 19.23 10.36 0.14 3.20 507.65 95.06 88.0380 C S Tudor-Laser (Ream D) Australia Ream 4 16395.62 17.57 7.05 1.39 150.86 85.69 22306.87 277.07 886.46 74.56 1197.65 7.73 19.31 0.59 19.66 9.96 0.15 2.85 448.67 107.14 200.3681 A S Tudor-Laser (Ream E) Australia Ream 5 9359.83 21.35 3.95 1.44 134.00 85.59 32971.36 197.93 1777.40 50.72 2197.45 6.56 18.12 0.44 15.18 14.58 0.14 2.78 549.81 85.66 113.6581 B S Tudor-Laser (Ream F) Australia Ream 6 3037.00 14.07 6.49 2.02 90.76 73.90 19927.13 121.94 1332.78 77.71 1119.58 8.58 22.48 0.46 17.84 15.28 0.11 3.45 393.21 115.74 95.6881 C S Tudor-Laser (Ream G) Australia Ream 7 2539.79 21.50 5.46 1.28 99.59 34.83 17937.37 160.20 1398.81 98.73 1127.30 7.53 10.54 0.25 17.28 8.02 0.10 4.08 407.67 77.48 78.1882 A X Fuji Xerox (Ream D) Australia Ream 4 3390.61 22.38 5.32 1.44 185.66 87.99 20863.43 196.91 15179.16 39.86 499.98 10.57 35.25 0.58 21.00 1.32 0.46 3.19 452.78 93.55 73.8582 B X Fuji Xerox (Ream E) Australia Ream 5 8293.46 34.77 4.68 2.54 247.59 86.89 34860.64 366.06 13084.28 52.76 639.36 11.75 35.53 0.48 20.89 1.01 0.48 5.46 445.39 73.70 174.7482 C X Fuji Xerox (Ream F) Australia Ream 6 5550.07 35.90 6.95 1.61 168.36 53.23 28033.85 359.23 19442.58 55.20 658.85 10.62 35.53 0.29 15.73 2.14 0.27 4.47 499.07 62.71 154.6283 A X Fuji Xerox (Ream G) Australia Ream 7 3962.64 18.06 6.20 0.92 119.73 101.59 22201.49 135.78 14460.41 36.58 336.75 12.42 27.39 0.52 21.40 1.16 0.51 3.90 543.33 69.02 58.4283 B X Fuji Xerox (Ream H) Australia Ream 8 6978.67 28.92 5.00 2.13 264.37 96.91 31702.60 344.03 9649.61 59.51 545.18 11.07 35.47 0.53 25.09 0.92 0.39 4.09 321.41 78.92 157.1183 C X Fuji Xerox (Ream I) Australia Ream 9 3997.39 33.01 6.19 1.24 159.07 63.84 30209.71 363.84 12462.20 65.01 683.76 10.29 45.43 0.36 10.96 2.49 0.22 3.33 496.56 68.60 114.2884 A X Fuji Xerox (Ream J) Australia Ream 10 6863.27 33.17 7.60 1.84 147.39 54.51 24283.20 419.13 26041.50 60.21 433.59 9.94 29.41 0.26 25.10 2.53 0.29 6.71 485.55 77.29 131.0684 B X Fuji Xerox (Ream K) Australia Ream 11 7049.24 37.52 5.80 2.28 178.91 45.55 30468.57 460.73 29575.78 57.52 442.62 9.79 24.05 0.30 30.98 2.26 0.21 7.56 550.22 84.16 90.6084 C X Fuji Xerox (Ream L) Australia Ream 12 8420.74 33.10 4.09 2.20 163.58 56.57 23117.38 407.02 34839.66 69.07 523.73 10.99 22.79 0.29 39.47 1.68 0.26 7.49 413.31 93.27 90.1885 A X Fuji Xerox (Ream M) Australia Ream 13 6864.70 27.24 4.10 1.87 172.56 71.14 15331.86 514.84 41136.68 63.85 503.20 8.71 16.13 0.25 26.95 1.43 0.20 6.53 371.48 66.04 63.3685 B X Fuji Xerox (Ream N) Australia Ream 14 5126.08 29.79 4.13 1.87 216.32 69.47 16713.54 572.88 47423.91 76.61 481.53 8.92 11.14 0.30 27.07 1.60 0.20 7.64 320.98 75.43 46.9885 C X Fuji Xerox (Ream O) Australia Ream 15 4995.31 21.40 4.05 1.97 155.23 85.83 15504.19 572.80 58646.97 59.54 364.89 7.03 13.70 0.33 32.66 1.53 0.18 8.30 214.88 57.18 48.70

Page 249: Development of Novel Physical (Electrostatic Detection

249

Appendix 1 continued Appendix 1 Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U

Table 1E Betw een ream study64 A Reflex Recycled Pure White Australia Ream 3 34.18 136.28 29.89 5.46 40.76 8.14 52.94 11.81 37.76 6.82 36.30 7.63 726.99 3.24 16974.62 1.07 209.99 3.25 50.45 33.2664 B Reflex Recycled Pure White Australia Ream 4 36.05 136.96 34.69 6.02 39.70 8.28 50.33 12.30 37.32 6.71 34.67 7.12 661.57 3.18 17522.99 1.11 336.38 3.18 46.33 32.9264 C Reflex Recycled Pure White Australia Ream 5 38.11 138.20 30.59 3.88 44.82 6.78 48.18 11.22 38.96 4.76 33.87 6.35 706.53 2.95 18547.79 1.19 235.20 3.37 49.09 29.7266 A Reflex Carbon Neutral Ultra White Australia Ream 1 22.30 108.30 12.47 4.84 39.48 3.76 33.70 10.71 33.20 6.92 31.31 8.60 231.50 1.26 8686.69 0.19 191.04 2.10 17.65 27.9966 B Reflex Carbon Neutral Ultra White Australia Ream 2 22.91 109.39 12.40 4.21 32.90 3.46 32.67 9.14 30.77 6.13 30.84 7.32 282.71 1.12 9814.27 0.15 151.91 1.67 17.17 27.0066 C Reflex Carbon Neutral Ultra White Australia Ream 3 21.54 113.14 11.92 3.66 36.12 2.88 34.88 9.68 31.09 5.95 32.27 7.54 224.39 1.39 8508.32 0.13 174.02 1.99 18.41 26.7073 A Reflex Carbon Neutral Ultra White Australia Ream 1 22.52 113.32 18.25 4.63 41.64 5.19 49.30 14.53 43.49 8.68 52.37 11.84 2259.34 1.42 9529.24 0.21 220.83 1.12 21.67 38.4573 B Reflex Carbon Neutral Ultra White Australia Ream 2 21.89 111.37 18.54 4.30 37.93 5.30 42.41 11.80 46.35 8.53 44.63 11.01 2352.33 1.60 9226.57 0.46 187.87 1.72 21.04 38.2973 C Reflex Carbon Neutral Ultra White Australia Ream 3 25.07 124.14 17.75 4.98 37.32 5.31 44.39 13.85 44.63 9.14 49.20 12.52 2549.98 1.32 9032.17 0.13 194.66 1.64 22.33 39.5374 A Reflex Recycled Pure White® Australia Ream 3 27.04 132.19 18.82 4.95 43.67 5.10 47.97 12.54 46.50 8.62 49.08 11.28 2575.35 1.84 7588.47 0.86 222.58 2.61 29.40 44.0074 B Reflex Recycled Pure White® Australia Ream 4 26.28 132.12 19.23 5.31 42.94 5.24 47.38 13.40 40.87 8.34 44.52 10.36 2328.10 1.80 7480.20 0.29 177.40 2.00 31.97 42.8079 A Reflex-Acid Free (Ream C) Australia Ream 3 30.58 118.89 17.43 5.86 22.84 6.65 24.10 9.40 20.37 3.27 24.96 5.39 613.11 1.22 11827.95 0.60 290.56 2.33 17.46 19.0279 B Reflex-Acid Free (Ream D) Australia Ream 4 20.62 105.81 13.42 3.18 26.35 3.95 39.05 7.93 30.02 4.20 22.35 5.75 521.55 1.17 5081.53 0.67 237.58 0.94 28.28 21.6779 C Reflex-Acid Free (Ream E) Australia Ream 5 37.32 89.30 19.23 5.84 27.88 5.96 16.73 9.15 18.73 2.73 23.89 3.64 659.63 0.82 14781.35 0.77 247.12 2.84 12.51 22.6074 C Reflex Recycled Pure White® Australia Ream 5 28.91 140.65 20.93 5.64 39.44 5.15 48.29 13.58 43.27 8.63 45.80 10.76 988.77 0.24 6076.80 0.81 259.29 2.97 31.22 45.5075 A Reflex 100% Recycled Pure White Australia Ream 2 33.96 155.76 23.57 5.53 39.96 4.70 36.16 9.10 25.51 4.76 22.23 5.30 275.87 3.15 15497.36 1.63 232.31 4.47 42.64 23.9875 B Reflex 100% Recycled Pure White Australia Ream 3 33.38 146.26 20.59 4.78 41.96 4.55 35.69 8.74 28.48 4.29 22.33 4.75 212.38 2.41 15061.22 0.55 194.83 4.11 38.68 22.6475 C Reflex 100% Recycled Pure White Australia Ream 4 33.73 156.50 20.95 5.34 41.11 5.22 38.58 8.84 25.85 4.69 22.57 4.79 255.09 2.64 15040.88 1.09 228.92 4.13 34.66 21.8177 A Tudor Multi White OfficePaper Australia Ream 1 26.71 132.05 20.21 5.52 41.95 5.55 50.88 13.26 44.19 8.93 46.40 10.59 2114.68 1.39 1699.46 1.10 186.43 1.42 27.09 36.9477 B Tudor Multi White OfficePaper Australia Ream 2 24.53 137.09 20.62 4.94 44.22 5.46 46.38 13.34 44.49 8.65 52.98 11.23 2180.12 1.09 1760.21 0.24 195.05 1.27 26.98 35.9477 C Tudor Multi White OfficePaper Australia Ream 3 25.21 130.41 20.42 5.44 45.67 5.98 48.45 14.09 45.08 8.39 45.87 11.06 2339.97 1.20 1910.81 1.14 220.85 2.29 26.79 35.1980 A S Tudor-Laser (Ream B) Australia Ream 2 15.27 54.02 11.06 3.07 13.94 4.77 17.65 4.32 10.82 1.77 8.89 1.77 30.10 1.77 1062.10 0.71 213.39 5.42 8.25 5.3580 B S Tudor-Laser (Ream C) Australia Ream 3 16.47 65.64 8.20 2.30 17.47 4.09 17.39 3.43 10.38 1.79 9.04 1.19 22.73 1.34 1193.40 0.79 246.85 6.45 9.59 6.5280 C S Tudor-Laser (Ream D) Australia Ream 4 23.31 77.80 12.50 2.79 19.50 4.65 26.98 6.79 13.60 1.90 10.96 2.37 35.13 2.08 843.92 0.75 185.09 4.88 9.37 8.7181 A S Tudor-Laser (Ream E) Australia Ream 5 12.62 58.79 17.51 3.94 20.26 2.83 21.86 7.03 12.29 1.52 13.49 2.09 24.43 1.26 1200.06 0.60 217.03 5.98 8.05 6.6481 B S Tudor-Laser (Ream F) Australia Ream 6 12.80 42.66 12.59 3.82 10.31 5.29 17.01 5.24 13.77 1.98 8.29 1.76 20.45 2.24 1057.09 0.89 249.08 4.43 7.02 6.6981 C S Tudor-Laser (Ream G) Australia Ream 7 14.00 72.16 5.36 2.23 14.12 3.51 11.49 2.40 7.78 1.30 8.26 1.33 23.54 1.52 970.94 0.78 285.32 7.18 7.74 7.2382 A X Fuji Xerox (Ream D) Australia Ream 4 15.09 50.32 12.84 3.60 11.96 5.15 29.43 6.88 15.43 3.76 27.49 5.14 189.73 1.91 158.08 0.69 135.25 5.45 18.80 19.2082 B X Fuji Xerox (Ream E) Australia Ream 5 27.43 48.54 14.54 4.43 15.11 4.52 33.13 6.60 24.35 5.40 28.77 6.64 229.97 2.14 190.16 0.81 154.05 3.55 25.64 24.0282 C X Fuji Xerox (Ream F) Australia Ream 6 24.25 47.80 12.85 3.53 22.64 4.12 35.54 8.69 27.77 5.15 29.19 7.31 444.23 1.84 258.38 0.56 165.35 3.84 25.05 28.6383 A X Fuji Xerox (Ream G) Australia Ream 7 10.69 42.44 13.03 3.60 8.30 4.43 26.72 8.24 11.17 2.99 30.42 5.44 179.24 2.01 175.89 0.81 89.92 5.39 18.74 23.8083 B X Fuji Xerox (Ream H) Australia Ream 8 22.48 45.52 13.19 4.48 14.49 5.25 27.31 6.24 17.65 6.70 36.79 7.71 258.76 2.24 238.27 0.64 145.65 4.17 29.82 20.8383 C X Fuji Xerox (Ream I) Australia Ream 9 30.21 38.76 11.12 3.31 20.57 2.66 37.17 5.90 31.70 5.74 20.21 5.19 359.43 1.99 197.54 0.40 166.26 3.19 27.49 27.3584 A X Fuji Xerox (Ream J) Australia Ream 10 16.94 77.75 10.00 4.30 17.42 4.88 21.42 5.90 22.54 3.67 29.17 7.71 398.81 1.99 142.19 0.69 175.06 8.25 22.32 35.1384 B X Fuji Xerox (Ream K) Australia Ream 11 18.22 54.76 10.58 4.92 18.71 5.38 23.57 6.47 21.49 4.39 23.86 8.92 270.17 2.06 129.56 0.80 123.26 8.22 23.86 30.8284 C X Fuji Xerox (Ream L) Australia Ream 12 16.42 35.95 11.15 5.50 14.65 5.30 29.91 7.12 24.28 4.73 23.74 7.13 271.67 1.65 135.69 0.71 146.61 9.22 25.89 35.7085 A X Fuji Xerox (Ream M) Australia Ream 13 11.18 39.04 7.16 4.44 16.28 4.99 29.78 5.10 20.84 4.64 29.49 4.95 308.90 1.89 158.91 0.85 114.87 7.64 17.20 24.9085 B X Fuji Xerox (Ream N) Australia Ream 14 13.84 29.50 5.28 5.07 19.46 3.29 34.04 5.95 18.07 4.72 21.30 3.93 311.07 2.36 161.83 0.87 108.15 7.23 15.19 16.1185 C X Fuji Xerox (Ream O) Australia Ream 15 15.10 19.18 5.54 5.42 24.73 3.60 31.45 6.80 16.73 3.92 26.19 2.77 378.80 2.84 147.14 1.10 88.69 7.56 16.53 11.60

Page 250: Development of Novel Physical (Electrostatic Detection

250

Appendix 1 continued Appendix 1

Table 2 Prelimanary study ash sample *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu 53 A PaperOne-Premium All Purpose Indonesia 941.81 786.10 466.89 28.13 2899.86 99.78 78617.38 12.69 6.99 74.02 1022.95 12.14 40700.62 57.24 3831.59 128.75 1257.91 5227.68 135.42 3580.05 783.8453 B PaperOne-Premium All Purpose Indonesia 856.01 685.18 307.55 26.89 2781.53 97.30 72469.15 11.77 5.88 66.28 929.48 12.21 43834.74 57.88 4062.31 127.90 1303.43 5311.43 140.77 3754.82 823.3253 C PaperOne-Premium All Purpose Indonesia 854.27 669.14 287.60 23.55 2716.52 68.65 70890.03 11.88 5.85 61.52 923.58 10.45 42707.48 55.73 4343.72 167.70 1341.50 5339.66 129.07 3607.59 801.4253 D PaperOne-Premium All Purpose Indonesia 902.91 673.80 284.57 25.28 2777.88 66.18 71691.76 12.04 6.13 62.62 868.35 12.65 38711.42 56.73 3920.79 113.01 1270.25 4888.58 122.41 3469.15 745.8853 E PaperOne-Premium All Purpose Indonesia 1031.15 754.16 322.76 29.71 2968.41 90.45 79740.76 12.18 6.00 75.24 848.41 9.72 33914.70 52.98 3741.83 124.79 1194.90 4890.20 124.29 3562.02 698.6654 A Reflex-Recycled Pure w hite Australia 1067.38 783.51 444.46 16.79 3102.05 112.01 92150.45 29.44 60.27 227.01 190.66 4.80 6791.05 119.49 16432.81 229.82 1707.76 57997.82 242.11 5174.67 489.7854 B Reflex-Recycled Pure w hite Australia 1296.79 895.59 500.34 19.44 3345.52 102.74 104263.58 31.78 67.59 240.27 140.63 3.63 6814.82 107.11 14630.60 198.43 1492.64 52725.88 225.69 5028.38 440.9154 C Reflex-Recycled Pure w hite Australia 1308.64 928.77 566.48 20.36 3475.82 126.90 107714.97 34.08 69.52 264.76 223.63 5.43 8176.57 117.36 15103.72 198.88 1513.46 53187.70 230.81 4788.82 455.2654 D Reflex-Recycled Pure w hite Australia 1278.27 845.01 524.74 19.60 3263.45 92.77 98709.23 30.84 63.01 235.22 211.09 4.44 7518.87 111.76 14746.42 204.35 1622.02 52294.60 232.00 5417.53 513.4854 E Reflex-Recycled Pure w hite Australia 1210.68 865.07 504.60 18.86 3349.99 124.59 102789.13 31.93 64.62 240.29 189.55 4.68 6645.68 115.52 15621.92 198.32 1594.91 54144.89 252.99 5153.04 608.90

53 A A PaperOne-Premium All Purpose ASH Indonesia 4001.30 3293.95 1660.90 126.58 10342.83 433.74 342398.50 71.52 31.43 331.63 6073.45 85.97 269788.98 339.51 28652.29 768.06 9079.72 40127.28 869.22 16475.56 4365.3653 B A PaperOne-Premium All Purpose ASH Indonesia 4054.35 3211.20 1459.72 127.26 11005.34 371.36 350305.42 74.27 33.26 335.44 5182.19 80.56 204877.59 338.80 28173.61 715.88 7418.88 37112.92 874.07 17418.55 4827.3553 C A PaperOne-Premium All Purpose ASH Indonesia 4469.63 3290.02 1519.17 135.28 10763.96 501.67 358292.80 68.49 32.22 302.79 5409.48 69.02 215741.42 280.24 29342.59 936.68 8211.82 36657.21 813.66 16139.77 4165.2153 D A PaperOne-Premium All Purpose ASH Indonesia 4518.02 3219.66 1541.82 130.73 10559.52 396.54 355432.33 70.48 29.75 334.77 5334.88 74.31 237204.74 297.84 28458.72 761.47 8838.29 36237.97 832.16 16612.59 4023.8253 E A PaperOne-Premium All Purpose ASH Indonesia 5092.77 3306.80 1594.73 144.44 10766.93 444.96 368512.88 76.24 33.89 309.84 5920.23 74.64 250130.81 336.68 33105.58 826.71 9168.35 39042.54 959.17 19231.10 4555.9754 A A Reflex-Recycled Pure w hite ASH Australia 7429.72 3528.25 2850.42 176.66 10766.94 419.09 370763.81 181.78 240.92 964.61 1104.02 24.36 34878.35 796.10 121014.85 819.59 7409.80 278916.66 1771.42 19827.18 1977.8354 B A Reflex-Recycled Pure w hite ASH Australia 7676.57 3441.50 2767.97 178.19 9633.34 498.90 346761.37 170.70 238.13 1310.49 880.84 26.70 32097.38 686.11 89795.18 476.53 6515.71 212250.73 1397.09 15353.89 1679.8054 C A Reflex-Recycled Pure w hite ASH Australia 7518.83 3500.87 2701.52 173.46 10069.34 519.68 358128.70 179.15 236.74 917.81 980.31 24.97 27935.71 780.15 115375.00 672.70 6381.69 260723.79 1706.28 19654.19 2817.2154 D A Reflex-Recycled Pure w hite ASH Australia 5499.85 2467.96 1916.87 126.17 7333.46 272.03 256574.29 134.96 166.77 699.94 691.87 18.22 25661.03 622.71 84362.31 648.00 5053.04 188842.46 1235.89 15269.41 1561.5954 E A Reflex-Recycled Pure w hite ASH Australia 7338.04 3469.49 2744.57 170.11 10404.98 510.94 355400.56 185.29 236.65 919.78 959.77 21.88 28638.95 816.59 115615.22 569.24 7308.53 259290.16 1737.18 25832.21 2502.83

Appendix 1

Table 2 Prelimanary study ash sample Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce 53 A PaperOne-Premium All Purpose Indonesia 1138.66 31.25 6.47 913.50 178.64 159.95 21756.42 528.92 1152.45 115.70 2109.29 0.57 138.01 0.18 37.40 13.29 0.24 66.89 1072.38 292.05 329.4553 B PaperOne-Premium All Purpose Indonesia 1674.43 26.53 6.30 1020.79 169.05 156.65 21299.02 564.81 1081.70 96.33 2064.28 0.51 102.45 0.13 34.43 12.78 0.19 30.71 880.18 273.39 291.8853 C PaperOne-Premium All Purpose Indonesia 997.81 26.86 6.78 1485.50 167.94 151.40 20927.10 584.01 1888.28 228.66 2082.18 0.91 87.85 0.11 35.31 12.17 0.14 27.45 814.70 284.96 332.6653 D PaperOne-Premium All Purpose Indonesia 1408.80 25.62 6.46 898.27 176.16 145.97 19663.79 524.65 965.63 104.48 1914.76 0.63 88.20 0.06 30.30 12.91 0.15 22.40 776.05 255.20 271.4753 E PaperOne-Premium All Purpose Indonesia 1260.05 25.14 6.18 1112.41 165.00 144.95 19482.26 516.34 909.29 95.00 1928.66 0.76 80.97 0.35 27.24 12.34 0.13 34.80 772.80 266.47 266.8354 A Reflex-Recycled Pure w hite Australia 1060.79 44.44 5.28 1103.57 212.62 111.32 39306.24 399.67 2891.59 52.99 391.63 0.67 34.89 0.02 23.43 16.42 0.29 4.27 797.43 205.48 328.7954 B Reflex-Recycled Pure w hite Australia 1170.14 39.68 4.46 1029.32 189.28 102.23 34996.55 350.26 3592.06 44.12 337.99 1.12 31.64 0.13 17.19 12.71 0.22 1.71 695.11 149.60 274.4854 C Reflex-Recycled Pure w hite Australia 855.55 45.94 4.78 1024.39 213.17 97.27 36154.80 370.58 2789.29 70.98 360.10 0.53 32.49 0.01 26.84 15.07 0.30 2.36 806.73 158.48 309.1754 D Reflex-Recycled Pure w hite Australia 1500.52 45.01 4.61 1002.76 195.62 104.34 36132.15 370.18 2676.02 118.61 364.81 0.79 31.74 0.01 44.53 17.49 0.25 10.66 798.76 170.50 316.4454 E Reflex-Recycled Pure w hite Australia 1248.27 45.12 4.56 1079.06 212.83 112.30 37442.72 383.33 2663.58 59.89 376.01 0.91 69.10 0.02 22.81 15.98 0.30 5.18 843.12 193.29 338.45

53 A A PaperOne-Premium All Purpose ASH Indonesia 8419.60 189.77 35.11 5387.08 837.73 1211.83 146703.52 3728.43 5554.84 518.40 15215.29 3.47 314.81 1.10 397.98 111.85 0.46 194.08 4170.19 1764.86 486.6053 B A PaperOne-Premium All Purpose ASH Indonesia 6847.55 194.48 35.84 5179.86 773.73 1136.13 142546.78 3816.00 4544.74 473.86 13719.44 3.05 339.90 1.25 282.13 105.06 0.46 147.36 3690.33 1723.97 1871.0353 C A PaperOne-Premium All Purpose ASH Indonesia 7510.24 188.07 36.42 7350.91 720.29 1158.79 139938.62 3730.53 4766.95 574.78 13873.50 3.90 275.58 1.10 341.70 97.02 0.43 147.81 3511.36 1139.99 1241.5953 D A PaperOne-Premium All Purpose ASH Indonesia 6034.87 164.76 29.96 5620.13 761.28 1047.38 139681.63 3701.46 5183.91 518.09 13350.12 2.28 293.07 1.12 277.32 102.79 0.44 140.13 3688.83 1030.91 896.4653 E A PaperOne-Premium All Purpose ASH Indonesia 6470.01 205.73 40.21 6052.27 730.54 1163.60 152642.20 4053.75 5360.89 556.28 14785.16 1.85 268.75 1.34 291.80 106.15 0.44 162.74 3858.76 1466.33 1552.4454 A A Reflex-Recycled Pure w hite ASH Australia 4835.51 261.31 30.75 4903.07 1419.08 764.54 203266.55 1890.16 14290.75 237.60 2174.60 4.13 166.23 0.18 150.85 89.62 1.64 20.58 6046.70 1058.16 2088.7354 B A Reflex-Recycled Pure w hite ASH Australia 5519.36 199.79 27.93 3312.76 1320.33 613.28 154210.16 1475.39 11856.77 246.58 1579.89 3.59 154.11 0.28 174.27 85.14 1.66 15.71 4712.16 1053.05 1573.3254 C A Reflex-Recycled Pure w hite ASH Australia 4245.62 225.79 25.98 4206.12 1369.11 758.38 194865.50 1790.03 12279.28 227.98 1959.58 3.03 128.37 0.13 112.95 83.32 1.37 18.17 5537.98 1148.72 1608.7954 D A Reflex-Recycled Pure w hite ASH Australia 3659.53 171.11 23.14 3249.63 1081.41 526.80 142062.84 1319.08 12318.18 467.30 1470.83 3.92 99.54 0.10 117.81 72.70 1.27 46.15 4207.57 958.88 1350.3054 E A Reflex-Recycled Pure w hite ASH Australia 8779.02 230.95 30.62 3645.38 1428.07 789.60 193724.58 1803.50 14570.95 270.54 2032.61 5.75 170.95 0.19 146.28 106.52 2.00 34.34 6657.02 1568.12 2233.61

Page 251: Development of Novel Physical (Electrostatic Detection

251

Appendix 1 continued

Appendix 1Table 2 Prelimanary study ash sample Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U 53 A PaperOne-Premium All Purpose Indonesia 52.58 215.37 45.31 8.33 59.81 11.08 69.40 14.77 41.43 5.90 34.75 6.58 40.19 13.16 37890.63 1.83 749.50 29.37 32.70 51.5353 B PaperOne-Premium All Purpose Indonesia 55.31 209.97 44.47 7.84 57.03 11.33 72.00 14.69 43.63 6.23 38.57 6.50 33.92 10.46 35992.76 2.41 530.22 31.50 34.19 52.7653 C PaperOne-Premium All Purpose Indonesia 58.36 226.46 48.94 7.77 62.57 12.17 77.28 16.87 50.05 6.43 41.31 7.08 59.15 27.01 40599.76 2.17 584.18 34.95 43.71 55.9853 D PaperOne-Premium All Purpose Indonesia 47.56 202.61 43.25 7.43 58.26 10.58 69.51 14.27 42.53 5.70 35.34 6.42 36.76 11.01 35615.92 1.73 440.95 29.02 29.24 50.3753 E PaperOne-Premium All Purpose Indonesia 47.61 197.82 41.42 6.93 55.51 10.15 66.46 13.81 41.05 5.39 35.12 6.20 31.68 10.48 35055.06 1.77 459.47 35.38 29.63 51.5854 A Reflex-Recycled Pure w hite Australia 40.47 159.16 33.96 7.14 41.34 8.20 54.69 12.27 40.15 6.46 44.53 6.80 92.28 1.58 18265.07 0.75 211.57 2.09 45.13 33.5054 B Reflex-Recycled Pure w hite Australia 32.53 128.94 28.61 5.90 35.59 7.03 45.62 10.61 35.18 5.69 36.26 6.68 91.89 2.30 14875.42 0.73 177.82 1.85 43.11 28.9854 C Reflex-Recycled Pure w hite Australia 34.93 146.79 31.35 6.62 39.33 7.66 49.19 12.57 38.01 6.36 41.22 7.39 99.51 2.09 19114.44 0.89 276.06 1.72 54.44 31.2454 D Reflex-Recycled Pure w hite Australia 34.19 151.40 31.52 6.26 36.97 7.60 49.60 11.78 38.48 5.54 42.20 6.71 108.81 2.84 19925.97 0.66 313.22 2.59 57.80 33.3754 E Reflex-Recycled Pure w hite Australia 38.45 154.38 33.18 6.96 39.04 8.16 53.30 11.65 38.24 6.44 43.29 7.58 109.34 3.15 16228.09 0.92 323.93 3.09 42.65 32.76

53 A A PaperOne-Premium All Purpose ASH Indonesia 157.35 833.46 283.65 55.74 394.08 65.18 418.17 83.45 249.96 38.34 223.19 35.48 178.95 51.88 151731.52 20.33 1637.45 144.25 284.78 284.9753 B A PaperOne-Premium All Purpose ASH Indonesia 387.52 1761.27 267.42 52.81 532.75 70.20 412.04 83.88 250.45 36.05 204.85 35.96 141.98 35.90 108739.33 15.03 967.98 88.46 150.87 275.3253 C A PaperOne-Premium All Purpose ASH Indonesia 279.52 1327.92 277.64 52.73 481.49 67.09 397.59 84.05 256.72 35.56 214.40 34.42 160.66 52.87 125436.55 14.83 1207.37 104.05 180.48 278.3853 D A PaperOne-Premium All Purpose ASH Indonesia 187.25 1193.35 260.19 50.77 369.31 61.30 399.35 81.90 249.30 33.46 206.42 31.67 170.36 44.39 129003.55 17.05 1918.77 108.48 229.91 278.3453 E A PaperOne-Premium All Purpose ASH Indonesia 359.49 1642.51 289.97 56.56 523.86 76.42 436.90 92.22 275.62 38.06 214.75 34.51 184.23 45.06 138119.77 14.42 1756.58 138.64 231.84 304.0554 A A Reflex-Recycled Pure w hite ASH Australia 262.14 818.10 206.94 45.88 265.33 33.09 272.01 51.29 149.28 24.24 137.93 19.40 361.33 9.84 77387.33 3.81 2296.13 12.37 324.83 152.5154 B A Reflex-Recycled Pure w hite ASH Australia 195.50 711.31 149.39 35.85 224.83 31.10 198.59 39.35 119.99 18.41 105.75 17.52 312.04 9.44 59039.80 7.22 990.18 12.09 262.30 109.1254 C A Reflex-Recycled Pure w hite ASH Australia 211.03 827.58 182.86 44.96 254.64 38.56 231.28 49.13 149.40 21.14 130.03 19.02 327.04 7.25 71571.08 3.44 1020.62 7.79 291.03 136.4154 D A Reflex-Recycled Pure w hite ASH Australia 168.12 645.80 141.72 33.33 201.08 32.45 185.52 34.00 112.54 16.28 94.59 16.31 324.52 8.67 54122.00 3.14 720.04 8.50 225.52 112.5454 E A Reflex-Recycled Pure w hite ASH Australia 286.31 1018.83 189.65 45.94 290.92 42.79 250.91 49.79 141.86 19.38 124.76 21.13 344.99 8.69 72020.72 3.29 1585.07 16.07 292.53 139.61

Page 252: Development of Novel Physical (Electrostatic Detection

252

Appendix 1 continued

Appendix 1 Code number Table 3 Ash Experiment used in Fig. 4.17 *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu 55 A Double A Premium Thailand 1 811.96 320.56 291.70 28.44 1489.24 83.31 52079.05 3.63 4.75 24.73 147.39 2.43 49898.58 51.65 3826.44 137.09 1653.66 4201.71 114.49 1309.69 1470.9955 B Double A Premium Thailand 1 682.57 284.07 102.74 24.65 1410.85 73.34 46257.90 1.50 4.10 30.00 81.98 1.23 56463.11 58.45 3044.78 192.23 1809.36 4251.67 101.93 1244.54 1402.1755 C Double A Premium Thailand 1 720.94 311.40 89.25 25.42 1505.74 69.85 50821.12 2.23 4.67 40.01 75.54 1.78 34887.80 59.12 2837.10 142.94 1857.94 3948.53 100.65 1282.74 1437.5155 D Double A Premium Thailand 1 684.02 284.29 74.31 24.82 1410.32 59.74 45878.56 2.48 3.74 18.07 53.70 1.74 65144.03 63.66 3506.56 158.12 1904.13 4654.64 108.35 1451.65 1446.2755 E Double A Premium Thailand 1 709.96 303.56 81.88 23.89 1434.92 69.30 48683.99 2.10 4.45 33.74 57.78 2.00 58801.09 64.41 3446.98 211.14 1859.51 4477.03 102.91 1422.14 1431.03

55 A A Double A Premium / Ash Thailand 2 4289.43 1957.30 503.23 212.10 8899.33 396.30 328350.21 10.93 26.34 196.88 279.63 10.06 222373.15 352.65 19832.62 785.86 7775.75 30630.86 706.16 9217.48 8151.8655 B A Double A Premium / Ash Thailand 2 4523.32 2062.39 462.79 244.63 9585.85 183.73 340673.98 14.39 26.98 238.72 311.01 7.49 279119.05 402.86 21859.18 933.96 10317.31 31379.66 758.99 10376.86 8029.2355 C A Double A Premium / Ash Thailand 2 4677.21 2152.35 580.35 175.60 9548.40 252.64 349555.10 16.52 26.48 166.44 324.85 20.97 147491.55 356.51 22586.48 909.72 9452.11 29894.57 741.92 9529.08 8837.9755 D A Double A Premium / Ash Thailand 2 4619.31 2214.17 573.58 192.35 9884.17 386.31 366672.40 12.67 29.49 326.41 324.24 12.39 307247.67 382.67 21209.69 1057.97 10238.23 31643.11 748.30 9405.87 8110.5755 E A Double A Premium / Ash Thailand 2 4190.31 1756.46 511.17 158.12 7781.06 247.48 282253.09 8.10 25.19 188.35 318.27 16.20 343496.08 344.57 19003.31 1247.40 9315.67 26877.92 681.06 8120.38 7176.9856 A HP Everyday Brazil 3 811.30 350.66 332.76 79.83 1919.49 33.94 60183.19 1.74 3.49 54.35 88.20 3.10 74107.93 63.15 3801.95 271.46 2029.16 4159.40 148.04 1794.58 349.4956 B HP Everyday Brazil 3 879.70 344.64 308.19 83.20 1825.96 33.22 56582.43 1.27 4.34 33.17 75.51 3.00 65192.10 66.10 3251.84 251.16 1967.50 4423.42 149.89 1808.06 357.7456 C HP Everyday Brazil 3 795.62 360.18 343.71 77.19 1892.61 24.79 62223.40 1.10 3.61 27.51 87.86 2.58 78067.91 65.70 3938.56 187.17 1945.57 4185.90 152.82 1885.75 296.3356 D HP Everyday Brazil 3 904.70 398.24 364.45 92.74 2077.31 24.77 65851.38 1.71 3.68 32.46 85.23 3.69 65258.99 75.65 3758.65 220.25 2124.35 4842.57 167.87 2013.50 337.5756 E HP Everyday Brazil 3 767.57 327.45 316.82 75.33 1793.09 32.28 56448.89 2.24 4.00 43.98 83.68 3.17 58181.52 59.18 3810.06 191.81 1995.98 3963.30 146.01 1793.89 315.70

56 A A HP Everyday / Ash Brazil 4 3902.08 1371.62 1277.52 320.68 7256.72 97.48 232162.12 8.38 14.67 213.93 380.64 14.16 364938.94 296.24 18775.71 962.20 9742.99 18314.41 670.33 8203.47 1618.1756 B A HP Everyday / Ash Brazil 4 3668.25 1739.03 1519.81 410.86 8199.80 93.19 285572.13 8.83 16.77 188.65 400.23 12.88 252774.13 320.17 16517.94 1057.82 8525.36 21842.83 780.39 9157.13 1218.0956 C A HP Everyday / Ash Brazil 4 3479.08 1617.40 1485.56 377.06 8106.03 111.04 277188.06 6.68 20.10 235.87 407.47 12.05 205056.20 313.25 18158.86 1050.50 9403.98 21319.98 788.87 9200.66 1478.5456 D A HP Everyday / Ash Brazil 4 3804.82 1846.58 1650.32 432.64 8974.69 121.05 310228.31 6.31 17.91 215.18 406.88 21.49 365242.10 354.72 17398.87 970.37 9625.15 22878.97 818.28 9538.47 1587.4256 E A HP Everyday / Ash Brazil 4 3684.50 1720.15 1576.56 417.37 8118.90 112.16 293477.97 6.85 18.55 206.93 390.51 14.24 194762.33 276.98 15181.09 938.24 6875.81 20871.26 792.68 9043.97 1203.1557 A Laser IT Indonesia 5 827.68 570.96 284.82 24.92 2131.33 39.21 71386.15 3.84 6.85 79.69 917.61 22.61 81192.83 98.53 5814.51 274.16 2388.15 8535.66 191.92 2212.49 1235.0257 B Laser IT Indonesia 5 763.13 552.48 281.00 26.00 1943.88 33.82 69001.14 1.91 6.27 71.57 1060.37 24.31 94339.71 99.68 5871.42 247.08 2462.28 8642.99 206.91 2375.30 1049.1157 C Laser IT Indonesia 5 717.70 516.34 249.95 22.60 2022.90 33.44 66888.51 3.64 5.71 66.75 888.90 18.82 6425.04 88.69 5730.70 268.63 2355.01 8059.60 186.73 2126.15 1123.2857 D Laser IT Indonesia 5 706.35 520.99 260.98 21.82 2026.95 35.78 66634.12 2.77 6.80 70.07 1008.78 21.71 69941.55 96.03 5581.52 241.01 2394.08 8739.92 197.33 2258.81 1168.5757 E Laser IT Indonesia 5 674.00 500.56 269.39 22.88 1985.09 36.51 64775.65 3.15 6.59 73.18 2035.95 22.84 82315.81 95.36 6453.59 292.23 2495.78 8805.40 200.91 2353.80 1150.86

57 A A Laser IT / Ash Indonesia 6 2857.65 2501.07 1229.36 116.45 9095.71 178.25 323305.85 15.76 32.54 314.63 4986.46 120.65 331416.68 455.25 29572.83 1457.34 10606.26 43144.86 993.97 11012.04 4730.1357 B A Laser IT / Ash Indonesia 6 3101.50 2111.29 1158.11 93.21 8022.21 126.67 265831.53 12.35 25.69 262.89 4289.33 85.72 341578.34 370.35 21715.68 1500.67 9936.94 34414.32 794.07 9361.51 4792.7257 C A Laser IT / Ash Indonesia 6 3401.48 2447.22 1271.32 132.15 9094.86 52.24 308978.06 17.76 32.33 270.50 5066.99 111.30 395943.61 497.64 29694.04 1853.70 11733.27 42732.95 991.02 11636.63 5241.9757 D A Laser IT / Ash Indonesia 6 3124.08 2294.96 1152.44 101.68 8037.04 172.54 287243.44 19.85 29.95 243.93 4900.14 99.14 320791.39 405.09 30100.41 1322.23 9426.38 36231.09 858.52 9649.16 4325.6557 E A Laser IT / Ash Indonesia 6 3413.44 2571.02 1421.34 112.98 9202.92 172.49 330739.70 12.45 33.06 256.89 5876.68 110.29 485077.54 464.44 29458.53 1485.50 11198.83 43263.91 836.21 11322.96 4943.8258 A Office Works UltraWhite Premium Australia 7 1433.60 602.92 297.03 9.36 2191.75 69.87 74852.46 11.80 56.12 239.30 220.82 5.25 62773.77 148.05 14705.82 223.50 3685.65 74217.30 303.82 3079.12 883.7558 B Office Works UltraWhite Premium Australia 7 1489.33 662.52 212.19 6.16 1637.42 77.86 56010.04 8.15 41.58 170.73 215.39 3.27 61838.36 108.84 10321.76 174.04 2725.35 56343.54 230.12 2333.96 581.4758 C Office Works UltraWhite Premium Australia 7 1475.44 635.92 295.42 9.26 2073.73 83.78 76092.48 11.94 59.12 210.01 213.74 4.36 116168.27 146.59 14869.48 299.97 3578.42 68291.94 278.59 2749.68 643.8458 D Office Works UltraWhite Premium Australia 7 1482.20 652.41 292.68 8.51 2165.16 70.27 78171.22 11.84 59.34 227.14 250.04 5.42 94184.42 151.19 14860.98 269.89 3765.15 74789.44 315.43 3061.46 693.9858 E Office Works UltraWhite Premium Australia 7 1418.97 628.69 298.00 8.58 2097.29 81.54 78018.86 12.05 60.13 220.13 243.34 6.63 65800.20 151.02 14831.12 308.19 3730.31 73230.66 305.79 3058.53 753.53

58 A A Office Works UltraWhite Premium / Ash Australia 8 5275.96 2373.24 1092.30 38.19 7895.50 315.05 291933.10 43.23 226.64 794.51 1058.90 25.64 251399.23 603.85 57997.07 919.41 13933.03 287872.56 1221.28 11987.44 2431.4958 B A Office Works UltraWhite Premium / Ash Australia 8 5211.04 2487.31 1057.90 50.67 7856.56 451.94 292396.28 49.00 227.04 851.36 923.38 20.13 308548.48 638.89 61956.88 1132.80 15044.60 291963.11 1219.05 11871.60 2304.5158 C A Office Works UltraWhite Premium / Ash Australia 8 5281.49 2384.99 1077.16 48.23 7846.07 389.38 286725.49 49.69 220.77 766.15 891.21 23.83 259051.23 665.96 66260.55 1556.78 14982.26 280197.44 1176.41 11445.93 2411.5758 D A Office Works UltraWhite Premium / Ash Australia 8 5516.34 2632.57 1116.00 34.69 8506.10 300.99 314612.72 45.51 238.55 899.90 1070.68 26.07 298890.19 651.62 61621.88 1228.89 14915.27 310639.96 1335.93 12771.32 2507.4258 E A Office Works UltraWhite Premium / Ash Australia 8 4789.12 2256.64 1069.79 44.95 7858.09 263.00 280973.64 43.96 217.56 787.53 969.12 36.54 267410.67 682.93 59094.58 1266.10 15052.13 290757.46 1257.04 12207.89 2665.58

Page 253: Development of Novel Physical (Electrostatic Detection

253

Appendix 1 continued

Appendix 1 Code number Table 3 Ash Experiment used in Fig. 4.17 Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce 55 A Double A Premium Thailand 1 1687.77 24.56 3.33 397.31 53.02 126.17 19269.50 602.56 436.33 28.49 20.73 0.97 179.64 0.55 68.85 14.99 0.51 20.18 1708.66 326.49 280.7255 B Double A Premium Thailand 1 1695.75 14.32 7.11 530.13 62.96 110.51 16716.90 607.35 402.93 25.23 20.84 0.89 185.91 0.44 65.38 11.52 0.83 21.55 1207.16 294.68 202.3855 C Double A Premium Thailand 1 2093.00 13.33 3.69 367.35 43.28 104.46 15314.89 603.84 308.25 25.58 18.49 0.93 156.48 0.41 59.46 11.73 0.46 16.53 945.58 269.74 169.0155 D Double A Premium Thailand 1 1634.20 13.36 4.29 414.71 96.45 113.23 16714.93 629.85 615.33 48.87 18.44 0.85 168.10 0.38 62.69 11.15 0.28 16.20 1165.70 286.82 184.8255 E Double A Premium Thailand 1 1831.18 14.16 6.57 579.98 73.58 104.07 15929.20 610.33 426.69 27.13 19.11 0.98 158.23 0.42 67.41 18.42 0.66 14.48 1080.51 270.19 172.16

55 A A Double A Premium / Ash Thailand 2 7635.27 94.74 19.85 2775.33 459.93 559.36 108908.71 4176.30 1985.77 127.47 99.13 3.72 335.38 1.23 213.62 87.08 0.84 63.54 6979.60 5213.29 3919.6655 B A Double A Premium / Ash Thailand 2 6571.29 82.18 19.45 2679.79 448.04 551.34 110641.42 4228.49 1944.98 134.69 98.81 3.56 326.50 1.32 225.22 59.83 0.87 30.98 6836.81 2584.83 1373.1255 C A Double A Premium / Ash Thailand 2 6617.08 94.29 27.26 3364.29 449.98 584.05 111800.49 4382.91 2439.45 148.47 92.79 4.46 262.58 1.39 270.88 67.18 0.86 44.67 6557.34 1711.61 454.2155 D A Double A Premium / Ash Thailand 2 7108.09 87.38 30.54 3708.74 442.56 581.51 107130.20 4049.84 2055.87 123.72 111.36 3.55 418.19 1.54 254.96 56.97 0.85 32.72 6415.06 2210.97 1062.7055 E A Double A Premium / Ash Thailand 2 7848.91 80.26 36.85 4064.55 441.97 520.41 93297.97 3551.26 2239.66 129.58 81.46 3.64 471.66 1.57 215.79 52.54 1.07 30.49 5582.54 1823.12 871.9056 A HP Everyday Brazil 3 1329.71 22.20 6.08 513.49 73.67 53.99 242619.45 126.22 168.61 35.12 10.64 1.16 17.27 0.37 58.46 4.84 0.27 12.80 2721.75 105.95 143.4556 B HP Everyday Brazil 3 1382.83 23.28 7.26 425.04 91.74 48.46 251938.12 159.86 165.29 41.82 14.06 0.87 9.17 0.29 70.94 7.12 0.31 15.35 2958.50 104.98 142.1856 C HP Everyday Brazil 3 930.80 20.29 4.34 436.90 102.17 46.23 246265.34 128.63 197.90 39.28 11.33 0.74 11.93 0.36 48.76 3.84 0.34 9.95 2694.95 77.05 146.4256 D HP Everyday Brazil 3 1200.28 20.88 6.48 536.49 78.81 44.88 267764.42 151.28 152.36 43.22 12.60 0.81 11.14 0.37 50.19 4.37 0.29 6.65 2939.46 106.33 159.8356 E HP Everyday Brazil 3 1330.98 19.12 5.45 468.61 75.56 49.81 231471.26 123.28 183.70 39.44 9.90 0.86 8.11 0.28 46.37 5.84 0.25 9.43 2606.51 82.90 156.65

56 A A HP Everyday / Ash Brazil 4 3660.33 102.09 21.22 2421.66 400.76 195.41 1058874.67 544.73 1156.72 212.81 45.73 4.13 35.12 1.39 390.25 20.65 0.55 42.58 11397.51 711.09 1181.3156 B A HP Everyday / Ash Brazil 4 4320.61 104.38 21.83 2953.75 333.88 164.55 1224872.76 675.02 914.21 195.82 40.13 2.79 34.39 1.38 180.31 17.78 0.48 56.84 13207.35 499.14 744.5956 C A HP Everyday / Ash Brazil 4 3502.27 97.43 24.68 3332.05 456.64 189.35 1225623.24 636.20 816.85 190.30 53.79 3.35 24.46 1.19 193.70 25.85 0.54 44.66 13026.23 588.67 898.0356 D A HP Everyday / Ash Brazil 4 4344.18 105.69 20.07 2512.38 509.09 171.63 1251552.97 708.59 965.30 203.02 55.25 3.75 30.12 1.26 227.22 18.27 0.85 40.27 13292.63 608.24 1009.4456 E A HP Everyday / Ash Brazil 4 3225.66 103.53 21.28 2813.28 393.98 186.47 1179177.50 623.74 1436.74 176.22 54.27 2.42 20.63 1.09 291.79 15.35 0.67 46.42 12929.32 547.29 826.4257 A Laser IT Indonesia 5 2280.08 40.59 13.35 1003.43 115.37 179.35 29434.32 842.90 604.72 85.71 1374.62 1.31 145.69 0.45 68.95 16.74 0.27 40.69 867.49 374.94 349.4757 B Laser IT Indonesia 5 2109.05 37.73 12.23 948.78 123.61 162.59 28056.15 815.29 609.60 82.10 1364.69 0.71 58.64 0.38 88.89 14.84 0.29 32.90 670.14 346.19 321.0957 C Laser IT Indonesia 5 1648.78 36.13 15.26 1008.25 90.21 164.00 27151.46 782.71 670.16 85.98 1326.68 0.90 137.47 0.38 69.59 19.05 0.29 50.85 683.27 336.23 301.1157 D Laser IT Indonesia 5 1829.99 38.41 13.30 865.48 116.82 178.91 29223.33 838.17 625.47 82.76 1397.99 0.75 146.89 0.33 55.16 14.38 0.27 38.45 694.52 347.78 307.5357 E Laser IT Indonesia 5 2418.26 40.71 15.70 1108.15 108.06 175.17 29752.37 870.10 703.65 89.27 1439.60 0.91 143.58 0.30 59.52 15.55 0.28 40.27 720.36 356.76 311.61

57 A A Laser IT / Ash Indonesia 6 8872.38 191.49 67.30 6187.09 472.47 813.09 144734.94 4178.42 2837.24 399.26 7137.46 4.11 213.07 1.28 315.23 71.22 1.19 191.74 3430.87 2828.20 1626.0657 B A Laser IT / Ash Indonesia 6 6620.13 167.57 49.55 3143.18 401.91 742.45 118358.87 3364.81 2558.26 331.09 5483.37 3.13 605.87 1.45 253.04 60.37 1.04 170.79 4148.97 1535.39 1556.6157 C A Laser IT / Ash Indonesia 6 8771.33 213.23 86.54 6928.48 597.03 824.43 140611.95 4048.65 3230.20 408.75 6929.78 5.09 299.09 1.61 358.08 71.82 1.03 164.48 3292.55 3006.89 1946.5157 D A Laser IT / Ash Indonesia 6 9851.06 173.28 52.13 3815.35 483.48 697.95 119783.17 3461.20 2479.62 353.87 5580.33 2.37 234.08 1.25 222.05 55.73 0.53 164.66 2834.81 1831.29 987.7757 E A Laser IT / Ash Indonesia 6 8067.71 204.11 69.58 6218.81 590.23 825.40 141898.61 4099.11 2936.99 394.47 6921.67 6.54 233.52 1.44 466.53 72.83 0.36 158.95 3476.28 1774.23 805.7558 A Office Works UltraWhite Premium Australia 7 2121.22 37.61 11.31 782.80 101.84 138.79 40763.80 400.15 513.14 21.35 303.93 0.71 34.36 0.37 37.14 6.98 0.26 9.27 725.05 203.73 250.2158 B Office Works UltraWhite Premium Australia 7 1442.21 27.06 8.99 619.05 84.72 97.94 30604.40 296.73 540.15 12.58 177.80 0.79 26.78 0.29 29.55 3.72 0.23 10.28 491.78 137.55 155.9358 C Office Works UltraWhite Premium Australia 7 1094.65 35.47 13.75 678.52 109.53 110.39 36322.98 358.67 633.70 28.72 202.25 1.03 30.48 0.37 33.56 4.85 0.24 9.99 579.79 169.96 191.2358 D Office Works UltraWhite Premium Australia 7 1187.29 38.35 10.69 621.08 110.61 122.41 40106.54 394.58 605.28 22.65 203.07 0.75 38.52 0.26 29.26 5.13 0.26 11.66 599.14 135.35 208.6658 E Office Works UltraWhite Premium Australia 7 1590.85 39.43 13.57 568.21 124.65 120.30 39261.98 386.28 592.62 24.90 201.00 0.93 33.50 0.31 37.09 11.18 0.25 11.05 626.69 164.08 229.98

58 A A Office Works UltraWhite Premium / Ash Australia 8 3763.67 147.71 32.81 2382.32 447.59 441.36 152802.93 1511.84 3126.85 108.52 732.52 2.90 96.24 0.86 92.71 17.81 1.72 20.10 2583.44 569.44 961.1258 B A Office Works UltraWhite Premium / Ash Australia 8 5076.67 152.75 38.97 2999.73 501.12 429.18 154006.48 1519.26 3490.27 204.61 772.23 4.22 111.60 1.15 157.67 19.31 1.78 22.30 2197.29 494.97 857.4058 C A Office Works UltraWhite Premium / Ash Australia 8 3826.79 155.18 63.54 2739.53 451.01 413.28 147780.14 1471.06 2389.41 262.72 762.19 4.03 149.26 0.97 185.58 20.54 1.91 24.89 2199.99 436.08 682.5758 D A Office Works UltraWhite Premium / Ash Australia 8 3167.43 159.54 42.11 2217.93 467.81 445.68 162175.81 1604.21 2642.42 107.33 788.35 2.92 98.56 1.23 80.51 20.98 1.63 26.11 2282.76 476.03 794.6058 E A Office Works UltraWhite Premium / Ash Australia 8 4255.83 165.70 44.41 2920.02 474.44 420.86 151303.50 1479.51 3471.22 147.17 745.95 3.69 123.91 1.02 112.38 16.84 1.97 24.70 2199.57 440.22 739.90

Page 254: Development of Novel Physical (Electrostatic Detection

254

Appendix 1 continued

Appendix 1 Code number Table 3 Ash Experiment used in Fig. 4.17 Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U 55 A Double A Premium Thailand 1 54.15 206.80 37.98 8.93 51.42 9.68 56.53 13.42 38.20 5.35 26.40 4.61 16.32 12.77 87.05 1.33 258.97 12.33 13.62 22.3755 B Double A Premium Thailand 1 47.21 184.41 33.86 7.78 46.59 9.01 53.29 11.48 36.53 4.70 24.56 4.22 15.12 12.49 86.59 1.24 237.94 10.89 9.66 17.9755 C Double A Premium Thailand 1 41.80 167.57 30.67 7.19 42.52 8.00 49.68 11.59 34.33 4.44 23.11 4.03 13.43 10.61 63.13 1.25 181.88 8.41 7.87 15.7855 D Double A Premium Thailand 1 46.11 171.19 33.09 7.24 46.12 8.52 51.88 11.82 33.94 4.75 24.57 3.84 18.40 12.84 70.86 1.28 173.53 7.80 8.05 16.3755 E Double A Premium Thailand 1 41.93 171.42 31.10 6.77 43.72 8.04 50.66 11.76 32.36 4.16 22.82 3.84 13.67 10.85 84.91 1.31 154.27 8.67 7.51 14.03

55 A A Double A Premium / Ash Thailand 2 819.43 2430.97 214.37 45.79 384.62 55.55 354.83 76.92 226.02 28.65 159.00 24.36 60.38 42.89 331.11 5.07 893.02 23.14 44.39 104.8355 B A Double A Premium / Ash Thailand 2 419.32 1455.62 205.58 45.44 315.35 56.04 345.67 76.51 228.08 29.87 156.38 25.91 55.23 44.40 272.64 6.20 509.26 22.09 44.80 100.9755 C A Double A Premium / Ash Thailand 2 282.18 1114.96 218.57 46.94 296.47 53.34 339.69 74.67 225.19 30.15 159.88 24.99 64.34 37.04 240.75 4.88 460.07 20.43 45.95 95.8455 D A Double A Premium / Ash Thailand 2 361.99 1295.94 203.55 45.60 290.60 49.18 319.50 72.99 210.60 28.77 143.37 24.85 51.99 41.03 265.08 6.12 916.02 23.76 41.13 94.8555 E A Double A Premium / Ash Thailand 2 314.14 1093.93 177.80 38.41 243.27 44.54 280.73 64.06 180.95 24.41 124.30 20.86 60.22 35.53 240.92 7.89 680.40 28.57 41.20 88.1056 A HP Everyday Brazil 3 19.90 58.25 11.12 2.66 14.67 2.72 15.95 3.76 11.75 1.89 11.09 1.74 6.25 6.15 48.40 1.27 192.54 5.64 46.24 132.4856 B HP Everyday Brazil 3 16.79 57.63 12.50 3.58 14.25 3.22 21.23 4.95 15.72 2.52 14.78 2.29 5.91 6.64 46.75 1.01 221.13 6.04 43.00 144.6256 C HP Everyday Brazil 3 13.50 48.78 9.67 2.94 12.37 2.61 16.35 3.81 11.35 2.04 10.49 1.62 6.78 6.59 52.02 1.48 170.49 4.36 47.27 127.4456 D HP Everyday Brazil 3 14.40 53.63 11.85 3.28 14.54 2.89 17.60 3.99 12.69 2.25 11.48 1.85 5.38 6.35 40.80 1.64 181.21 5.26 56.94 142.6256 E HP Everyday Brazil 3 14.73 50.24 10.57 2.62 12.58 2.26 16.08 3.72 10.65 1.70 9.98 1.73 5.91 5.17 50.88 1.16 159.67 4.86 45.28 120.39

56 A A HP Everyday / Ash Brazil 4 105.52 260.04 48.74 12.07 65.06 14.52 79.63 16.04 50.47 7.85 46.35 7.60 36.21 28.28 306.79 5.03 593.43 19.68 204.48 538.8156 B A HP Everyday / Ash Brazil 4 91.78 299.12 50.26 13.03 66.84 13.82 83.31 20.63 60.23 10.02 53.17 8.84 27.33 25.36 229.01 6.53 646.26 16.62 260.81 666.5856 C A HP Everyday / Ash Brazil 4 75.37 264.88 48.46 13.25 63.31 12.83 71.08 17.04 56.61 9.45 44.60 9.08 25.03 25.39 317.79 6.34 722.25 14.09 237.69 626.3056 D A HP Everyday / Ash Brazil 4 101.14 254.43 55.68 15.32 77.11 13.61 89.11 18.87 62.48 9.69 51.51 8.02 25.33 25.57 392.23 5.71 682.68 18.15 260.86 650.4356 E A HP Everyday / Ash Brazil 4 123.22 268.81 52.25 12.86 88.48 14.09 79.73 16.56 56.25 8.99 45.46 8.08 32.39 18.93 484.50 4.25 448.23 12.29 223.41 603.9657 A Laser IT Indonesia 5 63.98 243.35 48.49 9.39 63.92 11.59 72.25 15.81 47.89 6.34 33.69 5.93 18.49 10.34 13244.41 2.45 448.45 51.79 25.87 24.6257 B Laser IT Indonesia 5 59.92 227.86 44.85 7.63 57.87 10.68 66.67 14.41 41.07 5.66 31.26 4.96 15.39 6.30 13016.08 1.95 299.95 40.02 26.02 24.6157 C Laser IT Indonesia 5 60.02 227.31 43.37 7.87 58.56 10.65 65.46 14.14 43.68 5.93 31.39 5.19 18.03 9.09 12719.30 1.96 357.27 48.81 23.83 25.0857 D Laser IT Indonesia 5 60.03 233.50 45.10 8.41 62.54 10.89 68.99 15.10 44.10 5.98 34.28 5.27 17.70 7.98 13964.39 2.18 362.94 50.40 30.07 26.6757 E Laser IT Indonesia 5 61.14 233.85 46.39 8.43 60.61 10.96 71.93 15.48 47.03 6.15 33.04 5.49 18.68 8.44 15366.48 2.17 328.55 52.56 35.85 25.75

57 A A Laser IT / Ash Indonesia 6 452.32 1569.14 230.27 41.24 324.78 55.21 357.35 73.79 231.90 30.40 170.59 25.81 73.72 41.03 69480.96 6.61 2804.14 175.52 160.27 132.0857 B A Laser IT / Ash Indonesia 6 244.08 949.30 186.13 34.66 247.35 45.89 279.57 61.53 182.66 25.07 133.90 21.71 76.68 38.29 55298.23 8.10 1491.53 182.79 112.46 111.0257 C A Laser IT / Ash Indonesia 6 482.16 1620.79 211.33 40.85 334.02 54.96 333.03 70.50 216.96 27.33 154.86 25.07 76.86 34.46 71053.74 8.83 1296.73 225.32 137.04 122.6257 D A Laser IT / Ash Indonesia 6 320.47 1107.40 186.48 33.57 259.53 44.69 276.55 57.98 180.45 24.46 129.86 20.61 62.84 30.96 52999.21 6.85 1086.96 135.33 102.02 99.7357 E A Laser IT / Ash Indonesia 6 308.52 1188.82 219.43 39.24 299.89 53.29 331.07 71.28 214.50 27.88 157.20 25.05 74.01 34.27 63461.27 7.80 1322.59 195.66 132.64 115.4858 A Office Works UltraWhite Premium Australia 7 26.84 101.05 22.05 4.98 26.23 5.92 37.85 8.37 27.48 4.39 27.90 5.09 3.97 3.42 6137.24 1.35 252.28 7.95 22.51 20.1058 B Office Works UltraWhite Premium Australia 7 22.53 68.43 15.78 3.86 18.63 4.20 26.73 6.14 20.73 3.22 20.30 3.96 1.56 2.12 3763.26 1.19 187.61 4.56 16.60 15.2058 C Office Works UltraWhite Premium Australia 7 21.47 84.86 18.63 4.45 22.50 4.42 31.93 7.12 22.93 4.00 23.79 4.60 2.04 3.10 4618.93 1.67 439.26 5.69 19.17 17.2158 D Office Works UltraWhite Premium Australia 7 24.16 91.76 19.53 4.78 24.57 4.97 33.55 7.44 26.03 4.19 25.01 4.75 3.49 2.59 4902.77 1.28 201.37 4.77 20.36 18.5958 E Office Works UltraWhite Premium Australia 7 25.73 96.43 19.35 4.65 23.79 5.27 31.96 7.85 24.88 3.98 25.36 4.52 2.31 2.05 4992.73 1.38 210.37 4.79 22.13 19.39

58 A A Office Works UltraWhite Premium / Ash Australia 8 103.07 372.40 71.46 16.58 97.26 18.03 125.86 28.13 94.86 15.74 97.44 17.36 12.27 8.72 17242.74 5.61 798.28 11.65 73.74 68.8658 B A Office Works UltraWhite Premium / Ash Australia 8 96.82 363.25 69.03 17.66 94.58 19.18 121.13 29.30 101.28 15.06 94.07 18.57 13.50 12.55 20821.55 5.33 752.28 16.37 82.18 70.3258 C A Office Works UltraWhite Premium / Ash Australia 8 84.12 317.28 68.34 16.84 89.36 18.45 115.16 27.96 89.63 15.89 96.85 16.06 11.63 13.14 20668.58 5.42 686.38 17.26 79.55 67.4958 D A Office Works UltraWhite Premium / Ash Australia 8 95.09 367.85 75.76 18.53 97.31 19.70 129.35 29.57 100.02 16.68 100.98 18.84 22.75 15.86 16890.91 5.30 792.93 17.22 87.58 74.0358 E A Office Works UltraWhite Premium / Ash Australia 8 99.20 330.84 64.16 17.24 96.21 16.77 118.80 27.04 93.39 15.18 91.93 16.90 22.33 14.20 17836.39 6.05 729.67 14.05 76.87 65.75

Page 255: Development of Novel Physical (Electrostatic Detection

255

Appendix 1 continued

Appendix 1 Code number Table 3 Ash Experiment used in Fig. 4.17 *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu 59 A PaperOne Premium Presentation Indonesia 9 837.07 380.76 285.99 30.09 2456.52 66.22 73168.29 3.18 4.11 72.15 1571.20 15.82 104493.96 126.49 6937.57 244.29 3450.29 6569.74 263.47 3098.63 1195.0259 B PaperOne Premium Presentation Indonesia 9 796.11 361.84 286.02 25.56 2327.37 96.61 69085.07 3.52 4.51 60.59 1462.80 15.47 107803.67 114.91 7304.45 302.19 3288.21 6303.42 248.50 2854.89 1120.3359 C PaperOne Premium Presentation Indonesia 9 750.12 348.37 270.00 26.63 2321.66 70.63 67035.31 3.03 4.28 51.57 1421.11 14.63 103892.71 119.84 6260.44 288.50 3277.12 6157.32 245.22 2821.92 1101.5259 D PaperOne Premium Presentation Indonesia 9 824.82 392.78 304.01 27.35 2429.05 87.90 74306.21 4.39 4.98 75.95 1493.18 15.74 114559.29 119.14 8136.99 324.71 3216.61 6069.95 246.26 2884.72 1140.2359 E PaperOne Premium Presentation Indonesia 9 823.70 421.13 310.64 34.38 2730.93 99.15 81975.82 4.72 4.95 71.11 1551.86 15.35 108778.65 119.73 8375.63 358.90 3443.71 6363.66 248.74 2829.39 1162.31

59 A A PaperOne Premium Presentation / Ash Indonesia 10 3089.30 1529.60 1178.14 106.16 9040.99 340.39 293877.08 23.83 18.30 305.73 6040.31 70.15 629209.12 530.83 39677.33 1414.59 15042.81 25841.17 1062.07 11866.04 4424.0759 B A PaperOne Premium Presentation / Ash Indonesia 10 3169.55 1525.73 1004.35 88.98 10934.59 375.61 213290.59 27.27 16.97 289.40 4886.70 52.26 579177.59 440.04 36015.22 1136.74 12623.60 30077.88 1126.85 11613.71 4522.7559 C A PaperOne Premium Presentation / Ash Indonesia 10 3283.28 1628.11 1214.94 128.29 9925.33 297.28 313137.82 21.16 20.45 287.57 6460.88 56.03 562939.03 529.59 28175.76 1484.71 14018.99 27722.61 1105.81 12711.98 4617.2059 D A PaperOne Premium Presentation / Ash Indonesia 10 3403.46 1753.86 1290.66 133.72 10100.69 369.35 331209.34 21.59 20.62 280.79 6821.16 59.86 503684.63 535.19 29300.17 1413.42 14344.29 28523.86 1141.64 13325.04 4896.3859 E A PaperOne Premium Presentation / Ash Indonesia 10 3325.07 1757.47 1368.68 130.12 10163.81 381.32 339855.02 22.90 21.95 308.22 6801.33 70.01 620499.66 565.78 31821.06 1601.95 15612.89 29603.81 1191.30 13889.06 4800.7660 A Reflex Recycled Pure White Australia 11 1248.68 581.79 418.10 13.89 2313.11 86.36 79308.72 16.10 58.29 197.14 308.84 6.35 65723.44 168.11 21290.84 368.27 3770.54 74678.79 357.20 3176.00 791.7660 B Reflex Recycled Pure White Australia 11 1135.08 545.06 392.95 14.43 2150.69 81.11 73011.02 14.84 55.53 216.42 303.19 6.21 70912.54 163.58 19100.38 286.05 3609.86 70048.82 338.47 3099.95 794.1060 C Reflex Recycled Pure White Australia 11 1187.03 579.86 425.59 14.51 2229.50 94.55 76447.91 17.56 57.08 196.85 310.26 7.50 63098.63 163.99 19807.66 349.89 3613.23 69851.60 348.28 3136.72 718.2960 D Reflex Recycled Pure White Australia 11 1299.38 629.62 436.81 12.63 2317.21 80.74 81823.29 17.06 60.83 210.42 308.35 5.31 78159.02 168.12 19760.87 401.47 3553.75 69175.61 334.96 2996.51 697.0960 E Reflex Recycled Pure White Australia 11 1338.93 632.30 464.15 12.44 2424.26 83.59 76426.04 20.35 65.38 225.56 274.82 7.70 66404.14 164.45 18566.42 287.09 3225.04 64410.01 310.94 2847.21 643.90

60 A A Reflex Recycled Pure White / Ash Australia 12 4806.01 2253.56 1602.52 75.78 8493.68 349.26 307303.09 65.97 227.56 818.42 1140.40 25.98 350323.04 664.86 77924.44 1274.13 13454.53 270307.18 1270.04 11666.15 2369.5260 B A Reflex Recycled Pure White / Ash Australia 12 5153.58 2521.69 1776.67 74.46 8540.94 438.93 335231.24 72.98 247.28 926.30 1099.67 25.13 307292.42 603.96 71264.98 1170.70 12140.30 248150.41 1228.69 11022.97 2568.9360 C A Reflex Recycled Pure White / Ash Australia 12 4698.47 2238.61 1625.96 68.20 7781.01 398.70 295638.48 64.73 219.17 804.31 1134.36 27.97 360723.92 617.94 76576.95 1229.02 12986.92 266994.38 1270.32 11662.70 2441.3560 D A Reflex Recycled Pure White / Ash Australia 12 4826.04 2352.99 1596.24 79.87 8297.66 362.47 310115.09 69.13 231.82 821.28 1290.77 29.96 371124.79 621.94 75229.45 1271.68 14902.34 264966.22 1298.01 11831.08 2513.1960 E A Reflex Recycled Pure White / Ash Australia 12 4628.02 2243.92 1639.30 82.69 8135.00 332.83 305343.29 71.12 227.36 864.64 1128.32 33.89 373692.79 613.94 80322.31 1186.36 12519.32 269022.54 1270.61 11659.24 2287.6561 A PaperOne All Purpose Indonesia 13 885.54 502.30 295.20 32.77 2078.37 107.56 58379.40 19.05 6.59 87.79 320.01 7.72 64375.84 104.19 6419.58 314.75 2830.44 7289.04 394.42 2171.26 1126.2961 B PaperOne All Purpose Indonesia 13 921.02 500.47 266.98 46.12 2151.25 77.49 61413.94 22.93 5.70 74.18 365.95 7.22 69479.28 102.58 6358.11 322.89 2923.21 6837.14 391.79 2484.30 1102.9961 C PaperOne All Purpose Indonesia 13 1010.13 499.92 274.36 38.73 2078.03 101.22 63889.47 20.59 6.60 84.01 364.26 8.01 66148.61 116.05 6498.04 348.83 3033.41 6994.82 393.25 2305.42 1170.5861 D PaperOne All Purpose Indonesia 13 1076.09 557.12 287.95 46.08 2183.93 97.09 69936.65 21.29 6.69 80.81 353.79 7.85 67873.27 121.88 6258.40 358.44 3072.68 7749.03 398.43 2646.83 1217.7361 E PaperOne All Purpose Indonesia 13 1113.89 517.30 298.52 43.58 2195.73 102.17 74806.40 21.04 7.06 92.78 365.49 8.34 74687.95 134.17 6316.73 381.06 3194.01 8132.68 396.77 2698.24 1289.81

61 A A PaperOne All Purpose / Ash Indonesia 14 5256.01 2509.85 1362.09 187.44 8638.57 436.03 292157.15 111.49 29.67 503.35 1469.78 30.20 365562.41 632.33 24213.76 1572.81 11536.07 47246.64 1372.92 11739.94 3754.8761 B A PaperOne All Purpose / Ash Indonesia 14 5127.94 2543.78 1448.18 190.10 8374.42 455.28 289191.32 111.50 24.17 469.05 1501.86 37.12 367453.43 678.75 24726.17 1471.52 12078.06 44201.30 1379.13 11806.44 3293.1061 C A PaperOne All Purpose / Ash Indonesia 14 5792.06 2785.80 1576.85 191.42 8674.88 457.21 286982.86 112.65 29.58 541.24 1450.49 36.98 361628.19 708.39 25588.57 1714.26 12894.61 45220.96 1536.32 12687.34 3482.5661 D A PaperOne All Purpose / Ash Indonesia 14 5978.64 2640.11 1562.70 191.26 8343.64 475.84 317493.38 126.12 29.28 541.25 1576.13 38.02 400082.29 778.79 25316.38 1675.90 13051.85 48695.41 1635.23 12981.00 3297.1661 E A PaperOne All Purpose / Ash Indonesia 14 5953.03 2807.95 1590.59 204.86 8516.24 503.05 332768.00 131.53 32.36 594.37 1586.73 38.55 390446.05 831.89 24808.27 1643.11 13357.18 51800.78 1699.07 12648.24 3313.80

Page 256: Development of Novel Physical (Electrostatic Detection

256

Appendix 1 continued

Appendix 1 Code number Table 3 Ash Experiment used in Fig. 4.17 Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce 59 A PaperOne Premium Presentation Indonesia 9 2553.68 42.17 13.54 1271.15 92.04 123.73 25365.94 925.00 767.20 92.54 2399.64 0.77 180.61 0.25 35.07 14.45 0.39 29.37 799.45 349.22 273.5259 B PaperOne Premium Presentation Indonesia 9 1962.14 43.69 14.06 1188.03 128.93 116.00 24539.90 887.14 653.98 88.61 2427.98 0.73 181.15 0.27 31.29 12.50 0.31 21.82 760.38 354.28 289.6159 C PaperOne Premium Presentation Indonesia 9 1849.72 39.74 15.30 1144.09 99.80 110.67 24407.54 886.42 573.41 83.67 2379.15 0.61 169.74 0.21 29.49 11.90 0.21 21.20 756.21 309.70 228.9759 D PaperOne Premium Presentation Indonesia 9 2342.44 42.64 17.88 1302.78 95.05 114.94 23695.10 879.01 615.58 94.20 2349.29 0.93 171.81 0.31 36.42 13.76 0.25 24.83 743.61 325.85 265.8359 E PaperOne Premium Presentation Indonesia 9 1831.85 44.19 20.46 1479.61 110.55 116.23 24722.53 911.31 642.22 96.66 2436.07 0.91 174.42 0.29 38.77 17.20 0.14 24.21 767.91 327.55 252.36

59 A A PaperOne Premium Presentation / Ash Indonesia 10 10436.06 173.35 58.39 4793.77 462.50 453.30 98298.92 3601.66 4220.33 440.98 12160.61 3.42 286.49 1.23 200.63 61.85 1.77 106.34 3028.85 1275.53 946.9659 B A PaperOne Premium Presentation / Ash Indonesia 10 11895.83 151.99 56.42 3477.92 545.32 429.69 106694.21 2934.69 4131.34 519.48 13753.50 2.50 237.05 1.12 172.80 54.34 1.05 115.74 2909.16 1456.85 1042.6359 C A PaperOne Premium Presentation / Ash Indonesia 10 10969.06 185.30 61.36 5815.87 510.29 480.53 106985.64 3904.28 2835.69 382.22 10610.96 3.13 297.42 1.03 137.65 49.12 1.51 163.23 3642.17 1385.99 1027.3959 D A PaperOne Premium Presentation / Ash Indonesia 10 10350.23 191.14 63.34 5650.17 567.44 466.75 111692.12 4099.47 2868.44 425.16 10890.16 3.43 227.36 1.02 188.36 52.38 1.12 108.18 3375.97 1603.98 1483.2759 E A PaperOne Premium Presentation / Ash Indonesia 10 10263.65 206.39 79.66 5191.98 650.33 484.17 115949.92 4257.88 3042.13 428.20 11386.07 2.64 202.21 0.82 168.14 54.21 1.32 98.67 3523.06 1486.18 1152.6460 A Reflex Recycled Pure White Australia 11 2877.13 57.87 12.82 958.40 134.56 126.91 39908.28 394.72 785.16 25.97 459.04 1.29 24.34 0.32 32.61 8.55 0.33 14.53 677.02 190.98 312.1860 B Reflex Recycled Pure White Australia 11 2262.65 53.09 10.52 892.16 100.65 116.36 37398.73 375.53 694.94 18.75 357.74 1.07 23.23 0.26 43.87 6.75 0.25 14.39 693.72 140.51 242.6260 C Reflex Recycled Pure White Australia 11 2243.11 57.67 14.07 1193.32 103.34 114.59 37515.87 376.88 635.28 30.77 349.73 1.25 28.68 0.31 49.08 6.47 0.25 10.37 606.07 141.78 239.1460 D Reflex Recycled Pure White Australia 11 2595.72 57.44 15.63 1027.43 91.15 110.14 38102.00 378.44 811.93 34.12 340.84 1.32 30.87 0.27 36.67 7.85 0.22 8.33 613.83 134.43 230.9360 E Reflex Recycled Pure White Australia 11 2898.59 50.18 11.59 848.40 81.60 110.75 34684.23 349.72 850.65 21.27 310.33 1.34 24.60 0.30 23.29 7.39 0.20 10.22 582.76 154.80 259.85

60 A A Reflex Recycled Pure White / Ash Australia 12 11874.80 205.12 49.22 4269.26 453.38 442.24 145440.75 1466.29 3151.85 100.82 1288.16 5.40 139.64 1.01 154.34 27.56 0.98 27.15 2368.70 672.77 1128.2960 B A Reflex Recycled Pure White / Ash Australia 12 10972.62 195.00 33.05 3337.81 423.46 399.95 132685.78 1328.90 3244.44 94.37 1165.99 4.17 119.76 0.97 93.44 21.52 1.30 26.95 2214.68 833.10 1718.1760 C A Reflex Recycled Pure White / Ash Australia 12 9923.71 203.22 43.29 4084.92 459.21 421.66 142377.52 1415.90 4053.10 95.15 1224.29 4.31 116.86 0.99 140.58 28.03 0.60 24.54 2300.48 914.69 1509.1260 D A Reflex Recycled Pure White / Ash Australia 12 11612.41 250.01 42.67 3900.57 465.03 415.29 140570.80 1409.58 4411.46 97.74 1207.78 4.45 106.56 1.19 136.12 28.49 0.93 22.13 2267.51 861.55 1582.4460 E A Reflex Recycled Pure White / Ash Australia 12 10973.62 201.31 43.92 4463.24 473.14 428.03 144184.23 1422.22 4261.75 95.92 1240.81 4.11 113.95 0.86 145.05 36.60 0.52 21.23 2333.45 796.29 1300.0761 A PaperOne All Purpose Indonesia 13 2143.22 39.41 16.91 959.55 90.34 199.35 32156.07 548.28 1015.37 85.26 1070.69 1.02 24.42 0.47 86.14 17.29 0.03 11.64 800.73 251.30 364.0161 B PaperOne All Purpose Indonesia 13 1805.53 36.76 17.06 1073.78 71.84 174.40 31238.49 545.63 807.45 85.45 920.12 0.88 27.01 0.42 71.11 10.26 0.07 15.20 669.93 227.64 329.4661 C PaperOne All Purpose Indonesia 13 1928.53 42.82 18.73 990.05 90.36 198.20 32511.61 567.88 893.83 94.59 1000.58 0.95 27.31 0.44 84.14 14.73 0.05 14.29 775.95 253.29 340.6261 D PaperOne All Purpose Indonesia 13 1873.17 42.68 19.35 998.95 87.23 181.29 33974.48 545.47 951.17 98.29 1018.48 0.97 27.73 0.44 83.00 12.32 0.06 14.74 763.57 268.17 340.3061 E PaperOne All Purpose Indonesia 13 1950.71 47.05 18.58 1097.29 95.96 186.31 33422.11 542.16 1027.82 101.69 1156.30 1.01 30.49 0.49 92.07 13.62 0.06 15.34 797.55 280.50 342.69

61 A A PaperOne All Purpose / Ash Indonesia 14 11576.09 109.24 46.36 3240.85 424.91 576.52 125507.41 1319.32 3439.34 353.12 4442.03 4.35 98.98 1.39 233.36 52.13 0.14 35.99 3372.81 1529.05 1788.1461 B A PaperOne All Purpose / Ash Indonesia 14 12368.34 125.68 55.89 4438.64 352.89 611.43 122271.64 1358.02 3253.10 370.92 4255.44 4.05 79.68 1.03 231.40 51.25 0.13 42.86 3623.96 1321.73 1664.2661 C A PaperOne All Purpose / Ash Indonesia 14 12207.88 121.86 53.82 4125.93 397.71 617.57 137831.48 1465.83 3814.88 365.65 4618.83 4.48 89.81 1.33 240.44 56.47 0.15 44.41 3577.96 1391.38 1681.6861 D A PaperOne All Purpose / Ash Indonesia 14 13399.53 121.88 58.66 4495.26 365.41 639.07 141651.89 1518.57 3840.76 401.96 4315.12 4.30 93.03 1.15 250.45 57.46 0.14 47.34 3978.06 1502.54 1806.6561 E A PaperOne All Purpose / Ash Indonesia 14 12792.07 129.66 61.46 4703.20 380.44 658.18 141556.89 1660.02 3411.20 372.79 4399.68 4.80 101.58 1.37 243.13 60.23 0.15 51.26 4219.49 1489.58 1706.14

Page 257: Development of Novel Physical (Electrostatic Detection

257

Appendix 1 continued

Appendix 1 Code number Table 3 Ash Experiment used in Fig. 4.17 Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U 59 A PaperOne Premium Presentation Indonesia 9 58.43 222.43 42.47 7.82 56.77 10.28 66.82 14.10 39.60 5.25 29.23 4.60 13.32 4.94 11568.82 1.28 273.02 8.32 26.47 29.3459 B PaperOne Premium Presentation Indonesia 9 55.59 212.85 42.69 7.84 56.72 10.10 61.28 13.27 39.80 5.54 29.09 4.34 13.20 5.21 15656.47 1.47 217.74 8.98 32.47 29.1459 C PaperOne Premium Presentation Indonesia 9 54.02 206.33 40.53 7.75 54.90 9.90 61.78 13.33 39.72 5.03 27.68 4.54 12.91 5.35 14057.31 1.33 213.75 7.84 30.57 27.5159 D PaperOne Premium Presentation Indonesia 9 53.83 206.79 39.48 7.60 54.82 9.81 61.31 13.35 37.97 5.15 28.46 4.34 14.06 6.35 11457.05 1.57 229.80 7.64 27.51 27.0659 E PaperOne Premium Presentation Indonesia 9 54.88 212.97 41.79 8.18 56.47 10.11 64.41 13.74 41.39 5.25 30.17 4.58 14.06 5.77 14044.07 1.74 216.36 9.10 33.22 27.36

59 A A PaperOne Premium Presentation / Ash Indonesia 10 214.62 834.26 162.78 30.13 219.28 40.41 248.07 55.29 155.35 20.82 115.51 18.32 58.07 26.95 41882.29 6.93 784.55 29.36 90.18 108.7159 B A PaperOne Premium Presentation / Ash Indonesia 10 230.97 866.45 163.57 35.02 226.58 43.08 272.48 55.14 177.94 27.84 112.38 19.81 75.54 27.00 44393.11 6.67 720.45 23.47 103.70 92.0559 C A PaperOne Premium Presentation / Ash Indonesia 10 229.66 890.98 178.07 32.78 237.46 43.04 274.28 56.61 171.53 23.70 123.62 19.70 56.73 21.92 53481.26 6.63 883.33 32.44 102.82 121.3659 D A PaperOne Premium Presentation / Ash Indonesia 10 269.54 914.96 191.04 33.98 252.68 45.62 283.77 61.37 175.88 24.17 129.54 21.05 55.88 21.75 52789.93 5.80 747.03 27.98 95.54 122.8059 E A PaperOne Premium Presentation / Ash Indonesia 10 261.87 981.98 195.18 35.77 254.72 45.24 286.87 59.20 178.20 25.22 140.94 22.23 60.55 26.23 47444.23 6.30 786.85 24.11 108.35 129.0860 A Reflex Recycled Pure White Australia 11 28.93 106.21 20.76 4.49 28.01 5.18 32.20 7.44 23.90 3.83 24.54 4.18 16.39 1.22 7995.19 1.40 250.32 5.40 29.92 18.8560 B Reflex Recycled Pure White Australia 11 26.52 93.10 18.96 4.21 23.56 4.41 29.10 6.78 23.22 3.44 22.52 3.96 11.55 0.93 7153.28 1.50 214.09 4.56 26.42 17.1960 C Reflex Recycled Pure White Australia 11 25.80 94.14 18.23 4.43 23.47 4.48 30.46 6.92 22.21 3.60 22.39 4.29 13.51 1.95 7404.94 1.62 189.44 5.00 24.62 18.5760 D Reflex Recycled Pure White Australia 11 29.71 97.66 19.55 4.47 23.94 4.46 28.84 7.18 22.24 3.60 21.66 4.04 12.94 1.35 7750.33 1.26 206.50 4.02 25.89 17.7360 E Reflex Recycled Pure White Australia 11 27.55 94.68 17.90 4.04 23.42 4.53 26.66 6.41 19.95 2.99 21.57 3.64 15.14 1.46 7118.95 1.42 186.33 4.46 23.84 15.80

60 A A Reflex Recycled Pure White / Ash Australia 12 113.91 356.47 75.35 16.25 91.30 18.91 114.36 26.98 87.19 13.58 85.77 16.21 89.32 9.97 33839.60 5.46 699.75 14.97 105.48 67.6060 B A Reflex Recycled Pure White / Ash Australia 12 116.59 395.81 67.54 14.69 95.22 16.68 106.10 23.68 76.14 13.74 79.26 12.62 80.75 9.54 29918.77 5.07 999.56 15.26 90.95 58.5160 C A Reflex Recycled Pure White / Ash Australia 12 109.01 380.73 72.24 15.81 93.26 17.77 110.98 25.87 84.53 13.21 80.97 14.48 96.05 9.75 31172.15 5.26 873.22 15.12 96.77 62.0460 D A Reflex Recycled Pure White / Ash Australia 12 135.95 406.65 71.17 15.38 163.19 18.50 107.59 25.25 81.88 11.78 79.79 14.23 101.32 7.16 26473.93 6.76 757.49 18.18 104.26 61.0460 E A Reflex Recycled Pure White / Ash Australia 12 101.44 365.65 73.31 17.16 90.62 17.05 115.33 26.50 88.09 12.84 82.14 14.73 81.34 10.03 32425.52 4.40 988.95 13.04 102.58 63.0561 A PaperOne All Purpose Indonesia 13 40.83 143.44 27.30 4.74 36.47 6.28 38.04 7.26 24.11 3.47 19.99 2.98 17.49 5.28 19672.15 2.10 284.51 7.57 30.20 19.7361 B PaperOne All Purpose Indonesia 13 36.79 138.63 27.10 4.63 34.29 6.06 39.51 7.77 25.15 3.17 18.75 2.89 13.71 5.62 17691.58 1.91 224.82 7.39 26.61 20.9661 C PaperOne All Purpose Indonesia 13 42.36 143.11 26.56 4.72 34.25 6.51 43.33 7.64 24.75 3.42 20.79 3.30 17.54 5.32 19576.40 2.26 269.47 7.34 28.84 20.0961 D PaperOne All Purpose Indonesia 13 39.87 139.67 27.23 4.88 35.64 6.82 42.57 7.76 25.58 3.38 21.99 3.24 17.37 5.62 20889.65 2.08 269.09 7.50 30.37 21.6861 E PaperOne All Purpose Indonesia 13 41.33 154.65 29.17 4.93 33.94 6.99 47.52 8.62 27.33 3.31 21.66 3.59 17.31 5.70 20110.69 2.16 266.56 7.24 32.41 23.08

61 A A PaperOne All Purpose / Ash Indonesia 14 259.02 782.20 98.54 21.41 135.59 20.30 122.56 24.09 72.13 9.76 54.51 8.24 88.92 21.36 51575.43 6.08 867.00 26.26 137.93 59.1061 B A PaperOne All Purpose / Ash Indonesia 14 210.74 665.16 92.92 18.97 127.40 20.00 125.80 25.97 70.72 9.59 55.39 8.71 78.90 20.83 51583.40 6.26 749.58 29.49 153.61 61.3361 C A PaperOne All Purpose / Ash Indonesia 14 241.87 722.94 97.81 20.76 133.91 21.11 129.38 26.97 72.42 10.21 54.92 8.76 83.63 22.26 53173.45 6.69 784.82 30.54 147.89 66.3761 D A PaperOne All Purpose / Ash Indonesia 14 253.83 762.25 103.42 21.34 140.80 22.80 125.38 27.33 77.31 10.28 56.77 9.07 89.26 23.36 52030.64 7.03 776.25 32.45 161.71 68.9661 E A PaperOne All Purpose / Ash Indonesia 14 276.80 753.75 103.22 21.69 151.92 22.93 125.34 27.46 76.99 10.36 60.65 9.07 97.20 24.13 57358.47 6.87 796.76 33.72 155.76 73.39

Page 258: Development of Novel Physical (Electrostatic Detection

258

Appendix 1 continued

Appendix 1 Ash Experiment Code number

Table 4 Paper data converted to equivalent ash used in Fig. 4.17 *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu data using average ash factor

55 A Double A Premium Thailand 1 3369.64 1330.34 1210.56 118.02 6180.33 345.74 216128.06 15.07 19.72 102.63 611.65 10.07 207079.11 214.33 15879.74 568.91 6862.69 17437.12 475.13 5435.19 6104.5955 B Double A Premium Thailand 1 2832.65 1178.87 426.36 102.29 5855.02 304.37 191970.30 6.22 17.01 124.48 340.21 5.12 234321.93 242.56 12635.84 797.75 7508.84 17644.45 423.00 5164.86 5819.0055 C Double A Premium Thailand 1 2991.89 1292.31 370.41 105.48 6248.80 289.86 210907.65 9.27 19.37 166.04 313.48 7.39 144784.38 245.34 11773.96 593.18 7710.45 16386.41 417.71 5323.38 5965.6655 D Double A Premium Thailand 1 2838.70 1179.78 308.40 103.00 5852.84 247.93 190396.02 10.28 15.52 74.98 222.86 7.23 270347.72 264.18 14552.23 656.20 7902.13 19316.75 449.64 6024.34 6002.0355 E Double A Premium Thailand 1 2946.33 1259.79 339.79 99.13 5954.92 287.61 202038.56 8.70 18.48 140.00 239.78 8.28 244024.51 267.32 14304.95 876.24 7716.95 18579.66 427.09 5901.88 5938.76

55 A A Double A Premium / Ash Thailand 2 4289.43 1957.30 503.23 212.10 8899.33 396.30 328350.21 10.93 26.34 196.88 279.63 10.06 222373.15 352.65 19832.62 785.86 7775.75 30630.86 706.16 9217.48 8151.8655 B A Double A Premium / Ash Thailand 2 4523.32 2062.39 462.79 244.63 9585.85 183.73 340673.98 14.39 26.98 238.72 311.01 7.49 279119.05 402.86 21859.18 933.96 10317.31 31379.66 758.99 10376.86 8029.2355 C A Double A Premium / Ash Thailand 2 4677.21 2152.35 580.35 175.60 9548.40 252.64 349555.10 16.52 26.48 166.44 324.85 20.97 147491.55 356.51 22586.48 909.72 9452.11 29894.57 741.92 9529.08 8837.9755 D A Double A Premium / Ash Thailand 2 4619.31 2214.17 573.58 192.35 9884.17 386.31 366672.40 12.67 29.49 326.41 324.24 12.39 307247.67 382.67 21209.69 1057.97 10238.23 31643.11 748.30 9405.87 8110.5755 E A Double A Premium / Ash Thailand 2 4190.31 1756.46 511.17 158.12 7781.06 247.48 282253.09 8.10 25.19 188.35 318.27 16.20 343496.08 344.57 19003.31 1247.40 9315.67 26877.92 681.06 8120.38 7176.9856 A HP Everyday Brazil 3 3366.89 1455.23 1380.97 331.31 7965.89 140.86 249760.23 7.23 14.47 225.55 366.05 12.88 307547.90 262.09 15778.11 1126.58 8421.03 17261.52 614.36 7447.52 1450.3756 B HP Everyday Brazil 3 3650.76 1430.26 1278.99 345.29 7577.75 137.85 234817.07 5.28 18.02 137.66 313.35 12.46 270547.22 274.30 13495.15 1042.31 8165.13 18357.21 622.06 7503.46 1484.6356 C HP Everyday Brazil 3 3301.82 1494.75 1426.38 320.35 7854.31 102.88 258227.12 4.56 14.98 114.16 364.63 10.70 323981.81 272.67 16345.02 776.75 8074.11 17371.47 634.22 7825.88 1229.7656 D HP Everyday Brazil 3 3754.49 1652.69 1512.47 384.89 8620.83 102.80 273283.24 7.10 15.26 134.70 353.72 15.33 270824.82 313.94 15598.41 914.05 8816.05 20096.67 696.67 8356.04 1400.9256 E HP Everyday Brazil 3 3185.43 1358.91 1314.80 312.61 7441.33 133.95 234262.90 9.31 16.59 182.51 347.26 13.15 241453.31 245.59 15811.75 796.00 8283.33 16447.70 605.95 7444.64 1310.15

56 A A HP Everyday / Ash Brazil 4 3902.08 1371.62 1277.52 320.68 7256.72 97.48 232162.12 8.38 14.67 213.93 380.64 14.16 364938.94 296.24 18775.71 962.20 9742.99 18314.41 670.33 8203.47 1618.1756 B A HP Everyday / Ash Brazil 4 3668.25 1739.03 1519.81 410.86 8199.80 93.19 285572.13 8.83 16.77 188.65 400.23 12.88 252774.13 320.17 16517.94 1057.82 8525.36 21842.83 780.39 9157.13 1218.0956 C A HP Everyday / Ash Brazil 4 3479.08 1617.40 1485.56 377.06 8106.03 111.04 277188.06 6.68 20.10 235.87 407.47 12.05 205056.20 313.25 18158.86 1050.50 9403.98 21319.98 788.87 9200.66 1478.5456 D A HP Everyday / Ash Brazil 4 3804.82 1846.58 1650.32 432.64 8974.69 121.05 310228.31 6.31 17.91 215.18 406.88 21.49 365242.10 354.72 17398.87 970.37 9625.15 22878.97 818.28 9538.47 1587.4256 E A HP Everyday / Ash Brazil 4 3684.50 1720.15 1576.56 417.37 8118.90 112.16 293477.97 6.85 18.55 206.93 390.51 14.24 194762.33 276.98 15181.09 938.24 6875.81 20871.26 792.68 9043.97 1203.1557 A Laser IT Indonesia 5 3434.85 2369.48 1182.00 103.42 8845.04 162.73 296252.53 15.95 28.41 330.70 3808.09 93.85 336950.23 408.90 24130.20 1137.75 9910.82 35423.00 796.49 9181.84 5125.3557 B Laser IT Indonesia 5 3167.01 2292.79 1166.14 107.90 8067.10 140.33 286354.71 7.94 26.04 297.00 4400.52 100.90 391509.79 413.68 24366.37 1025.38 10218.46 35868.40 858.69 9857.51 4353.8157 C Laser IT Indonesia 5 2978.44 2142.81 1037.30 93.80 8395.05 138.77 277587.32 15.11 23.71 277.01 3688.94 78.09 26663.90 368.08 23782.42 1114.83 9773.29 33447.33 774.93 8823.52 4661.6157 D Laser IT Indonesia 5 2931.33 2162.09 1083.08 90.54 8411.84 148.48 276531.61 11.51 28.22 290.81 4186.46 90.09 290257.45 398.52 23163.31 1000.21 9935.44 36270.68 818.93 9374.06 4849.5757 E Laser IT Indonesia 5 2797.08 2077.34 1117.96 94.94 8238.14 151.54 268818.93 13.06 27.36 303.69 8449.21 94.80 341610.63 395.75 26782.40 1212.77 10357.48 36542.39 833.77 9768.26 4776.07

57 A A Laser IT / Ash Indonesia 6 2857.65 2501.07 1229.36 116.45 9095.71 178.25 323305.85 15.76 32.54 314.63 4986.46 120.65 331416.68 455.25 29572.83 1457.34 10606.26 43144.86 993.97 11012.04 4730.1357 B A Laser IT / Ash Indonesia 6 3101.50 2111.29 1158.11 93.21 8022.21 126.67 265831.53 12.35 25.69 262.89 4289.33 85.72 341578.34 370.35 21715.68 1500.67 9936.94 34414.32 794.07 9361.51 4792.7257 C A Laser IT / Ash Indonesia 6 3401.48 2447.22 1271.32 132.15 9094.86 52.24 308978.06 17.76 32.33 270.50 5066.99 111.30 395943.61 497.64 29694.04 1853.70 11733.27 42732.95 991.02 11636.63 5241.9757 D A Laser IT / Ash Indonesia 6 3124.08 2294.96 1152.44 101.68 8037.04 172.54 287243.44 19.85 29.95 243.93 4900.14 99.14 320791.39 405.09 30100.41 1322.23 9426.38 36231.09 858.52 9649.16 4325.6557 E A Laser IT / Ash Indonesia 6 3413.44 2571.02 1421.34 112.98 9202.92 172.49 330739.70 12.45 33.06 256.89 5876.68 110.29 485077.54 464.44 29458.53 1485.50 11198.83 43263.91 836.21 11322.96 4943.82

Page 259: Development of Novel Physical (Electrostatic Detection

259

Appendix 1 continued

Appendix 1Ash Experiment Code number

Table 4 Paper data converted to equivalent ash used in Fig. 4.17 Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce data using average ash factor

55 A Double A Premium Thailand 1 7004.23 101.94 13.84 1648.82 220.05 523.61 79968.44 2500.64 1810.75 118.24 86.03 4.01 745.52 2.27 285.73 62.21 2.12 83.74 7090.94 1354.93 1165.0155 B Double A Premium Thailand 1 7037.38 59.41 29.51 2200.04 261.27 458.61 69375.14 2520.52 1672.15 104.71 86.48 3.71 771.54 1.85 271.32 47.79 3.44 89.43 5009.70 1222.91 839.8755 C Double A Premium Thailand 1 8685.96 55.32 15.30 1524.51 179.60 433.52 63556.79 2505.92 1279.25 106.16 76.73 3.84 649.38 1.68 246.78 48.69 1.90 68.62 3924.16 1119.41 701.3955 D Double A Premium Thailand 1 6781.92 55.43 17.79 1721.03 400.27 469.89 69366.94 2613.86 2553.64 202.82 76.53 3.51 697.62 1.58 260.16 46.29 1.17 67.22 4837.67 1190.30 767.0255 E Double A Premium Thailand 1 7599.41 58.78 27.25 2406.90 305.34 431.88 66106.19 2532.89 1770.76 112.57 79.29 4.08 656.67 1.76 279.77 76.42 2.76 60.09 4484.12 1121.30 714.46

55 A A Double A Premium / Ash Thailand 2 7635.27 94.74 19.85 2775.33 459.93 559.36 108908.71 4176.30 1985.77 127.47 99.13 3.72 335.38 1.23 213.62 87.08 0.84 63.54 6979.60 5213.29 3919.6655 B A Double A Premium / Ash Thailand 2 6571.29 82.18 19.45 2679.79 448.04 551.34 110641.42 4228.49 1944.98 134.69 98.81 3.56 326.50 1.32 225.22 59.83 0.87 30.98 6836.81 2584.83 1373.1255 C A Double A Premium / Ash Thailand 2 6617.08 94.29 27.26 3364.29 449.98 584.05 111800.49 4382.91 2439.45 148.47 92.79 4.46 262.58 1.39 270.88 67.18 0.86 44.67 6557.34 1711.61 454.2155 D A Double A Premium / Ash Thailand 2 7108.09 87.38 30.54 3708.74 442.56 581.51 107130.20 4049.84 2055.87 123.72 111.36 3.55 418.19 1.54 254.96 56.97 0.85 32.72 6415.06 2210.97 1062.7055 E A Double A Premium / Ash Thailand 2 7848.91 80.26 36.85 4064.55 441.97 520.41 93297.97 3551.26 2239.66 129.58 81.46 3.64 471.66 1.57 215.79 52.54 1.07 30.49 5582.54 1823.12 871.9056 A HP Everyday Brazil 3 5518.28 92.15 25.24 2130.97 305.74 224.04 1006870.74 523.80 699.75 145.75 44.14 4.83 71.65 1.54 242.63 20.07 1.11 53.10 11295.28 439.71 595.3256 B HP Everyday Brazil 3 5738.75 96.62 30.14 1763.92 380.72 201.09 1045543.18 663.43 685.94 173.53 58.36 3.62 38.07 1.21 294.40 29.53 1.30 63.69 12277.77 435.67 590.0456 C HP Everyday Brazil 3 3862.83 84.20 18.00 1813.15 423.99 191.86 1022001.18 533.81 821.29 163.02 47.01 3.09 49.50 1.48 202.37 15.95 1.40 41.29 11184.04 319.78 607.6356 D HP Everyday Brazil 3 4981.15 86.64 26.89 2226.42 327.05 186.25 1111222.35 627.81 632.30 179.37 52.29 3.36 46.24 1.55 208.28 18.12 1.21 27.60 12198.76 441.28 663.3056 E HP Everyday Brazil 3 5523.57 79.37 22.63 1944.75 313.59 206.72 960605.74 511.62 762.35 163.67 41.10 3.59 33.66 1.16 192.42 24.23 1.05 39.11 10817.02 344.03 650.09

56 A A HP Everyday / Ash Brazil 4 3660.33 102.09 21.22 2421.66 400.76 195.41 1058874.67 544.73 1156.72 212.81 45.73 4.13 35.12 1.39 390.25 20.65 0.55 42.58 11397.51 711.09 1181.3156 B A HP Everyday / Ash Brazil 4 4320.61 104.38 21.83 2953.75 333.88 164.55 1224872.76 675.02 914.21 195.82 40.13 2.79 34.39 1.38 180.31 17.78 0.48 56.84 13207.35 499.14 744.5956 C A HP Everyday / Ash Brazil 4 3502.27 97.43 24.68 3332.05 456.64 189.35 1225623.24 636.20 816.85 190.30 53.79 3.35 24.46 1.19 193.70 25.85 0.54 44.66 13026.23 588.67 898.0356 D A HP Everyday / Ash Brazil 4 4344.18 105.69 20.07 2512.38 509.09 171.63 1251552.97 708.59 965.30 203.02 55.25 3.75 30.12 1.26 227.22 18.27 0.85 40.27 13292.63 608.24 1009.4456 E A HP Everyday / Ash Brazil 4 3225.66 103.53 21.28 2813.28 393.98 186.47 1179177.50 623.74 1436.74 176.22 54.27 2.42 20.63 1.09 291.79 15.35 0.67 46.42 12929.32 547.29 826.4257 A Laser IT Indonesia 5 9462.34 168.44 55.39 4164.23 478.78 744.30 122152.41 3498.02 2509.59 355.70 5704.69 5.43 604.60 1.86 286.12 69.47 1.12 168.88 3600.08 1555.99 1450.3057 B Laser IT Indonesia 5 8752.56 156.59 50.75 3937.45 512.97 674.76 116433.02 3383.45 2529.85 340.71 5663.46 2.93 243.35 1.58 368.89 61.59 1.22 136.55 2781.09 1436.70 1332.5157 C Laser IT Indonesia 5 6842.46 149.96 63.34 4184.24 374.36 680.61 112678.56 3248.23 2781.15 356.81 5505.71 3.76 570.52 1.59 288.78 79.04 1.22 211.03 2835.58 1395.37 1249.5957 D Laser IT Indonesia 5 7594.47 159.40 55.20 3591.73 484.80 742.46 121276.80 3478.40 2595.68 343.46 5801.66 3.09 609.58 1.35 228.93 59.67 1.11 159.56 2882.24 1443.29 1276.2557 E Laser IT Indonesia 5 10035.78 168.95 65.17 4598.81 448.46 726.98 123472.35 3610.90 2920.14 370.48 5974.32 3.79 595.85 1.23 247.02 64.53 1.17 167.12 2989.51 1480.54 1293.19

57 A A Laser IT / Ash Indonesia 6 8872.38 191.49 67.30 6187.09 472.47 813.09 144734.94 4178.42 2837.24 399.26 7137.46 4.11 213.07 1.28 315.23 71.22 1.19 191.74 3430.87 2828.20 1626.0657 B A Laser IT / Ash Indonesia 6 6620.13 167.57 49.55 3143.18 401.91 742.45 118358.87 3364.81 2558.26 331.09 5483.37 3.13 605.87 1.45 253.04 60.37 1.04 170.79 4148.97 1535.39 1556.6157 C A Laser IT / Ash Indonesia 6 8771.33 213.23 86.54 6928.48 597.03 824.43 140611.95 4048.65 3230.20 408.75 6929.78 5.09 299.09 1.61 358.08 71.82 1.03 164.48 3292.55 3006.89 1946.5157 D A Laser IT / Ash Indonesia 6 9851.06 173.28 52.13 3815.35 483.48 697.95 119783.17 3461.20 2479.62 353.87 5580.33 2.37 234.08 1.25 222.05 55.73 0.53 164.66 2834.81 1831.29 987.7757 E A Laser IT / Ash Indonesia 6 8067.71 204.11 69.58 6218.81 590.23 825.40 141898.61 4099.11 2936.99 394.47 6921.67 6.54 233.52 1.44 466.53 72.83 0.36 158.95 3476.28 1774.23 805.75

Page 260: Development of Novel Physical (Electrostatic Detection

260

Appendix 1 continued

Appendix 1Ash Experiment Code number

Table 4 Paper data converted to equivalent ash used in Fig. 4.17 Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U data using average ash factor

55 A Double A Premium Thailand 1 224.72 858.21 157.61 37.06 213.39 40.17 234.62 55.70 158.54 22.20 109.57 19.12 67.75 53.01 361.27 5.51 1074.72 51.17 56.52 92.8255 B Double A Premium Thailand 1 195.91 765.31 140.52 32.29 193.34 37.41 221.15 47.65 151.60 19.51 101.92 17.53 62.74 51.83 359.35 5.16 987.47 45.20 40.09 74.5955 C Double A Premium Thailand 1 173.48 695.43 127.27 29.83 176.45 33.19 206.15 48.11 142.48 18.41 95.93 16.73 55.74 44.02 261.98 5.20 754.79 34.91 32.67 65.4755 D Double A Premium Thailand 1 191.38 710.42 137.33 30.03 191.40 35.36 215.31 49.07 140.87 19.71 101.96 15.94 76.34 53.29 294.08 5.31 720.17 32.37 33.42 67.9555 E Double A Premium Thailand 1 173.99 711.41 129.06 28.09 181.43 33.35 210.25 48.81 134.31 17.27 94.70 15.92 56.71 45.02 352.36 5.45 640.23 35.99 31.16 58.22

55 A A Double A Premium / Ash Thailand 2 819.43 2430.97 214.37 45.79 384.62 55.55 354.83 76.92 226.02 28.65 159.00 24.36 60.38 42.89 331.11 5.07 893.02 23.14 44.39 104.8355 B A Double A Premium / Ash Thailand 2 419.32 1455.62 205.58 45.44 315.35 56.04 345.67 76.51 228.08 29.87 156.38 25.91 55.23 44.40 272.64 6.20 509.26 22.09 44.80 100.9755 C A Double A Premium / Ash Thailand 2 282.18 1114.96 218.57 46.94 296.47 53.34 339.69 74.67 225.19 30.15 159.88 24.99 64.34 37.04 240.75 4.88 460.07 20.43 45.95 95.8455 D A Double A Premium / Ash Thailand 2 361.99 1295.94 203.55 45.60 290.60 49.18 319.50 72.99 210.60 28.77 143.37 24.85 51.99 41.03 265.08 6.12 916.02 23.76 41.13 94.8555 E A Double A Premium / Ash Thailand 2 314.14 1093.93 177.80 38.41 243.27 44.54 280.73 64.06 180.95 24.41 124.30 20.86 60.22 35.53 240.92 7.89 680.40 28.57 41.20 88.1056 A HP Everyday Brazil 3 82.59 241.75 46.17 11.05 60.88 11.30 66.20 15.61 48.76 7.85 46.04 7.21 25.94 25.54 200.87 5.25 799.03 23.42 191.88 549.7856 B HP Everyday Brazil 3 69.67 239.17 51.87 14.87 59.15 13.38 88.09 20.53 65.24 10.44 61.33 9.49 24.55 27.56 194.02 4.20 917.67 25.08 178.43 600.1956 C HP Everyday Brazil 3 56.02 202.46 40.11 12.20 51.33 10.83 67.85 15.82 47.10 8.49 43.52 6.72 28.15 27.37 215.89 6.12 707.52 18.08 196.17 528.8656 D HP Everyday Brazil 3 59.75 222.57 49.19 13.59 60.34 12.00 73.03 16.56 52.67 9.33 47.63 7.68 22.32 26.35 169.33 6.79 752.02 21.82 236.29 591.8956 E HP Everyday Brazil 3 61.15 208.50 43.85 10.88 52.20 9.38 66.72 15.44 44.20 7.06 41.40 7.18 24.52 21.47 211.14 4.81 662.63 20.16 187.92 499.63

56 A A HP Everyday / Ash Brazil 4 105.52 260.04 48.74 12.07 65.06 14.52 79.63 16.04 50.47 7.85 46.35 7.60 36.21 28.28 306.79 5.03 593.43 19.68 204.48 538.8156 B A HP Everyday / Ash Brazil 4 91.78 299.12 50.26 13.03 66.84 13.82 83.31 20.63 60.23 10.02 53.17 8.84 27.33 25.36 229.01 6.53 646.26 16.62 260.81 666.5856 C A HP Everyday / Ash Brazil 4 75.37 264.88 48.46 13.25 63.31 12.83 71.08 17.04 56.61 9.45 44.60 9.08 25.03 25.39 317.79 6.34 722.25 14.09 237.69 626.3056 D A HP Everyday / Ash Brazil 4 101.14 254.43 55.68 15.32 77.11 13.61 89.11 18.87 62.48 9.69 51.51 8.02 25.33 25.57 392.23 5.71 682.68 18.15 260.86 650.4356 E A HP Everyday / Ash Brazil 4 123.22 268.81 52.25 12.86 88.48 14.09 79.73 16.56 56.25 8.99 45.46 8.08 32.39 18.93 484.50 4.25 448.23 12.29 223.41 603.9657 A Laser IT Indonesia 5 265.53 1009.89 201.24 38.96 265.29 48.09 299.83 65.63 198.76 26.31 139.82 24.63 76.74 42.90 54964.28 10.18 1861.07 214.92 107.37 102.1857 B Laser IT Indonesia 5 248.66 945.63 186.11 31.66 240.15 44.31 276.66 59.81 170.43 23.49 129.71 20.60 63.86 26.16 54016.71 8.11 1244.77 166.10 107.96 102.1557 C Laser IT Indonesia 5 249.08 943.32 179.98 32.66 243.01 44.21 271.65 58.67 181.28 24.62 130.27 21.53 74.81 37.71 52785.09 8.14 1482.68 202.58 98.88 104.1057 D Laser IT Indonesia 5 249.13 969.04 187.17 34.89 259.52 45.17 286.30 62.65 183.02 24.84 142.26 21.86 73.46 33.10 57952.21 9.05 1506.22 209.14 124.79 110.6857 E Laser IT Indonesia 5 253.73 970.50 192.52 34.98 251.53 45.50 298.49 64.24 195.16 25.51 137.10 22.78 77.51 35.03 63770.91 9.01 1363.50 218.14 148.76 106.87

57 A A Laser IT / Ash Indonesia 6 452.32 1569.14 230.27 41.24 324.78 55.21 357.35 73.79 231.90 30.40 170.59 25.81 73.72 41.03 69480.96 6.61 2804.14 175.52 160.27 132.0857 B A Laser IT / Ash Indonesia 6 244.08 949.30 186.13 34.66 247.35 45.89 279.57 61.53 182.66 25.07 133.90 21.71 76.68 38.29 55298.23 8.10 1491.53 182.79 112.46 111.0257 C A Laser IT / Ash Indonesia 6 482.16 1620.79 211.33 40.85 334.02 54.96 333.03 70.50 216.96 27.33 154.86 25.07 76.86 34.46 71053.74 8.83 1296.73 225.32 137.04 122.6257 D A Laser IT / Ash Indonesia 6 320.47 1107.40 186.48 33.57 259.53 44.69 276.55 57.98 180.45 24.46 129.86 20.61 62.84 30.96 52999.21 6.85 1086.96 135.33 102.02 99.7357 E A Laser IT / Ash Indonesia 6 308.52 1188.82 219.43 39.24 299.89 53.29 331.07 71.28 214.50 27.88 157.20 25.05 74.01 34.27 63461.27 7.80 1322.59 195.66 132.64 115.48

Page 261: Development of Novel Physical (Electrostatic Detection

261

Appendix 1 continued

Appendix 1Ash Experiment Code number

Paper data converted to equivalent ash Table 4 data using average ash factor used in Fig. 4.17 *Na *Mg *Al *P *S *K *Ca *Ti *Mn *Fe Li Be B Sc Ti V Cr Mn Co Ni Cu 58 A Office Works UltraWhite Premium Australia 7 5949.45 2502.12 1232.67 38.84 9095.77 289.95 310637.71 48.99 232.91 993.10 916.39 21.79 260511.14 614.40 61029.17 927.54 15295.46 308001.80 1260.86 12778.35 3667.5858 B Office Works UltraWhite Premium Australia 7 6180.71 2749.45 880.61 25.57 6795.28 323.14 232441.67 33.83 172.57 708.52 893.85 13.58 256629.18 451.68 42835.30 722.27 11310.21 233825.71 955.00 9685.92 2413.1258 C Office Works UltraWhite Premium Australia 7 6123.08 2639.08 1226.01 38.42 8605.96 347.70 315783.78 49.55 245.33 871.54 887.03 18.10 482098.33 608.37 61708.35 1244.87 14850.46 283411.55 1156.15 11411.19 2671.9458 D Office Works UltraWhite Premium Australia 7 6151.13 2707.52 1214.63 35.33 8985.41 291.64 324410.56 49.13 246.27 942.64 1037.67 22.49 390865.35 627.45 61673.06 1120.05 15625.39 310376.19 1309.03 12705.08 2880.0458 E Office Works UltraWhite Premium Australia 7 5888.72 2609.05 1236.69 35.60 8703.75 338.37 323778.27 49.99 249.52 913.54 1009.88 27.51 273070.83 626.72 61549.14 1279.01 15480.79 303907.23 1269.02 12692.88 3127.17

58 A A Office Works UltraWhite Premium / Ash Australia 8 5275.96 2373.24 1092.30 38.19 7895.50 315.05 291933.10 43.23 226.64 794.51 1058.90 25.64 251399.23 603.85 57997.07 919.41 13933.03 287872.56 1221.28 11987.44 2431.4958 B A Office Works UltraWhite Premium / Ash Australia 8 5211.04 2487.31 1057.90 50.67 7856.56 451.94 292396.28 49.00 227.04 851.36 923.38 20.13 308548.48 638.89 61956.88 1132.80 15044.60 291963.11 1219.05 11871.60 2304.5158 C A Office Works UltraWhite Premium / Ash Australia 8 5281.49 2384.99 1077.16 48.23 7846.07 389.38 286725.49 49.69 220.77 766.15 891.21 23.83 259051.23 665.96 66260.55 1556.78 14982.26 280197.44 1176.41 11445.93 2411.5758 D A Office Works UltraWhite Premium / Ash Australia 8 5516.34 2632.57 1116.00 34.69 8506.10 300.99 314612.72 45.51 238.55 899.90 1070.68 26.07 298890.19 651.62 61621.88 1228.89 14915.27 310639.96 1335.93 12771.32 2507.4258 E A Office Works UltraWhite Premium / Ash Australia 8 4789.12 2256.64 1069.79 44.95 7858.09 263.00 280973.64 43.96 217.56 787.53 969.12 36.54 267410.67 682.93 59094.58 1266.10 15052.13 290757.46 1257.04 12207.89 2665.5859 A PaperOne Premium Presentation Indonesia 9 3473.85 1580.13 1186.85 124.89 10194.54 274.80 303648.41 13.19 17.07 299.43 6520.47 65.64 433649.92 524.94 28790.91 1013.80 14318.68 27264.40 1093.41 12859.32 4959.3459 B PaperOne Premium Presentation Indonesia 9 3303.87 1501.63 1186.96 106.09 9658.61 400.94 286703.05 14.59 18.73 251.44 6070.63 64.20 447385.23 476.89 30313.47 1254.09 13646.06 26159.21 1031.29 11847.80 4649.3659 C PaperOne Premium Presentation Indonesia 9 3113.00 1445.72 1120.49 110.51 9634.88 293.13 278196.53 12.56 17.76 214.02 5897.62 60.72 431154.75 497.34 25980.81 1197.28 13600.05 25552.90 1017.67 11710.98 4571.3159 D PaperOne Premium Presentation Indonesia 9 3423.00 1630.03 1261.66 113.52 10080.57 364.80 308370.78 18.23 20.67 315.18 6196.70 65.30 475421.06 494.42 33768.51 1347.56 13348.94 25190.31 1021.96 11971.60 4731.9759 E PaperOne Premium Presentation Indonesia 9 3418.37 1747.69 1289.16 142.66 11333.34 411.48 340199.64 19.59 20.55 295.12 6440.21 63.70 451431.40 496.88 34758.88 1489.42 14291.40 26409.17 1032.26 11741.96 4823.60

59 A A PaperOne Premium Presentation / Ash Indonesia 10 3089.30 1529.60 1178.14 106.16 9040.99 340.39 293877.08 23.83 18.30 305.73 6040.31 70.15 629209.12 530.83 39677.33 1414.59 15042.81 25841.17 1062.07 11866.04 4424.0759 B A PaperOne Premium Presentation / Ash Indonesia 10 3169.55 1525.73 1004.35 88.98 10934.59 375.61 213290.59 27.27 16.97 289.40 4886.70 52.26 579177.59 440.04 36015.22 1136.74 12623.60 30077.88 1126.85 11613.71 4522.7559 C A PaperOne Premium Presentation / Ash Indonesia 10 3283.28 1628.11 1214.94 128.29 9925.33 297.28 313137.82 21.16 20.45 287.57 6460.88 56.03 562939.03 529.59 28175.76 1484.71 14018.99 27722.61 1105.81 12711.98 4617.2059 D A PaperOne Premium Presentation / Ash Indonesia 10 3403.46 1753.86 1290.66 133.72 10100.69 369.35 331209.34 21.59 20.62 280.79 6821.16 59.86 503684.63 535.19 29300.17 1413.42 14344.29 28523.86 1141.64 13325.04 4896.3859 E A PaperOne Premium Presentation / Ash Indonesia 10 3325.07 1757.47 1368.68 130.12 10163.81 381.32 339855.02 22.90 21.95 308.22 6801.33 70.01 620499.66 565.78 31821.06 1601.95 15612.89 29603.81 1191.30 13889.06 4800.7660 A Reflex Recycled Pure White Australia 11 5182.02 2414.42 1735.11 57.65 9599.41 358.40 329131.20 66.83 241.89 818.14 1281.67 26.37 272752.26 697.66 88357.01 1528.31 15647.75 309916.97 1482.37 13180.41 3285.8260 B Reflex Recycled Pure White Australia 11 4710.58 2261.98 1630.72 59.89 8925.36 336.59 302995.72 61.57 230.46 898.13 1258.26 25.78 294287.03 678.85 79266.56 1187.09 14980.91 290702.59 1404.65 12864.81 3295.5160 C Reflex Recycled Pure White Australia 11 4926.18 2406.43 1766.19 60.20 9252.43 392.38 317258.84 72.87 236.89 816.93 1287.56 31.14 261859.30 680.56 82201.79 1452.04 14994.90 289884.12 1445.36 13017.40 2980.9160 D Reflex Recycled Pure White Australia 11 5392.42 2612.94 1812.76 52.40 9616.42 335.09 339566.65 70.80 252.45 873.25 1279.64 22.02 324359.93 697.70 82007.60 1666.08 14748.04 287078.77 1390.06 12435.50 2892.9060 E Reflex Recycled Pure White Australia 11 5556.55 2624.05 1926.22 51.63 10060.68 346.90 317168.08 84.44 271.33 936.09 1140.51 31.95 275577.17 682.47 77050.63 1191.41 13383.92 267301.54 1290.42 11815.90 2672.19

60 A A Reflex Recycled Pure White / Ash Australia 12 4806.01 2253.56 1602.52 75.78 8493.68 349.26 307303.09 65.97 227.56 818.42 1140.40 25.98 350323.04 664.86 77924.44 1274.13 13454.53 270307.18 1270.04 11666.15 2369.5260 B A Reflex Recycled Pure White / Ash Australia 12 5153.58 2521.69 1776.67 74.46 8540.94 438.93 335231.24 72.98 247.28 926.30 1099.67 25.13 307292.42 603.96 71264.98 1170.70 12140.30 248150.41 1228.69 11022.97 2568.9360 C A Reflex Recycled Pure White / Ash Australia 12 4698.47 2238.61 1625.96 68.20 7781.01 398.70 295638.48 64.73 219.17 804.31 1134.36 27.97 360723.92 617.94 76576.95 1229.02 12986.92 266994.38 1270.32 11662.70 2441.3560 D A Reflex Recycled Pure White / Ash Australia 12 4826.04 2352.99 1596.24 79.87 8297.66 362.47 310115.09 69.13 231.82 821.28 1290.77 29.96 371124.79 621.94 75229.45 1271.68 14902.34 264966.22 1298.01 11831.08 2513.1960 E A Reflex Recycled Pure White / Ash Australia 12 4628.02 2243.92 1639.30 82.69 8135.00 332.83 305343.29 71.12 227.36 864.64 1128.32 33.89 373692.79 613.94 80322.31 1186.36 12519.32 269022.54 1270.61 11659.24 2287.6561 A PaperOne All Purpose Indonesia 13 3675.00 2084.56 1225.09 135.98 8625.25 446.38 242274.52 79.04 27.35 364.33 1328.04 32.03 267159.74 432.38 26641.28 1306.22 11746.34 30249.50 1636.85 9010.74 4674.1061 B PaperOne All Purpose Indonesia 13 3822.22 2076.96 1107.95 191.41 8927.68 321.58 254867.86 95.16 23.65 307.84 1518.68 29.96 288339.00 425.70 26386.14 1339.99 12131.33 28374.14 1625.92 10309.83 4577.4261 C PaperOne All Purpose Indonesia 13 4192.06 2074.65 1138.61 160.73 8623.83 420.08 265141.29 85.44 27.37 348.66 1511.69 33.23 274516.74 481.62 26966.85 1447.62 12588.64 29028.50 1632.00 9567.48 4857.9161 D PaperOne All Purpose Indonesia 13 4465.75 2312.04 1195.00 191.23 9063.33 402.93 290237.08 88.34 27.75 335.34 1468.22 32.59 281674.08 505.78 25972.37 1487.52 12751.63 32158.47 1653.48 10984.36 5053.5861 E PaperOne All Purpose Indonesia 13 4622.63 2146.80 1238.85 180.84 9112.27 424.01 310446.55 87.31 29.29 385.04 1516.80 34.59 309954.99 556.82 26214.43 1581.42 13255.15 33750.64 1646.60 11197.71 5352.71

61 A A PaperOne All Purpose / Ash Indonesia 14 5256.01 2509.85 1362.09 187.44 8638.57 436.03 292157.15 111.49 29.67 503.35 1469.78 30.20 365562.41 632.33 24213.76 1572.81 11536.07 47246.64 1372.92 11739.94 3754.8761 B A PaperOne All Purpose / Ash Indonesia 14 5127.94 2543.78 1448.18 190.10 8374.42 455.28 289191.32 111.50 24.17 469.05 1501.86 37.12 367453.43 678.75 24726.17 1471.52 12078.06 44201.30 1379.13 11806.44 3293.1061 C A PaperOne All Purpose / Ash Indonesia 14 5792.06 2785.80 1576.85 191.42 8674.88 457.21 286982.86 112.65 29.58 541.24 1450.49 36.98 361628.19 708.39 25588.57 1714.26 12894.61 45220.96 1536.32 12687.34 3482.5661 D A PaperOne All Purpose / Ash Indonesia 14 5978.64 2640.11 1562.70 191.26 8343.64 475.84 317493.38 126.12 29.28 541.25 1576.13 38.02 400082.29 778.79 25316.38 1675.90 13051.85 48695.41 1635.23 12981.00 3297.1661 E A PaperOne All Purpose / Ash Indonesia 14 5953.03 2807.95 1590.59 204.86 8516.24 503.05 332768.00 131.53 32.36 594.37 1586.73 38.55 390446.05 831.89 24808.27 1643.11 13357.18 51800.78 1699.07 12648.24 3313.80

Page 262: Development of Novel Physical (Electrostatic Detection

262

Appendix 1 continued

Appendix 1Ash Experiment Code number

Paper data converted to equivalent ash Table 4 data using average ash factor used in Fig. 4.17 Zn Ga Ge As Se Rb Sr Y Zr Nb Mo Ag Cd In Sn Sb Te Cs Ba La Ce 58 A Office Works UltraWhite Premium Australia 7 8803.04 156.08 46.95 3248.60 422.63 575.96 169169.76 1660.61 2129.54 88.59 1261.30 2.96 142.60 1.54 154.14 28.95 1.06 38.47 3008.94 845.47 1038.3858 B Office Works UltraWhite Premium Australia 7 5985.16 112.30 37.32 2569.04 351.59 406.46 127008.24 1231.45 2241.60 52.19 737.88 3.28 111.12 1.19 122.63 15.42 0.94 42.67 2040.89 570.85 647.1058 C Office Works UltraWhite Premium Australia 7 4542.80 147.19 57.04 2815.86 454.57 458.14 150740.36 1488.47 2629.85 119.21 839.35 4.25 126.51 1.53 139.28 20.13 1.00 41.44 2406.12 705.32 793.6058 D Office Works UltraWhite Premium Australia 7 4927.23 159.15 44.35 2577.50 459.02 508.00 166442.13 1637.52 2511.92 94.00 842.73 3.12 159.88 1.09 121.43 21.27 1.09 48.40 2486.43 561.72 865.9658 E Office Works UltraWhite Premium Australia 7 6602.04 163.65 56.32 2358.06 517.29 499.23 162937.23 1603.08 2459.39 103.32 834.13 3.85 139.03 1.28 153.94 46.41 1.05 45.86 2600.78 680.93 954.43

58 A A Office Works UltraWhite Premium / Ash Australia 8 3763.67 147.71 32.81 2382.32 447.59 441.36 152802.93 1511.84 3126.85 108.52 732.52 2.90 96.24 0.86 92.71 17.81 1.72 20.10 2583.44 569.44 961.1258 B A Office Works UltraWhite Premium / Ash Australia 8 5076.67 152.75 38.97 2999.73 501.12 429.18 154006.48 1519.26 3490.27 204.61 772.23 4.22 111.60 1.15 157.67 19.31 1.78 22.30 2197.29 494.97 857.4058 C A Office Works UltraWhite Premium / Ash Australia 8 3826.79 155.18 63.54 2739.53 451.01 413.28 147780.14 1471.06 2389.41 262.72 762.19 4.03 149.26 0.97 185.58 20.54 1.91 24.89 2199.99 436.08 682.5758 D A Office Works UltraWhite Premium / Ash Australia 8 3167.43 159.54 42.11 2217.93 467.81 445.68 162175.81 1604.21 2642.42 107.33 788.35 2.92 98.56 1.23 80.51 20.98 1.63 26.11 2282.76 476.03 794.6058 E A Office Works UltraWhite Premium / Ash Australia 8 4255.83 165.70 44.41 2920.02 474.44 420.86 151303.50 1479.51 3471.22 147.17 745.95 3.69 123.91 1.02 112.38 16.84 1.97 24.70 2199.57 440.22 739.9059 A PaperOne Premium Presentation Indonesia 9 10597.78 175.02 56.20 5275.26 381.96 513.48 105268.65 3838.73 3183.90 384.05 9958.51 3.21 749.54 1.03 145.52 59.95 1.61 121.87 3317.71 1449.28 1135.0959 B PaperOne Premium Presentation Indonesia 9 8142.87 181.31 58.36 4930.32 535.05 481.41 101840.58 3681.65 2714.02 367.74 10076.11 3.05 751.77 1.13 129.85 51.86 1.27 90.55 3155.58 1470.26 1201.8759 C PaperOne Premium Presentation Indonesia 9 7676.33 164.93 63.49 4747.96 414.15 459.29 101291.28 3678.65 2379.67 347.22 9873.46 2.54 704.43 0.89 122.39 49.37 0.87 87.99 3138.28 1285.27 950.2459 D PaperOne Premium Presentation Indonesia 9 9721.11 176.95 74.22 5406.55 394.45 476.99 98334.64 3647.89 2554.65 390.91 9749.55 3.84 713.02 1.30 151.13 57.11 1.04 103.03 3085.97 1352.27 1103.1959 E PaperOne Premium Presentation Indonesia 9 7602.16 183.37 84.90 6140.39 458.78 482.37 102598.51 3781.93 2665.21 401.12 10109.68 3.78 723.82 1.22 160.91 71.37 0.59 100.45 3186.84 1359.32 1047.31

59 A A PaperOne Premium Presentation / Ash Indonesia 10 10436.06 173.35 58.39 4793.77 462.50 453.30 98298.92 3601.66 4220.33 440.98 12160.61 3.42 286.49 1.23 200.63 61.85 1.77 106.34 3028.85 1275.53 946.9659 B A PaperOne Premium Presentation / Ash Indonesia 10 11895.83 151.99 56.42 3477.92 545.32 429.69 106694.21 2934.69 4131.34 519.48 13753.50 2.50 237.05 1.12 172.80 54.34 1.05 115.74 2909.16 1456.85 1042.6359 C A PaperOne Premium Presentation / Ash Indonesia 10 10969.06 185.30 61.36 5815.87 510.29 480.53 106985.64 3904.28 2835.69 382.22 10610.96 3.13 297.42 1.03 137.65 49.12 1.51 163.23 3642.17 1385.99 1027.3959 D A PaperOne Premium Presentation / Ash Indonesia 10 10350.23 191.14 63.34 5650.17 567.44 466.75 111692.12 4099.47 2868.44 425.16 10890.16 3.43 227.36 1.02 188.36 52.38 1.12 108.18 3375.97 1603.98 1483.2759 E A PaperOne Premium Presentation / Ash Indonesia 10 10263.65 206.39 79.66 5191.98 650.33 484.17 115949.92 4257.88 3042.13 428.20 11386.07 2.64 202.21 0.82 168.14 54.21 1.32 98.67 3523.06 1486.18 1152.6460 A Reflex Recycled Pure White Australia 11 11940.08 240.18 53.21 3977.38 558.42 526.66 165619.34 1638.08 3258.42 107.78 1905.03 5.37 101.02 1.35 135.34 35.50 1.37 60.30 2809.64 792.57 1295.5660 B Reflex Recycled Pure White Australia 11 9390.01 220.33 43.66 3702.46 417.71 482.89 155204.72 1558.47 2883.98 77.83 1484.61 4.43 96.42 1.07 182.07 28.01 1.03 59.74 2878.93 583.12 1006.8860 C Reflex Recycled Pure White Australia 11 9308.89 239.34 58.40 4952.29 428.87 475.53 155690.88 1564.04 2636.40 127.70 1451.37 5.18 119.02 1.29 203.70 26.86 1.05 43.02 2515.20 588.38 992.4560 D Reflex Recycled Pure White Australia 11 10772.25 238.37 64.87 4263.85 378.29 457.08 158123.30 1570.55 3369.51 141.59 1414.47 5.46 128.11 1.14 152.18 32.58 0.93 34.55 2547.38 557.88 958.3660 E Reflex Recycled Pure White Australia 11 12029.15 208.26 48.10 3520.87 338.63 459.63 143939.55 1451.32 3530.22 88.28 1287.85 5.56 102.10 1.24 96.65 30.69 0.83 42.43 2418.46 642.43 1078.37

60 A A Reflex Recycled Pure White / Ash Australia 12 11874.80 205.12 49.22 4269.26 453.38 442.24 145440.75 1466.29 3151.85 100.82 1288.16 5.40 139.64 1.01 154.34 27.56 0.98 27.15 2368.70 672.77 1128.2960 B A Reflex Recycled Pure White / Ash Australia 12 10972.62 195.00 33.05 3337.81 423.46 399.95 132685.78 1328.90 3244.44 94.37 1165.99 4.17 119.76 0.97 93.44 21.52 1.30 26.95 2214.68 833.10 1718.1760 C A Reflex Recycled Pure White / Ash Australia 12 9923.71 203.22 43.29 4084.92 459.21 421.66 142377.52 1415.90 4053.10 95.15 1224.29 4.31 116.86 0.99 140.58 28.03 0.60 24.54 2300.48 914.69 1509.1260 D A Reflex Recycled Pure White / Ash Australia 12 11612.41 250.01 42.67 3900.57 465.03 415.29 140570.80 1409.58 4411.46 97.74 1207.78 4.45 106.56 1.19 136.12 28.49 0.93 22.13 2267.51 861.55 1582.4460 E A Reflex Recycled Pure White / Ash Australia 12 10973.62 201.31 43.92 4463.24 473.14 428.03 144184.23 1422.22 4261.75 95.92 1240.81 4.11 113.95 0.86 145.05 36.60 0.52 21.23 2333.45 796.29 1300.0761 A PaperOne All Purpose Indonesia 13 8894.35 163.54 70.17 3982.12 374.90 827.32 133447.68 2275.36 4213.80 353.84 4443.36 4.25 101.35 1.95 357.50 71.74 0.14 48.29 3323.05 1042.91 1510.6461 B PaperOne All Purpose Indonesia 13 7492.94 152.55 70.80 4456.17 298.12 723.74 129639.71 2264.38 3350.91 354.63 3818.49 3.64 112.07 1.73 295.09 42.57 0.28 63.08 2780.22 944.70 1367.2461 C PaperOne All Purpose Indonesia 13 8003.39 177.68 77.73 4108.69 374.99 822.51 134923.18 2356.69 3709.40 392.54 4152.42 3.93 113.34 1.81 349.20 61.13 0.22 59.29 3220.21 1051.16 1413.5961 D PaperOne All Purpose Indonesia 13 7773.65 177.13 80.31 4145.65 361.99 752.37 140994.07 2263.70 3947.37 407.92 4226.67 4.02 115.09 1.83 344.45 51.12 0.25 61.15 3168.83 1112.91 1412.2361 E PaperOne All Purpose Indonesia 13 8095.44 195.27 77.09 4553.74 398.24 773.21 138701.74 2249.97 4265.47 422.03 4798.66 4.18 126.55 2.03 382.08 56.51 0.23 63.66 3309.82 1164.09 1422.17

61 A A PaperOne All Purpose / Ash Indonesia 14 11576.09 109.24 46.36 3240.85 424.91 576.52 125507.41 1319.32 3439.34 353.12 4442.03 4.35 98.98 1.39 233.36 52.13 0.14 35.99 3372.81 1529.05 1788.1461 B A PaperOne All Purpose / Ash Indonesia 14 12368.34 125.68 55.89 4438.64 352.89 611.43 122271.64 1358.02 3253.10 370.92 4255.44 4.05 79.68 1.03 231.40 51.25 0.13 42.86 3623.96 1321.73 1664.2661 C A PaperOne All Purpose / Ash Indonesia 14 12207.88 121.86 53.82 4125.93 397.71 617.57 137831.48 1465.83 3814.88 365.65 4618.83 4.48 89.81 1.33 240.44 56.47 0.15 44.41 3577.96 1391.38 1681.6861 D A PaperOne All Purpose / Ash Indonesia 14 13399.53 121.88 58.66 4495.26 365.41 639.07 141651.89 1518.57 3840.76 401.96 4315.12 4.30 93.03 1.15 250.45 57.46 0.14 47.34 3978.06 1502.54 1806.6561 E A PaperOne All Purpose / Ash Indonesia 14 12792.07 129.66 61.46 4703.20 380.44 658.18 141556.89 1660.02 3411.20 372.79 4399.68 4.80 101.58 1.37 243.13 60.23 0.15 51.26 4219.49 1489.58 1706.14

Page 263: Development of Novel Physical (Electrostatic Detection

263

Appendix 1 continued

Appendix 1Ash Experiment Code number

Paper data converted to equivalent ash Table 4 data using average ash factor used in Fig. 4.17 Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U 58 A Office Works UltraWhite Premium Australia 7 111.40 419.34 91.51 20.68 108.86 24.56 157.10 34.73 114.06 18.22 115.78 21.12 16.49 14.21 25469.55 5.60 1046.95 32.99 93.43 83.4158 B Office Works UltraWhite Premium Australia 7 93.48 283.99 65.47 16.01 77.31 17.43 110.94 25.49 86.04 13.37 84.26 16.42 6.48 8.81 15617.53 4.95 778.59 18.92 68.88 63.0758 C Office Works UltraWhite Premium Australia 7 89.11 352.19 77.29 18.45 93.36 18.34 132.50 29.57 95.18 16.59 98.71 19.09 8.47 12.85 19168.55 6.93 1822.95 23.60 79.55 71.4358 D Office Works UltraWhite Premium Australia 7 100.26 380.79 81.03 19.83 101.98 20.62 139.22 30.86 108.04 17.39 103.80 19.70 14.49 10.73 20346.51 5.32 835.68 19.79 84.49 77.1458 E Office Works UltraWhite Premium Australia 7 106.77 400.17 80.29 19.30 98.72 21.86 132.61 32.56 103.24 16.51 105.26 18.77 9.60 8.51 20719.85 5.74 873.03 19.90 91.85 80.48

58 A A Office Works UltraWhite Premium / Ash Australia 8 103.07 372.40 71.46 16.58 97.26 18.03 125.86 28.13 94.86 15.74 97.44 17.36 12.27 8.72 17242.74 5.61 798.28 11.65 73.74 68.8658 B A Office Works UltraWhite Premium / Ash Australia 8 96.82 363.25 69.03 17.66 94.58 19.18 121.13 29.30 101.28 15.06 94.07 18.57 13.50 12.55 20821.55 5.33 752.28 16.37 82.18 70.3258 C A Office Works UltraWhite Premium / Ash Australia 8 84.12 317.28 68.34 16.84 89.36 18.45 115.16 27.96 89.63 15.89 96.85 16.06 11.63 13.14 20668.58 5.42 686.38 17.26 79.55 67.4958 D A Office Works UltraWhite Premium / Ash Australia 8 95.09 367.85 75.76 18.53 97.31 19.70 129.35 29.57 100.02 16.68 100.98 18.84 22.75 15.86 16890.91 5.30 792.93 17.22 87.58 74.0358 E A Office Works UltraWhite Premium / Ash Australia 8 99.20 330.84 64.16 17.24 96.21 16.77 118.80 27.04 93.39 15.18 91.93 16.90 22.33 14.20 17836.39 6.05 729.67 14.05 76.87 65.7559 A PaperOne Premium Presentation Indonesia 9 242.50 923.07 176.25 32.44 235.58 42.65 277.29 58.52 164.33 21.80 121.33 19.09 55.26 20.50 48010.61 5.29 1133.03 34.55 109.86 121.7859 B PaperOne Premium Presentation Indonesia 9 230.69 883.32 177.17 32.52 235.39 41.93 254.32 55.07 165.19 23.00 120.73 18.02 54.80 21.62 64974.36 6.12 903.61 37.26 134.76 120.9459 C PaperOne Premium Presentation Indonesia 9 224.18 856.28 168.19 32.14 227.85 41.10 256.37 55.30 164.84 20.87 114.85 18.85 53.58 22.22 58337.85 5.53 887.06 32.53 126.88 114.1759 D PaperOne Premium Presentation Indonesia 9 223.40 858.19 163.86 31.53 227.50 40.72 254.43 55.40 157.57 21.38 118.11 18.03 58.36 26.36 47546.74 6.52 953.65 31.69 114.19 112.3259 E PaperOne Premium Presentation Indonesia 9 227.74 883.83 173.43 33.93 234.35 41.94 267.32 57.02 171.76 21.79 125.19 19.01 58.35 23.96 58282.88 7.24 897.90 37.78 137.87 113.52

59 A A PaperOne Premium Presentation / Ash Indonesia 10 214.62 834.26 162.78 30.13 219.28 40.41 248.07 55.29 155.35 20.82 115.51 18.32 58.07 26.95 41882.29 6.93 784.55 29.36 90.18 108.7159 B A PaperOne Premium Presentation / Ash Indonesia 10 230.97 866.45 163.57 35.02 226.58 43.08 272.48 55.14 177.94 27.84 112.38 19.81 75.54 27.00 44393.11 6.67 720.45 23.47 103.70 92.0559 C A PaperOne Premium Presentation / Ash Indonesia 10 229.66 890.98 178.07 32.78 237.46 43.04 274.28 56.61 171.53 23.70 123.62 19.70 56.73 21.92 53481.26 6.63 883.33 32.44 102.82 121.3659 D A PaperOne Premium Presentation / Ash Indonesia 10 269.54 914.96 191.04 33.98 252.68 45.62 283.77 61.37 175.88 24.17 129.54 21.05 55.88 21.75 52789.93 5.80 747.03 27.98 95.54 122.8059 E A PaperOne Premium Presentation / Ash Indonesia 10 261.87 981.98 195.18 35.77 254.72 45.24 286.87 59.20 178.20 25.22 140.94 22.23 60.55 26.23 47444.23 6.30 786.85 24.11 108.35 129.0860 A Reflex Recycled Pure White Australia 11 120.05 440.77 86.16 18.62 116.24 21.49 133.63 30.86 99.20 15.91 101.83 17.35 68.01 5.07 33180.06 5.81 1038.84 22.40 124.16 78.2260 B Reflex Recycled Pure White Australia 11 110.07 386.35 78.68 17.49 97.79 18.31 120.78 28.15 96.35 14.27 93.46 16.42 47.94 3.87 29686.12 6.23 888.48 18.94 109.64 71.3460 C Reflex Recycled Pure White Australia 11 107.07 390.70 75.66 18.39 97.39 18.58 126.42 28.73 92.17 14.94 92.90 17.82 56.07 8.09 30730.49 6.74 786.18 20.73 102.19 77.0760 D Reflex Recycled Pure White Australia 11 123.29 405.27 81.12 18.55 99.36 18.52 119.70 29.80 92.29 14.96 89.90 16.77 53.70 5.60 32163.88 5.24 856.96 16.70 107.46 73.6060 E Reflex Recycled Pure White Australia 11 114.35 392.93 74.26 16.76 97.20 18.79 110.62 26.59 82.79 12.40 89.51 15.11 62.82 6.05 29543.63 5.89 773.26 18.49 98.93 65.57

60 A A Reflex Recycled Pure White / Ash Australia 12 113.91 356.47 75.35 16.25 91.30 18.91 114.36 26.98 87.19 13.58 85.77 16.21 89.32 9.97 33839.60 5.46 699.75 14.97 105.48 67.6060 B A Reflex Recycled Pure White / Ash Australia 12 116.59 395.81 67.54 14.69 95.22 16.68 106.10 23.68 76.14 13.74 79.26 12.62 80.75 9.54 29918.77 5.07 999.56 15.26 90.95 58.5160 C A Reflex Recycled Pure White / Ash Australia 12 109.01 380.73 72.24 15.81 93.26 17.77 110.98 25.87 84.53 13.21 80.97 14.48 96.05 9.75 31172.15 5.26 873.22 15.12 96.77 62.0460 D A Reflex Recycled Pure White / Ash Australia 12 135.95 406.65 71.17 15.38 163.19 18.50 107.59 25.25 81.88 11.78 79.79 14.23 101.32 7.16 26473.93 6.76 757.49 18.18 104.26 61.0460 E A Reflex Recycled Pure White / Ash Australia 12 101.44 365.65 73.31 17.16 90.62 17.05 115.33 26.50 88.09 12.84 82.14 14.73 81.34 10.03 32425.52 4.40 988.95 13.04 102.58 63.0561 A PaperOne All Purpose Indonesia 13 169.44 595.28 113.29 19.66 151.34 26.07 157.88 30.11 100.04 14.40 82.96 12.36 72.58 21.92 81639.44 8.72 1180.72 31.41 125.32 81.8761 B PaperOne All Purpose Indonesia 13 152.68 575.31 112.45 19.23 142.29 25.16 163.98 32.23 104.39 13.15 77.80 11.98 56.91 23.33 73420.06 7.94 932.99 30.66 110.43 86.9661 C PaperOne All Purpose Indonesia 13 175.79 593.92 110.20 19.59 142.12 27.03 179.80 31.72 102.70 14.20 86.27 13.71 72.78 22.09 81242.06 9.39 1118.32 30.48 119.70 83.3861 D PaperOne All Purpose Indonesia 13 165.46 579.64 112.99 20.27 147.89 28.29 176.68 32.19 106.15 14.02 91.26 13.43 72.10 23.33 86692.04 8.62 1116.74 31.11 126.02 89.9861 E PaperOne All Purpose Indonesia 13 171.52 641.80 121.07 20.48 140.83 29.00 197.22 35.79 113.43 13.75 89.91 14.91 71.83 23.65 83459.38 8.97 1106.24 30.03 134.49 95.77

61 A A PaperOne All Purpose / Ash Indonesia 14 259.02 782.20 98.54 21.41 135.59 20.30 122.56 24.09 72.13 9.76 54.51 8.24 88.92 21.36 51575.43 6.08 867.00 26.26 137.93 59.1061 B A PaperOne All Purpose / Ash Indonesia 14 210.74 665.16 92.92 18.97 127.40 20.00 125.80 25.97 70.72 9.59 55.39 8.71 78.90 20.83 51583.40 6.26 749.58 29.49 153.61 61.3361 C A PaperOne All Purpose / Ash Indonesia 14 241.87 722.94 97.81 20.76 133.91 21.11 129.38 26.97 72.42 10.21 54.92 8.76 83.63 22.26 53173.45 6.69 784.82 30.54 147.89 66.3761 D A PaperOne All Purpose / Ash Indonesia 14 253.83 762.25 103.42 21.34 140.80 22.80 125.38 27.33 77.31 10.28 56.77 9.07 89.26 23.36 52030.64 7.03 776.25 32.45 161.71 68.9661 E A PaperOne All Purpose / Ash Indonesia 14 276.80 753.75 103.22 21.69 151.92 22.93 125.34 27.46 76.99 10.36 60.65 9.07 97.20 24.13 57358.47 6.87 796.76 33.72 155.76 73.39

Page 264: Development of Novel Physical (Electrostatic Detection

264

Appendix 2 Ballpoint and Fountain Pen Inks Experiments

Page 265: Development of Novel Physical (Electrostatic Detection

265

Appendix 2 Appendix 2Data for Ballpoint Pen and Fountain Pen Inks

Sample Table1 ppm ppbNumber Brand Manufactured Series *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr 1 Blue BIC China 1 267.6 2.3 26.6 2.1 9.8 7847.1 30.3 40.5 11.7 20.0 0.4 55.6 948.1 8795.4 1445.0 281.7 285.9 979.0 5623002.7 11728.5 7.4 48.3 63.6 27.7 21.3 158.62 Blue BIC China 2 286.3 2.8 24.5 2.4 6.6 7642.2 30.7 42.8 8.5 24.9 0.4 61.9 885.0 8720.0 1256.3 284.5 242.6 732.6 5732474.5 7587.9 4.6 45.3 46.7 32.0 17.8 122.93 Blue BIC China 3 272.8 2.7 32.4 2.7 9.5 7714.2 34.0 49.1 12.1 14.4 0.5 83.7 1500.0 9137.0 1375.2 300.6 253.8 959.4 5826190.1 12139.5 5.8 55.8 58.0 37.1 23.0 147.64 Blue BIC China 4 264.0 4.4 26.7 2.4 7.2 7821.9 36.8 48.9 11.2 32.0 0.3 57.6 836.2 7321.1 1241.0 297.5 254.3 626.2 5698545.5 13934.2 6.0 46.4 54.5 29.7 17.6 188.65 Blue BIC China 5 296.2 3.6 26.3 2.5 8.9 7264.5 31.8 46.8 8.0 26.4 0.4 66.3 937.4 10183.8 1433.8 291.2 263.7 781.0 6083004.0 7444.4 4.9 53.9 54.3 33.8 22.6 136.66 Blue Pilot China 6 209.1 7.7 37.5 4.2 6.6 7035.3 39.4 63.3 13.8 19.9 1.2 94.0 1074.1 5611.1 934.0 2836.7 220.2 648.1 3956803.6 4642.5 5.0 83.0 75.4 32.6 43.8 313.67 Blue Pilot China 7 171.1 5.9 35.6 5.8 8.7 7189.6 21.2 59.1 8.9 22.5 0.7 91.8 1113.3 6028.6 851.8 2456.8 272.9 538.5 4120092.4 1047.5 5.4 72.7 104.4 32.4 24.7 413.88 Blue Pilot China 8 459.4 8.4 26.8 7.1 4.9 7123.4 55.6 60.4 6.3 13.9 0.5 89.4 570.0 6984.8 1078.7 2175.5 231.8 446.8 4776160.3 4339.2 4.9 73.5 84.0 26.6 28.8 687.19 Blue Pilot China 9 303.6 6.0 22.5 5.9 8.9 7308.1 50.6 56.7 5.6 18.2 0.6 109.1 1204.1 7780.1 908.9 2692.9 218.1 411.0 4122927.6 6834.8 4.6 77.9 112.7 26.7 30.5 238.910 Blue Office Works China 10 514.6 9.7 45.1 8.5 8.7 72.9 57.6 42.5 21.2 46.7 1.0 191.1 1061.2 45618.6 3262.6 619.2 162.5 1469.3 217916.0 88452.6 5.7 190.0 299.2 34.4 109.8 704.311 Blue Office Works China 11 660.5 5.2 55.1 8.0 10.3 62.7 66.7 40.4 23.6 42.0 1.2 249.7 1060.1 46328.0 3132.1 522.8 214.7 1479.9 277325.5 96180.3 5.3 205.4 321.1 31.1 107.4 681.512 Blue Office Works China 12 872.2 6.3 53.4 9.9 11.6 67.9 65.8 43.5 22.6 40.2 0.8 169.5 1350.0 48021.5 2618.7 512.4 151.7 1096.0 239058.3 70833.0 4.8 188.3 296.3 30.5 110.4 517.213 Blue Office Works China 13 795.7 6.0 64.6 10.3 10.1 57.7 54.8 44.8 20.8 35.3 1.1 216.9 1054.8 47436.8 3220.6 525.0 177.1 1509.7 246791.1 102050.2 4.8 199.2 363.9 36.3 119.8 501.014 Blue Office Works China 14 616.0 6.5 79.9 8.1 10.5 75.3 55.1 50.9 21.7 35.4 1.3 242.5 1032.2 48795.7 3172.2 603.7 165.3 1899.5 294011.6 87179.6 4.9 197.0 326.8 38.7 106.4 594.015 Blue Papermate Malaysia 15 376.6 7.2 30.7 5.8 243.3 29.5 30.8 82.7 14.0 21.1 0.5 52.9 513.7 75398.1 2228.2 368.7 59.2 12065.0 5789756.4 129243.3 78.2 78.2 1264.2 458.8 53.8 190.316 Blue Papermate Malaysia 16 318.9 5.8 36.9 6.0 196.4 28.3 30.2 54.0 17.0 22.7 0.7 58.1 588.8 75823.9 3486.2 317.7 58.1 5264.0 5434025.4 166075.7 93.4 76.8 1220.9 509.9 69.6 206.917 Blue Papermate Malaysia 17 253.0 4.6 27.7 5.2 134.0 23.4 32.9 54.1 12.9 25.0 0.5 74.4 478.8 76600.0 2271.5 430.7 59.9 10578.5 6074224.3 143153.3 82.4 84.3 1224.7 456.9 71.2 229.218 Blue Papermate Malaysia 18 215.4 5.9 44.0 6.2 179.4 27.2 31.6 62.2 14.0 23.3 0.4 60.6 608.2 69542.1 2284.9 341.2 59.3 7352.0 5546636.3 149778.0 73.6 75.4 1276.8 400.5 50.3 228.119 Blue Papermate Malaysia 19 352.4 6.7 28.1 7.6 245.4 34.4 30.4 67.1 14.9 23.3 0.6 54.6 621.3 73162.5 3555.4 339.0 60.4 7830.6 5865270.8 121325.9 69.7 90.6 1142.5 408.7 53.3 206.820 Blue Pilot (2) China 20 99.1 8.8 49.0 21.8 17206.3 12467.9 26.7 67.6 52.0 45.0 0.8 112.6 526.8 2695.4 1662221.4 28307.7 85.8 514.6 4475.2 5954.2 5.1 31.7 71.4 27.8 20.9 566.721 Blue Pilot (2) China 21 90.6 10.7 51.9 15.1 19919.6 14594.6 38.4 112.9 59.4 36.7 0.5 76.7 599.7 3078.1 1626158.4 28491.0 43.4 434.0 5762.3 5171.4 10.0 43.4 79.1 26.2 17.7 527.522 Blue Pilot (2) China 22 55.3 5.2 26.6 18.0 11736.3 13372.4 19.3 56.3 28.3 18.6 0.7 67.8 387.3 5132.1 1701282.6 26708.4 45.2 562.2 5161.4 3988.7 6.3 37.2 66.6 26.6 24.8 505.223 Blue Pilot (2) China 23 112.9 13.5 46.7 11.1 18633.4 15915.1 51.9 113.0 26.9 36.9 0.5 77.4 477.1 3572.6 1687915.2 34536.2 51.6 471.6 4676.4 7540.6 6.2 30.9 74.3 28.0 25.2 306.024 Red Papermate Malaysia 24 577.7 10.1 15.3 5.4 4.1 38.7 106.9 74.8 13.2 18.0 0.2 52.2 491.6 4399.9 881.4 164.8 13.6 1158.4 8519.1 2082.9 14.4 28.8 917.4 86.3 151.1 834.625 Red Papermate Malaysia 25 526.9 10.7 12.9 7.8 4.0 54.3 68.8 98.7 9.1 20.5 0.3 83.8 814.9 7314.0 1094.3 175.0 17.1 1542.1 8309.0 4687.9 20.5 24.5 946.3 83.4 229.1 339.426 Red Papermate Malaysia 26 490.7 8.0 21.9 4.6 7.6 39.1 52.4 86.6 5.7 23.6 0.1 56.2 389.9 3858.1 845.8 148.3 30.2 996.8 4698.3 3805.9 16.5 13.7 881.4 46.7 329.5 609.627 Red Papermate Malaysia 27 599.4 11.2 33.7 5.0 9.7 67.0 81.2 123.5 19.8 11.7 0.4 37.0 427.0 4407.9 872.2 268.7 13.9 1164.3 6058.9 1623.8 11.7 27.3 1152.6 58.4 210.3 383.028 Red Papermate Malaysia 28 482.5 9.3 29.4 8.2 12.3 46.4 65.9 96.6 19.3 22.1 0.1 26.4 557.7 4667.9 1141.4 257.9 16.3 840.1 4782.6 1979.9 19.8 14.7 507.1 44.2 166.3 486.029 Red BIC Mexico 29 361.7 4.9 34.5 17.5 811.4 5185.8 72.6 67.6 7.3 12.7 0.3 4.1 482.9 2558.1 272.8 169.2 20.7 252.1 254343.6 276247.5 16.5 16.5 394.1 27.9 20.7 543.530 Red BIC Mexico 30 563.4 5.1 42.7 13.1 750.7 4809.3 71.5 62.4 7.5 13.5 0.3 5.1 404.8 2208.5 292.1 172.7 19.0 149.7 263992.9 268966.0 29.0 18.1 467.9 30.5 26.0 415.931 Red BIC Mexico 31 443.0 5.5 38.6 17.4 876.9 5720.4 72.7 61.8 9.4 9.3 0.3 6.3 472.3 2525.1 264.4 152.8 15.5 273.7 294964.1 304704.6 23.2 17.8 453.7 34.5 23.6 380.932 Red BIC Mexico 32 431.4 7.9 28.6 12.1 798.6 5019.3 72.7 66.8 6.7 14.0 0.2 8.2 403.5 2521.4 337.9 175.0 16.4 210.8 290665.4 304452.6 18.7 21.0 493.1 34.4 23.4 271.133 Red BIC Mexico 33 366.0 7.5 56.6 17.8 799.1 6250.7 73.4 73.5 8.7 10.0 0.4 3.3 412.8 2436.7 365.0 161.7 15.6 143.3 278975.0 278141.7 26.7 16.7 365.0 24.2 22.9 243.334 Red J.Burrow s China 34 561.7 18.6 82.8 7.4 16.5 14896.9 79.3 126.6 68.3 32.3 0.7 48.5 1339.0 17988.4 1773.0 814.5 13.9 7179.7 223077.3 188956.6 7.7 55.4 149.5 15.4 158.1 463.235 Red J.Burrow s China 35 795.8 19.8 67.8 6.3 13.7 15076.2 88.3 187.1 42.7 38.5 1.1 43.1 1374.3 15518.6 1365.4 811.4 12.0 4796.3 155296.9 131336.4 6.2 25.5 143.3 15.6 115.9 521.236 Red J.Burrow s China 36 459.2 22.1 58.6 7.4 18.0 15235.7 106.1 134.1 34.3 21.8 0.5 52.1 1295.5 13305.5 1283.8 605.2 13.1 8606.7 289970.1 161281.0 6.2 26.2 91.7 21.5 126.2 484.737 Red J.Burrow s China 37 311.9 14.9 64.0 4.1 18.2 14497.8 60.3 178.4 86.4 74.5 1.2 37.3 1471.6 17757.2 1783.6 381.9 23.3 9495.6 225282.8 204419.4 14.0 69.9 125.1 14.6 133.9 648.638 Red J.Burrow s China 38 776.3 19.6 80.3 3.4 20.5 19215.7 106.6 184.7 41.5 32.4 0.5 46.3 1111.8 11089.1 1399.0 541.8 23.8 5218.4 274494.8 162874.7 10.8 32.4 192.3 19.5 68.3 555.939 Black Office Works China 39 673.4 18.4 59.1 14.3 32.5 64.8 46.5 106.6 94.8 42.3 1.5 39.3 825.4 37434.2 1467.7 1924.1 265.7 19943.2 578816.9 489731.0 8.1 48.3 277.6 18.5 61.9 946.240 Black Office Works China 40 592.1 22.0 43.7 19.0 17.0 94.4 69.8 80.2 68.2 57.6 1.2 54.4 1964.0 39656.6 1433.0 1759.2 249.5 17976.3 435812.8 321749.8 12.8 64.0 284.7 26.4 90.3 889.241 Black Office Works China 41 613.5 28.3 53.8 16.3 21.4 79.1 59.7 103.9 72.4 77.0 1.3 43.5 1626.1 39655.7 1463.0 2045.0 341.0 19944.2 538185.0 370541.9 14.7 77.0 324.5 39.6 112.8 884.042 Black Office Works China 42 777.4 23.1 38.7 9.1 22.4 48.3 90.3 242.3 76.9 92.6 1.8 49.9 1054.1 43009.8 2257.7 2286.2 306.2 21053.4 614067.8 523168.7 11.9 49.9 177.3 26.1 74.8 791.443 Black Office Works China 43 680.5 19.2 25.4 15.3 26.2 33.5 57.2 175.3 71.5 80.2 2.2 48.0 1425.7 32576.5 1697.2 2133.8 302.9 16388.3 621800.3 533958.0 17.1 54.7 220.7 36.2 102.0 681.744 Black Paper Mate Malaysia 44 135.6 7.8 31.1 8.6 3.4 24.4 74.8 48.2 17.7 23.3 0.4 39.2 641.3 48980.7 851.2 523.2 51.6 1615.8 71567.9 10310.8 31.6 20.0 896.2 111.6 63.3 446.445 Black Paper Mate Malaysia 45 399.7 10.1 27.8 10.3 8.0 25.2 48.8 60.9 13.6 11.6 0.6 32.6 558.7 40770.1 1042.8 742.5 48.9 1790.0 88767.9 15505.0 32.6 39.6 1098.7 95.4 97.8 311.846 Black Paper Mate Malaysia 46 440.6 11.7 47.9 8.4 4.4 24.2 52.8 64.7 16.8 14.6 0.5 44.9 513.8 35457.9 1015.8 664.6 50.2 1262.4 56860.1 13926.3 31.4 52.3 1011.6 135.9 56.4 313.547 Black Paper Mate Malaysia 47 264.2 13.8 33.8 4.0 5.0 30.4 64.1 59.1 18.2 9.6 0.5 41.4 369.8 43442.0 1243.8 547.0 86.7 1294.3 70599.3 15414.2 50.1 28.6 1122.5 192.6 96.6 410.248 Black Paper Mate Malaysia 48 273.3 12.5 37.5 9.6 5.6 39.9 46.4 63.6 20.1 18.1 0.5 51.1 609.4 49076.2 1556.9 273.5 71.2 1781.7 76429.2 15193.6 45.0 34.9 1298.8 228.6 89.9 266.049 Black Pilot China 49 174.0 11.3 43.2 7.0 18.2 51.5 33.5 91.7 105.7 20.4 1.0 119.7 983.5 1915.6 3496259.2 11466.4 34.8 254.9 1938.5 2019.6 9.0 65.9 25.1 26.4 30.9 355.350 Black Pilot China 50 331.3 8.3 39.4 6.4 15.2 43.4 38.2 84.4 115.5 11.1 0.7 95.3 1297.2 2172.9 4118919.5 9795.2 25.1 191.9 2442.6 2931.3 6.5 58.5 23.6 28.8 47.3 281.751 Black Pilot China 51 238.5 12.3 39.5 9.9 16.1 58.3 21.0 85.1 112.5 16.1 0.8 71.5 1041.5 1130.9 3326419.3 8847.9 22.5 218.5 2020.8 2874.4 6.5 38.6 23.1 25.7 38.6 292.452 Black Pilot China 52 195.1 8.2 30.9 8.6 19.7 53.2 20.3 101.0 93.6 20.3 0.8 102.4 1168.5 2254.8 4200389.2 13466.8 26.6 291.0 1874.2 2349.2 11.3 47.4 27.6 44.6 53.8 490.653 Black BIC Mexico 53 428.8 14.7 40.6 7.7 11.5 3621.4 47.4 81.0 5.2 15.5 0.3 63.5 422.4 3578.8 355.9 95.9 6909.1 362.1 23871.6 65400.7 22.5 12.5 530.2 32.4 22.8 56.954 Black BIC Mexico 54 533.7 16.0 50.7 8.0 12.1 4217.0 48.7 87.3 5.9 13.8 0.3 55.8 416.3 3403.7 335.6 79.1 7893.7 296.9 34485.9 53173.0 18.4 13.8 720.3 38.7 25.1 52.255 Black BIC Mexico 55 493.2 13.3 43.1 7.4 12.8 3722.2 39.9 93.8 5.8 16.5 0.4 46.0 426.7 3395.5 339.8 86.9 6683.0 218.5 27840.6 55785.8 20.9 13.2 593.7 46.2 26.6 55.056 Black BIC Mexico 56 547.7 13.1 41.4 7.3 10.4 3919.6 46.9 91.0 4.3 15.2 0.4 52.5 446.1 3391.5 303.9 93.0 7106.9 280.8 29171.1 51803.5 18.5 12.4 616.8 50.7 22.3 54.4

Page 266: Development of Novel Physical (Electrostatic Detection

266

Appendix 2 continued Appendix 2Data for Ballpoint Pen and Fountain Pen Inks

Sample Table1 Number Brand Manufactured Series Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U 1 Blue BIC China 1 3.4 54.6 35.2 462.1 0.5 64.0 4.4 1.6 12.7 0.5 61.4 33.1 1.3 1.1 238.8 2.3 4.1 0.8 1.0 0.6 0.4 8.3 161.4 383.8 2.5 1.52 Blue BIC China 2 3.0 42.7 41.3 464.1 0.5 64.7 3.2 1.6 8.1 0.3 51.8 33.2 1.6 1.6 250.4 2.2 3.8 0.5 1.1 0.5 0.3 9.7 143.7 419.7 3.6 1.43 Blue BIC China 3 1.6 36.0 42.2 459.0 0.7 64.8 4.0 1.4 12.6 0.4 60.8 27.8 1.4 1.7 223.2 2.2 3.8 0.7 1.0 0.6 0.6 7.4 174.6 579.8 3.6 1.84 Blue BIC China 4 1.4 44.8 36.8 463.7 0.7 64.0 3.6 1.5 12.8 0.3 53.5 29.6 1.6 1.3 235.1 2.7 5.1 0.8 1.0 0.5 0.5 6.4 145.5 586.9 3.2 1.65 Blue BIC China 5 2.4 42.5 41.9 507.1 0.8 68.5 4.4 1.5 11.7 0.5 55.0 30.6 1.5 1.3 261.9 1.9 3.6 0.6 1.0 0.5 0.3 6.4 171.6 337.9 2.5 1.56 Blue Pilot China 6 2.8 62.3 55.4 10053.0 1.0 46.1 18.5 3.8 41.5 1.8 563.6 64.6 5.5 2.8 308.7 2.4 5.1 0.5 1.3 0.3 0.4 11.5 170.7 770.3 11.5 4.67 Blue Pilot China 7 2.3 26.9 22.5 10237.5 0.9 48.5 5.2 6.3 36.4 1.0 519.4 42.1 4.8 0.7 299.5 2.3 4.2 0.6 1.1 0.6 0.6 3.5 74.4 405.1 3.5 1.78 Blue Pilot China 8 3.2 28.3 23.8 9881.4 0.8 43.8 13.0 3.1 24.0 0.8 280.0 29.8 3.6 0.8 685.1 2.3 4.7 0.7 1.1 0.5 0.3 8.0 109.7 448.6 7.9 1.09 Blue Pilot China 9 3.4 89.8 59.7 9296.6 0.9 44.1 15.6 4.3 49.3 1.0 423.3 75.3 8.3 1.4 220.7 2.6 5.0 0.5 1.6 0.3 0.3 8.2 111.7 730.9 5.2 2.610 Blue Office Works China 10 3.4 58.3 68.3 12593.8 1.4 3.6 14.2 5.6 54.2 1.7 579.3 69.2 3.3 1.7 441.7 5.4 10.9 1.4 2.7 0.7 0.6 4.2 204.2 5296.7 16.7 4.211 Blue Office Works China 11 4.2 56.0 58.7 13209.9 1.7 3.5 16.3 4.8 93.4 1.9 420.1 71.0 2.8 1.9 681.5 6.6 10.6 1.6 2.7 0.8 0.8 4.0 261.4 9480.3 23.3 4.712 Blue Office Works China 12 2.0 52.8 64.1 11964.6 1.1 3.4 13.5 3.4 54.0 0.7 600.3 60.7 2.4 1.6 657.6 6.7 12.4 1.1 3.4 0.8 0.8 6.7 269.8 5601.2 20.1 3.413 Blue Office Works China 13 1.8 55.8 66.4 14419.2 1.4 3.4 13.3 5.9 75.3 0.9 456.0 79.7 3.8 1.8 421.4 5.9 11.8 1.1 3.0 0.8 0.8 4.4 230.2 10461.3 26.6 4.414 Blue Office Works China 14 2.5 45.8 61.2 13588.0 1.6 3.6 17.8 4.1 85.9 1.0 692.0 75.8 3.0 1.7 368.7 7.9 12.2 1.3 3.5 0.7 0.7 5.3 214.3 9890.5 30.3 5.115 Blue Papermate Malaysia 15 8.5 112.9 19.0 23721.9 0.8 65.5 4.0 4.7 93.0 2.1 321.3 76.1 2.1 0.4 238.9 3.6 9.9 5.6 21.1 0.7 1.4 1.8 267.7 2589.7 8.5 2.116 Blue Papermate Malaysia 16 7.3 146.8 17.4 23050.1 1.2 61.4 4.0 5.2 88.1 1.6 311.1 82.8 3.2 0.7 247.0 4.4 8.9 5.3 18.7 0.9 1.9 1.7 212.3 2952.3 9.7 2.717 Blue Papermate Malaysia 17 7.7 105.0 19.9 24739.3 1.1 65.5 4.1 5.0 82.4 1.1 374.5 54.3 2.6 0.4 239.7 3.7 8.4 6.4 21.0 0.6 1.4 1.4 199.2 2376.4 9.4 1.918 Blue Papermate Malaysia 18 10.8 131.1 23.3 22269.6 1.1 61.1 3.4 4.8 71.8 1.4 265.8 78.5 2.9 0.7 222.7 3.8 9.0 5.9 31.8 1.0 1.4 1.8 196.0 2496.2 7.2 1.819 Blue Papermate Malaysia 19 6.6 106.3 20.9 24943.3 1.2 67.3 3.3 4.6 74.3 1.3 334.4 81.3 3.9 0.5 211.3 3.8 8.0 5.4 24.2 0.8 1.8 1.2 223.1 2535.9 9.3 2.320 Blue Pilot (2) China 20 1.8 42.9 39.8 44.1 0.9 0.0 9.2 1.0 8.9 0.6 495.3 30.6 78.4 2.5 502.3 2.8 5.9 0.8 2.3 0.5 0.5 9.2 76.6 6199.4 7.6 6.121 Blue Pilot (2) China 21 1.0 32.7 36.7 63.4 0.7 0.0 6.7 1.1 10.0 0.7 484.1 26.8 67.4 0.8 263.7 2.2 4.5 1.1 1.1 0.4 0.5 10.0 150.2 5204.8 6.7 3.322 Blue Pilot (2) China 22 0.5 37.8 26.6 55.8 0.7 0.0 5.3 0.9 5.3 0.5 550.4 16.0 61.7 0.5 401.5 2.7 5.3 0.9 0.9 0.9 0.9 16.0 196.8 5642.7 5.3 2.723 Blue Pilot (2) China 23 1.3 34.4 33.8 48.1 0.7 0.0 6.1 1.3 3.4 0.7 482.0 13.8 88.0 0.7 326.7 2.3 4.6 1.1 1.1 0.6 0.5 3.4 134.4 6244.3 3.4 3.424 Red Papermate Malaysia 24 10.8 43.2 53.6 61.2 0.1 0.0 5.5 1.4 3.6 1.0 125.2 14.4 1.4 0.7 273.5 4.8 9.6 1.2 2.4 1.2 1.2 3.6 103.6 411.7 3.6 3.625 Red Papermate Malaysia 25 6.8 99.2 37.6 82.1 0.0 0.0 3.4 1.2 4.4 0.7 181.2 15.5 2.7 0.7 212.0 4.6 9.1 1.1 2.3 0.9 0.5 3.4 74.4 592.5 6.3 3.426 Red Papermate Malaysia 26 11.0 91.1 27.5 112.6 0.1 0.0 11.0 2.3 8.2 1.6 130.2 18.6 1.3 0.7 243.7 6.4 9.2 0.9 3.7 0.9 0.9 2.2 89.1 439.4 5.0 2.727 Red Papermate Malaysia 27 11.7 109.3 38.9 54.5 0.1 0.0 11.7 1.3 3.9 0.8 151.9 19.5 0.8 0.9 316.8 6.5 11.7 1.3 3.2 1.3 1.3 3.8 42.8 210.3 3.9 3.928 Red Papermate Malaysia 28 9.9 89.1 27.0 44.2 0.1 0.0 4.9 1.6 4.2 0.5 165.7 17.2 0.7 1.0 330.2 4.1 8.2 0.8 2.2 0.8 0.8 4.9 59.0 410.5 2.5 2.529 Red BIC Mexico 29 6.2 154.1 27.9 23.1 0.7 2.1 7.1 2.1 6.2 0.3 109.5 34.4 1.2 39.2 239.7 4.8 9.6 1.4 2.4 0.7 0.6 2.1 115.6 15245.9 6.2 2.130 Red BIC Mexico 30 6.8 133.6 38.1 31.3 0.5 2.3 8.2 2.3 4.5 0.5 109.2 38.4 1.7 41.9 404.6 4.5 9.0 1.6 2.3 0.6 0.6 3.9 144.7 14840.2 4.5 2.331 Red BIC Mexico 31 4.6 194.6 29.7 26.2 0.5 2.3 6.4 2.6 6.9 0.5 116.3 20.9 1.4 30.5 252.8 5.4 10.8 1.5 2.8 0.8 0.8 5.4 127.6 21111.4 7.0 2.332 Red BIC Mexico 32 5.0 196.3 25.7 21.0 0.4 2.3 7.0 2.8 6.3 0.4 115.8 26.4 0.9 34.9 305.2 3.4 6.8 1.0 1.7 0.5 0.5 4.7 98.1 18360.4 7.0 1.733 Red BIC Mexico 33 6.7 163.3 31.5 27.6 0.5 2.3 8.3 2.8 5.4 0.3 116.5 26.8 1.7 29.3 298.3 3.2 6.1 0.8 1.8 0.5 0.4 3.9 85.0 16138.3 5.3 1.734 Red J.Burrow s China 34 0.9 101.6 50.8 27.7 0.4 4.6 27.7 1.7 18.5 1.6 1315.9 97.0 1.8 2.5 664.9 10.8 13.9 1.5 4.6 1.5 1.5 27.7 290.9 69647.2 124.7 4.635 Red J.Burrow s China 35 1.5 116.2 65.9 21.2 0.1 3.9 16.7 2.8 12.7 0.8 1756.2 85.0 0.8 1.7 497.7 8.0 14.6 1.9 5.2 1.6 1.4 42.5 114.7 53622.1 72.2 4.236 Red J.Burrow s China 36 1.3 84.7 49.4 13.1 0.1 4.4 17.5 2.9 26.2 1.7 1620.0 157.2 0.9 1.7 620.1 7.3 13.1 1.5 4.4 1.5 1.5 17.5 340.6 77692.2 157.2 4.437 Red J.Burrow s China 37 1.4 66.1 37.3 37.3 0.2 4.7 19.3 1.6 18.6 1.9 1616.0 149.0 1.9 2.8 597.4 7.8 14.0 1.6 4.7 1.6 1.6 23.3 214.2 69585.0 69.9 4.738 Red J.Burrow s China 38 2.5 67.4 32.4 29.2 0.3 2.7 14.6 1.5 23.4 1.9 1806.1 134.6 2.1 1.9 435.5 6.2 12.2 1.5 4.3 1.5 1.5 23.2 295.6 61079.4 84.6 3.839 Black Office Works China 39 2.6 36.2 78.5 11366.8 0.1 6.0 6.0 6.0 84.6 3.6 4348.6 157.0 2.4 4.4 723.4 14.1 16.1 2.7 4.0 2.0 1.9 12.1 821.4 117165.3 187.2 6.040 Black Office Works China 40 2.6 50.5 134.3 11559.8 0.1 6.4 12.0 8.5 96.0 3.8 3563.3 217.5 3.8 6.5 652.5 23.5 32.7 5.5 6.4 2.7 2.6 19.2 690.9 123735.6 259.6 6.441 Black Office Works China 41 2.2 38.7 55.0 10549.2 0.2 7.0 9.3 8.4 88.0 4.4 3256.1 242.0 8.8 8.8 671.0 26.3 35.7 7.0 7.5 3.8 3.5 11.3 697.1 152594.8 253.0 6.342 Black Office Works China 42 2.8 92.4 164.1 13987.6 0.2 8.2 8.5 6.1 114.0 5.7 5099.4 235.0 5.7 4.3 762.1 24.9 41.5 4.7 6.6 3.6 3.6 14.2 797.7 138964.7 292.0 7.143 Black Office Works China 43 3.6 53.5 106.9 13318.9 0.2 8.9 8.9 11.9 98.0 3.6 4073.6 231.6 5.8 5.3 689.6 23.8 32.7 4.9 6.5 3.0 3.0 13.4 801.8 124720.0 222.7 7.844 Black Paper Mate Malaysia 44 50.0 707.9 46.6 14102.0 0.1 1.7 23.3 2.8 51.6 0.3 101.6 80.0 2.3 0.3 321.5 3.3 6.1 0.6 1.7 0.4 0.6 16.7 123.3 3183.2 5.0 1.745 Black Paper Mate Malaysia 45 93.1 966.9 60.9 12323.0 0.1 2.3 35.2 3.1 46.6 0.5 68.4 60.5 1.4 0.7 339.8 3.1 5.5 0.6 1.8 0.4 0.6 23.5 111.7 4189.9 7.0 2.346 Black Paper Mate Malaysia 46 55.1 574.8 35.5 11031.3 0.2 1.6 18.8 2.8 41.8 0.4 81.4 33.4 2.9 0.5 261.3 4.9 8.4 1.1 2.8 0.7 0.7 16.7 120.9 3907.3 6.3 2.147 Black Paper Mate Malaysia 47 79.0 808.6 79.1 13000.8 0.1 1.9 39.7 3.2 48.2 0.4 52.0 46.2 1.9 0.4 317.8 3.1 5.7 0.7 1.2 0.3 0.3 20.1 173.3 3334.0 5.8 1.948 Black Paper Mate Malaysia 48 43.1 753.1 49.4 13706.9 0.2 1.5 22.5 2.5 52.5 0.4 73.7 65.6 3.4 0.7 296.7 5.0 8.7 1.2 1.1 0.3 0.3 18.0 141.2 3793.8 7.5 1.949 Black Pilot China 49 2.2 13.8 58.3 332.1 0.8 0.0 17.2 1.3 23.2 0.8 173.8 34.8 19.3 0.7 58.7 6.4 11.6 1.3 2.2 1.0 1.0 5.7 173.8 2077.2 3.9 3.950 Black Pilot China 50 2.3 13.4 33.4 186.3 0.8 0.0 14.9 0.9 15.6 1.1 214.4 36.2 23.4 1.0 73.2 5.4 6.9 0.8 1.6 0.8 0.8 4.0 219.9 1487.2 2.9 5.651 Black Pilot China 51 1.6 22.5 38.6 128.5 0.6 0.0 12.2 0.7 12.9 1.0 227.6 64.3 16.7 1.3 57.8 6.4 9.6 1.2 1.6 0.7 0.7 3.2 168.0 1272.2 3.2 6.452 Black Pilot China 52 2.4 9.3 57.5 187.2 0.7 0.0 13.5 1.2 30.5 1.4 317.7 46.1 16.6 1.4 94.7 5.4 7.9 1.1 1.5 0.9 1.1 4.2 247.0 2194.1 4.8 5.653 Black BIC Mexico 53 5.9 113.5 11.2 33.7 0.7 0.0 4.5 0.7 6.2 0.2 63.0 12.2 1.0 0.4 353.2 3.7 7.8 0.7 1.4 0.6 0.5 2.2 74.2 25467.5 3.5 1.554 Black BIC Mexico 54 4.6 108.5 17.6 25.3 0.6 0.0 3.9 0.5 6.9 0.3 63.7 16.3 0.9 0.5 306.1 5.4 10.2 0.9 1.7 0.8 0.7 2.2 69.0 26539.3 4.6 1.555 Black BIC Mexico 55 3.2 101.9 14.6 32.9 0.5 0.0 3.2 0.9 4.9 0.3 71.0 24.3 0.6 0.3 446.6 4.7 9.0 0.8 1.6 0.7 0.6 3.2 64.0 25926.3 4.9 1.356 Black BIC Mexico 56 4.0 105.0 13.4 35.1 0.7 0.0 5.1 0.6 6.4 0.4 66.9 21.9 0.7 0.4 422.0 4.5 9.1 0.6 1.6 0.6 0.6 1.7 75.6 30245.8 3.4 1.5

Page 267: Development of Novel Physical (Electrostatic Detection

267

Appendix 2 continued Table 2 ppm ppb

Sample Brand Manufactured Group *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr 57.0 BIC CRYSTAL BLUE France Batch 1 72.7 3.8 22.7 17.6 3.2 23.6 9.2 25.5 15.3 0.1 0.0 1.4 12.6 320.1 23.4 1.7 0.6 14.6 99786.4 582.2 0.1 1.0 0.4 1.5 0.5 2.458.0 BIC CRYSTAL BLUE France Batch 1 73.0 2.6 15.6 16.6 1.5 14.8 10.0 21.6 12.3 0.1 0.1 2.1 15.7 486.4 31.1 2.1 0.6 20.8 146462.2 818.1 0.1 0.8 0.5 2.1 0.4 2.959.0 BIC CRYSTAL BLUE France Batch 1 99.9 1.4 19.9 22.3 2.6 11.3 8.9 19.2 15.8 0.1 0.0 2.4 9.6 321.9 22.9 2.3 0.6 15.9 98757.2 800.5 0.1 0.6 0.5 1.5 0.1 3.760.0 BIC CRYSTAL BLUE France Batch 1 130.5 3.2 18.0 18.3 3.4 20.0 9.7 23.9 14.6 0.1 0.1 2.3 11.0 384.6 26.3 1.9 0.7 18.1 115870.8 772.2 0.1 1.3 0.5 1.8 0.3 2.361.0 BIC CRYSTAL BLUE France Batch 1 130.3 4.1 14.9 12.4 1.8 11.9 8.8 25.3 10.4 0.0 0.1 2.4 11.5 377.8 26.4 1.7 0.5 17.5 114162.8 770.9 0.1 1.1 0.5 1.7 0.2 5.062.0 BIC CRYSTAL BLUE France Batch 2 165.1 5.6 14.6 11.9 2.8 13254.6 13.3 43.2 34.4 0.0 0.0 1.5 10.4 260.5 19.8 1.4 0.4 12.0 146730.1 575.0 0.1 0.4 0.4 1.2 0.1 1.863.0 BIC CRYSTAL BLUE France Batch 2 231.9 5.8 13.7 12.1 5.7 12019.4 8.1 40.6 35.4 0.0 0.0 1.4 12.3 406.0 28.1 2.1 0.7 17.3 150581.8 667.7 0.1 0.9 0.5 1.8 0.3 1.464.0 BIC CRYSTAL BLUE France Batch 2 317.7 9.0 15.1 12.4 8.5 13112.1 6.3 57.2 47.8 0.0 0.1 1.7 17.0 247.8 20.1 3.0 0.5 13.6 126938.0 639.4 0.1 1.3 0.5 1.1 0.2 1.165.0 BIC CRYSTAL BLUE France Batch 2 243.2 9.5 15.2 9.6 7.3 12705.0 8.6 49.1 42.8 0.0 0.1 1.4 14.2 369.4 26.8 1.7 0.5 16.9 148134.3 436.5 0.1 1.7 0.5 1.6 0.1 1.266.0 BIC CRYSTAL BLUE France Batch 2 166.9 6.0 16.2 9.9 4.3 13591.9 9.4 40.5 35.2 0.0 0.0 1.5 18.6 580.6 35.2 2.5 1.0 13.7 135698.6 448.5 0.1 1.8 0.6 2.3 0.1 1.167.0 BIC CRYSTAL BLUE France Batch 3 207.7 8.6 10.7 14.7 5.3 11271.7 9.9 43.9 34.6 0.0 0.0 2.6 10.1 410.3 29.1 2.9 0.6 18.4 101709.0 528.4 0.1 0.0 0.3 1.8 0.3 1.968.0 BIC CRYSTAL BLUE France Batch 3 300.9 7.1 12.8 20.8 5.9 10946.5 9.5 47.4 45.5 0.0 0.0 2.4 10.3 297.6 22.3 1.2 0.4 13.2 124116.2 602.9 0.1 0.0 0.3 1.2 0.4 1.969.0 BIC CRYSTAL BLUE France Batch 3 217.1 3.3 11.5 10.8 6.0 12202.9 8.8 36.2 47.6 0.0 0.0 1.7 16.8 367.7 24.9 1.6 0.6 15.0 124716.3 391.9 0.1 0.0 0.4 1.6 0.2 1.570.0 BIC CRYSTAL BLUE France Batch 3 223.3 8.5 15.8 17.6 5.3 11470.7 9.3 49.4 42.6 0.0 0.0 2.2 15.4 449.5 30.0 2.6 0.7 18.1 101165.0 708.7 0.1 0.0 0.6 1.8 0.2 2.171.0 BIC CRYSTAL BLUE France Batch 3 160.9 4.6 18.9 14.3 6.0 13360.5 10.5 39.1 43.6 0.0 0.0 2.0 13.9 305.7 22.4 1.5 0.5 13.1 132694.9 571.9 0.1 0.0 0.3 1.2 0.1 1.572.0 BIC CRYSTAL BLUE France Batch 4 105.1 4.0 10.4 13.1 5.8 13060.4 7.2 17.0 38.3 0.0 0.0 1.4 16.5 435.5 27.7 2.9 0.8 23.8 97460.4 816.4 0.1 0.0 0.6 1.5 0.1 1.573.0 BIC CRYSTAL BLUE France Batch 4 203.1 3.8 14.0 14.5 6.5 11921.7 7.5 19.1 54.0 0.0 0.0 1.8 18.6 421.5 29.1 3.8 0.8 21.5 95031.6 1155.0 0.1 0.0 0.7 1.6 0.2 2.374.0 BIC CRYSTAL BLUE France Batch 4 156.8 4.1 15.3 13.4 5.4 14121.1 9.2 23.5 45.9 0.0 0.0 1.5 15.4 517.5 34.6 2.9 0.7 24.7 112406.2 1231.2 0.1 0.0 0.4 1.9 0.1 1.575.0 BIC CRYSTAL BLUE France Batch 4 156.6 4.1 11.7 12.3 5.0 12612.9 6.5 20.5 36.8 0.0 0.0 2.0 20.4 527.0 33.6 2.4 0.7 23.1 102939.6 985.4 0.1 0.0 0.6 2.1 0.2 2.176.0 BIC CRYSTAL BLUE France Batch 4 222.3 4.0 15.4 13.2 6.5 13956.7 6.8 21.0 41.0 0.0 0.0 2.7 18.3 408.6 28.6 3.6 0.6 22.2 129939.5 1189.9 0.1 0.0 0.4 1.7 0.2 2.777.0 BIC CRYSTAL BLUE France Batch 5 134.9 2.6 12.1 12.3 4.1 13836.8 3.4 18.4 30.2 0.0 0.0 1.9 15.5 501.5 32.7 1.9 0.9 20.3 95696.3 519.5 0.1 0.1 0.5 1.9 0.4 4.278.0 BIC CRYSTAL BLUE France Batch 5 159.6 3.6 14.3 9.2 7.9 12164.9 5.0 18.7 44.4 0.0 0.0 1.9 16.0 463.6 31.9 2.2 0.6 18.9 89331.6 578.0 0.1 0.0 0.4 2.0 0.3 2.079.0 BIC CRYSTAL BLUE France Batch 5 142.7 3.0 13.8 15.0 5.6 12685.3 8.3 17.9 41.2 0.0 0.0 1.7 14.7 442.0 31.0 3.3 0.8 18.9 83532.7 502.8 0.1 0.1 0.6 1.8 0.3 1.780.0 BIC CRYSTAL BLUE France Batch 5 208.9 4.6 12.1 12.6 5.8 12750.0 4.9 24.1 38.5 0.0 0.0 1.8 15.1 587.1 40.9 4.9 1.4 26.2 102860.3 739.9 0.1 0.0 0.9 2.1 0.6 2.681.0 BIC CRYSTAL BLUE France Batch 5 200.0 3.8 13.8 9.4 5.7 12408.6 5.9 26.6 35.6 0.0 0.0 2.1 16.0 540.3 34.4 2.4 0.7 21.9 95752.3 882.6 0.1 0.1 0.4 2.0 0.3 1.982.0 BIC CRYSTAL BLUE France Batch 6 159.8 5.2 11.2 13.3 3.4 11204.4 9.6 21.6 43.5 0.0 0.0 2.0 17.4 582.8 40.3 2.1 0.8 26.0 106542.0 596.6 0.1 0.0 0.6 2.1 0.5 1.883.0 BIC CRYSTAL BLUE France Batch 6 151.2 9.0 8.6 10.8 4.7 10504.9 11.7 31.8 35.3 0.0 0.0 2.2 15.0 589.5 37.7 3.0 0.9 24.1 97217.5 738.3 0.1 0.0 0.5 2.4 0.4 2.584.0 BIC CRYSTAL BLUE France Batch 6 107.4 3.5 9.1 16.4 4.5 9670.3 10.4 30.1 33.5 0.1 0.0 2.7 15.7 429.8 40.8 2.8 1.1 25.9 108050.0 829.7 0.1 0.0 0.6 2.7 0.4 1.685.0 BIC CRYSTAL BLUE France Batch 6 186.0 3.6 16.7 13.9 5.8 11823.2 10.3 19.1 47.9 0.1 0.0 2.4 13.6 416.5 27.3 2.0 0.8 18.5 93389.6 761.1 0.1 0.0 0.4 1.6 0.4 1.886.0 BIC CRYSTAL BLUE France Batch 6 165.4 7.1 15.1 14.2 3.8 12939.8 14.0 17.1 47.7 0.0 0.0 2.2 18.6 480.7 34.5 2.8 0.7 21.9 102105.2 610.9 0.1 0.0 0.5 1.9 0.3 1.287.0 BIC CRYSTAL BLUE France Batch 7 153.4 5.2 9.8 14.0 6.3 12928.4 11.5 42.1 37.5 0.0 0.0 1.8 16.6 446.1 27.5 2.6 0.7 18.3 67496.1 1065.4 0.1 0.0 0.5 1.5 0.2 1.188.0 BIC CRYSTAL BLUE France Batch 6 144.5 4.7 12.7 15.5 6.0 11799.1 10.5 39.4 42.4 0.0 0.0 2.3 20.8 589.5 30.0 3.4 0.8 25.7 94370.8 710.4 0.1 0.0 0.5 2.2 0.3 2.789.0 BIC CRYSTAL BLUE France Batch 7 153.3 4.9 12.9 11.3 8.1 12479.2 14.9 33.3 55.1 0.0 0.0 2.6 17.0 455.5 30.9 1.9 0.6 18.6 66964.3 762.3 0.1 0.1 0.2 1.6 0.3 2.390.0 BIC CRYSTAL BLUE France Batch 6 155.2 5.5 11.6 13.8 5.5 12185.2 11.4 50.3 37.1 0.0 0.0 2.3 23.0 468.7 35.8 2.6 0.8 23.7 84816.4 978.2 0.1 0.0 0.5 1.7 0.2 1.591.0 BIC CRYSTAL BLUE France Batch 7 187.2 5.1 9.4 12.6 5.1 12174.2 16.4 26.9 27.6 0.0 0.0 2.3 18.2 448.1 30.8 2.5 0.8 19.4 69111.5 721.4 0.1 0.0 0.9 1.7 0.3 1.892.0 BIC CRYSTAL BLUE France Batch 8 212.3 4.0 10.7 12.1 7.1 11620.4 10.9 26.2 43.5 0.0 0.0 2.1 17.3 499.9 32.5 2.3 0.8 19.7 73440.5 657.8 0.1 0.0 0.3 1.8 0.3 2.593.0 BIC CRYSTAL BLUE France Batch 8 168.5 5.6 12.0 13.6 8.3 15186.9 11.5 31.2 52.7 0.0 0.0 2.2 15.3 371.2 27.3 2.0 0.5 16.1 56152.8 725.0 0.1 0.0 0.3 1.4 0.2 2.794.0 BIC CRYSTAL BLUE France Batch 8 215.8 5.2 13.6 10.7 5.1 14201.7 11.6 31.2 36.0 0.0 0.0 2.0 22.0 377.5 26.3 1.8 0.5 15.7 52262.0 585.7 0.1 0.0 0.3 1.5 0.3 3.595.0 BIC CRYSTAL BLUE France Batch 8 157.2 5.8 11.7 14.6 4.9 13354.2 14.1 23.3 37.8 0.0 0.0 2.1 22.8 441.4 32.2 2.8 0.8 23.4 63433.5 818.7 0.1 0.0 0.4 1.7 0.2 2.196.0 BIC CRYSTAL BLUE France Batch 8 189.3 4.8 12.4 11.7 5.7 12467.0 12.4 29.0 41.8 0.0 0.0 1.9 18.2 542.1 34.9 2.3 0.7 22.2 76846.7 614.1 0.1 0.0 0.4 2.1 0.2 2.397.0 BIC CRYSTAL BLUE France Batch 9 225.9 4.1 9.4 13.0 5.7 11566.7 12.8 23.7 46.4 0.0 0.0 1.6 15.3 468.1 32.5 3.3 0.9 22.6 66049.8 701.4 0.1 0.0 0.7 1.5 0.2 2.098.0 BIC CRYSTAL BLUE France Batch 9 245.8 4.8 12.1 11.1 7.2 12288.4 12.9 32.3 42.7 0.0 0.0 1.3 16.8 463.2 31.1 3.0 0.8 20.2 62445.7 755.6 0.1 0.0 0.4 1.6 0.2 2.399.0 BIC CRYSTAL BLUE France Batch 9 288.9 3.1 10.1 12.5 5.7 11922.2 12.4 29.0 35.1 0.0 0.0 1.0 13.1 422.0 28.6 2.7 0.6 16.4 53078.6 696.4 0.1 0.0 0.4 1.5 0.1 2.7100.0 BIC CRYSTAL BLUE France Batch 8 298.1 4.7 10.0 10.8 6.0 12675.1 11.6 26.8 29.4 0.0 0.0 1.5 17.4 491.1 33.8 2.9 0.9 19.0 56655.6 568.0 0.1 0.0 0.4 1.8 0.2 2.5101.0 BIC CRYSTAL BLUE France Batch 9 233.3 4.6 12.0 12.2 5.8 11051.0 14.4 20.3 42.6 0.0 0.0 1.4 15.4 540.6 36.7 3.3 0.8 24.3 67531.1 644.6 0.1 0.0 0.4 1.6 0.2 1.5102.0 BIC CRYSTAL BLUE France Batch 10 220.0 4.7 10.8 5.3 4.9 12452.5 12.4 39.1 43.4 0.0 0.0 2.2 15.0 459.2 30.8 2.1 0.8 22.3 54218.6 915.8 0.1 0.0 0.3 1.6 0.2 2.9103.0 BIC CRYSTAL BLUE France Batch 10 301.7 4.4 11.5 4.2 5.0 11696.8 13.1 38.1 41.2 0.0 0.0 2.0 17.4 527.1 29.6 3.6 1.1 27.1 52198.8 1088.7 0.1 0.0 0.5 1.8 0.2 2.7104.0 BIC CRYSTAL BLUE France Batch 10 249.5 5.6 13.7 5.3 5.1 12259.2 11.2 35.9 54.4 0.0 0.0 1.7 18.4 543.5 36.8 3.5 0.7 24.2 63344.0 1039.1 0.2 0.0 0.3 1.8 0.2 2.2105.0 BIC CRYSTAL BLUE France Batch 10 284.3 6.0 10.3 4.8 4.5 12013.7 13.4 42.8 32.5 0.0 0.0 1.6 18.6 569.4 34.3 3.2 1.0 30.8 53129.3 1053.8 0.1 0.0 0.3 2.2 0.2 2.0106.0 BIC CRYSTAL BLUE France Batch 10 256.1 5.3 13.0 4.2 5.1 11314.1 10.2 27.0 44.4 0.0 0.0 1.5 18.4 536.6 36.1 2.8 0.9 22.9 61072.6 1104.9 0.1 0.0 0.3 2.0 0.2 2.5

Page 268: Development of Novel Physical (Electrostatic Detection

268

Appendix 2 continued

Table 2Sample Brand Manufactured Group Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U 57.0 BIC CRYSTAL BLUE France Batch 1 0.0 0.3 0.1 249.3 0.0 0.4 0.0 0.0 0.4 0.0 5.0 0.0 0.0 0.0 1.8 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.6 138.9 0.0 0.058.0 BIC CRYSTAL BLUE France Batch 1 0.0 0.2 0.0 274.4 0.0 0.6 0.1 0.1 0.3 0.0 4.5 0.1 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 178.6 0.1 0.059.0 BIC CRYSTAL BLUE France Batch 1 0.0 0.2 0.0 265.6 0.0 0.4 0.1 0.0 0.2 0.0 4.2 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.6 136.2 0.0 0.060.0 BIC CRYSTAL BLUE France Batch 1 0.0 0.3 0.0 282.3 0.0 0.5 0.1 0.0 0.2 0.0 4.9 0.1 0.1 0.0 1.6 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.6 172.7 0.0 0.061.0 BIC CRYSTAL BLUE France Batch 1 0.0 0.4 0.0 290.1 0.0 0.5 0.1 0.0 0.3 0.0 4.9 0.1 0.0 0.0 2.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.5 147.5 0.0 0.062.0 BIC CRYSTAL BLUE France Batch 2 0.1 0.3 0.1 201.9 0.0 0.3 0.0 0.0 0.3 0.0 4.6 0.1 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 109.4 0.0 0.063.0 BIC CRYSTAL BLUE France Batch 2 0.0 0.7 0.1 288.9 0.0 0.5 0.0 0.0 0.5 0.0 4.5 0.1 0.0 0.0 2.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.7 148.1 0.0 0.064.0 BIC CRYSTAL BLUE France Batch 2 0.0 0.5 0.1 174.4 0.0 0.3 0.1 0.1 0.2 0.0 5.9 0.1 0.0 0.0 2.8 0.1 0.3 0.0 0.1 0.0 0.0 0.1 0.7 95.9 0.0 0.065.0 BIC CRYSTAL BLUE France Batch 2 0.0 0.8 0.1 263.8 0.0 0.5 0.1 0.0 0.3 0.0 5.1 0.1 0.0 0.0 1.6 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.7 115.5 0.0 0.066.0 BIC CRYSTAL BLUE France Batch 2 0.1 0.5 0.1 253.5 0.0 0.4 0.1 0.0 0.3 0.0 4.9 0.1 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.1 155.7 0.1 0.067.0 BIC CRYSTAL BLUE France Batch 3 0.1 0.3 0.2 263.8 0.0 0.5 0.1 0.1 0.4 0.0 6.0 0.1 0.0 0.0 1.6 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.8 140.3 0.0 0.068.0 BIC CRYSTAL BLUE France Batch 3 0.0 0.4 0.1 183.3 0.0 0.4 0.1 0.0 0.2 0.0 4.9 0.1 0.0 0.0 2.0 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.3 90.6 0.0 0.069.0 BIC CRYSTAL BLUE France Batch 3 0.0 0.2 0.1 262.8 0.0 0.5 0.0 0.0 0.4 0.0 4.7 0.0 0.0 0.0 2.1 0.1 0.2 0.0 0.1 0.0 0.0 0.1 0.7 116.0 0.0 0.070.0 BIC CRYSTAL BLUE France Batch 3 0.1 0.3 0.1 305.8 0.0 0.5 0.1 0.1 0.3 0.0 4.4 0.1 0.0 0.0 2.3 0.2 0.3 0.0 0.1 0.0 0.0 0.1 0.8 156.3 0.1 0.071.0 BIC CRYSTAL BLUE France Batch 3 0.0 0.5 0.2 201.6 0.0 0.4 0.0 0.0 0.4 0.0 4.3 0.0 0.0 0.0 2.2 0.1 0.3 0.0 0.1 0.0 0.0 0.0 0.6 93.1 0.0 0.072.0 BIC CRYSTAL BLUE France Batch 4 0.1 1.8 0.2 305.1 0.0 0.6 0.1 0.1 0.4 0.1 8.1 0.1 0.0 0.0 1.1 0.1 0.2 0.0 0.1 0.0 0.0 0.1 0.9 214.5 0.1 0.073.0 BIC CRYSTAL BLUE France Batch 4 0.0 1.1 0.1 251.1 0.0 0.5 0.0 0.1 0.3 0.0 6.1 0.1 0.0 0.0 2.1 0.2 0.3 0.0 0.1 0.0 0.0 0.1 0.9 218.3 0.1 0.074.0 BIC CRYSTAL BLUE France Batch 4 0.0 1.1 0.0 335.3 0.0 0.7 0.0 0.1 0.3 0.0 4.5 0.1 0.0 0.0 1.8 0.2 0.2 0.0 0.1 0.0 0.0 0.0 1.2 208.2 0.0 0.075.0 BIC CRYSTAL BLUE France Batch 4 0.0 1.3 0.1 325.9 0.0 0.7 0.1 0.1 0.5 0.1 5.8 0.1 0.0 0.0 2.1 0.1 0.2 0.0 0.1 0.0 0.0 0.1 0.7 239.6 0.1 0.076.0 BIC CRYSTAL BLUE France Batch 4 0.1 1.5 0.2 223.9 0.0 0.5 0.1 0.1 0.4 0.0 5.8 0.1 0.1 0.0 2.6 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.7 213.3 0.1 0.077.0 BIC CRYSTAL BLUE France Batch 5 0.0 0.8 0.1 304.3 0.0 0.6 0.1 0.1 1.8 0.0 4.2 0.1 0.0 0.0 2.2 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.8 157.6 0.0 0.078.0 BIC CRYSTAL BLUE France Batch 5 0.0 0.6 0.1 265.8 0.0 0.6 0.0 0.1 1.4 0.0 5.0 0.1 0.0 0.0 2.3 0.0 0.1 0.0 0.0 0.0 0.0 0.1 1.0 170.3 0.0 0.079.0 BIC CRYSTAL BLUE France Batch 5 0.0 1.2 0.1 265.4 0.0 0.6 0.0 0.1 1.0 0.0 5.8 0.1 0.0 0.0 1.7 0.1 0.2 0.0 0.1 0.0 0.0 0.1 1.1 164.6 0.1 0.080.0 BIC CRYSTAL BLUE France Batch 5 0.0 1.4 0.2 322.6 0.0 0.7 0.1 0.1 1.4 0.0 5.5 0.1 0.0 0.0 1.9 0.1 0.2 0.1 0.0 0.0 0.0 0.1 1.4 190.5 0.1 0.081.0 BIC CRYSTAL BLUE France Batch 5 0.0 1.0 0.1 283.9 0.0 0.6 0.0 0.0 1.3 0.0 5.0 0.1 0.0 0.0 1.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.9 161.9 0.1 0.082.0 BIC CRYSTAL BLUE France Batch 6 0.0 0.2 0.1 339.3 0.0 0.8 0.0 0.1 1.2 0.0 5.2 0.1 0.0 0.0 2.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 1.3 155.2 0.1 0.083.0 BIC CRYSTAL BLUE France Batch 6 0.1 0.4 0.1 330.2 0.0 0.7 0.0 0.0 1.3 0.0 5.2 0.1 0.0 0.0 3.6 0.1 0.1 0.0 0.1 0.0 0.0 0.0 1.0 197.5 0.1 0.084.0 BIC CRYSTAL BLUE France Batch 6 0.0 0.3 0.1 336.6 0.0 0.8 0.0 0.1 1.7 0.0 5.5 0.2 0.0 0.0 2.8 0.0 0.1 0.0 0.0 0.0 0.0 0.0 1.1 208.4 0.1 0.085.0 BIC CRYSTAL BLUE France Batch 6 0.0 0.3 0.1 207.6 0.0 0.5 0.0 0.0 1.4 0.0 4.5 0.1 0.0 0.0 2.2 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.7 186.0 0.1 0.086.0 BIC CRYSTAL BLUE France Batch 6 0.1 0.3 0.1 260.1 0.0 0.6 0.0 0.0 1.8 0.0 5.5 0.1 0.0 0.0 1.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 1.3 160.2 0.0 0.087.0 BIC CRYSTAL BLUE France Batch 7 0.0 0.2 0.1 186.5 0.0 0.5 0.0 0.0 1.1 0.0 5.0 0.1 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 148.4 0.0 0.088.0 BIC CRYSTAL BLUE France Batch 6 0.0 0.2 0.1 251.1 0.0 0.7 0.1 0.1 2.1 0.0 4.3 0.1 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 119.2 0.0 0.089.0 BIC CRYSTAL BLUE France Batch 7 0.1 0.3 0.2 223.8 0.0 0.5 0.0 0.1 1.4 0.0 4.8 0.1 0.0 0.0 2.2 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.7 164.2 0.1 0.090.0 BIC CRYSTAL BLUE France Batch 6 0.0 0.2 0.1 261.3 0.0 0.7 0.0 0.0 1.4 0.0 5.5 0.1 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 205.3 0.1 0.091.0 BIC CRYSTAL BLUE France Batch 7 0.0 0.3 0.1 204.0 0.0 0.6 0.0 0.0 1.7 0.0 4.1 0.1 0.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.7 173.7 0.0 0.092.0 BIC CRYSTAL BLUE France Batch 8 0.1 0.3 0.1 238.1 0.0 0.6 0.0 0.0 0.7 0.0 4.1 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 112.8 0.0 0.093.0 BIC CRYSTAL BLUE France Batch 8 0.0 0.5 0.1 255.0 0.0 0.5 0.0 0.0 0.6 0.0 5.3 0.1 0.0 0.0 2.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.7 121.4 0.0 0.094.0 BIC CRYSTAL BLUE France Batch 8 0.0 0.4 0.0 176.5 0.0 0.5 0.0 0.0 0.3 0.0 5.3 0.1 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 143.8 0.0 0.095.0 BIC CRYSTAL BLUE France Batch 8 0.0 0.5 0.1 184.4 0.0 0.6 0.0 0.0 0.4 0.0 6.9 0.1 0.0 0.0 2.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.6 122.2 0.0 0.096.0 BIC CRYSTAL BLUE France Batch 8 0.0 0.4 0.1 207.5 0.0 0.7 0.0 0.0 0.5 0.0 4.8 0.1 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 112.7 0.0 0.097.0 BIC CRYSTAL BLUE France Batch 9 0.1 0.4 0.1 185.6 0.0 0.6 0.1 0.1 0.4 0.0 5.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 125.6 0.1 0.098.0 BIC CRYSTAL BLUE France Batch 9 0.1 0.3 0.0 207.3 0.0 0.6 0.0 0.1 0.5 0.0 4.9 0.1 0.0 0.0 2.7 0.1 0.2 0.0 0.0 0.0 0.0 0.0 1.1 131.5 0.1 0.099.0 BIC CRYSTAL BLUE France Batch 9 0.0 0.4 0.1 172.8 0.0 0.5 0.0 0.1 0.4 0.0 4.6 0.0 0.0 0.0 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 123.7 0.0 0.0100.0 BIC CRYSTAL BLUE France Batch 8 0.0 0.3 0.1 200.8 0.0 0.6 0.1 0.0 0.4 0.0 4.2 0.0 0.0 0.0 2.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.8 144.2 0.0 0.0101.0 BIC CRYSTAL BLUE France Batch 9 0.0 0.3 0.0 206.0 0.0 0.7 0.1 0.1 0.3 0.0 4.8 0.1 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 152.9 0.0 0.0102.0 BIC CRYSTAL BLUE France Batch 10 0.1 0.2 0.0 170.0 0.0 0.6 0.1 0.0 1.4 0.0 4.2 0.1 0.0 0.0 3.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.6 166.8 0.0 0.0103.0 BIC CRYSTAL BLUE France Batch 10 0.0 0.3 0.0 252.9 0.0 0.8 0.1 0.1 1.9 0.0 4.6 0.1 0.0 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 162.1 0.0 0.0104.0 BIC CRYSTAL BLUE France Batch 10 0.0 0.3 0.0 199.4 0.0 0.7 0.1 0.1 1.6 0.0 5.0 0.1 0.0 0.0 2.9 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.8 138.3 0.0 0.0105.0 BIC CRYSTAL BLUE France Batch 10 0.0 0.4 0.0 230.1 0.0 0.7 0.1 0.1 2.0 0.0 5.2 0.1 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 148.1 0.0 0.0106.0 BIC CRYSTAL BLUE France Batch 10 0.0 0.3 0.0 203.9 0.0 0.7 0.1 0.0 2.0 0.0 4.7 0.0 0.0 0.0 2.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.6 140.5 0.0 0.0

Page 269: Development of Novel Physical (Electrostatic Detection

269

Appendix 2 continued

Table 3 ppm ppbSample Brand Manufactured Group *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr 107.0 BIC BLACK CRYSTAL Mexico Batch 1 194.2 7.1 7.6 5.1 7603.3 98.4 8.5 31.1 105.7 2.0 0.8 26.3 304.1 16541.0 447.4 47.7 44.2 706.2 33029.4 2125.6 21.8 3.3 503.8 28.0 8.0 138.3108.0 BIC BLACK CRYSTAL Mexico Batch 1 232.9 8.6 9.8 9.3 7767.8 102.7 10.8 33.3 113.6 2.7 0.6 28.6 244.7 17785.7 541.3 59.3 56.8 808.6 38739.6 2034.7 25.8 3.9 570.7 21.3 12.5 131.0109.0 BIC BLACK CRYSTAL Mexico Batch 1 227.4 8.4 13.1 7.4 7873.0 112.3 10.8 32.0 113.3 2.2 0.4 26.3 168.8 19479.3 445.8 71.4 52.6 703.1 38239.7 2112.4 26.0 3.4 588.2 25.6 9.9 138.4110.0 BIC BLACK CRYSTAL Mexico Batch 1 237.9 7.7 11.1 6.5 7819.5 110.8 10.5 39.1 113.6 5.0 0.9 25.9 204.2 19436.6 412.3 60.7 55.3 857.1 37503.6 2174.7 26.6 2.2 575.1 21.3 14.0 173.8111.0 BIC BLACK CRYSTAL Mexico Batch 1 214.9 9.2 11.6 7.6 7061.5 104.2 9.9 41.8 109.3 3.6 0.7 25.2 228.4 16310.3 423.6 68.2 44.7 710.7 30734.8 2038.0 25.8 2.5 570.1 20.8 10.7 156.5112.0 BIC BLACK CRYSTAL Mexico Batch 2 236.6 8.7 5.1 12.8 7575.6 102.5 17.2 29.6 119.4 1.7 0.5 41.9 309.1 18827.6 461.5 75.5 51.7 710.5 34939.8 2078.7 25.4 6.1 530.6 36.6 10.7 203.6113.0 BIC BLACK CRYSTAL Mexico Batch 2 257.7 7.6 7.4 13.5 7602.4 110.0 18.3 31.2 119.9 1.4 0.7 44.7 328.6 18101.9 385.1 78.3 51.9 852.1 35583.6 2356.5 23.7 5.2 595.8 28.7 12.8 189.3114.0 BIC BLACK CRYSTAL Mexico Batch 2 321.0 7.5 6.4 11.2 7822.9 105.8 17.7 31.0 118.6 1.4 0.5 40.6 312.7 18107.5 340.0 80.2 51.2 780.8 39597.2 2908.5 24.8 6.7 556.7 34.2 11.6 154.0115.0 BIC BLACK CRYSTAL Mexico Batch 2 317.6 7.7 7.6 11.4 7672.9 102.2 18.5 36.4 116.5 2.0 0.9 33.1 314.0 18780.1 402.3 75.9 54.9 843.6 35402.5 2046.8 25.4 5.0 571.8 33.3 11.8 186.5116.0 BIC BLACK CRYSTAL Mexico Batch 2 329.9 8.0 5.8 12.5 7354.6 105.3 18.8 37.5 110.0 1.9 0.8 32.5 382.1 16575.8 390.6 58.9 46.8 706.3 35077.8 2407.4 22.5 6.2 533.7 33.9 10.5 163.9117.0 BIC BLACK CRYSTAL Mexico Batch 3 261.8 7.7 6.2 10.1 7378.8 134.8 16.7 42.1 98.2 2.2 0.4 40.8 207.1 24413.4 388.5 79.8 46.9 937.3 35246.9 3145.9 23.0 4.4 483.8 26.7 18.8 143.0118.0 BIC BLACK CRYSTAL Mexico Batch 3 253.9 7.5 7.3 8.2 7889.1 132.7 16.9 40.5 109.2 2.5 0.5 43.1 164.1 21994.7 370.0 90.3 51.5 900.2 36564.0 2553.5 25.6 3.7 517.7 31.8 17.2 140.0119.0 BIC BLACK CRYSTAL Mexico Batch 3 225.0 7.3 6.4 9.2 7403.6 145.0 15.3 37.5 111.1 2.3 0.5 38.8 126.7 19806.8 326.5 93.5 52.5 985.0 35500.2 3075.0 27.1 5.6 559.9 26.1 21.3 139.0120.0 BIC BLACK CRYSTAL Mexico Batch 3 262.7 8.2 6.5 10.1 7044.2 125.9 14.2 35.0 100.0 1.7 0.5 50.6 116.7 24597.1 369.8 87.5 47.0 883.6 38020.2 2626.1 23.3 3.2 555.7 31.5 17.1 154.5121.0 BIC BLACK CRYSTAL Mexico Batch 3 271.8 7.3 6.0 10.2 7274.9 169.3 17.4 38.7 111.2 2.3 0.5 46.0 176.2 24264.1 383.2 99.5 48.8 829.2 35341.4 3526.3 24.5 3.8 584.9 30.7 19.2 175.0122.0 BIC BLACK CRYSTAL Mexico Batch 4 251.8 6.9 5.9 9.7 5717.3 1658.0 10.7 38.2 75.9 1.1 0.2 24.2 217.7 28664.9 347.7 57.8 32.9 1258.0 119289.0 7043.8 19.0 10.0 408.7 29.7 18.6 130.7123.0 BIC BLACK CRYSTAL Mexico Batch 4 278.3 6.4 6.5 8.2 5641.4 2032.0 10.7 31.2 81.8 1.3 0.3 28.8 232.7 26605.3 360.5 53.5 32.9 1236.7 101557.2 5766.6 20.5 13.5 347.3 23.3 17.3 123.1124.0 BIC BLACK CRYSTAL Mexico Batch 4 250.9 7.9 5.5 8.2 5907.1 1905.9 8.8 28.2 84.8 1.3 0.3 32.6 218.1 27193.2 350.3 72.3 29.5 1372.0 116592.7 5031.5 17.5 11.2 381.7 27.0 18.0 94.3125.0 BIC BLACK CRYSTAL Mexico Batch 4 195.6 6.5 6.0 6.8 5469.3 2165.6 10.5 32.3 68.6 0.9 0.3 25.8 237.0 28546.7 360.5 56.3 29.7 1335.5 98915.5 7560.9 18.1 14.7 358.6 26.5 18.5 108.9126.0 BIC BLACK CRYSTAL Mexico Batch 4 248.2 8.0 5.4 6.6 5741.6 1986.0 11.1 40.4 82.3 1.4 0.4 27.7 188.0 29868.9 383.0 63.4 31.9 1170.8 102410.8 6565.9 18.3 10.7 333.3 24.2 18.5 119.6127.0 BIC BLACK CRYSTAL Mexico Batch 5 208.0 7.9 7.8 9.0 6466.9 79.9 10.1 33.5 103.8 2.2 0.4 41.8 207.9 15122.5 300.2 71.9 160.8 787.4 26956.2 922.9 17.1 4.1 406.4 24.2 14.9 208.0128.0 BIC BLACK CRYSTAL Mexico Batch 5 219.6 8.4 8.6 7.1 6417.7 82.1 9.8 29.7 101.3 1.9 0.6 40.6 181.3 15418.3 309.6 85.8 163.7 872.9 29311.7 943.9 16.8 6.4 432.5 22.4 11.9 224.9129.0 BIC BLACK CRYSTAL Mexico Batch 5 266.1 8.6 8.9 8.0 7150.2 84.5 11.0 34.5 115.5 2.1 0.5 41.8 190.7 15672.1 319.4 102.3 173.9 779.5 27421.2 1045.7 18.7 5.7 457.4 29.7 12.2 192.9130.0 BIC BLACK CRYSTAL Mexico Batch 5 219.1 7.6 7.4 7.5 7240.0 80.4 11.0 33.6 114.2 2.1 0.6 42.8 186.1 15579.4 328.6 84.8 172.2 801.8 26396.6 1073.4 18.6 6.0 481.2 26.0 12.4 203.8131.0 BIC BLACK CRYSTAL Mexico Batch 5 219.6 6.5 8.7 8.1 6766.4 78.2 10.0 25.4 106.6 2.5 0.6 39.9 210.6 14664.8 259.0 93.4 152.0 807.7 25746.7 991.7 17.0 5.7 444.3 23.6 11.3 217.6132.0 BIC BLACK CRYSTAL Mexico Batch 6 219.6 8.4 5.0 6.4 6735.6 82.1 11.9 50.0 116.3 1.5 0.4 45.3 136.1 17029.2 375.2 76.2 188.3 846.5 30009.9 3024.3 18.9 2.1 435.6 36.5 8.5 101.4133.0 BIC BLACK CRYSTAL Mexico Batch 6 200.9 8.2 5.9 7.0 7098.6 88.0 10.4 44.9 112.9 1.3 0.6 43.5 164.2 17297.9 365.3 69.3 176.9 989.8 30069.2 3043.7 19.3 2.8 459.0 34.7 9.5 102.6134.0 BIC BLACK CRYSTAL Mexico Batch 6 195.8 9.9 4.8 6.2 6894.7 83.7 12.1 47.9 112.9 1.2 0.5 45.8 181.5 17777.7 425.4 73.4 184.1 838.0 31551.7 3148.6 19.8 2.3 443.8 28.3 7.3 114.3135.0 BIC BLACK CRYSTAL Mexico Batch 6 195.1 9.8 6.0 6.1 6997.0 84.0 12.8 43.4 111.0 1.2 0.5 42.9 178.4 17892.8 372.1 79.4 188.1 961.5 33337.2 2739.2 19.3 2.4 456.7 38.3 6.4 120.7136.0 BIC BLACK CRYSTAL Mexico Batch 6 207.1 8.1 5.3 5.4 6942.8 83.3 11.2 47.2 121.5 1.3 0.5 43.3 197.4 17060.8 342.4 71.2 174.7 879.9 31405.8 3084.2 17.1 2.4 442.6 33.2 6.1 108.9137.0 BIC BLACK CRYSTAL Mexico Batch 7 284.5 11.8 11.8 7.2 7518.1 77.0 23.1 41.3 120.5 2.7 0.7 36.7 188.2 24331.8 279.5 118.0 536.4 2259.4 37333.8 2815.2 28.8 2.7 474.2 29.3 27.7 205.8138.0 BIC BLACK CRYSTAL Mexico Batch 7 296.9 11.8 11.0 6.8 7158.5 74.8 29.6 35.9 123.0 2.6 0.5 38.9 217.9 24081.8 299.3 108.9 532.1 2860.2 36893.3 2430.9 28.8 2.7 430.4 29.5 27.8 208.8139.0 BIC BLACK CRYSTAL Mexico Batch 7 287.4 11.2 11.5 5.7 7588.8 75.1 26.4 38.9 121.7 2.3 0.6 32.1 207.3 23252.3 290.1 107.1 517.8 2529.5 40477.9 2713.6 29.1 2.4 499.5 29.1 24.6 197.0140.0 BIC BLACK CRYSTAL Mexico Batch 7 300.4 10.0 14.5 7.3 7307.0 72.5 26.1 33.5 119.4 2.2 0.6 38.3 227.0 24142.7 265.4 114.1 483.5 2792.0 34093.3 2610.3 28.9 2.9 450.6 23.8 21.4 180.2141.0 BIC BLACK CRYSTAL Mexico Batch 7 268.8 11.1 13.3 6.1 7398.3 77.1 21.4 40.5 122.0 2.1 0.6 34.8 146.9 22562.1 273.5 115.5 502.7 3154.8 33926.8 2752.8 27.8 2.5 445.9 30.7 22.8 195.2142.0 BIC BLACK CRYSTAL Mexico Batch 8 221.6 12.9 7.1 8.2 7141.9 72.8 12.8 26.3 125.4 1.6 0.6 23.0 184.8 22578.9 327.8 111.0 504.0 2745.4 32023.4 2072.7 28.5 9.5 395.0 19.6 22.3 168.8143.0 BIC BLACK CRYSTAL Mexico Batch 8 193.8 11.1 6.6 7.1 7570.1 77.9 11.3 26.0 127.9 1.5 0.5 27.6 140.2 22016.7 313.6 97.4 494.5 2498.2 32018.3 2060.1 27.5 10.2 440.4 21.7 25.2 174.4144.0 BIC BLACK CRYSTAL Mexico Batch 8 233.4 12.7 8.6 8.4 7299.8 73.9 11.8 24.9 115.7 1.7 0.5 25.4 173.2 21556.4 296.3 98.9 486.6 2334.0 30730.3 1848.0 27.6 11.1 419.1 23.2 22.9 152.4145.0 BIC BLACK CRYSTAL Mexico Batch 8 232.1 12.4 6.9 8.1 7447.5 75.0 13.0 29.5 119.0 1.4 0.5 28.3 175.9 23399.5 320.1 88.1 517.6 2965.5 35032.7 2033.6 28.5 9.7 453.2 20.9 20.5 171.2146.0 BIC BLACK CRYSTAL Mexico Batch 8 199.7 13.3 7.0 7.3 7645.2 78.6 12.1 25.0 116.9 1.7 0.5 27.2 184.1 23497.5 286.1 114.5 528.8 2395.7 30526.0 1857.9 30.0 10.9 504.9 22.1 23.1 157.0147.0 BIC BLACK CRYSTAL Mexico Batch 9 188.4 12.1 8.5 7.5 7528.5 79.2 11.4 27.7 125.7 1.7 0.3 31.7 153.7 22708.5 311.4 115.6 505.9 2489.7 34412.0 2324.7 28.8 7.1 494.4 21.1 14.1 99.7148.0 BIC BLACK CRYSTAL Mexico Batch 8 212.4 11.4 6.4 7.3 7587.8 75.1 10.6 23.6 124.5 1.3 0.3 28.5 167.9 22712.1 254.1 100.7 502.7 2710.6 35492.6 1833.4 29.0 6.5 444.1 21.6 14.1 81.6149.0 BIC BLACK CRYSTAL Mexico Batch 9 167.0 11.2 7.8 7.6 7391.9 70.7 9.9 27.8 118.3 2.0 0.4 35.8 224.5 24165.5 256.9 100.7 532.2 2651.2 35188.4 2344.0 28.9 7.6 429.4 25.1 15.1 123.0150.0 BIC BLACK CRYSTAL Mexico Batch 8 209.7 11.8 8.8 8.1 7328.2 73.2 9.5 28.8 121.6 1.6 0.4 35.6 225.8 23474.7 310.7 108.5 525.3 2548.6 35293.4 1897.9 29.0 7.3 465.0 23.0 14.4 90.0151.0 BIC BLACK CRYSTAL Mexico Batch 9 256.7 11.6 9.7 7.9 7298.7 73.2 10.3 28.7 117.2 1.6 0.3 34.8 227.7 23731.7 250.9 113.2 531.6 2497.2 33606.4 1780.6 29.7 6.5 467.9 21.9 13.9 91.0152.0 BIC BLACK CRYSTAL Mexico Batch 10 210.4 11.7 6.9 5.7 7659.8 77.9 8.6 28.3 111.8 1.8 0.4 48.6 148.8 21854.0 377.5 128.5 531.8 1673.1 35757.5 3991.6 29.0 2.8 618.4 34.6 12.5 50.8153.0 BIC BLACK CRYSTAL Mexico Batch 10 198.4 10.3 6.8 6.4 7609.3 73.0 8.4 25.3 111.9 1.5 0.4 48.1 125.1 22184.6 315.0 103.9 527.9 1720.1 33851.0 3665.4 27.9 2.8 566.0 35.8 12.7 43.1154.0 BIC BLACK CRYSTAL Mexico Batch 10 216.7 10.1 5.7 6.3 7503.4 74.1 7.7 20.9 105.4 1.8 0.5 40.4 156.0 21658.1 371.5 129.9 518.2 1747.1 33286.2 3596.8 27.5 3.3 568.7 35.6 13.1 49.8155.0 BIC BLACK CRYSTAL Mexico Batch 10 218.8 10.5 5.7 7.3 7423.8 78.1 8.0 31.5 111.0 2.0 0.5 47.3 147.5 21790.2 333.4 103.9 520.3 1649.1 33079.5 3996.7 27.4 1.3 553.1 32.4 13.8 41.2156.0 BIC BLACK CRYSTAL Mexico Batch 10 205.9 10.2 5.8 6.1 7415.6 77.6 9.8 31.5 108.8 2.1 0.4 39.7 134.1 21351.5 318.5 103.9 517.6 1783.1 34236.4 4293.2 28.5 1.7 598.7 33.7 12.2 54.7

Page 270: Development of Novel Physical (Electrostatic Detection

270

Appendix 2 continued

Table 3Sample Brand Manufactured Group Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U 107.0 BIC BLACK CRYSTAL Mexico Batch 1 26.6 410.4 7.7 18759.0 0.8 1.0 3.8 1.3 31.1 0.8 22.8 33.4 1.0 10.8 107.7 1.9 4.1 0.6 1.1 0.2 0.3 22.3 49.7 593.3 1.5 0.7108.0 BIC BLACK CRYSTAL Mexico Batch 1 33.2 456.8 6.7 19706.4 0.7 1.2 4.6 1.4 28.0 0.7 25.0 42.6 1.1 11.9 138.5 1.2 3.9 0.6 1.1 0.2 0.3 21.5 52.5 533.0 1.6 0.7109.0 BIC BLACK CRYSTAL Mexico Batch 1 32.6 423.6 7.3 18783.7 0.7 1.2 4.5 1.4 24.5 0.8 22.2 42.2 0.9 11.6 145.2 1.1 3.7 0.5 1.1 0.2 0.3 18.0 52.5 561.7 1.3 0.6110.0 BIC BLACK CRYSTAL Mexico Batch 1 34.0 438.4 8.5 19369.2 0.9 1.2 4.5 1.5 26.9 0.7 25.1 40.2 1.2 12.4 110.9 1.6 4.2 0.5 1.2 0.3 0.3 17.6 55.1 532.2 1.9 0.9111.0 BIC BLACK CRYSTAL Mexico Batch 1 33.7 441.1 7.4 16268.1 0.8 1.2 3.6 2.0 27.0 0.8 19.8 32.6 1.3 10.4 119.1 1.5 4.0 0.5 1.1 0.3 0.3 19.2 48.5 594.7 1.5 0.6112.0 BIC BLACK CRYSTAL Mexico Batch 2 37.7 452.9 11.8 19565.3 0.5 1.2 4.2 1.3 21.7 0.4 10.3 41.5 1.5 12.2 176.8 1.8 2.7 0.6 1.5 0.3 0.4 18.9 52.1 480.9 1.1 0.9113.0 BIC BLACK CRYSTAL Mexico Batch 2 33.8 458.9 10.6 18375.7 0.4 1.3 4.5 1.4 20.7 0.5 9.9 48.3 1.4 11.5 179.4 1.3 2.2 0.5 1.0 0.3 0.4 21.7 48.3 485.1 1.4 1.0114.0 BIC BLACK CRYSTAL Mexico Batch 2 31.9 418.0 14.0 17692.0 0.6 1.2 4.4 1.2 32.2 0.4 11.2 46.0 1.1 11.4 165.8 1.2 2.3 0.5 0.7 0.4 0.2 20.2 46.9 439.0 1.0 0.9115.0 BIC BLACK CRYSTAL Mexico Batch 2 35.3 487.6 13.2 19360.4 0.5 1.2 4.8 1.8 23.3 0.5 10.7 40.4 1.2 12.2 215.3 1.3 2.6 0.5 1.8 0.4 0.3 23.1 57.2 461.6 1.4 0.8116.0 BIC BLACK CRYSTAL Mexico Batch 2 28.9 375.5 13.6 18758.6 0.6 1.1 4.2 1.3 32.9 0.7 9.3 39.3 1.3 12.4 184.5 1.2 2.3 0.4 0.7 0.3 0.3 15.3 52.6 463.1 1.2 0.9117.0 BIC BLACK CRYSTAL Mexico Batch 3 29.6 391.7 9.4 19304.6 0.6 1.0 4.0 1.9 22.2 0.7 11.5 34.2 1.8 10.4 153.3 2.9 6.5 0.6 1.4 0.6 0.6 14.7 62.2 376.1 1.5 1.4118.0 BIC BLACK CRYSTAL Mexico Batch 3 30.0 433.4 6.7 18225.0 0.6 1.2 3.5 1.1 21.7 0.7 10.3 34.8 1.2 10.3 185.3 2.2 5.3 0.5 2.0 0.5 0.5 13.0 62.6 431.7 1.5 1.3119.0 BIC BLACK CRYSTAL Mexico Batch 3 33.1 465.9 6.2 19078.7 0.5 1.1 3.8 0.8 21.5 0.8 11.6 39.9 1.8 11.7 156.4 1.9 5.1 0.5 1.9 0.3 0.4 15.5 49.3 357.6 0.9 1.2120.0 BIC BLACK CRYSTAL Mexico Batch 3 28.4 355.5 5.5 19293.6 0.7 1.2 3.5 0.7 24.1 0.5 13.4 36.3 1.2 10.0 165.9 1.8 5.2 0.6 1.9 0.4 0.3 12.5 48.2 380.7 1.5 1.4121.0 BIC BLACK CRYSTAL Mexico Batch 3 34.6 474.4 6.2 19105.0 0.6 1.1 3.8 1.4 25.2 0.7 12.7 39.5 1.2 10.8 178.5 2.3 6.8 0.8 1.9 0.4 0.3 15.2 67.0 335.8 1.8 1.9122.0 BIC BLACK CRYSTAL Mexico Batch 4 36.0 458.0 20.4 12465.9 0.6 3.9 11.6 3.0 23.9 1.2 79.6 45.5 1.3 0.4 98.4 1.4 2.9 0.5 0.9 0.3 0.9 15.4 50.4 8939.2 5.2 2.3123.0 BIC BLACK CRYSTAL Mexico Batch 4 42.5 522.5 17.9 11821.0 0.5 3.1 8.9 3.8 21.4 1.0 86.2 39.5 1.1 0.4 106.5 1.2 2.8 0.4 0.9 0.3 0.5 17.3 46.4 7441.9 6.6 3.8124.0 BIC BLACK CRYSTAL Mexico Batch 4 34.1 499.8 20.7 12448.2 0.6 4.0 10.5 3.2 17.7 1.7 73.7 39.6 0.9 0.3 96.0 1.9 4.0 0.4 1.0 0.4 0.5 16.4 50.5 8580.7 5.9 2.9125.0 BIC BLACK CRYSTAL Mexico Batch 4 31.4 490.8 24.4 12118.4 0.7 3.3 9.4 3.0 17.0 0.9 86.2 34.8 0.7 0.3 122.8 1.9 4.1 0.4 1.3 0.2 0.4 18.8 43.9 7504.5 6.4 2.1126.0 BIC BLACK CRYSTAL Mexico Batch 4 37.6 591.6 24.0 13254.4 0.7 3.5 10.1 3.6 20.3 1.0 77.3 43.9 0.8 0.6 104.8 1.3 3.9 0.4 1.1 0.2 0.3 15.3 39.4 6513.0 5.9 2.0127.0 BIC BLACK CRYSTAL Mexico Batch 5 35.0 443.2 8.2 9460.4 0.7 0.9 3.3 0.9 10.8 0.4 22.8 36.4 0.7 0.4 254.5 2.3 6.1 0.8 2.3 0.4 0.5 15.2 43.1 482.8 1.2 4.0128.0 BIC BLACK CRYSTAL Mexico Batch 5 31.0 393.4 7.1 9556.8 0.7 0.9 3.2 0.6 12.4 0.3 21.0 49.8 0.8 0.4 275.3 2.4 5.9 0.7 2.0 0.4 0.7 12.3 39.7 494.6 1.0 3.6129.0 BIC BLACK CRYSTAL Mexico Batch 5 35.2 475.5 7.2 10821.0 0.8 0.9 3.7 0.8 13.3 0.3 21.9 42.9 0.7 0.4 249.5 3.3 6.0 0.7 1.8 0.4 0.5 15.7 46.0 514.1 1.5 3.8130.0 BIC BLACK CRYSTAL Mexico Batch 5 36.2 462.1 8.7 10874.2 0.6 1.2 3.5 0.8 13.1 0.3 20.2 40.9 0.7 0.4 256.5 3.4 6.9 0.7 2.5 0.4 0.6 14.3 46.6 493.3 1.3 4.3131.0 BIC BLACK CRYSTAL Mexico Batch 5 30.1 403.2 7.5 9970.9 0.7 0.9 3.8 0.6 11.8 0.2 20.5 43.4 0.6 0.3 272.1 2.7 5.3 0.7 2.4 0.3 0.4 12.2 42.0 446.3 1.7 3.3132.0 BIC BLACK CRYSTAL Mexico Batch 6 36.3 432.2 6.5 10584.0 0.4 1.0 3.7 1.5 11.0 0.4 23.0 61.9 1.4 0.3 140.6 4.0 10.3 1.1 4.0 0.3 1.0 14.0 38.2 576.8 1.6 4.5133.0 BIC BLACK CRYSTAL Mexico Batch 6 34.5 453.9 7.9 10498.4 0.6 1.0 3.6 1.5 12.8 0.4 24.4 57.9 1.1 0.2 131.7 4.1 10.2 1.3 4.0 0.3 1.0 15.5 35.9 559.8 1.0 3.8134.0 BIC BLACK CRYSTAL Mexico Batch 6 39.8 463.2 6.2 11037.5 0.6 1.1 4.0 1.3 12.9 0.5 19.9 62.7 1.2 0.4 141.5 3.7 9.6 1.2 4.3 0.3 1.0 14.7 33.2 621.1 1.6 4.1135.0 BIC BLACK CRYSTAL Mexico Batch 6 37.1 470.6 7.3 11326.1 0.6 1.2 4.0 1.5 13.1 0.6 27.0 59.3 1.4 0.4 153.4 4.1 10.9 1.4 4.7 0.2 1.0 14.4 37.3 776.8 1.4 3.9136.0 BIC BLACK CRYSTAL Mexico Batch 6 30.9 480.7 7.8 10840.3 0.5 0.9 3.0 1.3 11.0 0.5 23.2 50.1 1.1 0.3 128.5 4.0 9.2 1.2 3.9 0.2 1.1 13.1 35.4 608.7 1.2 3.3137.0 BIC BLACK CRYSTAL Mexico Batch 7 25.1 343.4 6.7 16192.2 0.4 1.2 4.4 0.7 22.4 0.3 15.8 25.0 1.0 0.4 176.7 2.7 7.6 0.8 2.6 0.3 0.7 12.7 18.8 595.4 3.0 0.5138.0 BIC BLACK CRYSTAL Mexico Batch 7 27.2 416.9 4.6 16705.3 0.3 1.2 4.7 0.7 25.1 0.2 16.4 29.1 0.6 0.6 190.8 2.7 7.3 0.8 2.3 0.3 0.6 12.8 16.0 645.6 3.2 0.7139.0 BIC BLACK CRYSTAL Mexico Batch 7 25.7 364.1 5.7 15858.6 0.4 1.3 4.0 0.7 21.8 0.4 14.5 28.8 0.9 0.4 204.8 3.0 6.2 0.8 2.9 0.3 0.5 11.5 16.9 620.3 3.0 0.5140.0 BIC BLACK CRYSTAL Mexico Batch 7 24.6 358.6 4.1 15306.5 0.3 1.1 3.5 0.7 21.8 0.2 18.6 26.7 0.7 0.4 210.9 2.2 6.7 0.7 2.9 0.2 0.5 12.0 14.8 518.8 3.2 0.8141.0 BIC BLACK CRYSTAL Mexico Batch 7 25.1 339.0 4.2 16117.3 0.4 1.5 4.5 0.6 22.2 0.3 17.7 25.3 0.9 0.5 217.9 2.2 6.2 0.7 2.4 0.3 0.6 11.7 15.0 559.3 3.1 0.7142.0 BIC BLACK CRYSTAL Mexico Batch 8 25.5 389.7 4.4 16810.2 0.6 1.2 4.2 1.6 24.1 0.3 9.5 25.7 0.6 0.2 255.5 1.7 5.6 0.7 2.0 0.4 0.7 12.8 20.7 493.3 3.5 0.8143.0 BIC BLACK CRYSTAL Mexico Batch 8 24.7 340.6 5.0 16236.5 0.8 1.1 3.7 1.9 23.3 0.4 10.4 25.1 0.6 0.2 210.0 1.5 4.3 0.7 1.9 0.4 0.4 11.5 21.0 460.9 3.5 0.7144.0 BIC BLACK CRYSTAL Mexico Batch 8 24.7 332.1 4.4 15847.2 0.7 1.2 3.3 1.6 22.6 0.3 8.3 24.9 0.8 0.2 211.6 1.7 4.8 0.4 1.5 0.3 0.5 10.4 20.7 509.8 3.0 0.8145.0 BIC BLACK CRYSTAL Mexico Batch 8 24.6 331.4 4.2 16726.9 0.6 1.2 4.0 2.1 21.8 0.3 12.1 26.7 0.7 0.2 213.7 2.0 6.0 0.7 1.8 0.4 0.5 10.4 19.7 464.8 3.3 0.6146.0 BIC BLACK CRYSTAL Mexico Batch 8 24.7 355.3 4.0 15998.0 0.6 0.9 3.2 1.4 23.2 0.2 9.1 25.8 0.7 0.1 192.4 1.6 4.8 0.6 2.0 0.4 0.5 10.6 18.3 466.2 2.6 0.8147.0 BIC BLACK CRYSTAL Mexico Batch 9 29.8 435.3 11.2 16261.1 0.6 1.2 3.5 0.5 22.5 0.3 17.1 26.9 0.6 0.3 132.6 0.3 0.9 0.2 0.4 0.0 0.2 13.1 18.1 520.8 4.1 0.9148.0 BIC BLACK CRYSTAL Mexico Batch 8 24.8 358.5 10.8 16232.4 0.7 1.3 3.4 0.6 22.2 0.2 13.1 28.2 0.7 0.2 168.8 0.2 1.0 0.1 0.4 0.1 0.2 11.4 16.5 553.1 3.7 0.8149.0 BIC BLACK CRYSTAL Mexico Batch 9 25.8 403.8 9.9 16638.4 0.7 1.2 4.0 0.3 21.8 0.3 18.3 28.0 0.6 0.3 178.0 0.5 1.1 0.1 0.5 0.0 0.2 15.7 22.2 561.1 4.7 0.6150.0 BIC BLACK CRYSTAL Mexico Batch 8 26.3 364.8 9.9 16245.5 0.6 1.2 4.4 0.4 22.5 0.3 16.8 27.9 0.6 0.3 134.6 0.5 0.9 0.2 0.5 0.0 0.3 14.2 19.3 570.6 3.3 1.0151.0 BIC BLACK CRYSTAL Mexico Batch 9 25.4 397.5 11.0 16700.0 0.5 1.2 4.0 0.6 21.7 0.3 17.3 25.8 0.5 0.2 142.9 0.5 1.0 0.1 0.4 0.0 0.3 13.8 22.2 537.2 3.2 0.6152.0 BIC BLACK CRYSTAL Mexico Batch 10 35.4 459.5 2.6 13720.3 0.5 1.2 4.1 0.7 21.6 0.5 11.9 25.0 0.5 0.1 77.8 1.0 3.4 0.4 0.9 0.2 0.3 15.4 13.8 861.2 2.1 0.6153.0 BIC BLACK CRYSTAL Mexico Batch 10 33.7 450.2 2.8 14341.7 0.6 1.2 4.0 0.8 20.7 0.5 11.5 26.1 0.6 0.2 83.4 0.8 3.1 0.4 1.2 0.3 0.3 14.9 13.2 788.6 2.0 0.5154.0 BIC BLACK CRYSTAL Mexico Batch 10 34.0 394.7 4.1 13943.8 0.5 1.3 4.0 0.6 20.1 0.6 13.9 22.6 0.4 0.1 86.3 1.0 3.2 0.4 1.1 0.3 0.4 14.5 12.7 814.2 2.1 0.4155.0 BIC BLACK CRYSTAL Mexico Batch 10 35.3 483.4 2.9 13975.8 0.6 1.2 4.2 1.2 20.0 0.5 11.8 23.0 0.5 0.1 75.6 1.2 3.1 0.5 1.0 0.2 0.3 14.8 15.5 816.0 2.1 0.5156.0 BIC BLACK CRYSTAL Mexico Batch 10 36.9 553.1 3.7 13495.6 0.4 1.2 3.9 1.0 20.7 0.5 12.6 27.2 0.4 0.2 76.0 1.0 3.4 0.3 1.2 0.2 0.3 15.4 13.3 829.7 2.0 0.4

Page 271: Development of Novel Physical (Electrostatic Detection

271

Appendix 2 continued Table 4 ppm ppb

Sample Brand Manufactured Group *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr 157.0 BIC RED CRYSTAL China Batch 1 208.9 2.4 6.6 12.4 1127.3 7528.1 22.0 26.2 8.1 1.8 0.5 66.7 364.4 226.8 2352.5 54.3 326.8 557.1 37125.1 2153.7 5.1 3.8 60.9 35.2 23.3 93.3158.0 BIC RED CRYSTAL China Batch 1 256.6 3.6 5.6 13.6 1125.4 7517.9 23.0 33.6 10.7 2.2 0.5 68.6 381.9 201.6 2208.9 49.7 325.9 620.4 33141.2 2142.8 4.3 4.8 59.6 39.5 18.3 110.4159.0 BIC RED CRYSTAL China Batch 1 243.8 2.9 5.1 13.4 1131.8 7481.4 24.4 31.6 9.5 2.2 0.5 63.2 357.0 143.3 2318.1 33.8 330.4 740.9 35315.6 1864.0 4.2 4.8 65.6 33.8 22.8 82.4160.0 BIC RED CRYSTAL China Batch 1 282.7 4.2 6.0 15.4 1172.5 7576.7 25.8 33.5 9.8 3.0 0.4 68.9 364.3 236.0 2455.9 44.2 343.3 656.4 37753.3 2280.9 5.2 3.5 57.0 36.9 24.2 91.0161.0 BIC RED CRYSTAL China Batch 1 285.7 3.9 6.2 15.8 1184.0 7787.5 22.0 37.7 8.9 1.6 0.4 66.4 419.2 154.0 2197.0 48.6 323.7 715.1 34668.5 2204.1 4.1 3.8 67.5 32.7 22.3 108.0162.0 BIC RED CRYSTAL China Batch 2 248.3 4.2 6.4 16.1 1250.7 8007.9 14.9 61.4 6.7 2.5 0.6 75.5 376.3 116.8 475.8 30.1 4.1 501.0 3829.1 956.8 4.1 3.8 68.0 35.6 21.9 198.8163.0 BIC RED CRYSTAL China Batch 2 333.8 3.7 6.6 18.0 1211.1 7957.0 13.3 47.4 8.7 2.3 0.7 74.6 399.1 142.6 478.0 34.2 2.9 560.8 3273.3 1017.4 4.3 3.0 65.1 38.3 22.9 132.3164.0 BIC RED CRYSTAL China Batch 2 245.2 3.1 5.9 14.1 1334.6 7614.9 14.9 53.2 10.8 2.6 0.4 82.2 361.3 123.0 453.5 40.3 2.1 544.3 3029.0 845.7 3.1 2.7 61.2 43.3 21.4 158.6165.0 BIC RED CRYSTAL China Batch 2 331.5 4.3 4.8 14.1 1251.6 8116.8 14.9 48.8 7.7 3.1 0.6 76.4 357.7 175.6 482.3 49.8 4.4 536.3 3767.1 1099.3 4.2 4.6 64.1 39.8 22.5 133.2166.0 BIC RED CRYSTAL China Batch 2 250.2 3.8 5.7 15.3 1228.3 7815.5 13.6 63.2 10.2 3.8 0.9 75.2 359.1 110.8 485.1 43.0 2.1 612.7 3119.3 1132.9 4.2 3.9 72.3 35.6 20.1 205.1167.0 BIC RED CRYSTAL China Batch 3 256.4 4.1 7.0 16.3 1173.6 8049.6 28.1 32.7 12.0 2.0 0.6 50.5 552.4 280.8 2295.5 74.4 331.4 732.4 35665.0 3079.0 4.4 4.4 44.9 41.9 20.5 106.1168.0 BIC RED CRYSTAL China Batch 3 235.6 3.1 6.8 16.4 1152.1 7752.4 23.4 30.0 12.6 1.3 0.6 44.9 447.2 245.7 2292.5 91.6 316.8 813.1 35958.4 2460.3 3.9 4.4 44.9 37.3 20.0 107.9169.0 BIC RED CRYSTAL China Batch 3 292.2 3.1 5.0 13.3 1176.8 7963.2 23.5 33.9 13.9 1.5 0.7 48.6 496.2 182.0 2306.6 76.9 323.1 797.7 34145.7 2670.4 4.1 5.0 55.7 36.4 20.7 102.4170.0 BIC RED CRYSTAL China Batch 3 253.5 2.9 4.7 14.3 1031.8 7924.6 26.4 29.8 13.4 1.8 0.6 42.1 408.3 258.2 2245.7 73.8 290.6 681.6 36953.0 2510.7 4.1 4.2 43.5 35.4 15.9 98.3171.0 BIC RED CRYSTAL China Batch 3 211.3 2.7 5.8 12.4 1128.1 7612.2 28.5 27.6 11.9 1.6 0.9 45.8 419.5 193.4 2161.8 81.4 297.2 768.8 37683.0 2592.0 4.3 4.2 47.9 33.0 15.6 89.3172.0 BIC RED CRYSTAL China Batch 4 153.4 2.7 5.3 8.7 1128.5 8002.3 62.6 26.6 5.8 1.5 0.3 38.8 516.1 196.6 1577.1 23.2 47.4 1462.0 13269.2 1655.5 3.6 2.0 32.8 17.7 19.6 71.6173.0 BIC RED CRYSTAL China Batch 4 166.4 2.4 3.6 7.5 1157.9 7982.8 71.7 28.9 3.5 1.1 0.4 37.6 554.5 259.6 1635.9 18.6 31.0 1584.7 18381.6 1632.0 3.7 2.1 48.9 20.4 17.8 66.1174.0 BIC RED CRYSTAL China Batch 4 153.7 2.5 4.7 8.2 1156.7 7926.0 65.6 22.5 4.1 1.0 0.3 32.6 511.0 200.1 1657.2 25.5 35.0 1260.3 14168.7 1842.4 4.0 2.1 36.5 21.6 18.1 63.1175.0 BIC RED CRYSTAL China Batch 4 146.3 2.7 5.3 8.4 1192.8 8301.6 63.7 32.5 3.8 1.2 0.5 41.7 523.5 341.4 1643.7 20.2 55.3 1724.0 14515.1 2149.0 3.6 2.7 43.4 18.3 17.4 67.0176.0 BIC RED CRYSTAL China Batch 4 160.6 2.3 6.8 7.0 1231.5 8467.1 62.4 21.6 3.8 1.4 0.4 34.7 585.7 209.0 1691.8 22.6 36.4 2011.9 18522.4 1929.1 4.0 2.4 48.2 18.5 18.5 67.8177.0 BIC RED CRYSTAL China Batch 5 215.5 4.1 5.4 14.5 1165.6 8008.0 63.7 30.9 7.0 0.8 0.6 50.7 664.6 254.3 1702.8 114.9 39.7 924.4 31659.4 1553.6 4.0 4.8 38.6 14.6 13.0 112.4178.0 BIC RED CRYSTAL China Batch 5 221.4 3.3 6.9 12.7 1146.0 7458.1 56.6 29.9 5.6 0.8 0.7 43.8 553.0 266.9 1842.5 147.7 43.0 953.2 30120.6 1503.9 4.0 5.5 41.8 16.9 17.9 112.4179.0 BIC RED CRYSTAL China Batch 5 234.0 3.6 4.7 10.2 1062.9 7365.8 59.1 25.7 5.5 0.8 0.6 53.3 615.2 253.7 1661.5 200.1 33.6 1106.7 31264.3 1586.7 3.7 4.0 40.7 15.0 15.5 103.2180.0 BIC RED CRYSTAL China Batch 5 240.5 4.9 4.6 12.6 1200.7 8186.9 66.2 33.3 5.1 0.7 0.7 48.6 570.1 277.7 1683.9 122.7 29.3 1111.6 28502.9 1581.2 4.2 3.9 30.5 15.3 15.0 120.8181.0 BIC RED CRYSTAL China Batch 5 259.9 3.0 6.3 14.0 1006.4 7872.5 59.2 30.2 5.2 0.9 0.7 52.1 560.4 298.4 1645.0 148.7 36.2 1064.2 27689.0 1592.5 3.9 4.3 35.2 14.2 13.6 94.4182.0 BIC RED CRYSTAL China Batch 6 86.7 2.6 3.1 9.7 1051.4 7054.3 61.3 22.1 7.6 0.8 0.6 31.2 437.6 61.3 1692.5 23.2 31.0 1085.3 18501.6 1465.0 2.9 0.7 45.7 18.7 10.1 17.6183.0 BIC RED CRYSTAL China Batch 6 93.0 2.5 2.6 9.4 1119.9 7444.0 61.3 23.4 7.2 0.8 0.7 26.5 438.8 68.6 1588.0 30.3 35.1 1073.4 19167.5 1192.3 3.3 0.7 53.4 19.0 9.6 18.7184.0 BIC RED CRYSTAL China Batch 6 81.2 2.1 3.0 8.7 1154.5 8052.9 57.9 25.2 7.3 0.9 0.6 33.1 429.2 72.6 1604.9 24.3 37.4 1020.7 17893.3 1382.7 3.8 0.4 58.2 23.2 10.4 20.6185.0 BIC RED CRYSTAL China Batch 6 94.8 2.6 3.5 9.2 1123.4 7651.5 58.9 21.4 7.9 0.9 0.5 32.7 407.2 61.2 1570.1 24.1 37.3 1106.5 19923.6 1195.9 3.2 0.3 51.8 20.8 10.9 20.1186.0 BIC RED CRYSTAL China Batch 6 95.9 2.8 3.4 9.7 1193.9 8281.1 65.9 21.4 7.3 0.9 0.5 36.0 440.0 74.9 1640.8 21.6 46.7 1120.8 17237.1 1399.3 3.7 0.3 43.1 21.0 11.1 16.1

Table 4Sample Brand Manufactured Group Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U 157.0 BIC RED CRYSTAL China Batch 1 1.1 31.7 10.6 49.9 0.4 1.4 3.6 2.9 4.6 0.7 59.9 31.7 1.8 0.7 171.5 2.5 7.8 0.6 2.3 0.4 0.6 2.8 56.3 1985.5 6.6 5.3158.0 BIC RED CRYSTAL China Batch 1 0.9 27.9 8.1 42.6 0.3 1.2 3.3 2.6 3.8 0.6 53.8 33.9 1.0 0.4 196.8 1.7 4.2 0.4 1.8 0.3 0.4 2.1 62.8 1861.7 6.3 4.8159.0 BIC RED CRYSTAL China Batch 1 0.7 28.0 7.1 46.6 0.3 1.1 3.2 3.3 3.6 0.7 60.7 32.4 1.2 0.4 145.7 1.6 3.1 0.3 1.4 0.2 0.3 3.4 52.5 1820.8 6.7 5.2160.0 BIC RED CRYSTAL China Batch 1 1.0 28.0 8.7 44.6 0.5 1.4 3.5 3.3 4.2 0.6 58.5 37.0 1.5 0.7 171.4 2.7 9.0 0.6 3.1 0.6 0.8 2.9 96.6 1959.6 6.6 4.2161.0 BIC RED CRYSTAL China Batch 1 1.0 27.6 11.2 45.3 0.4 1.2 3.2 2.8 4.8 0.4 62.1 33.0 1.8 0.2 138.0 1.4 3.3 0.2 1.3 0.2 0.3 3.5 49.2 1810.3 6.7 4.9162.0 BIC RED CRYSTAL China Batch 2 1.6 12.6 5.4 24.6 0.2 0.1 0.5 2.0 5.2 0.2 22.8 10.2 1.4 1.5 19.0 3.5 7.5 0.8 2.6 0.4 0.4 1.0 17.2 127.4 1.2 3.7163.0 BIC RED CRYSTAL China Batch 2 1.7 14.7 5.1 22.7 0.2 0.1 0.5 2.6 4.2 0.3 24.8 9.2 1.6 1.3 22.8 2.6 6.4 0.5 1.9 0.3 0.3 1.6 17.6 117.1 1.1 3.8164.0 BIC RED CRYSTAL China Batch 2 1.2 12.2 5.0 24.6 0.1 0.2 0.3 2.8 5.2 0.1 22.1 6.3 1.3 1.8 24.2 2.3 5.5 0.4 1.2 0.3 0.3 1.3 15.1 121.1 1.2 2.8165.0 BIC RED CRYSTAL China Batch 2 1.2 13.2 4.0 17.8 0.2 0.2 0.6 2.0 5.6 0.2 22.7 9.3 1.3 1.4 27.7 2.1 5.0 0.3 1.6 0.2 0.3 1.9 18.3 113.6 1.7 3.6166.0 BIC RED CRYSTAL China Batch 2 1.3 14.1 4.6 20.8 0.2 0.2 0.4 2.5 4.1 0.3 29.6 8.3 1.1 2.1 31.1 2.6 5.6 0.6 1.4 0.4 0.5 1.0 16.5 124.0 1.3 4.0167.0 BIC RED CRYSTAL China Batch 3 3.2 37.1 13.9 33.6 0.5 1.4 4.0 2.5 11.0 1.0 63.6 37.1 2.6 0.6 120.5 3.2 8.8 1.3 3.3 0.5 1.1 1.7 58.0 2098.6 8.7 5.5168.0 BIC RED CRYSTAL China Batch 3 2.2 41.4 10.7 36.5 0.5 1.4 3.4 2.3 9.0 1.0 57.7 39.5 1.3 0.4 154.1 3.9 8.2 1.2 3.3 0.6 1.1 1.4 59.1 2084.2 8.1 5.3169.0 BIC RED CRYSTAL China Batch 3 3.6 43.8 11.8 29.0 0.5 1.3 4.1 2.3 8.3 1.0 59.2 34.4 1.9 0.8 97.9 3.6 9.2 1.4 3.9 0.7 1.4 1.9 56.5 2140.2 7.3 5.7170.0 BIC RED CRYSTAL China Batch 3 3.4 36.2 11.1 36.8 0.5 1.0 3.6 2.4 10.8 0.8 71.7 34.2 1.8 0.2 104.6 3.9 8.7 1.2 3.8 0.5 1.1 1.1 55.3 2080.7 9.1 4.8171.0 BIC RED CRYSTAL China Batch 3 4.9 34.4 12.0 35.1 0.4 1.0 3.4 1.9 10.7 0.9 65.3 31.9 1.7 0.2 128.7 4.2 10.6 1.6 4.1 0.8 1.6 1.9 60.4 2090.2 7.6 5.1172.0 BIC RED CRYSTAL China Batch 4 0.8 15.3 8.6 21.2 0.4 0.6 2.0 1.6 2.4 0.2 17.5 16.9 0.4 0.1 88.0 2.2 4.8 0.5 1.2 0.2 0.2 1.0 66.4 547.1 3.1 6.1173.0 BIC RED CRYSTAL China Batch 4 1.0 20.7 7.8 24.4 0.4 0.7 1.6 2.0 3.1 0.3 23.8 11.4 0.7 0.2 84.1 1.9 3.4 0.4 1.2 0.2 0.2 0.7 58.1 555.5 2.2 6.4174.0 BIC RED CRYSTAL China Batch 4 0.9 23.2 7.8 25.9 0.3 0.5 1.3 1.9 2.6 0.2 19.0 12.1 0.7 0.1 80.6 2.0 3.8 0.5 1.3 0.3 0.3 0.9 64.7 592.8 2.4 6.4175.0 BIC RED CRYSTAL China Batch 4 0.8 20.2 7.6 23.0 0.5 0.8 1.7 1.4 2.3 0.3 24.7 16.6 0.6 0.1 77.5 2.8 5.7 0.4 1.8 0.3 0.3 0.6 65.9 617.2 3.3 6.5176.0 BIC RED CRYSTAL China Batch 4 1.0 22.6 8.3 29.2 0.5 0.7 1.7 1.8 2.7 0.2 26.8 13.3 0.5 0.2 84.0 2.5 4.7 0.5 1.6 0.2 0.3 0.5 69.0 559.0 2.1 6.9177.0 BIC RED CRYSTAL China Batch 5 1.2 26.8 8.0 18.3 0.6 1.2 3.1 1.6 2.5 0.5 25.4 15.8 0.9 0.2 218.1 1.9 4.7 0.3 1.4 0.2 0.3 3.1 77.4 865.7 6.5 6.6178.0 BIC RED CRYSTAL China Batch 5 1.4 31.2 6.1 17.8 0.5 1.1 2.7 1.8 2.2 0.5 25.4 15.7 1.0 0.2 223.7 1.5 2.7 0.2 1.1 0.3 0.3 2.8 76.1 905.6 5.0 6.6179.0 BIC RED CRYSTAL China Batch 5 1.7 25.1 6.3 20.6 0.4 1.2 2.9 1.4 2.2 0.4 23.6 11.2 1.2 0.2 216.6 2.6 5.3 0.7 2.5 0.4 0.4 2.9 82.8 804.0 5.0 5.9180.0 BIC RED CRYSTAL China Batch 5 1.1 21.8 7.7 17.8 0.5 1.3 2.2 1.2 2.6 0.5 28.0 11.2 0.8 0.4 268.9 2.0 4.2 0.4 1.7 0.2 0.4 3.8 78.0 814.6 5.3 6.8181.0 BIC RED CRYSTAL China Batch 5 1.7 29.9 6.3 17.8 0.5 0.9 2.3 1.0 2.6 0.4 27.6 12.6 0.8 0.3 217.0 2.0 4.0 0.4 2.0 0.4 0.3 2.6 74.1 932.3 5.9 5.0182.0 BIC RED CRYSTAL China Batch 6 0.6 8.0 7.6 22.0 0.2 0.7 2.0 1.2 3.0 0.4 20.2 11.8 0.3 0.1 28.9 2.9 5.6 0.5 2.0 0.3 0.5 2.0 77.1 811.8 3.9 6.1183.0 BIC RED CRYSTAL China Batch 6 0.7 11.0 7.4 25.8 0.2 0.8 2.0 1.6 3.9 0.5 24.9 13.0 0.3 0.3 27.2 2.3 5.1 0.5 2.1 0.4 0.5 1.3 81.9 805.3 4.4 6.5184.0 BIC RED CRYSTAL China Batch 6 0.5 9.4 6.2 22.3 0.3 0.6 1.5 2.2 2.2 0.5 29.7 13.9 0.2 0.2 25.9 2.8 6.3 0.7 2.4 0.4 0.6 2.7 80.7 859.0 3.3 6.1185.0 BIC RED CRYSTAL China Batch 6 0.4 6.8 6.5 25.6 0.3 0.8 2.4 1.7 3.0 0.5 24.8 12.1 0.3 0.1 30.4 2.3 5.7 0.6 2.5 0.4 0.6 1.2 90.4 785.6 3.4 6.6186.0 BIC RED CRYSTAL China Batch 6 0.3 8.9 9.3 23.4 0.3 0.8 2.4 1.3 2.3 0.4 23.0 15.0 0.3 0.2 26.2 2.4 5.8 0.6 2.5 0.3 0.6 1.5 93.6 807.8 2.9 6.8

Page 272: Development of Novel Physical (Electrostatic Detection

272

Appendix 2 continued

Fountain Pen InkConcentrations w ith * are ppm w ithout are ppbTable 5 ppm ppb

Sample Brand Manufactured Group *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr 187 Black Parker 200μL France 1 2182.7 25.1 1.6 1.1 40.6 4024.5 960.5 27.0 1.6 22922.5 0.0 0.2 247.0 8.7 2848.5 3189.6 5.2 168.6 588.9 651.7 0.5 0.2 4.5 8.2 116.8 52.9188 Black Parker 200μL France 1 1696.5 22.4 1.5 1.1 40.5 3506.2 915.8 26.9 1.7 21265.4 0.0 0.2 250.1 9.0 2967.3 3498.8 5.0 162.9 621.8 663.8 0.6 0.3 4.1 9.1 121.9 48.3189 Black Parker 200μL France 1 2551.7 34.5 1.3 1.0 37.0 3379.7 994.2 32.9 1.3 21604.7 0.0 0.2 229.5 10.0 2425.6 3247.2 4.9 149.4 579.5 712.7 0.5 0.3 4.0 8.9 115.3 45.5190 Black Parker 100μL France 1 1735.6 23.6 1.1 1.2 36.6 3223.1 991.6 30.7 1.5 20560.2 0.0 0.3 315.1 9.0 2929.8 3493.3 5.0 154.8 520.1 698.4 0.6 0.3 3.6 9.3 108.0 55.3191 Black Parker 100μL France 1 1794.9 24.5 1.4 1.7 36.1 3130.5 823.1 24.8 1.7 22479.2 0.0 0.3 239.6 10.3 2789.3 3393.4 4.7 172.1 600.7 668.2 0.4 0.3 3.9 9.0 115.1 55.4192 Black Parker 100μL France 1 2103.5 28.2 1.5 1.5 35.6 3468.0 935.9 29.7 1.3 22899.2 0.0 0.3 312.1 8.4 2669.8 3558.4 4.3 164.8 661.0 727.1 0.5 0.3 4.7 9.2 112.9 53.0193 Black Parker 50μL France 1 1752.0 24.0 1.6 1.3 34.5 3441.1 903.2 26.6 1.7 21685.3 0.0 0.2 316.4 7.6 2901.2 3500.2 4.8 162.9 518.8 701.0 0.6 0.2 4.6 9.8 106.8 52.2194 Black Parker 50μL France 1 1855.4 23.8 1.6 1.4 32.1 3449.6 843.9 25.8 1.4 20413.8 0.0 0.2 256.8 9.8 2844.6 3621.8 5.4 163.6 526.9 686.7 0.5 0.3 4.1 9.9 112.6 52.1195 Black Parker 50μL France 1 2255.5 27.8 1.6 1.9 37.1 3781.0 986.4 27.6 1.4 22250.3 0.0 0.3 252.8 8.9 2840.2 3794.2 5.3 170.2 618.9 696.6 0.5 0.3 4.0 9.0 119.9 49.4196 Black Parker 20μL France 1 2128.5 27.5 1.1 1.5 36.3 3737.6 915.8 27.4 1.6 21254.7 0.0 0.2 237.5 7.9 2773.5 3285.9 4.8 169.6 602.3 723.4 0.6 0.3 4.0 9.1 118.7 51.0197 Black Parker 20μL France 1 2208.2 28.3 1.8 1.3 36.2 3979.5 975.2 31.6 1.7 21078.4 0.0 0.3 248.2 8.3 2724.7 3376.5 5.2 164.3 566.0 752.0 0.7 0.3 4.3 9.3 112.7 47.8198 Black Parker 20μL France 1 2502.1 31.3 1.5 1.1 39.3 3300.0 949.0 27.8 1.6 21873.4 0.0 0.2 232.5 8.1 2876.8 3308.6 4.4 154.5 615.1 715.0 0.6 0.4 4.1 9.1 113.0 52.6199 Blue Parker 200μL France 2 799.9 3.9 1.7 0.2 1.7 881.4 17.8 12.5 2.2 23.9 0.0 0.1 99.9 4.0 13.5 22.3 1.0 9.4 84.1 348.8 0.1 0.2 1.8 5.5 34.6 11.7200 Blue Parker 200μL France 2 780.4 4.1 1.0 0.3 1.7 920.6 17.5 12.0 2.4 23.8 0.0 0.0 103.3 5.0 17.4 23.5 1.2 7.0 76.6 358.9 0.2 0.2 1.6 5.4 37.4 11.7201 Blue Parker 200μL France 2 775.9 4.0 1.6 0.3 1.7 899.9 17.4 12.3 2.4 23.2 0.0 0.1 98.1 4.5 17.0 24.3 1.1 8.0 71.3 235.0 0.1 0.2 2.0 5.0 35.5 10.4202 Blue Parker 100μL France 2 831.8 4.6 1.1 0.2 1.3 961.6 17.9 12.0 2.5 24.0 0.0 0.1 94.9 5.1 12.6 29.4 1.2 7.3 75.3 283.6 0.2 0.2 1.6 5.2 35.9 12.9203 Blue Parker 100μL France 2 822.4 4.5 1.7 0.2 1.4 953.7 18.4 13.1 2.2 23.0 0.0 0.1 96.5 4.7 12.9 22.7 1.1 8.5 74.1 349.6 0.1 0.2 1.5 5.2 33.8 12.6204 Blue Parker 100μL France 2 810.8 4.6 1.3 0.3 1.3 968.4 17.5 13.9 2.4 21.8 0.0 0.1 103.8 5.2 17.1 22.4 1.1 9.0 84.6 326.6 0.1 0.3 1.9 5.7 32.5 14.2205 Blue Parker 50μL France 2 858.4 5.0 1.4 0.2 1.2 984.1 18.5 12.3 3.3 21.4 0.0 0.1 99.7 5.2 13.4 26.4 1.1 6.5 74.1 378.7 0.1 0.3 1.6 5.0 32.7 13.2206 Blue Parker 50μL France 2 814.7 5.1 1.9 0.3 1.3 983.2 17.5 13.1 3.5 21.7 0.0 0.1 106.8 5.5 16.7 24.2 1.1 7.8 92.1 282.3 0.2 0.3 1.6 4.8 32.3 12.6207 Blue Parker 50μL France 2 882.2 4.6 1.6 0.3 2.0 994.4 17.1 13.9 2.9 22.9 0.0 0.1 105.6 5.6 13.0 21.6 1.1 7.3 80.5 295.6 0.2 0.4 1.8 4.8 36.4 14.6208 Blue Parker 20μL France 2 856.6 3.7 1.2 0.3 1.6 998.8 17.6 13.2 3.1 22.7 0.0 0.1 92.7 4.7 16.6 21.7 1.9 8.6 81.2 239.5 0.2 0.2 1.5 3.6 48.9 13.5209 Blue Parker 20μL France 2 858.7 3.5 1.6 0.3 1.7 961.2 18.6 13.3 3.0 23.5 0.0 0.1 86.1 4.2 13.1 27.5 1.1 7.0 90.0 296.8 0.1 0.4 1.9 3.7 40.2 15.6210 Blue Parker 20μL France 2 847.6 3.7 1.3 0.2 2.0 911.6 17.8 13.9 3.1 21.3 0.0 0.1 105.0 5.0 19.7 30.3 1.1 8.4 72.5 331.9 0.1 0.4 1.5 4.9 35.6 12.6211 Black Sheaffer 200μL Slovenia 3 731.2 9.6 0.8 0.4 2.2 2124.9 966.5 49.7 1.1 27065.1 0.0 0.3 270.5 4.4 45.6 111.9 0.6 14.7 13.1 453.3 0.2 0.3 22.1 6.6 80.5 92.4212 Black Sheaffer 200μL Slovenia 3 732.0 9.2 0.9 0.5 2.2 2045.6 957.6 50.4 1.1 28048.9 0.0 0.3 276.2 4.7 41.5 110.3 0.6 13.9 14.9 507.4 0.2 0.2 21.6 6.3 80.8 94.7213 Black Sheaffer 200μL Slovenia 3 736.1 9.3 1.0 0.5 2.6 2035.8 896.1 48.7 1.1 26537.9 0.0 0.2 269.6 4.3 43.2 108.7 0.6 13.0 15.7 510.3 0.2 0.2 21.2 6.1 86.0 93.2214 Black Sheaffer 100μL Slovenia 3 734.9 9.6 1.1 0.5 2.5 2277.3 917.5 48.4 1.3 27403.3 0.0 0.3 245.7 4.8 51.5 110.6 0.6 14.0 15.9 464.6 0.2 0.3 21.8 6.3 81.4 97.9215 Black Sheaffer 100μL Slovenia 3 769.2 10.2 1.0 0.5 3.0 2139.6 901.5 51.1 1.6 27913.5 0.0 0.3 269.6 4.9 46.9 118.0 0.6 12.3 13.2 546.9 0.2 0.3 20.9 7.2 83.9 93.7216 Black Sheaffer 100μL Slovenia 3 720.1 10.2 1.0 0.4 3.1 2196.4 902.1 50.9 1.7 27461.2 0.0 0.3 284.0 4.8 52.4 118.8 0.6 12.3 13.0 509.3 0.3 0.2 22.5 6.9 81.8 96.6217 Black Sheaffer 50μL Slovenia 3 730.7 10.0 0.8 0.5 2.9 2177.9 935.8 51.2 1.5 28311.6 0.0 0.2 257.3 4.7 54.6 121.1 0.7 12.3 14.1 565.1 0.2 0.3 22.2 6.7 88.2 97.7218 Black Sheaffer 50μL Slovenia 3 759.8 10.0 0.8 0.5 2.7 2292.2 955.8 50.9 1.6 27646.7 0.0 0.3 267.9 3.9 49.1 121.6 0.6 13.9 14.2 487.0 0.3 0.3 21.2 6.6 86.0 114.6219 Black Sheaffer 50μL Slovenia 3 723.5 10.7 0.8 0.5 3.1 2173.4 1003.0 53.4 1.5 28659.2 0.0 0.3 253.5 4.0 45.0 125.4 0.7 12.9 14.7 467.2 0.2 0.2 21.8 6.4 87.8 109.0220 Black Sheaffer 20μL Slovenia 3 738.5 10.1 0.9 0.4 2.7 2212.8 974.6 50.5 1.4 29001.3 0.0 0.2 260.7 4.3 45.7 115.7 0.6 13.0 15.6 450.3 0.2 0.3 22.4 7.1 84.5 99.3221 Black Sheaffer 20μL Slovenia 3 726.7 10.9 0.9 0.5 2.5 2173.8 983.2 51.3 1.5 27858.0 0.0 0.2 280.0 4.1 41.2 115.2 0.6 13.6 14.3 474.6 0.3 0.2 20.9 7.2 81.5 117.1222 Black Sheaffer 20μL Slovenia 3 736.5 9.3 0.9 0.5 2.7 2211.5 959.3 51.1 1.6 28974.5 0.0 0.2 241.4 3.9 44.6 120.5 0.6 12.9 15.7 447.1 0.2 0.3 20.7 7.4 83.2 113.9223 Black Sheaffer (Bottle 2) 200μL Slovenia 4 728.5 9.0 0.9 0.7 2.7 2530.3 951.3 48.9 4.9 27437.9 0.0 0.3 208.3 7.2 39.8 143.6 0.6 12.0 23.3 489.7 0.2 0.3 19.5 6.8 77.5 89.8224 Black Sheaffer (Bottle 2) 200μL Slovenia 4 708.1 8.8 0.7 0.7 2.6 2561.0 933.6 47.2 4.9 26233.8 0.0 0.3 218.3 4.5 39.5 154.8 0.6 11.0 26.0 475.2 0.1 0.5 18.8 6.8 75.4 87.8225 Black Sheaffer (Bottle 2) 200μL Slovenia 4 704.0 8.8 0.8 0.7 2.3 2593.4 953.1 47.3 5.2 27339.4 0.0 0.3 239.2 6.6 39.8 148.6 0.6 11.8 24.9 501.1 0.2 0.4 19.1 7.3 79.3 90.8226 Black Sheaffer (Bottle 2) 100μL Slovenia 4 739.9 9.4 0.8 0.6 3.2 2441.4 920.8 47.7 5.5 28414.5 0.0 0.4 225.3 8.9 41.5 133.7 0.7 11.7 24.6 448.0 0.2 0.3 18.6 7.4 85.1 88.4227 Black Sheaffer (Bottle 2) 100μL Slovenia 4 712.9 9.0 0.8 0.6 3.4 2429.9 922.9 47.9 5.5 27684.9 0.0 0.2 248.1 8.1 43.9 148.9 0.6 17.4 31.5 467.0 0.2 0.3 18.9 7.6 83.5 88.0228 Black Sheaffer (Bottle 2) 100μL Slovenia 4 697.4 9.9 0.9 0.6 3.4 2453.1 938.8 47.9 5.5 27456.2 0.0 0.3 232.1 7.3 54.0 136.2 0.6 12.4 16.8 492.2 0.1 0.3 18.8 6.1 82.3 85.8229 Black Sheaffer (Bottle 2) 50μL Slovenia 4 787.1 9.1 0.7 0.5 2.1 2581.7 981.4 48.8 5.4 28193.4 0.0 0.3 245.4 9.7 49.6 146.4 0.5 14.2 24.5 545.1 0.2 0.5 19.4 7.3 82.2 94.4230 Black Sheaffer (Bottle 2) 50μL Slovenia 4 783.0 8.1 0.9 0.7 4.0 2612.6 985.3 45.2 5.7 26728.9 0.0 0.4 216.3 9.5 48.8 153.1 0.6 15.7 24.6 496.9 0.2 0.4 18.9 7.4 78.2 91.9231 Black Sheaffer (Bottle 2) 50μL Slovenia 4 742.4 9.9 0.8 0.6 3.9 2656.2 1065.7 49.0 5.1 29968.5 0.0 0.4 225.1 8.6 50.7 138.1 0.7 14.6 25.7 496.3 0.2 0.4 18.7 5.8 87.7 84.4232 Black Sheaffer (Bottle 2) 20μL Slovenia 4 775.1 9.3 0.8 0.7 3.9 2665.5 1049.6 49.5 4.9 27979.6 0.0 0.4 207.0 6.2 63.9 147.5 0.5 15.8 22.6 360.1 0.1 0.5 22.5 6.4 81.9 94.1233 Black Sheaffer (Bottle 2) 20μL Slovenia 4 810.0 9.2 0.9 0.7 4.0 2700.2 1071.3 45.6 5.4 27727.3 0.1 0.4 236.1 7.7 43.4 139.2 0.6 12.2 29.5 492.4 0.1 0.4 19.3 5.6 85.0 95.2234 Black Sheaffer (Bottle 2) 20μL Slovenia 4 750.2 9.1 0.8 0.7 4.0 2693.7 1051.6 45.4 4.6 29147.1 0.0 0.3 218.0 7.0 55.4 156.0 0.6 15.6 26.0 422.8 0.2 0.4 18.6 5.8 88.8 91.8

Page 273: Development of Novel Physical (Electrostatic Detection

273

Appendix 2 continued

Fountain Pen InkConcentrations w ith * are ppm w ithout are ppbTable 5

Sample Brand Manufactured Group Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U 187 Black Parker 200μL France 1 0.5 8.5 0.6 18.3 0.0 0.0 0.1 1.9 0.5 0.5 218.5 1.5 0.1 0.4 961.6 9.5 19.8 1.7 4.9 0.4 0.3 0.1 2.1 47.9 0.2 0.1188 Black Parker 200μL France 1 0.4 8.4 0.7 29.1 0.0 0.0 0.1 1.9 0.4 0.6 180.9 1.1 0.1 0.4 861.9 8.3 18.7 1.6 4.2 0.4 0.3 0.2 2.0 41.6 0.3 0.1189 Black Parker 200μL France 1 0.6 9.4 0.7 33.7 0.0 0.0 0.2 2.1 0.6 0.5 225.8 1.4 0.1 0.6 913.2 12.6 28.8 2.4 6.5 0.5 0.4 0.1 2.2 43.1 0.2 0.1190 Black Parker 100μL France 1 0.5 7.8 0.8 30.4 0.0 0.0 0.1 1.6 0.6 0.7 195.4 1.9 0.1 0.4 900.3 8.6 18.2 1.6 4.4 0.4 0.3 0.1 1.8 40.5 0.3 0.1191 Black Parker 100μL France 1 0.4 9.7 0.8 33.6 0.0 0.0 0.2 2.0 0.5 0.6 222.2 1.5 0.1 0.4 997.9 10.0 20.8 1.8 5.0 0.4 0.3 0.2 2.1 44.4 0.4 0.1192 Black Parker 100μL France 1 0.5 9.7 0.8 32.0 0.0 0.0 0.2 2.3 0.6 0.5 221.3 1.5 0.1 0.6 963.1 12.3 28.1 2.3 6.3 0.5 0.5 0.1 2.8 44.8 0.2 0.2193 Black Parker 50μL France 1 0.5 9.9 0.8 28.1 0.0 0.0 0.1 2.3 0.5 0.6 199.2 1.3 0.1 0.4 919.5 8.6 18.1 1.6 4.4 0.4 0.3 0.2 2.4 40.2 0.2 0.2194 Black Parker 50μL France 1 0.5 9.0 0.8 31.3 0.0 0.0 0.1 2.3 0.4 0.5 213.3 2.0 0.1 0.4 951.4 9.2 19.3 1.7 4.6 0.4 0.3 0.2 1.9 43.2 0.2 0.1195 Black Parker 50μL France 1 0.5 10.6 0.9 30.8 0.0 0.0 0.2 2.4 0.6 0.5 224.0 1.7 0.1 0.6 947.8 13.7 29.0 2.6 7.3 0.7 0.7 0.1 2.9 47.4 0.4 0.2196 Black Parker 20μL France 1 0.5 9.9 1.0 32.4 0.0 0.0 0.2 2.4 0.5 0.5 201.8 2.1 0.1 0.6 912.4 11.0 23.0 2.1 5.9 0.5 0.4 0.1 2.9 45.5 0.3 0.2197 Black Parker 20μL France 1 0.5 9.6 0.7 37.5 0.0 0.0 0.2 2.0 0.5 0.5 216.6 1.9 0.1 0.5 983.3 11.8 24.3 2.2 6.3 0.6 0.5 0.1 1.9 52.1 0.2 0.2198 Black Parker 20μL France 1 0.5 10.3 0.8 42.8 0.0 0.0 0.2 2.3 0.5 0.5 212.6 2.3 0.1 0.7 1036.0 13.1 27.7 2.4 6.8 0.6 0.5 0.3 2.6 45.1 0.3 0.1199 Blue Parker 200μL France 2 0.1 4.0 0.7 25.6 0.0 0.0 0.0 0.6 0.1 0.5 129.1 1.4 0.0 1.2 23.3 0.6 2.6 0.2 0.6 0.1 0.0 0.0 2.8 7.0 0.0 0.0200 Blue Parker 200μL France 2 0.2 2.5 0.9 27.7 0.0 0.0 0.0 0.5 0.1 0.5 140.1 1.2 0.0 1.3 22.3 0.5 2.7 0.2 0.6 0.1 0.0 0.1 2.6 5.5 0.0 0.0201 Blue Parker 200μL France 2 0.1 2.5 0.6 24.6 0.0 0.0 0.0 0.7 0.1 0.4 123.4 1.4 0.0 1.2 20.1 0.6 1.6 0.2 0.6 0.0 0.0 0.1 2.5 6.9 0.0 0.0202 Blue Parker 100μL France 2 0.1 2.1 0.5 28.0 0.0 0.0 0.0 0.7 0.1 0.5 145.1 1.3 0.0 1.4 20.5 0.8 2.9 0.2 0.6 0.1 0.0 0.1 2.9 7.7 0.0 0.0203 Blue Parker 100μL France 2 0.2 2.3 0.6 26.5 0.0 0.0 0.0 0.6 0.1 0.4 136.7 1.5 0.0 1.3 27.4 0.6 2.5 0.2 0.6 0.0 0.0 0.0 3.3 5.7 0.0 0.0204 Blue Parker 100μL France 2 0.1 2.9 0.7 25.1 0.0 0.0 0.0 0.6 0.1 0.5 127.6 1.2 0.0 1.2 24.0 0.7 2.9 0.2 0.7 0.0 0.0 0.1 2.5 6.5 0.0 0.0205 Blue Parker 50μL France 2 0.2 3.8 1.0 24.0 0.0 0.0 0.0 0.7 0.1 0.5 126.8 1.2 0.0 1.3 23.7 0.9 3.4 0.2 0.5 0.0 0.0 0.1 3.0 6.5 0.0 0.0206 Blue Parker 50μL France 2 0.3 2.1 0.6 24.5 0.0 0.0 0.0 0.8 0.1 0.5 130.6 1.7 0.1 1.2 20.1 0.5 1.7 0.2 0.7 0.0 0.0 0.0 3.8 5.9 0.0 0.0207 Blue Parker 50μL France 2 0.1 3.9 0.6 27.8 0.0 0.0 0.0 0.7 0.1 0.5 142.7 1.5 0.0 1.3 26.5 0.6 2.2 0.2 0.6 0.0 0.1 0.1 2.3 6.2 0.0 0.0208 Blue Parker 20μL France 2 0.2 2.7 0.6 26.8 0.0 0.0 0.0 0.7 0.1 0.5 136.7 1.8 0.0 1.6 21.5 0.9 3.3 0.2 0.6 0.0 0.0 0.1 3.8 6.4 0.0 0.0209 Blue Parker 20μL France 2 0.2 2.3 0.6 31.1 0.0 0.0 0.0 0.5 0.1 0.6 155.6 1.9 0.0 1.7 23.7 0.7 3.5 0.3 0.6 0.0 0.0 0.1 2.6 5.5 0.0 0.0210 Blue Parker 20μL France 2 0.2 2.9 0.7 26.6 0.0 0.0 0.0 0.5 0.1 0.5 130.8 1.3 0.0 1.4 25.3 0.6 2.3 0.2 0.6 0.0 0.0 0.1 2.9 6.1 0.0 0.0211 Black Sheaffer 200μL Slovenia 3 0.4 19.2 0.6 10.9 0.0 0.0 0.3 0.3 0.2 0.0 5.9 1.0 0.1 0.4 157.6 0.9 1.7 0.1 0.5 0.1 0.1 0.4 2.6 5.7 0.1 0.3212 Black Sheaffer 200μL Slovenia 3 0.4 19.1 0.5 10.7 0.0 0.0 0.3 0.3 0.2 0.1 5.7 0.9 0.1 0.4 159.6 0.5 1.0 0.1 0.3 0.1 0.2 0.4 2.6 5.7 0.0 0.3213 Black Sheaffer 200μL Slovenia 3 0.5 19.6 0.6 10.1 0.0 0.0 0.2 0.3 0.2 0.1 5.6 1.0 0.1 0.3 150.9 0.8 0.9 0.1 0.4 0.1 0.1 0.4 3.2 5.7 0.1 0.3214 Black Sheaffer 100μL Slovenia 3 0.5 21.0 0.6 10.7 0.0 0.0 0.3 0.2 0.2 0.0 6.3 1.0 0.1 0.4 161.9 0.8 1.0 0.1 0.5 0.1 0.1 0.5 3.6 5.5 0.1 0.3215 Black Sheaffer 100μL Slovenia 3 0.5 20.8 0.7 11.1 0.0 0.0 0.3 0.3 0.1 0.0 6.3 1.1 0.1 0.4 157.5 0.6 1.2 0.1 0.4 0.1 0.1 0.5 4.1 5.3 0.1 0.4216 Black Sheaffer 100μL Slovenia 3 0.4 21.1 0.6 11.9 0.0 0.0 0.3 0.3 0.2 0.1 6.0 1.0 0.1 0.4 159.1 0.9 1.0 0.1 0.4 0.1 0.1 0.5 3.1 6.4 0.1 0.3217 Black Sheaffer 50μL Slovenia 3 0.6 22.7 0.7 11.0 0.0 0.0 0.3 0.2 0.2 0.1 6.9 1.1 0.1 0.4 168.8 1.0 1.8 0.2 0.4 0.2 0.1 0.5 3.3 5.4 0.1 0.4218 Black Sheaffer 50μL Slovenia 3 0.4 20.4 0.5 11.4 0.0 0.0 0.3 0.3 0.2 0.1 6.8 1.0 0.1 0.4 161.3 0.8 1.2 0.1 0.3 0.1 0.1 0.4 3.1 5.6 0.1 0.4219 Black Sheaffer 50μL Slovenia 3 0.6 20.6 0.6 11.5 0.0 0.0 0.3 0.3 0.3 0.1 6.7 1.1 0.1 0.4 159.6 0.8 1.2 0.1 0.3 0.1 0.1 0.5 3.9 6.0 0.1 0.4220 Black Sheaffer 20μL Slovenia 3 0.8 24.5 0.6 11.8 0.0 0.0 0.3 0.2 0.2 0.0 6.6 0.9 0.1 0.4 158.4 0.8 1.6 0.2 0.3 0.2 0.2 0.4 3.0 6.0 0.1 0.4221 Black Sheaffer 20μL Slovenia 3 0.4 21.4 0.4 11.2 0.0 0.0 0.3 0.3 0.3 0.1 6.9 1.1 0.1 0.3 167.8 1.0 1.6 0.2 0.3 0.1 0.1 0.4 3.1 6.0 0.1 0.3222 Black Sheaffer 20μL Slovenia 3 0.8 23.2 0.5 11.9 0.0 0.0 0.3 0.2 0.2 0.0 6.4 1.0 0.1 0.4 162.4 0.7 1.8 0.1 0.3 0.2 0.2 0.4 3.1 5.5 0.1 0.3223 Black Sheaffer (Bottle 2) 200μL Slovenia 4 0.4 17.0 1.5 10.6 0.0 0.0 0.2 0.1 0.2 0.1 5.4 0.9 0.1 0.3 124.3 0.7 1.5 0.1 0.4 0.1 0.1 0.4 2.5 3.4 0.0 0.3224 Black Sheaffer (Bottle 2) 200μL Slovenia 4 0.3 15.4 1.8 9.9 0.0 0.0 0.2 0.1 0.1 0.1 5.1 1.0 0.1 0.3 123.0 0.4 0.8 0.1 0.3 0.1 0.1 0.4 2.4 3.4 0.0 0.3225 Black Sheaffer (Bottle 2) 200μL Slovenia 4 0.4 16.6 1.3 10.6 0.0 0.0 0.2 0.1 0.2 0.1 4.7 0.9 0.1 0.3 127.2 0.5 0.9 0.1 0.4 0.1 0.1 0.4 2.1 3.8 0.0 0.3226 Black Sheaffer (Bottle 2) 100μL Slovenia 4 0.5 18.4 1.5 11.0 0.0 0.0 0.3 0.1 0.2 0.1 6.3 1.6 0.1 0.4 150.9 0.9 2.1 0.2 0.5 0.1 0.1 0.4 3.7 4.3 0.1 0.4227 Black Sheaffer (Bottle 2) 100μL Slovenia 4 0.5 17.5 1.2 11.3 0.0 0.0 0.2 0.2 0.2 0.1 5.5 1.0 0.1 0.3 134.1 0.8 1.3 0.1 0.5 0.1 0.1 0.4 3.3 4.7 0.1 0.4228 Black Sheaffer (Bottle 2) 100μL Slovenia 4 0.3 16.1 1.2 10.8 0.0 0.0 0.2 0.1 0.2 0.1 4.7 0.8 0.1 0.4 135.3 0.5 1.1 0.1 0.3 0.1 0.0 0.4 3.0 3.8 0.1 0.3229 Black Sheaffer (Bottle 2) 50μL Slovenia 4 0.4 18.8 2.2 12.1 0.0 0.0 0.3 0.2 0.2 0.1 5.7 1.3 0.1 0.4 135.5 0.6 1.3 0.1 0.3 0.1 0.0 0.5 2.3 4.5 0.1 0.5230 Black Sheaffer (Bottle 2) 50μL Slovenia 4 0.4 17.6 2.7 10.7 0.0 0.0 0.2 0.1 0.1 0.1 5.8 1.3 0.1 0.4 132.9 0.6 0.9 0.1 0.3 0.1 0.1 0.4 3.0 4.6 0.1 0.3231 Black Sheaffer (Bottle 2) 50μL Slovenia 4 0.4 16.9 1.8 13.0 0.0 0.0 0.3 0.1 0.2 0.1 5.9 1.6 0.1 0.5 132.3 1.0 1.9 0.2 0.7 0.2 0.0 0.5 2.4 4.4 0.1 0.5232 Black Sheaffer (Bottle 2) 20μL Slovenia 4 0.4 18.9 2.1 12.4 0.0 0.0 0.2 0.2 0.1 0.1 5.3 1.1 0.1 0.4 126.3 0.7 1.3 0.1 0.6 0.1 0.1 0.5 2.5 3.5 0.0 0.4233 Black Sheaffer (Bottle 2) 20μL Slovenia 4 0.3 17.0 3.0 12.0 0.0 0.0 0.3 0.2 0.2 0.1 4.8 1.8 0.0 0.5 137.5 0.8 1.6 0.1 0.4 0.1 0.1 0.5 3.1 4.8 0.1 0.4234 Black Sheaffer (Bottle 2) 20μL Slovenia 4 0.5 15.2 1.9 13.1 0.0 0.0 0.3 0.2 0.1 0.2 4.8 1.4 0.0 0.5 141.5 0.7 1.4 0.1 0.3 0.1 0.0 0.5 3.9 4.5 0.1 0.4

Page 274: Development of Novel Physical (Electrostatic Detection

274

Appendix 2 continued

Fountain Pen InkConcentrations w ith * are ppm w ithout are ppbTable 5 ppm ppb

Sample Brand Manufactured Group *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr 235 Blue Sheaffer 200μL Slovenia 5 1264.4 7.1 0.7 0.6 2.0 1492.9 5.0 76.8 3.2 32.8 0.0 0.2 85.9 6.0 36.8 25.1 3.9 114.1 32.2 1710.4 0.5 0.5 7.2 5.0 6.8 259.4236 Blue Sheaffer 200μL Slovenia 5 1149.6 6.6 0.6 0.6 2.0 1430.2 5.0 70.8 3.1 34.3 0.0 0.2 80.2 6.8 36.9 23.0 3.8 117.8 32.7 1511.9 0.4 0.4 6.4 4.8 5.6 223.2237 Blue Sheaffer 200μL Slovenia 5 1116.0 6.7 1.0 0.8 2.1 1451.5 4.1 71.5 3.6 32.8 0.0 0.2 87.6 5.0 36.4 23.5 3.4 115.2 37.7 1560.0 0.4 0.5 6.3 4.8 6.0 233.3238 Blue Sheaffer 100μL Slovenia 5 1146.5 7.2 0.9 0.5 3.5 1440.7 4.4 75.9 3.4 26.9 0.0 0.2 92.4 6.9 34.0 24.3 3.5 103.5 32.6 1757.1 0.5 0.6 6.2 4.6 6.3 240.0239 Blue Sheaffer 100μL Slovenia 5 1138.4 7.6 0.9 0.7 3.2 1437.4 4.1 76.5 3.7 28.1 0.0 0.2 86.9 5.8 40.6 24.1 3.6 102.5 34.7 1754.6 0.4 0.5 6.7 5.1 6.1 249.5240 Blue Sheaffer 100μL Slovenia 5 1133.3 7.2 1.0 0.7 2.9 1440.2 4.4 70.8 3.5 29.9 0.0 0.2 85.9 6.1 44.9 23.5 3.6 102.7 32.0 1858.9 0.4 0.5 6.7 5.3 6.0 248.6241 Blue Sheaffer 50μL Slovenia 5 1277.2 7.5 0.8 0.7 2.8 1465.3 5.0 71.7 3.8 37.9 0.0 0.1 85.3 7.6 44.1 22.5 3.8 117.7 36.9 1672.8 0.6 0.5 6.4 4.7 6.9 253.5242 Blue Sheaffer 50μL Slovenia 5 1229.7 7.1 0.7 0.8 3.0 1513.3 5.6 71.9 2.9 30.2 0.0 0.2 92.6 6.6 40.4 24.4 3.4 117.6 36.7 1675.6 0.4 0.5 6.1 4.4 6.9 249.9243 Blue Sheaffer 50μL Slovenia 5 1281.7 7.2 0.8 0.8 3.1 1532.6 5.2 71.0 3.5 30.7 0.0 0.2 94.5 6.6 38.6 25.2 3.6 115.0 36.7 1739.0 0.4 0.5 7.1 5.0 7.8 260.1244 Blue Sheaffer 20μL Slovenia 5 1302.1 6.9 0.9 0.8 2.8 1470.9 4.8 78.3 3.1 40.7 0.0 0.2 94.6 5.7 36.3 23.7 3.6 112.2 34.8 1676.7 0.4 0.5 7.4 4.6 6.8 255.2245 Blue Sheaffer 20μL Slovenia 5 1230.4 7.1 0.9 0.7 3.0 1493.8 4.8 76.3 3.2 34.9 0.0 0.2 85.4 5.9 35.1 21.5 3.3 108.5 33.2 1679.2 0.4 0.5 7.3 4.5 6.9 288.7246 Blue Sheaffer 20μL Slovenia 5 1276.3 7.0 0.6 0.8 2.7 1454.1 4.8 75.0 3.7 36.7 0.0 0.2 88.0 5.4 41.9 23.8 3.1 120.9 40.9 1638.1 0.4 0.5 6.1 5.0 6.7 275.6247 Blue Sheaffer (Bottle 2) 200μL Slovenia 6 171.2 9.2 1.5 0.3 1.4 1086.7 2.2 27.8 1.8 7.6 0.0 0.0 147.3 5.2 19.3 14.1 2.2 58.5 49.6 526.0 0.1 0.3 2.1 2.4 3.3 132.0248 Blue Sheaffer (Bottle 2) 200μL Slovenia 6 163.4 9.4 1.6 0.2 1.3 1086.4 2.0 28.1 1.8 7.2 0.0 0.1 146.3 5.6 17.7 14.9 2.2 58.2 53.2 551.5 0.1 0.2 1.6 2.1 2.7 130.6249 Blue Sheaffer (Bottle 2) 200μL Slovenia 6 165.2 9.4 1.5 0.3 1.4 1075.3 2.0 28.4 1.9 7.4 0.0 0.0 144.8 6.0 20.7 13.3 2.2 62.8 46.6 543.4 0.1 0.3 1.7 2.1 2.6 134.6250 Blue Sheaffer (Bottle 2) 100μL Slovenia 6 170.6 9.7 1.6 0.3 1.4 1177.8 2.6 31.7 1.1 8.3 0.0 0.0 150.7 6.6 16.8 14.0 2.5 59.7 46.5 510.2 0.1 0.4 2.2 2.7 3.9 136.0251 Blue Sheaffer (Bottle 2) 100μL Slovenia 6 161.7 9.9 1.8 0.3 1.3 1167.4 2.4 28.4 1.6 8.5 0.0 0.0 144.3 6.3 16.6 14.6 2.8 60.4 42.3 561.9 0.1 0.4 1.9 2.0 2.8 139.9252 Blue Sheaffer (Bottle 2) 100μL Slovenia 6 177.7 9.9 2.0 0.2 1.3 1127.1 2.2 31.0 1.5 8.6 0.0 0.0 150.0 6.9 17.6 15.1 2.5 61.7 43.7 548.3 0.1 0.4 2.1 2.7 3.0 142.9253 Blue Sheaffer (Bottle 2) 50μL Slovenia 6 173.1 9.8 1.7 0.2 1.4 1057.5 2.9 33.0 1.8 7.7 0.0 0.0 149.7 5.4 16.9 16.3 2.6 59.9 49.6 570.3 0.1 0.3 2.0 2.6 3.1 132.3254 Blue Sheaffer (Bottle 2) 50μL Slovenia 6 176.1 9.8 1.9 0.3 1.4 1043.0 2.4 33.2 1.8 8.4 0.0 0.0 140.9 6.4 17.4 15.2 2.9 62.7 51.5 584.0 0.1 0.4 2.0 2.8 3.0 140.6255 Blue Sheaffer (Bottle 2) 50μL Slovenia 6 183.0 9.0 1.7 0.3 1.4 1028.3 2.4 29.7 1.6 8.5 0.0 0.0 150.5 6.7 16.5 15.4 2.2 57.0 47.4 546.7 0.1 0.4 2.2 3.0 2.6 136.0256 Blue Sheaffer (Bottle 2) 20μL Slovenia 6 177.3 9.3 1.6 0.2 1.3 1116.2 2.4 28.8 1.9 8.6 0.0 0.0 155.0 7.2 18.4 17.0 2.8 58.7 44.4 619.1 0.1 0.4 2.1 3.1 2.8 132.7257 Blue Sheaffer (Bottle 2) 20μL Slovenia 6 176.1 9.2 1.7 0.2 1.4 1090.4 2.5 27.2 1.9 9.6 0.0 0.0 137.8 6.9 17.5 16.0 2.4 56.5 43.5 597.0 0.1 0.4 1.9 3.2 2.5 135.9258 Blue Sheaffer (Bottle 2) 20μL Slovenia 6 173.4 9.4 1.7 0.3 1.5 1037.6 2.5 26.5 1.8 12.9 0.0 0.1 139.5 6.1 16.9 16.2 3.0 55.9 49.9 588.0 0.1 0.4 2.3 2.7 2.5 137.6259 Red Sheaffer 200μL Slovenia 7 4405.2 15.6 1.4 2.1 18.3 4499.1 546.6 64.4 1.1 13.2 0.0 0.4 229.1 6.1 38.8 157.1 0.5 4.3 47.0 181.6 0.2 0.4 5.5 23.1 24.8 567.7260 Red Sheaffer 200μL Slovenia 7 4310.9 15.7 1.5 1.4 17.8 4492.3 553.3 65.8 1.0 11.1 0.0 0.5 223.9 6.9 31.2 160.7 0.3 5.8 43.6 205.9 0.2 0.5 4.5 22.8 26.9 567.2261 Red Sheaffer 200μL Slovenia 7 4232.4 15.7 2.6 1.5 16.9 4364.9 532.3 66.5 1.0 10.8 0.0 0.4 213.0 7.2 35.8 146.5 0.4 5.9 38.9 194.8 0.2 0.5 6.0 22.2 26.1 578.0262 Red Sheaffer 100μL Slovenia 7 4355.6 15.5 2.1 1.7 18.5 5055.1 546.5 68.4 1.0 13.9 0.0 0.5 215.7 6.2 35.7 150.9 0.3 6.2 58.0 203.7 0.2 0.5 4.6 21.2 28.9 544.8263 Red Sheaffer 100μL Slovenia 7 4477.6 16.8 1.8 1.2 17.6 4795.0 530.4 63.1 1.3 10.5 0.0 0.4 215.0 6.8 34.9 154.3 0.2 5.7 42.5 179.7 0.2 0.5 5.0 20.5 26.9 510.7264 Red Sheaffer 100μL Slovenia 7 4580.2 15.2 2.5 1.1 18.2 5079.7 541.0 65.5 1.2 11.1 0.0 0.4 212.1 6.7 35.0 154.8 0.4 6.9 52.0 186.1 0.3 0.6 6.1 22.7 28.1 531.7265 Red Sheaffer 50μL Slovenia 7 4301.0 15.1 1.5 1.6 19.8 5169.1 559.4 77.0 1.3 13.4 0.0 0.5 226.4 7.1 33.6 148.0 0.3 6.1 51.9 175.2 0.2 0.4 5.4 23.4 26.1 570.9266 Red Sheaffer 50μL Slovenia 7 4459.3 15.6 2.2 1.8 19.6 4978.6 555.8 72.5 1.4 11.8 0.0 0.4 228.3 7.2 35.8 142.8 0.3 5.5 43.1 194.5 0.2 0.5 5.0 24.1 26.2 559.5267 Red Sheaffer 50μL Slovenia 7 4261.5 16.0 2.4 1.9 19.0 5002.9 535.1 66.8 1.1 12.9 0.0 0.3 217.4 7.1 37.0 161.0 0.3 5.6 41.6 189.6 0.1 0.5 6.3 22.5 25.7 582.4268 Red Sheaffer 20μL Slovenia 7 4407.8 16.5 1.7 1.7 18.2 4939.5 525.6 64.0 1.2 13.7 0.0 0.3 222.2 5.5 36.8 158.5 0.4 6.1 43.5 217.1 0.2 0.5 5.8 21.2 26.8 549.9269 Red Sheaffer 20μL Slovenia 7 4339.6 15.4 1.5 1.9 18.8 4314.9 535.9 75.5 1.2 12.6 0.0 0.3 208.8 6.9 30.6 159.2 0.3 6.3 54.8 206.4 0.2 0.5 5.0 22.5 23.1 543.0270 Red Sheaffer 20μL Slovenia 7 4264.7 15.7 1.9 1.2 18.7 4545.1 545.0 65.5 1.1 11.1 0.0 0.3 201.7 7.3 34.0 167.7 0.4 5.0 53.0 200.5 0.1 0.4 5.6 22.8 25.4 586.6

Page 275: Development of Novel Physical (Electrostatic Detection

275

Appendix 2 continued Fountain Pen InkConcentrations w ith * are ppm w ithout are ppbTable 5

Sample Brand Manufactured Group Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U 235 Blue Sheaffer 200μL Slovenia 5 0.1 8.4 0.2 467.7 0.0 0.0 0.1 0.2 0.6 0.7 197.0 0.6 0.1 0.2 81.6 0.2 0.4 0.0 0.1 0.0 0.0 0.2 12.5 9.4 0.0 0.3236 Blue Sheaffer 200μL Slovenia 5 0.1 7.4 0.2 416.9 0.0 0.0 0.1 0.2 0.5 0.6 179.5 0.5 0.0 0.2 79.3 0.2 0.4 0.0 0.1 0.0 0.0 0.2 11.3 8.0 0.0 0.3237 Blue Sheaffer 200μL Slovenia 5 0.1 7.4 0.1 430.5 0.0 0.0 0.1 0.2 0.5 0.6 180.8 0.5 0.1 0.2 71.2 0.1 0.4 0.0 0.1 0.0 0.0 0.2 11.7 8.3 0.0 0.3238 Blue Sheaffer 100μL Slovenia 5 0.1 9.5 0.1 442.8 0.0 0.0 0.2 0.1 0.6 0.6 189.7 0.6 0.1 0.3 76.0 0.1 0.3 0.0 0.1 0.0 0.0 0.2 12.5 9.1 0.0 0.3239 Blue Sheaffer 100μL Slovenia 5 0.1 7.8 0.2 459.2 0.0 0.0 0.1 0.2 0.6 0.6 201.0 0.8 0.0 0.2 75.3 0.1 0.4 0.0 0.1 0.0 0.0 0.4 13.5 9.7 0.0 0.3240 Blue Sheaffer 100μL Slovenia 5 0.1 8.2 0.1 441.5 0.0 0.0 0.1 0.1 0.6 0.6 184.6 0.6 0.1 0.2 75.8 0.2 0.5 0.0 0.1 0.0 0.0 0.2 13.1 8.6 0.0 0.3241 Blue Sheaffer 50μL Slovenia 5 0.1 7.6 0.1 445.6 0.0 0.0 0.2 0.2 0.6 0.8 200.9 0.5 0.0 0.3 85.1 0.2 0.4 0.0 0.1 0.0 0.0 0.3 12.5 8.5 0.0 0.3242 Blue Sheaffer 50μL Slovenia 5 0.1 8.7 0.1 451.3 0.0 0.0 0.2 0.1 0.6 0.7 204.4 0.6 0.0 0.2 84.4 0.2 0.5 0.0 0.2 0.0 0.0 0.2 12.7 9.2 0.0 0.3243 Blue Sheaffer 50μL Slovenia 5 0.2 8.1 0.2 463.7 0.0 0.0 0.1 0.2 0.5 0.7 205.6 0.6 0.1 0.3 87.8 0.2 0.5 0.0 0.1 0.0 0.0 0.3 13.1 9.7 0.0 0.4244 Blue Sheaffer 20μL Slovenia 5 0.1 7.6 0.2 436.3 0.0 0.0 0.1 0.2 0.6 0.6 205.6 0.5 0.1 0.4 84.4 0.2 0.5 0.0 0.1 0.0 0.0 0.3 12.4 8.5 0.0 0.3245 Blue Sheaffer 20μL Slovenia 5 0.1 7.6 0.1 437.5 0.0 0.0 0.2 0.1 0.6 0.6 205.0 0.6 0.1 0.3 78.3 0.2 0.5 0.0 0.1 0.0 0.0 0.3 12.2 8.1 0.0 0.4246 Blue Sheaffer 20μL Slovenia 5 0.1 8.6 0.1 430.4 0.0 0.0 0.2 0.2 0.5 0.6 187.3 0.6 0.1 0.3 79.7 0.2 0.5 0.0 0.1 0.0 0.0 0.2 12.8 9.4 0.0 0.4247 Blue Sheaffer (Bottle 2) 200μL Slovenia 6 0.1 1.9 0.5 103.1 0.0 0.0 0.1 0.2 0.2 0.6 187.1 1.1 0.0 0.2 118.1 0.5 1.1 0.1 0.1 0.1 0.0 0.1 4.7 4.6 0.1 0.3248 Blue Sheaffer (Bottle 2) 200μL Slovenia 6 0.2 1.8 0.5 97.4 0.0 0.0 0.1 0.1 0.2 0.5 186.2 1.2 0.0 0.3 117.7 0.6 1.2 0.1 0.2 0.1 0.0 0.1 4.3 4.2 0.1 0.2249 Blue Sheaffer (Bottle 2) 200μL Slovenia 6 0.1 2.1 0.7 101.8 0.0 0.0 0.1 0.2 0.2 0.6 200.3 1.5 0.0 0.2 122.6 0.5 1.0 0.1 0.1 0.1 0.0 0.1 4.2 3.7 0.1 0.3250 Blue Sheaffer (Bottle 2) 100μL Slovenia 6 0.1 2.2 0.5 95.5 0.0 0.0 0.0 0.2 0.2 0.6 190.5 1.6 0.0 0.3 123.2 0.4 0.9 0.1 0.2 0.1 0.0 0.1 4.7 3.8 0.1 0.3251 Blue Sheaffer (Bottle 2) 100μL Slovenia 6 0.1 1.8 0.6 95.3 0.0 0.0 0.1 0.1 0.2 0.7 199.2 1.8 0.0 0.2 123.5 0.4 0.8 0.1 0.2 0.1 0.0 0.1 4.7 3.9 0.1 0.3252 Blue Sheaffer (Bottle 2) 100μL Slovenia 6 0.1 2.1 0.6 100.5 0.0 0.0 0.1 0.2 0.2 0.7 195.7 1.5 0.0 0.3 135.9 0.4 0.7 0.1 0.2 0.1 0.0 0.1 5.0 4.7 0.1 0.3253 Blue Sheaffer (Bottle 2) 50μL Slovenia 6 0.1 2.2 0.5 92.5 0.0 0.0 0.1 0.1 0.2 0.7 200.9 1.6 0.0 0.3 135.7 0.6 1.0 0.1 0.1 0.1 0.0 0.1 5.4 4.8 0.1 0.3254 Blue Sheaffer (Bottle 2) 50μL Slovenia 6 0.1 2.1 0.7 95.0 0.0 0.0 0.1 0.2 0.2 0.7 200.9 1.6 0.1 0.2 124.2 0.6 1.1 0.1 0.1 0.1 0.0 0.1 4.8 4.0 0.1 0.3255 Blue Sheaffer (Bottle 2) 50μL Slovenia 6 0.1 1.8 0.5 98.2 0.0 0.0 0.1 0.2 0.2 0.7 195.4 1.7 0.0 0.3 127.2 0.6 1.1 0.1 0.2 0.1 0.0 0.1 6.0 3.7 0.1 0.3256 Blue Sheaffer (Bottle 2) 20μL Slovenia 6 0.2 2.2 0.6 94.5 0.0 0.0 0.1 0.2 0.2 0.6 206.5 1.4 0.1 0.2 139.8 0.6 1.2 0.1 0.2 0.1 0.0 0.1 6.1 3.8 0.1 0.3257 Blue Sheaffer (Bottle 2) 20μL Slovenia 6 0.1 1.5 0.6 96.5 0.0 0.0 0.1 0.1 0.2 0.6 202.5 1.5 0.1 0.3 122.1 0.5 1.1 0.1 0.2 0.1 0.0 0.1 5.9 3.0 0.1 0.3258 Blue Sheaffer (Bottle 2) 20μL Slovenia 6 0.1 2.1 0.7 92.9 0.0 0.0 0.1 0.1 0.1 0.6 207.5 1.4 0.0 0.2 121.5 0.5 1.4 0.1 0.2 0.1 0.0 0.1 4.7 4.5 0.0 0.3259 Red Sheaffer 200μL Slovenia 7 0.2 5.8 0.4 1.4 0.0 0.0 0.1 0.0 0.1 0.6 207.5 10.4 0.1 0.1 59.8 0.4 0.9 0.1 0.2 0.1 0.0 0.1 3.2 2.2 0.0 0.2260 Red Sheaffer 200μL Slovenia 7 0.3 6.6 0.4 1.3 0.0 0.0 0.1 0.1 0.1 0.6 215.8 10.7 0.0 0.1 60.3 0.3 1.2 0.1 0.1 0.1 0.0 0.2 2.5 3.0 0.0 0.2261 Red Sheaffer 200μL Slovenia 7 0.3 6.9 0.6 1.6 0.0 0.0 0.1 0.0 0.0 0.6 207.7 11.8 0.1 0.1 60.5 0.5 1.2 0.1 0.1 0.1 0.0 0.2 3.6 2.8 0.0 0.2262 Red Sheaffer 100μL Slovenia 7 0.2 5.8 0.3 1.5 0.0 0.0 0.1 0.1 0.0 0.7 208.4 13.4 0.1 0.1 70.3 0.5 1.0 0.1 0.2 0.1 0.0 0.1 2.9 2.7 0.0 0.2263 Red Sheaffer 100μL Slovenia 7 0.3 7.0 0.6 1.6 0.0 0.0 0.1 0.0 0.1 0.7 203.8 10.8 0.0 0.1 67.8 0.3 0.7 0.1 0.1 0.1 0.0 0.2 3.0 3.0 0.0 0.2264 Red Sheaffer 100μL Slovenia 7 0.3 5.1 0.6 1.3 0.0 0.0 0.1 0.0 0.0 0.7 213.1 10.7 0.0 0.1 69.0 0.3 0.7 0.1 0.1 0.1 0.0 0.2 2.2 2.1 0.0 0.2265 Red Sheaffer 50μL Slovenia 7 0.3 5.7 0.4 1.4 0.0 0.0 0.1 0.0 0.0 0.8 214.7 12.4 0.1 0.1 68.8 0.4 1.0 0.1 0.1 0.1 0.0 0.2 2.8 2.1 0.0 0.2266 Red Sheaffer 50μL Slovenia 7 0.2 5.9 0.5 2.1 0.0 0.0 0.1 0.0 0.0 0.8 206.9 13.4 0.0 0.1 71.9 0.5 1.3 0.1 0.2 0.1 0.0 0.1 3.4 3.5 0.0 0.2267 Red Sheaffer 50μL Slovenia 7 0.3 6.4 0.5 2.0 0.0 0.0 0.1 0.0 0.0 0.6 215.5 13.2 0.1 0.1 70.9 0.4 0.9 0.1 0.1 0.1 0.0 0.2 3.4 3.1 0.0 0.2268 Red Sheaffer 20μL Slovenia 7 0.2 6.0 0.5 2.3 0.0 0.0 0.1 0.1 0.0 0.6 216.6 14.8 0.0 0.1 70.2 0.3 0.7 0.1 0.1 0.1 0.0 0.2 3.6 3.2 0.0 0.2269 Red Sheaffer 20μL Slovenia 7 0.3 6.2 0.5 1.6 0.0 0.0 0.1 0.0 0.0 0.7 206.8 14.2 0.1 0.1 67.8 0.4 0.8 0.1 0.1 0.1 0.0 0.1 4.0 2.8 0.0 0.2270 Red Sheaffer 20μL Slovenia 7 0.3 5.9 0.5 1.7 0.0 0.0 0.1 0.0 0.0 0.6 207.5 14.4 0.1 0.1 66.0 0.4 0.9 0.1 0.1 0.1 0.0 0.2 3.4 2.6 0.0 0.2

Page 276: Development of Novel Physical (Electrostatic Detection

276

Appendix 2 continued Table 6 ppm ppb

Sample Brand Manufactured Group *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr 271 Pelikan Blue Germany 1 119.4 13.2 1.3 0.7 0.2 934.5 3.6 112.7 1.4 14.9 0.0 0.6 542.7 1.9 15.9 18.2 3.6 94.7 99.1 512.7 0.3 0.6 1.3 0.9 3.4 315.7272 Pelikan Blue Germany 1 119.7 12.8 1.3 0.8 0.2 925.3 2.7 107.4 1.4 12.5 0.0 0.5 598.2 2.1 18.9 16.7 2.8 96.0 95.9 516.5 0.2 0.7 1.0 1.1 2.9 298.9273 Pelikan Blue Germany 1 131.4 13.4 1.7 0.7 0.2 940.0 3.9 112.9 1.5 12.3 0.0 0.6 606.0 2.1 12.9 19.2 3.2 100.0 99.9 544.5 0.3 0.6 1.4 1.3 3.7 327.9274 Pelikan Black Germany 2 529.1 5.5 2.2 2.2 3.5 2559.8 11.4 5.9 1.3 209850.5 0.1 0.9 253.4 26.3 29518.1 25.7 0.9 35.3 49.5 3382.4 0.4 1.4 18.9 6.4 2.5 27.6275 Pelikan Black Germany 2 523.3 5.5 2.1 2.6 3.7 2679.2 11.2 6.8 1.3 190872.3 0.1 0.8 232.3 24.3 28278.5 28.5 1.0 34.2 48.2 3267.3 0.3 1.3 18.3 6.3 2.2 28.3276 Pelikan Black Germany 2 547.7 5.9 2.6 2.1 3.8 2784.4 12.4 6.9 1.3 199444.4 0.1 0.7 261.9 28.6 27745.5 25.1 0.9 39.2 44.0 3308.1 0.3 1.4 20.0 6.2 2.5 32.2277 Pelikan Red Germany 3 1358.5 7.3 1.5 0.9 2.1 930.0 2.7 4.9 0.6 27.2 0.0 0.2 115.9 0.6 18.8 7.0 2.1 12.3 49.7 105.3 0.1 0.6 0.5 11.1 1.0 14.6278 Pelikan Red Germany 3 1230.3 6.9 1.6 0.8 2.7 932.7 2.6 4.1 0.4 28.0 0.0 0.3 131.0 0.7 19.9 5.2 2.1 11.8 46.5 101.5 0.1 0.5 0.5 12.2 0.8 14.2279 Pelikan Red Germany 3 1235.3 7.1 1.3 0.9 2.9 1004.9 2.1 4.9 0.4 38.6 0.0 0.2 123.9 0.5 19.1 5.5 2.1 12.7 41.8 103.0 0.1 0.5 0.4 12.0 0.8 14.9280 Waterman Blue France 4 1779.9 4.3 2.4 0.9 0.1 2226.9 40.1 47.0 3.2 40.4 0.0 0.2 248.4 1.3 17.4 25.9 2.9 16.9 567.9 251.2 0.4 1.6 0.5 18.5 60.7 102.1281 Waterman Blue France 4 1763.1 4.3 2.0 0.5 0.1 2254.9 41.0 48.2 3.0 36.8 0.0 0.2 226.6 1.3 16.9 24.4 2.2 16.4 540.9 249.3 0.3 1.7 0.5 16.7 58.5 105.2282 Waterman Blue France 4 1757.7 4.3 2.5 0.5 0.1 2288.3 40.1 46.3 3.1 36.1 0.0 0.2 216.2 1.0 15.4 24.6 2.3 17.2 546.4 255.6 0.3 1.5 0.5 16.1 58.5 107.8283 Waterman Black France 5 2688.7 4.6 2.7 1.3 0.3 2982.9 57.9 10.4 3.1 24.5 0.0 0.4 171.7 2.0 53.2 548.9 1.4 20.6 210.1 268.7 0.4 1.3 0.7 22.1 24.9 234.4284 Waterman Black France 5 2476.4 4.2 2.1 1.6 0.3 2704.9 52.6 9.8 3.2 21.1 0.0 0.4 159.7 2.1 47.5 547.8 1.4 23.6 184.7 263.1 0.3 1.3 0.9 24.6 26.3 204.3285 Waterman Black France 5 2449.6 3.6 2.5 1.3 0.2 2830.2 55.1 9.5 3.0 21.4 0.0 0.2 174.0 1.7 48.0 565.0 1.2 23.4 215.7 251.3 0.4 1.3 0.8 21.6 22.7 231.7286 Waterman Red France 6 1977.1 4.3 1.1 1.0 0.2 1728.9 2.0 6.5 2.0 3.8 0.0 0.0 435.9 0.9 17.1 24.3 0.6 18.3 102.4 279.4 0.2 0.8 0.2 22.6 1.0 210.9287 Waterman Red France 6 1981.0 4.5 1.7 1.1 0.3 1689.8 1.6 7.8 2.4 3.4 0.0 0.0 440.6 1.1 19.3 21.4 0.6 18.3 104.2 302.6 0.2 0.9 0.3 20.6 1.3 213.7288 Waterman Red France 6 1977.6 5.0 1.0 1.3 0.3 1654.3 1.7 7.3 2.1 3.6 0.0 0.0 422.3 0.9 15.0 23.0 0.6 22.9 110.6 261.4 0.2 0.9 0.3 21.5 1.8 219.9289 Cross Black Germany 7 576.2 6.2 3.1 1.6 3.0 2773.4 11.9 5.0 1.1 153947.7 0.1 0.4 599.9 12.3 22027.4 14.1 2.3 47.8 44.1 2434.7 0.4 1.3 3.7 13.1 3.2 27.3290 Cross Black Germany 7 565.0 6.1 2.2 2.2 3.0 2742.7 12.5 5.7 1.1 146983.2 0.1 0.4 605.8 12.0 22427.6 16.1 2.0 47.5 40.3 2499.7 0.4 1.0 3.1 13.7 2.9 28.6291 Cross Black Germany 7 564.3 6.0 2.6 2.0 2.9 2637.5 11.7 5.6 1.1 150947.2 0.1 0.4 614.5 12.2 22768.8 13.8 2.6 48.6 41.8 2471.0 0.3 1.0 3.1 12.7 2.8 28.1292 LAMY Black Germany 8 497.1 1.5 2.1 0.7 3.8 2503.0 10.7 7.6 1.1 323454.7 0.2 1.2 345.4 86.8 1889.2 24.7 1.0 55.3 66.3 184.6 0.5 0.4 43.2 8.2 6.2 71.7293 LAMY Black Germany 8 549.2 1.8 2.1 0.8 3.8 2545.4 11.4 7.4 1.1 263775.5 0.2 1.5 292.2 84.0 1034.6 19.3 0.7 50.8 68.8 170.0 0.4 0.5 42.2 6.9 4.4 50.1294 LAMY Black Germany 8 516.5 1.6 3.8 0.9 3.8 2456.1 10.9 6.7 1.2 288886.6 0.2 1.0 333.2 67.5 809.1 20.8 0.8 44.1 61.1 132.5 0.6 0.5 37.4 9.7 3.3 59.1295 LAMY Light Blue Germany 9 1050.1 0.3 1.2 0.3 718.6 1492.9 43.9 66.0 2.6 260.5 0.1 0.5 107.8 49.3 339.4 12.0 1.6 33.1 158.0 243.5 0.9 1.0 15.6 3.4 59.8 122.4296 LAMY Light Blue Germany 9 968.2 0.3 1.3 0.4 697.7 1348.7 40.8 61.0 2.3 276.6 0.1 0.6 106.2 52.3 333.2 18.1 1.8 39.3 153.4 281.7 0.7 1.1 19.1 3.2 55.9 121.1297 LAMY Light Blue Germany 9 929.9 0.4 1.5 0.4 724.6 1390.7 39.0 68.2 2.2 251.3 0.1 0.5 109.3 49.0 346.7 13.5 1.6 33.5 145.5 277.7 0.7 1.0 19.6 3.6 52.2 121.9298 LAMY Dark Blue Germany 10 123.7 6.1 0.7 0.5 0.5 1844.5 0.5 30.3 2300.5 11267.8 0.0 0.5 175.4 80.7 122.1 2137.9 110.0 1100.0 4079.6 5559.3 5.6 142.8 4.2 0.4 0.4 100.9299 LAMY Dark Blue Germany 10 117.5 7.2 0.8 0.8 0.5 1715.7 0.5 29.7 2263.6 11903.3 0.0 0.6 150.7 85.0 119.3 2149.9 110.3 1001.3 3769.0 5174.3 5.7 148.8 4.0 0.2 0.4 93.3300 LAMY Dark Blue Germany 10 136.5 8.2 0.8 0.7 0.5 1905.5 0.5 33.1 2403.9 12734.9 0.0 0.4 198.2 81.3 110.6 2315.9 120.0 1095.4 4113.7 5545.4 6.1 148.6 3.7 0.3 0.4 100.8301 WATERMAN Black France 11 2795.6 5.4 0.7 0.3 1.2 2628.1 24.4 18.8 3.3 17.3 0.0 0.1 172.7 20.8 74.4 49.2 1.1 9.8 314.8 140.4 0.1 1.5 5.8 4.3 28.8 91.7302 WATERMAN Black France 11 2709.8 5.4 0.9 0.2 1.1 2576.4 24.0 18.9 2.8 15.4 0.0 0.1 185.3 18.9 72.0 53.7 1.0 8.5 351.2 171.1 0.1 1.1 5.8 4.4 28.0 88.9303 WATERMAN Black France 11 2711.9 5.7 0.7 0.3 1.3 3070.8 23.1 19.8 3.4 17.5 0.0 0.1 182.9 17.2 82.4 46.9 1.3 10.1 373.3 151.8 0.1 1.6 6.0 5.1 30.4 94.5304 WATERMAN STH Sea Blue France 12 814.7 12.0 0.5 0.3 2.7 1635.9 3.5 28.2 4.0 8.2 0.0 0.6 119.0 2.3 125.9 107.3 2.0 51.6 681.6 2898.0 0.0 0.8 1.3 5.8 1.3 93.6305 WATERMAN STH Sea Blue France 12 803.4 11.0 0.5 0.2 2.1 1643.6 2.4 30.5 3.1 8.9 0.0 0.4 117.0 2.7 111.0 94.5 1.7 56.6 647.7 2860.6 0.0 0.7 1.6 5.0 1.3 94.2306 WATERMAN STH Sea Blue France 12 817.4 12.0 0.3 0.3 2.7 1618.6 3.6 28.3 4.0 9.0 0.0 0.4 118.7 2.1 110.2 103.5 2.3 53.2 699.4 2909.9 0.1 0.9 1.1 5.2 1.7 98.0307 WATERMAN Blue Black France 13 1251.2 6.0 0.4 0.5 0.9 1870.1 36.0 36.9 2.0 24.5 0.0 0.3 150.4 13.4 117.7 25.4 1.9 10.6 94.6 385.1 0.1 1.0 3.7 5.5 61.2 89.1308 WATERMAN Blue Black France 13 1369.5 5.1 0.4 0.6 1.3 1867.6 40.3 33.1 1.7 19.1 0.0 0.4 157.6 16.5 106.9 31.5 2.5 13.4 105.6 379.3 0.2 1.9 5.3 6.0 56.2 105.0309 WATERMAN Blue Black France 13 1233.2 5.8 0.4 0.5 1.0 1795.5 37.0 30.3 1.6 20.6 0.0 0.4 157.8 16.8 107.7 32.3 1.5 12.2 100.4 370.5 0.2 1.1 5.4 6.9 58.3 67.5310 OMAS Black Italy 14 296.8 41.1 0.3 0.3 2.4 1875.6 7.8 18.4 1.7 126512.9 0.1 0.2 130.2 49.7 323.7 21.4 0.4 45.1 215.7 398.3 0.1 1.4 51.5 8.8 2.0 48.0311 OMAS Black Italy 14 339.0 44.0 0.4 0.4 2.8 2190.6 8.2 21.2 2.0 132557.0 0.1 0.4 130.6 53.9 374.1 21.9 0.5 43.0 216.2 504.6 0.1 1.6 50.2 10.3 2.6 52.9312 OMAS Black Italy 14 364.3 47.2 0.4 0.3 3.1 2253.0 9.0 20.8 2.0 142162.7 0.1 0.4 134.0 55.7 335.4 24.8 0.4 50.7 222.1 504.5 0.1 1.7 48.6 9.1 2.8 49.9313 OMAS Blue Italy 15 1325.9 28.1 0.8 1.2 19.6 1815.2 11.0 37.3 1.0 27.1 0.0 1.6 125.6 40.8 15566.5 47.8 8.3 20.4 78.3 257.9 1.0 0.9 18.0 4.9 30.6 307.2314 OMAS Blue Italy 15 1398.6 29.5 0.9 1.4 20.6 1840.8 11.5 38.7 1.5 29.6 0.0 1.7 130.0 38.8 16331.2 43.5 10.7 24.4 72.5 223.1 1.3 1.6 15.8 5.3 29.1 290.3315 OMAS Blue Italy 15 1440.5 24.4 0.8 1.2 16.8 1853.8 9.5 31.4 1.0 25.0 0.0 1.8 139.2 41.3 15725.3 42.0 9.4 20.6 70.4 224.8 0.8 0.9 18.1 4.9 28.4 269.0316 OMAS Red Italy 16 1838.1 26.2 0.6 0.5 8.6 2169.5 1.8 25.5 0.7 10.8 0.0 0.8 113.9 76.6 384.5 28.4 0.1 11.7 310.9 343.9 0.1 1.3 17.8 43.4 3.7 174.8317 OMAS Red Italy 16 1776.3 25.3 0.8 0.4 8.8 2137.5 2.2 22.5 0.8 10.3 0.0 0.7 120.2 67.2 333.3 28.1 0.2 18.9 323.0 332.2 0.1 1.3 14.7 43.9 2.5 173.2318 OMAS Red Italy 16 2067.3 29.2 0.8 0.6 9.5 2244.5 2.4 26.0 0.8 10.4 0.0 0.8 118.4 63.4 401.5 32.1 0.3 18.7 339.3 350.0 0.1 1.7 14.2 39.8 2.5 190.0319 AURORA Black Italy 17 613.9 1.8 0.6 0.7 1.9 3316.0 1329.4 5.1 0.7 53870.3 0.1 1.6 276.7 32.7 364.1 45.4 0.5 15.4 42.5 77.4 0.2 3.3 11.9 16.6 73.9 13.9320 AURORA Black Italy 17 562.0 1.6 0.8 0.3 1.4 3004.8 1223.9 4.4 0.6 51819.7 0.1 1.3 254.9 34.4 303.5 41.8 0.4 15.1 35.3 73.7 0.2 1.9 11.3 12.6 63.6 12.2321 AURORA Black Italy 17 628.8 1.8 0.5 0.5 2.1 3417.1 1293.9 5.9 0.7 54874.9 0.1 1.6 268.8 38.3 363.9 47.5 0.4 15.9 38.7 82.8 0.2 2.3 13.9 16.0 68.6 13.7322 AURORA Blue Italy 18 476.5 2.4 0.3 0.2 0.3 2519.5 2.1 122.1 3.7 18.2 0.0 0.4 224.7 32.0 171.4 43.2 6.2 166.7 50.7 7877.5 0.1 1.5 3.7 14.5 2.9 398.9323 AURORA Blue Italy 18 471.2 2.3 0.4 0.2 0.2 2455.8 1.7 120.9 4.8 19.8 0.0 0.3 186.5 36.6 171.0 43.0 6.2 172.5 48.0 7186.1 0.1 1.6 3.1 17.1 3.1 391.6324 AURORA Blue Italy 18 441.1 1.7 0.2 0.2 0.2 2400.3 2.1 116.4 4.1 18.9 0.0 0.3 228.8 34.3 151.8 40.9 6.7 154.9 44.3 7621.4 0.1 1.5 4.3 16.3 2.5 376.6

Page 277: Development of Novel Physical (Electrostatic Detection

277

Table 6Sample Brand Manufactured Group Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U 271 Pelikan Blue Germany 1 0.1 1.7 2.3 113.4 0.0 0.0 0.3 0.3 0.3 0.1 7.1 1.1 0.2 0.1 120.1 1.4 3.5 0.1 0.1 0.1 0.2 0.5 10.7 14.6 0.9 0.8272 Pelikan Blue Germany 1 0.2 1.8 2.2 125.9 0.0 0.0 0.3 0.3 0.3 0.1 7.7 1.0 0.2 0.1 133.9 1.8 3.4 0.1 0.1 0.1 0.2 0.3 9.6 14.1 0.8 0.7273 Pelikan Blue Germany 1 0.1 1.6 2.5 126.7 0.0 0.0 0.3 0.3 0.2 0.1 8.3 1.0 0.2 0.1 133.8 1.7 3.5 0.1 0.1 0.1 0.2 0.4 11.6 16.7 0.9 0.9274 Pelikan Black Germany 2 0.4 10.1 1.4 9.9 0.1 0.0 0.2 0.1 0.2 0.0 4.9 3.0 0.1 0.5 26.9 1.5 3.2 0.1 0.4 0.1 0.3 0.4 5.9 7.0 0.6 0.5275 Pelikan Black Germany 2 0.5 11.8 1.2 8.4 0.1 0.0 0.1 0.1 0.2 0.0 4.2 2.7 0.1 0.4 27.2 1.3 3.1 0.1 0.4 0.1 0.3 0.3 4.9 7.8 0.6 0.5276 Pelikan Black Germany 2 0.4 10.1 1.6 10.8 0.1 0.0 0.2 0.1 0.2 0.0 4.3 3.3 0.1 0.5 30.9 1.6 3.3 0.1 0.3 0.1 0.3 0.4 5.0 7.0 0.6 0.5277 Pelikan Red Germany 3 0.2 2.1 1.5 1.9 0.1 0.0 0.1 0.1 0.4 0.1 3.6 0.9 0.8 0.1 10.9 1.5 2.4 0.1 0.3 0.1 0.2 0.1 2.0 3.2 0.2 0.0278 Pelikan Red Germany 3 0.2 1.8 1.2 2.2 0.1 0.0 0.1 0.1 0.6 0.1 4.9 0.8 0.8 0.0 10.4 1.3 3.1 0.1 0.2 0.1 0.2 0.1 2.4 2.4 0.1 0.0279 Pelikan Red Germany 3 0.3 2.1 1.3 2.0 0.1 0.0 0.1 0.2 0.6 0.1 4.0 0.9 0.7 0.1 9.4 1.8 3.0 0.1 0.2 0.1 0.2 0.1 3.0 3.1 0.1 0.0280 Waterman Blue France 4 0.1 2.6 1.5 44.2 0.1 0.0 0.1 0.2 0.3 0.0 4.5 1.3 0.1 2.9 90.2 1.2 2.1 0.1 0.4 0.1 0.2 0.1 7.8 7.9 0.7 0.1281 Waterman Blue France 4 0.1 2.8 1.2 42.7 0.1 0.0 0.1 0.1 0.3 0.0 3.2 1.1 0.1 2.3 93.5 1.2 2.2 0.1 0.4 0.1 0.2 0.1 7.3 6.6 0.4 0.1282 Waterman Blue France 4 0.2 2.2 1.2 44.4 0.1 0.0 0.2 0.2 0.2 0.0 3.5 1.1 0.1 2.3 96.1 1.2 2.8 0.1 0.4 0.1 0.2 0.1 5.1 6.9 0.5 0.1283 Waterman Black France 5 0.2 2.8 1.7 25.9 0.1 0.1 0.1 0.1 0.2 0.1 3.7 1.0 0.1 1.0 77.4 1.4 3.4 0.1 0.5 0.1 0.3 0.1 4.0 2777.3 0.5 0.2284 Waterman Black France 5 0.2 2.0 1.8 25.7 0.1 0.1 0.2 0.1 0.2 0.1 3.8 1.0 0.2 0.8 74.6 1.7 3.1 0.1 0.6 0.1 0.2 0.1 4.7 2816.6 1.1 0.1285 Waterman Black France 5 0.1 2.9 1.3 24.6 0.1 0.1 0.1 0.1 0.1 0.0 3.3 1.0 0.1 1.0 73.5 1.6 3.2 0.1 0.5 0.1 0.2 0.0 4.0 2457.5 0.7 0.2286 Waterman Red France 6 0.1 1.7 0.4 2.9 0.0 0.0 0.0 0.1 0.2 0.1 2.3 0.7 0.0 0.0 186.1 2.0 4.9 0.1 0.6 0.2 0.2 0.0 2.1 13.0 0.2 0.0287 Waterman Red France 6 0.1 1.5 0.5 3.1 0.1 0.0 0.0 0.1 0.2 0.1 2.8 1.1 0.0 0.0 209.2 2.0 4.1 0.2 0.6 0.1 0.2 0.0 3.6 11.2 0.2 0.0288 Waterman Red France 6 0.1 1.8 0.4 3.0 0.0 0.0 0.0 0.1 0.2 0.1 2.6 0.8 0.0 0.0 201.3 1.9 4.0 0.1 0.6 0.1 0.2 0.1 3.2 13.5 0.1 0.0289 Cross Black Germany 7 0.3 5.3 4.0 8.2 0.1 0.1 0.4 0.3 0.2 1.0 202.8 0.7 0.0 0.4 27.6 2.0 4.1 0.2 0.4 0.1 0.3 0.3 9.3 4.2 0.2 0.4290 Cross Black Germany 7 0.2 5.9 3.6 7.2 0.1 0.1 0.3 0.3 0.2 1.0 197.1 0.9 0.0 0.3 28.3 1.7 3.6 0.2 0.4 0.2 0.3 0.2 3.2 5.2 0.3 0.2291 Cross Black Germany 7 0.3 5.2 3.8 7.9 0.1 0.1 0.3 0.2 0.2 0.8 205.4 0.5 0.0 0.3 28.6 2.0 4.3 0.2 0.4 0.1 0.4 0.2 31.2 4.0 0.1 0.3292 LAMY Black Germany 8 0.4 12.2 0.6 11.2 0.1 0.0 0.1 0.1 0.2 0.1 5.4 3.2 0.3 0.7 45.1 0.8 1.5 0.1 0.2 0.0 0.1 0.4 5.7 3.9 0.1 0.6293 LAMY Black Germany 8 0.3 8.6 0.7 8.9 0.0 0.0 0.1 0.1 0.1 0.0 3.8 2.7 0.1 0.6 47.1 0.7 1.8 0.1 0.1 0.0 0.1 0.4 5.6 3.3 0.1 0.5294 LAMY Black Germany 8 0.3 9.0 0.5 9.8 0.0 0.0 0.1 0.1 0.1 0.1 4.5 3.0 0.1 0.7 43.4 0.9 1.8 0.1 0.1 0.0 0.1 0.7 5.1 3.4 0.1 0.5295 LAMY Light Blue Germany 9 0.2 11.0 0.2 36.5 0.0 0.0 0.0 0.1 0.3 0.0 4.6 1.3 0.1 2.0 182.5 0.7 1.6 0.0 0.1 0.1 0.0 0.7 2.9 5.0 0.1 1.5296 LAMY Light Blue Germany 9 0.1 10.7 0.2 36.1 0.0 0.0 0.1 0.0 0.3 0.0 4.5 1.1 0.1 1.8 184.0 0.7 1.8 0.0 0.1 0.0 0.0 0.5 3.3 6.4 0.1 1.4297 LAMY Light Blue Germany 9 0.2 11.8 0.2 38.3 0.0 0.0 0.0 0.1 0.2 0.0 3.6 1.4 0.1 1.7 183.0 0.6 1.3 0.0 0.1 0.0 0.0 0.6 2.9 4.4 0.1 1.3298 LAMY Dark Blue Germany 10 0.1 1.4 0.3 34.4 0.0 0.0 0.1 0.2 0.8 0.3 26.5 0.9 0.1 0.1 90.2 0.3 1.6 0.0 0.1 0.0 0.0 0.2 1.3 172.9 0.1 0.1299 LAMY Dark Blue Germany 10 0.2 1.6 0.5 34.2 0.0 0.0 0.1 0.1 0.9 0.2 26.1 0.9 0.0 0.1 83.9 0.2 2.1 0.0 0.1 0.0 0.0 0.3 1.6 160.2 0.2 0.1300 LAMY Dark Blue Germany 10 0.1 1.5 0.3 35.6 0.0 0.0 0.1 0.2 1.0 0.2 29.0 1.1 0.0 0.1 84.3 0.3 2.0 0.0 0.1 0.0 0.0 0.3 2.0 170.4 0.2 0.1301 WATERMAN Black France 11 0.2 0.7 0.2 10.1 0.0 0.0 0.0 0.1 0.1 0.0 1.7 0.6 0.1 1.1 71.0 0.5 1.3 0.2 0.5 0.1 0.3 0.1 1.4 94.0 0.0 0.1302 WATERMAN Black France 11 0.2 0.7 0.1 9.3 0.0 0.0 0.0 0.1 0.1 0.0 0.9 0.7 0.1 1.0 69.7 0.4 1.6 0.2 0.7 0.1 0.4 0.1 2.3 93.0 0.0 0.1303 WATERMAN Black France 11 0.2 0.8 0.1 11.7 0.0 0.0 0.0 0.1 0.1 0.0 1.4 0.7 0.1 1.3 68.8 0.5 1.3 0.2 0.6 0.1 0.4 0.1 2.3 111.5 0.0 0.1304 WATERMAN STH Sea Blue France 12 0.0 0.6 0.1 2.2 0.0 0.0 0.0 0.5 0.1 0.0 1.6 0.9 0.1 0.1 74.7 0.2 0.5 0.1 0.3 0.0 0.2 0.0 0.9 35.6 0.0 0.8305 WATERMAN STH Sea Blue France 12 0.0 0.4 0.1 3.2 0.0 0.0 0.0 0.3 0.1 0.0 1.3 0.7 0.1 0.1 70.5 0.1 0.5 0.0 0.4 0.0 0.1 0.0 0.7 36.9 0.0 0.9306 WATERMAN STH Sea Blue France 12 0.0 0.4 0.1 2.5 0.0 0.0 0.0 0.4 0.1 0.0 1.4 1.0 0.1 0.1 79.5 0.3 0.5 0.1 0.3 0.0 0.1 0.0 0.6 38.9 0.0 0.9307 WATERMAN Blue Black France 13 0.0 2.6 0.1 18.3 0.0 0.0 0.1 0.1 0.1 0.0 1.4 0.8 0.2 2.3 84.0 0.5 1.3 0.3 0.4 0.1 0.1 0.1 1.8 18.7 0.1 0.2308 WATERMAN Blue Black France 13 0.1 2.5 0.1 22.9 0.0 0.0 0.0 0.1 0.1 0.0 1.4 0.9 0.2 2.7 96.5 0.6 1.6 0.2 0.3 0.1 0.2 0.1 2.4 22.2 0.1 0.3309 WATERMAN Blue Black France 13 0.1 2.4 0.1 19.7 0.0 0.0 0.1 0.0 0.1 0.0 1.6 0.7 0.2 1.8 92.4 0.4 1.7 0.2 0.3 0.1 0.1 0.2 2.2 16.7 0.1 0.2310 OMAS Black Italy 14 0.1 2.5 0.2 3.7 0.1 0.0 0.0 0.1 0.1 0.7 258.4 1.7 0.0 0.2 17.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1 1.5 7.4 0.2 0.3311 OMAS Black Italy 14 0.1 2.3 0.2 4.3 0.1 0.0 0.0 0.1 0.1 0.8 260.8 2.1 0.0 0.2 17.9 0.1 0.1 0.0 0.1 0.0 0.0 0.1 1.9 7.5 0.1 0.4312 OMAS Black Italy 14 0.1 2.8 0.3 4.4 0.1 0.0 0.1 0.1 0.1 0.9 283.6 2.0 0.1 0.2 18.6 0.1 0.1 0.0 0.1 0.0 0.0 0.0 1.8 8.7 0.1 0.4313 OMAS Blue Italy 15 0.2 3.9 0.3 0.7 0.1 0.0 0.0 37.0 0.1 0.7 242.5 1.1 0.0 3.3 13.4 0.4 1.1 0.2 0.5 0.1 0.1 0.1 2.9 15.4 0.0 5.2314 OMAS Blue Italy 15 0.1 3.9 0.3 0.9 0.1 0.0 0.1 36.4 0.1 1.0 221.2 1.5 0.0 4.1 13.4 0.4 1.2 0.2 0.4 0.1 0.1 0.1 2.2 18.6 0.0 6.7315 OMAS Blue Italy 15 0.1 4.0 0.3 0.8 0.1 0.0 0.1 32.3 0.1 0.7 207.1 1.0 0.0 3.9 12.6 0.6 1.5 0.4 0.6 0.1 0.1 0.1 2.4 14.3 0.0 4.6316 OMAS Red Italy 16 0.1 1.7 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.1 15.0 0.1 0.1 0.0 82.7 0.2 0.4 0.0 0.1 0.0 0.1 0.4 0.1 8.0 0.0 0.1317 OMAS Red Italy 16 0.1 1.3 0.1 0.3 0.1 0.0 0.0 0.1 0.1 0.1 14.8 0.1 0.1 0.0 81.2 0.2 0.4 0.0 0.1 0.0 0.1 0.5 0.1 8.6 0.0 0.1318 OMAS Red Italy 16 0.1 1.5 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.1 13.6 0.1 0.1 0.0 92.9 0.2 0.5 0.0 0.2 0.0 0.1 0.5 0.1 9.5 0.0 0.1319 AURORA Black Italy 17 0.1 6.5 0.3 2.9 0.1 0.0 0.1 0.1 0.1 0.2 2.2 0.3 0.2 0.3 46.4 0.3 0.8 0.0 0.2 0.0 0.1 0.2 5.3 5.4 0.1 0.1320 AURORA Black Italy 17 0.2 5.9 0.2 2.6 0.1 0.0 0.0 0.2 0.1 0.1 2.2 0.4 0.2 0.3 43.8 0.2 0.8 0.1 0.2 0.0 0.1 0.2 5.7 4.9 0.1 0.1321 AURORA Black Italy 17 0.1 6.0 0.2 2.8 0.1 0.0 0.1 0.1 0.0 0.1 2.5 0.5 0.3 0.3 47.4 0.3 0.8 0.0 0.3 0.0 0.1 0.1 6.1 5.0 0.1 0.1322 AURORA Blue Italy 18 0.1 2.6 0.2 151.0 0.0 0.0 0.1 0.2 1.0 0.3 72.6 1.2 0.1 0.2 237.7 0.3 0.3 0.0 0.1 0.0 0.0 0.1 5.3 20.3 0.0 0.1323 AURORA Blue Italy 18 0.1 2.8 0.2 159.7 0.0 0.0 0.1 0.2 0.9 0.3 72.7 1.2 0.1 0.2 225.3 0.2 0.2 0.0 0.1 0.1 0.0 0.1 7.5 20.6 0.0 0.1324 AURORA Blue Italy 18 0.1 2.3 0.1 160.1 0.0 0.0 0.1 0.3 0.7 0.2 72.1 1.0 0.1 0.2 260.6 0.2 0.2 0.0 0.1 0.0 0.0 0.1 4.7 17.6 0.0 0.1

Page 278: Development of Novel Physical (Electrostatic Detection

278

Appendix 2 continued

Table 6 ppm ppbSample Brand Manufactured Group *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr

325 PARKER Black France 19 1965.1 4.9 0.4 0.3 2.2 2068.3 67.9 9.5 2.3 42.6 0.0 0.3 137.5 18.5 188.0 41.2 0.8 15.1 425.2 282.8 0.1 1.0 13.2 11.9 44.6 114.5326 PARKER Black France 19 1876.0 5.9 0.5 0.3 2.8 2070.1 63.5 12.0 3.2 42.2 0.0 0.3 136.8 20.9 176.5 41.7 1.0 16.1 483.8 287.2 0.1 1.4 12.5 12.3 45.7 116.6327 PARKER Black France 19 1782.4 4.4 0.6 0.2 1.7 2009.4 62.2 8.1 2.1 41.7 0.0 0.3 125.3 14.7 170.1 40.0 0.8 15.0 495.5 258.5 0.2 0.8 12.3 11.8 41.0 100.3328 PARKER Blue France 20 1798.9 3.3 1.1 0.2 0.9 2409.7 52.0 84.1 3.2 45.7 0.0 0.4 135.4 37.3 320.4 24.7 1.9 6.9 45.0 100.7 0.1 1.5 17.3 18.3 69.5 163.4329 PARKER Blue France 20 1779.3 4.1 1.0 0.1 0.8 2304.8 53.9 81.2 3.6 44.8 0.0 0.4 131.7 36.1 347.3 28.1 2.4 7.5 42.9 93.8 0.1 1.6 16.9 19.4 73.9 164.7330 PARKER Blue France 20 1801.0 4.1 1.3 0.3 1.0 2358.1 54.3 82.2 3.9 41.6 0.0 0.4 168.2 35.7 318.5 24.5 2.3 8.4 43.1 96.2 0.2 2.0 17.1 20.1 73.7 162.1331 CARAN d'ACHE Carbon Sw itzerland 21 1974.6 3.8 0.1 1.7 2.5 4017.8 29.5 12.9 1.6 206246.3 0.1 1.8 265.5 81.2 1372.2 10.2 0.9 16.7 184.0 95.9 0.1 2.6 26.7 25.4 4.9 36.4332 CARAN d'ACHE Carbon Sw itzerland 21 2045.2 3.8 0.2 2.9 2.4 4078.2 30.6 12.6 1.6 215376.9 0.1 2.4 248.8 78.8 1337.9 10.6 0.9 17.7 187.9 104.7 0.1 3.3 31.9 32.2 6.3 34.9333 CARAN d'ACHE Carbon Sw itzerland 21 2043.0 4.4 0.1 2.3 2.9 4314.1 30.5 12.4 1.8 208402.2 0.1 2.2 284.0 85.9 1349.5 13.3 1.1 16.5 187.6 100.5 0.1 3.8 26.8 25.4 6.9 32.9334 CARAN d'ACHE BlueSky Sw itzerland 22 135.4 0.7 0.1 0.1 0.2 1075.4 91.3 20.8 1.0 144.1 0.0 0.5 80.3 27.6 245.7 12.5 3.4 96.4 231.9 506.4 0.0 0.7 13.3 18.1 16.3 82.2335 CARAN d'ACHE BlueSky Sw itzerland 22 132.3 0.6 0.2 0.1 0.2 949.4 92.6 18.2 1.2 165.9 0.0 0.5 97.1 34.2 240.0 12.6 3.1 90.9 207.1 464.1 0.0 0.8 13.4 17.5 15.0 72.0336 CARAN d'ACHE BlueSky Sw itzerland 22 146.5 0.7 0.1 0.1 0.2 1038.2 93.4 20.3 1.1 188.2 0.0 0.8 81.6 29.3 254.6 12.4 3.6 96.8 202.1 425.3 0.0 0.8 13.2 19.2 14.5 82.8337 GRAF VON FABER-CASTELL Black Germany 23 506.9 5.8 0.9 1.5 3.9 2740.7 11.9 4.6 1.0 260027.0 0.1 2.9 270.2 421.0 33848.8 17.2 0.8 54.1 35.4 3496.3 0.3 6.2 101.1 27.0 7.7 20.5338 GRAF VON FABER-CASTELL Black Germany 23 475.4 5.5 0.7 1.8 3.7 2607.9 10.5 4.2 0.9 265177.3 0.1 3.7 283.2 491.5 34227.3 21.6 0.9 52.5 35.4 4115.5 0.5 6.6 102.5 30.5 6.5 19.2339 GRAF VON FABER-CASTELL Black Germany 23 460.8 5.2 0.8 1.7 3.9 2609.0 10.2 4.9 0.9 252591.0 0.1 3.4 244.7 363.2 35861.6 19.8 0.6 43.6 35.4 3723.8 0.3 6.9 112.2 30.1 7.9 23.2340 GRAF VON FABER-CASTELL Royal Blue Germany 24 83.1 5.0 1.8 0.0 0.3 1191.1 0.4 39.6 0.7 63.1 0.0 0.8 68.2 46.6 253.2 18.8 3.7 115.2 38.2 739.3 0.5 1.1 9.8 12.0 1.5 160.0341 GRAF VON FABER-CASTELL Royal Blue Germany 24 86.4 5.9 1.3 0.1 0.2 1059.4 0.3 43.1 0.9 57.3 0.1 0.9 66.2 43.0 238.5 16.7 3.0 123.4 42.2 713.7 0.4 1.0 11.1 16.9 1.5 134.7342 GRAF VON FABER-CASTELL Royal Blue Germany 24 79.3 5.2 1.2 0.0 0.2 1068.3 0.3 33.5 0.7 64.3 0.0 0.9 76.0 49.4 274.0 15.0 2.6 103.0 31.1 802.6 0.2 1.1 9.6 10.5 1.1 137.9343 CROSS Black Germany 25 343.0 4.1 0.5 0.1 2.9 2208.7 9.0 3.9 0.8 169251.7 0.1 1.4 186.8 37.0 23620.9 17.0 0.6 36.1 32.6 3244.4 0.2 1.3 23.3 16.7 0.5 17.3344 CROSS Black Germany 25 400.6 4.8 0.4 0.1 3.3 2324.9 8.4 4.2 0.8 161847.0 0.1 1.8 136.0 37.9 23256.4 15.2 0.6 34.7 30.3 3320.7 0.1 1.0 20.9 15.5 0.5 18.1345 CROSS Black Germany 25 410.0 5.2 0.7 0.1 3.3 2340.6 8.7 5.0 1.1 162643.9 0.1 1.3 261.5 35.9 23577.5 16.4 0.8 39.7 35.2 3342.4 0.1 1.2 20.2 16.6 0.5 19.2346 CROSS Blue Germany 26 50.0 11.2 0.1 0.3 0.1 948.5 1.7 65.1 1.1 29.3 0.0 0.4 61.0 17.7 263.5 18.0 3.5 114.0 27.4 474.8 0.0 0.4 8.4 6.1 2.7 182.0347 CROSS Blue Germany 26 50.9 10.4 0.1 0.4 0.1 877.7 1.4 60.8 1.4 29.2 0.0 0.4 74.1 19.9 249.0 14.4 3.2 103.5 28.0 442.6 0.1 0.3 7.1 7.0 2.7 176.8348 CROSS Blue Germany 26 48.3 9.3 0.1 0.3 0.1 870.2 1.2 63.9 1.8 24.4 0.0 0.3 63.7 15.2 259.5 17.0 2.8 109.2 32.3 499.3 0.0 0.4 7.7 7.2 2.8 175.5349 PARKER Blue France 27 745.5 3.7 0.5 0.5 0.5 951.6 14.5 6.1 2.3 39.7 0.0 0.6 26.1 21.0 279.0 13.4 0.9 4.7 62.0 442.8 0.1 0.3 8.7 9.4 27.3 6.8350 PARKER Blue France 27 766.5 3.9 0.6 0.3 0.4 825.5 10.3 5.4 2.4 40.4 0.0 0.4 28.5 21.3 298.1 11.9 0.8 5.4 67.0 379.2 0.1 0.3 7.0 9.5 30.1 5.4351 PARKER Blue France 27 819.6 4.6 0.9 0.2 0.6 909.9 10.0 5.7 2.8 37.7 0.0 0.7 25.4 24.1 313.9 12.1 1.2 5.1 73.9 337.5 0.1 0.3 7.5 9.4 33.3 6.8352 WaterMan Black France 28 2807.2 5.6 1.4 0.2 1.6 2502.2 25.6 26.4 4.2 0.4 0.0 0.5 3.7 0.7 4.2 1.8 0.1 0.7 20.6 6.2 0.0 0.0 0.5 0.4 1.8 5.2353 WaterMan Black France 28 2615.4 5.7 1.6 0.1 1.2 2417.4 24.4 22.1 3.3 0.3 0.0 0.4 3.8 0.6 3.7 1.6 0.1 0.5 20.2 6.2 0.0 0.0 0.4 0.4 1.7 4.9354 WaterMan Black France 28 3020.5 6.6 1.9 0.3 1.6 2404.1 28.8 24.3 3.5 0.2 0.0 0.4 3.5 0.7 3.7 1.7 0.1 0.7 22.2 8.2 0.0 0.0 0.4 0.4 1.9 5.1355 Camel Royal Blue India 29 28.2 12.6 0.3 2.0 0.2 786.2 1.9 64.5 1.8 0.1 0.0 0.5 3.4 0.1 12.6 1.9 0.3 8.5 1.9 5.1 0.0 0.0 0.1 1.0 0.1 9.9356 Camel Royal Blue India 29 33.5 13.5 0.3 2.8 0.4 804.6 1.7 60.2 1.6 0.1 0.0 0.5 3.2 0.1 12.6 1.7 0.2 7.3 2.1 5.9 0.0 0.0 0.1 1.1 0.1 9.2357 Camel Royal Blue India 29 38.1 15.2 0.5 2.1 0.3 743.6 2.3 60.2 2.4 0.2 0.0 0.6 3.8 0.1 12.1 2.3 0.3 8.2 2.3 4.6 0.0 0.0 0.1 1.2 0.1 10.0358 Parker Quink Black India 30 2494.5 22.3 2.6 0.3 0.9 2037.6 4.6 130.0 89.9 0.5 0.0 0.3 2.8 1.3 348.9 56.0 0.2 3.2 9.1 20.3 0.1 0.0 0.3 0.3 0.1 21.4359 Parker Quink Black India 30 2637.8 23.7 2.6 0.2 0.9 2047.2 5.0 137.2 94.6 0.3 0.0 0.2 3.1 1.1 318.7 52.1 0.2 3.0 8.8 21.0 0.1 0.0 0.4 0.2 0.1 22.3360 Parker Quink Black India 30 2329.5 20.2 2.1 0.4 0.8 1904.1 4.3 129.7 91.8 0.3 0.0 0.2 2.9 1.4 341.3 51.1 0.2 3.1 8.1 20.6 0.1 0.0 0.5 0.3 0.2 20.9361 Parker Quink Blue India 31 61.0 12.4 0.3 0.1 0.3 1155.9 2.6 55.1 9.9 0.3 0.0 0.3 2.3 0.1 3.3 2.3 0.2 5.5 5.3 15.2 0.0 0.0 0.3 0.6 0.1 10.4362 Parker Quink Blue India 31 66.9 12.8 0.3 0.1 0.2 1133.8 2.1 59.1 7.7 0.4 0.0 0.3 2.2 0.1 2.8 2.3 0.2 5.1 4.7 16.6 0.0 0.0 0.2 0.7 0.1 12.1363 Parker Quink Blue India 31 57.2 12.0 0.3 0.1 0.3 1035.3 1.7 54.7 7.7 0.4 0.0 0.3 2.2 0.1 2.1 2.0 0.2 4.4 4.5 12.9 0.0 0.0 0.2 0.6 0.1 10.7364 Chelpark Black India 32 10929.7 18.2 3.1 0.9 8.4 1775.9 301.6 21.3 45.8 0.0 0.0 0.1 3.4 0.8 20.5 6.5 0.3 10.0 506.1 36.3 0.0 0.0 0.4 0.0 0.9 23.3365 Chelpark Black India 32 10921.1 18.2 2.5 1.0 7.9 1827.2 297.2 17.6 45.0 0.0 0.0 0.1 2.5 0.6 15.8 5.6 0.2 9.1 466.3 35.0 0.0 0.0 0.3 0.0 0.9 23.6366 Chelpark Black India 32 11419.5 19.1 2.7 0.8 11.3 1810.9 329.4 20.5 41.4 0.0 0.0 0.1 2.7 0.8 18.2 6.1 0.3 10.0 487.9 36.4 0.0 0.0 0.4 0.0 1.1 26.6367 Chelpark Royal Blue India 33 73.1 0.4 0.5 0.2 0.2 1422.6 2.1 46.1 11.4 0.1 0.0 0.2 1.4 0.2 2.5 2.6 0.3 6.6 35.3 49.2 0.0 0.0 0.2 0.6 0.1 7.9368 Chelpark Royal Blue India 33 68.7 0.4 0.5 0.3 0.2 1437.2 1.8 46.1 12.0 0.1 0.0 0.1 1.4 0.4 2.6 2.3 0.2 6.0 33.2 44.0 0.0 0.0 0.4 0.8 0.1 7.0369 Chelpark Royal Blue India 33 73.4 0.4 0.4 0.2 0.2 1428.2 1.7 49.0 13.4 0.1 0.0 0.2 1.2 0.3 2.3 2.8 0.2 5.8 33.2 42.5 0.0 0.0 0.2 0.6 0.1 6.6370 Chelpark Blue-Black India 34 2329.4 10.2 2.3 1.3 73.0 1338.9 6.5 42.9 507.4 0.1 0.0 0.0 1.5 0.6 5.9 39.2 0.3 6.8 3044.2 22.7 0.0 0.0 0.3 0.1 0.3 23.8371 Chelpark Blue-Black India 34 2163.7 9.4 2.0 1.1 69.9 1389.1 5.2 41.5 458.9 0.0 0.0 0.0 1.4 0.7 5.6 39.2 0.2 5.7 2691.2 20.9 0.0 0.0 0.6 0.1 0.3 21.4372 Chelpark Blue-Black India 34 2066.5 10.7 2.0 1.7 67.8 1434.1 5.5 46.3 451.2 0.1 0.0 0.0 2.1 0.7 5.1 36.3 0.3 6.4 2943.4 24.3 0.0 0.0 0.4 0.1 0.3 22.9373 Chelpark Crimson Violet India 35 1233.1 24.1 1.1 1.0 0.8 1369.6 3.1 32.7 9.4 0.0 0.0 0.1 0.5 0.2 10.4 2.7 0.0 1.5 4.9 12.5 0.0 0.0 0.2 0.1 0.1 15.9374 Chelpark Crimson Violet India 35 1256.5 21.0 0.9 0.8 0.4 1266.9 2.7 31.0 8.0 0.0 0.0 0.1 0.7 0.2 10.8 2.5 0.0 1.4 4.7 9.6 0.0 0.0 0.2 0.1 0.1 15.7375 Chelpark Crimson Violet India 35 1278.9 22.0 1.3 0.5 0.4 1300.5 2.6 31.8 10.9 0.0 0.0 0.0 0.4 0.1 9.9 2.6 0.0 1.4 4.7 11.1 0.0 0.0 0.2 0.1 0.1 15.1

Page 279: Development of Novel Physical (Electrostatic Detection

279

Table 6Sample Brand Manufactured Group Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U

325 PARKER Black France 19 0.1 0.4 0.1 24.5 0.0 0.0 0.0 0.0 0.2 0.4 131.0 0.4 0.2 1.8 23.6 0.1 0.3 0.0 0.0 0.0 0.0 0.1 2.5 59.2 0.0 0.0326 PARKER Black France 19 0.1 0.5 0.1 23.3 0.0 0.0 0.0 0.0 0.2 0.5 122.2 0.5 0.1 2.2 27.8 0.1 0.3 0.0 0.0 0.0 0.0 0.0 3.0 58.4 0.0 0.0327 PARKER Black France 19 0.1 0.5 0.1 21.7 0.0 0.0 0.0 0.0 0.1 0.5 121.9 0.4 0.2 1.7 27.0 0.1 0.2 0.0 0.0 0.0 0.0 0.1 2.8 55.0 0.0 0.0328 PARKER Blue France 20 0.0 1.2 0.1 41.4 0.0 0.0 0.0 0.1 0.1 0.5 178.9 0.5 0.2 2.1 51.2 0.1 0.3 0.0 0.0 0.0 0.0 0.1 2.8 2.2 0.0 0.0329 PARKER Blue France 20 0.0 1.3 0.2 39.2 0.0 0.0 0.0 0.1 0.1 0.6 190.8 0.7 0.3 2.6 51.6 0.1 0.2 0.0 0.0 0.0 0.0 0.1 4.3 3.1 0.0 0.1330 PARKER Blue France 20 0.1 1.2 0.2 38.8 0.0 0.0 0.0 0.1 0.1 0.6 187.2 0.7 0.2 2.6 52.2 0.1 0.2 0.0 0.1 0.0 0.0 0.1 3.8 3.3 0.0 0.0331 CARAN d'ACHE Carbon Sw itzerland 21 0.3 6.6 0.5 5.3 0.1 0.0 0.0 0.0 0.1 0.7 214.2 9.3 0.0 0.2 38.2 0.4 1.2 0.1 0.2 0.1 0.1 0.2 2.7 4.6 0.0 0.3332 CARAN d'ACHE Carbon Sw itzerland 21 0.3 7.0 0.3 5.6 0.1 0.0 0.0 0.0 0.1 0.7 223.7 8.9 0.0 0.2 37.2 0.4 1.4 0.1 0.2 0.1 0.1 0.3 2.2 4.8 0.0 0.3333 CARAN d'ACHE Carbon Sw itzerland 21 0.3 5.7 0.4 6.1 0.1 0.0 0.0 0.0 0.1 0.8 224.0 10.5 0.1 0.3 38.5 0.4 1.3 0.1 0.3 0.1 0.1 0.2 3.1 5.6 0.0 0.4334 CARAN d'ACHE BlueSky Sw itzerland 22 0.0 2.1 0.2 129.8 0.0 0.0 0.1 0.0 0.3 0.8 15.3 0.5 0.0 0.1 20.7 0.2 0.5 0.0 0.1 0.0 0.0 0.2 4.1 27.7 0.1 0.0335 CARAN d'ACHE BlueSky Sw itzerland 22 0.0 2.2 0.2 118.5 0.0 0.0 0.1 0.0 0.3 0.8 16.3 0.5 0.0 0.1 19.7 0.2 0.4 0.0 0.1 0.0 0.0 0.2 4.3 24.8 0.1 0.0336 CARAN d'ACHE BlueSky Sw itzerland 22 0.0 2.0 0.1 127.2 0.0 0.0 0.1 0.0 0.4 0.7 15.8 0.6 0.0 0.2 21.9 0.2 0.6 0.0 0.1 0.0 0.0 0.2 3.6 28.0 0.1 0.0337 GRAF VON FABER-CASTELL Black Germany 23 0.7 11.6 0.6 10.7 0.4 0.0 0.1 0.0 0.1 0.0 2.4 2.2 0.0 0.4 21.7 0.5 1.5 0.1 0.3 0.1 0.1 1.0 5.4 2.4 0.0 0.4338 GRAF VON FABER-CASTELL Black Germany 23 0.3 13.3 0.5 11.9 0.4 0.0 0.2 0.0 0.0 0.0 2.4 2.8 0.0 0.4 28.5 0.4 1.2 0.1 0.2 0.1 0.1 0.2 6.6 2.3 0.1 0.5339 GRAF VON FABER-CASTELL Black Germany 23 0.4 13.9 0.7 11.8 0.4 0.0 0.1 0.0 0.1 0.0 2.1 2.6 0.0 0.3 23.2 0.4 1.4 0.1 0.2 0.1 0.0 0.8 5.1 2.9 0.0 0.4340 GRAF VON FABER-CASTELL Royal Blue Germany 24 0.3 1.4 0.2 119.7 0.1 0.0 0.1 0.3 0.2 0.0 1.2 0.4 0.0 0.1 72.7 0.4 1.0 0.0 0.1 0.0 0.0 0.0 2.6 13.8 0.2 0.1341 GRAF VON FABER-CASTELL Royal Blue Germany 24 0.2 1.3 0.2 97.7 0.1 0.0 0.1 0.4 0.2 0.0 1.4 0.4 0.0 0.1 72.5 0.5 1.0 0.1 0.1 0.0 0.0 0.0 2.0 11.7 0.2 0.1342 GRAF VON FABER-CASTELL Royal Blue Germany 24 0.2 1.7 0.2 89.0 0.0 0.1 0.1 0.5 0.2 0.0 1.6 0.5 0.0 0.1 68.0 0.3 0.8 0.0 0.1 0.0 0.0 0.0 2.8 12.4 0.2 0.1343 CROSS Black Germany 25 0.2 6.0 0.4 6.8 0.3 0.0 0.0 0.1 0.0 0.5 149.7 1.8 0.1 0.3 14.9 0.3 2.1 0.0 0.2 0.0 0.1 0.2 2.4 3.1 0.1 0.3344 CROSS Black Germany 25 0.3 6.2 0.5 7.1 0.4 0.0 0.0 1.2 0.1 0.6 181.5 2.0 0.1 0.3 19.9 0.4 2.5 0.1 0.2 0.1 0.1 0.2 3.2 3.9 0.2 0.3345 CROSS Black Germany 25 0.3 5.8 0.5 7.6 0.3 0.0 0.0 0.2 0.0 0.6 187.9 2.3 0.1 0.3 21.1 0.4 2.6 0.1 0.2 0.0 0.1 0.2 2.4 3.6 0.2 0.4346 CROSS Blue Germany 26 0.1 1.3 0.2 123.9 0.0 0.0 0.1 0.2 0.2 0.0 5.0 0.3 0.0 0.1 53.3 0.2 0.4 0.0 0.1 0.0 0.0 0.0 3.3 4.1 0.0 0.1347 CROSS Blue Germany 26 0.2 1.6 0.2 117.4 0.0 0.0 0.1 0.1 0.2 0.0 4.3 0.3 0.0 0.1 58.7 0.1 0.3 0.0 0.1 0.0 0.0 0.1 3.3 3.5 0.0 0.1348 CROSS Blue Germany 26 0.1 1.4 0.1 120.9 0.0 0.0 0.1 0.1 0.2 0.0 4.5 0.2 0.0 0.1 57.0 0.1 0.4 0.0 0.1 0.0 0.0 0.0 3.0 3.3 0.0 0.0349 PARKER Blue France 27 0.0 5.2 0.0 19.4 0.1 0.0 0.0 0.0 0.1 0.4 97.6 0.4 0.2 1.0 12.9 0.1 0.3 0.0 0.0 0.0 0.0 0.1 1.1 4.5 0.0 0.0350 PARKER Blue France 27 0.1 5.2 0.0 24.2 0.1 0.0 0.1 0.0 0.1 0.4 86.1 0.3 0.2 0.8 11.3 0.1 0.3 0.0 0.0 0.0 0.0 0.0 2.2 4.5 0.0 0.0351 PARKER Blue France 27 0.1 7.6 0.0 22.2 0.1 0.0 0.1 0.0 0.1 0.5 83.1 0.4 0.4 1.2 12.0 0.1 0.4 0.0 0.1 0.0 0.0 0.1 1.9 5.3 0.0 0.0352 WaterMan Black France 28 0.0 0.1 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 5.3 0.0 0.0353 WaterMan Black France 28 0.0 0.1 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 4.7 0.0 0.0354 WaterMan Black France 28 0.0 0.1 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 5.6 0.0 0.0355 Camel Royal Blue India 29 0.0 0.1 0.0 4.2 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.0 0.0 0.0 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0356 Camel Royal Blue India 29 0.0 0.1 0.0 4.7 0.0 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0357 Camel Royal Blue India 29 0.0 0.1 0.0 5.3 0.0 0.0 0.0 0.0 0.3 0.1 0.2 0.0 0.0 0.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0358 Parker Quink Black India 30 0.0 0.1 0.0 2.3 0.0 0.0 0.0 0.3 0.0 0.0 1.2 0.1 0.0 0.0 4.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 121.2 0.0 0.0359 Parker Quink Black India 30 0.0 0.1 0.0 2.4 0.0 0.0 0.0 0.4 0.0 0.0 1.2 0.1 0.0 0.0 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 122.8 0.0 0.0360 Parker Quink Black India 30 0.0 0.1 0.0 2.2 0.0 0.0 0.0 0.3 0.0 0.1 1.1 0.1 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 124.2 0.0 0.0361 Parker Quink Blue India 31 0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.6 0.0 0.1362 Parker Quink Blue India 31 0.0 0.0 0.0 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.1 0.0 0.1363 Parker Quink Blue India 31 0.0 0.1 0.0 6.9 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 6.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 2.8 0.0 0.1364 Chelpark Black India 32 0.0 0.1 0.0 1.8 0.0 0.0 0.0 0.1 0.2 0.0 2.4 0.1 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 5.0 0.0 0.1365 Chelpark Black India 32 0.0 0.2 0.0 1.8 0.0 0.0 0.0 0.1 0.2 0.1 2.4 0.1 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 4.6 0.0 0.0366 Chelpark Black India 32 0.0 0.1 0.0 2.1 0.0 0.0 0.0 0.1 0.3 0.1 3.2 0.1 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 6.0 0.0 0.0367 Chelpark Royal Blue India 33 0.0 0.1 0.0 8.0 0.0 0.0 0.0 0.1 0.1 0.1 0.9 0.4 0.0 0.0 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 5.1 0.0 0.0368 Chelpark Royal Blue India 33 0.0 0.1 0.0 7.3 0.0 0.0 0.0 0.0 0.1 0.1 0.8 0.4 0.0 0.0 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 5.1 0.0 0.0369 Chelpark Royal Blue India 33 0.0 0.1 0.0 6.9 0.0 0.0 0.0 0.1 0.1 0.1 1.0 0.4 0.0 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 5.1 0.0 0.0370 Chelpark Blue-Black India 34 0.0 0.3 0.0 7.0 0.0 0.1 0.0 0.0 0.0 0.0 0.6 0.1 0.0 0.0 4.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.6 2.2 0.1 0.4371 Chelpark Blue-Black India 34 0.0 0.2 0.0 5.9 0.0 0.1 0.0 0.1 0.0 0.1 0.6 0.1 0.0 0.0 3.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.5 2.1 0.1 0.5372 Chelpark Blue-Black India 34 0.0 0.3 0.0 6.7 0.0 0.1 0.0 0.1 0.1 0.0 0.8 0.1 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 2.2 0.1 0.4373 Chelpark Crimson Violet India 35 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 2.4 0.0 0.0374 Chelpark Crimson Violet India 35 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 2.1 0.0 0.0375 Chelpark Crimson Violet India 35 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0

Page 280: Development of Novel Physical (Electrostatic Detection

280

Appendix 2 continued Table 7 ppm ppbBrand Numbers Fig 4.40A & B *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga Ge As Se Rb Sr Black Parker France 1 2182.7 25.1 1.6 1.1 40.6 4024.5 960.5 27.0 1.6 22922.5 0.0 0.2 247.0 8.7 2848.5 3189.6 5.2 168.6 588.9 651.7 0.5 0.2 4.5 8.2 116.8 52.9Blue Parker France 2 799.9 3.9 1.7 0.2 1.7 881.4 17.8 12.5 2.2 23.9 0.0 0.1 99.9 4.0 13.5 22.3 1.0 9.4 84.1 348.8 0.1 0.2 1.8 5.5 34.6 11.7Black Sheaffer Slovenia 3 731.2 9.6 0.8 0.4 2.2 2124.9 966.5 49.7 1.1 27065.1 0.0 0.3 270.5 4.4 45.6 111.9 0.6 14.7 13.1 453.3 0.2 0.3 22.1 6.6 80.5 92.4Black Sheaffer (Bottle 2) Slovenia 4 728.5 9.0 0.9 0.7 2.7 2530.3 951.3 48.9 4.9 27437.9 0.0 0.3 208.3 7.2 39.8 143.6 0.6 12.0 23.3 489.7 0.2 0.3 19.5 6.8 77.5 89.8Blue Sheaffer Slovenia 5 1264.4 7.1 0.7 0.6 2.0 1492.9 5.0 76.8 3.2 32.8 0.0 0.2 85.9 6.0 36.8 25.1 3.9 114.1 32.2 1710.4 0.5 0.5 7.2 5.0 6.8 259.4Blue Sheaffer (Bottle 2) Slovenia 6 171.2 9.2 1.5 0.3 1.4 1086.7 2.2 27.8 1.8 7.6 0.0 0.0 147.3 5.2 19.3 14.1 2.2 58.5 49.6 526.0 0.1 0.3 2.1 2.4 3.3 132.0Red Sheaffer Slovenia 7 4405.2 15.6 1.4 2.1 18.3 4499.1 546.6 64.4 1.1 13.2 0.0 0.4 229.1 6.1 38.8 157.1 0.5 4.3 47.0 181.6 0.2 0.4 5.5 23.1 24.8 567.7Red Sheaffer (Bottle 2) Slovenia 8 4344.8 15.2 2.3 1.9 18.6 5357.5 550.9 68.9 0.9 15.8 0.0 0.6 213.7 5.7 36.4 146.7 0.3 6.6 70.7 213.2 0.3 0.5 3.9 20.0 31.7 532.2Pelikan Blue Germany 9 131.4 13.4 1.7 0.7 0.2 940.0 3.9 112.9 1.5 12.3 0.0 0.6 606.0 2.1 12.9 19.2 3.2 100.0 99.9 544.5 0.3 0.6 1.4 1.3 3.7 327.9Pelikan Black Germany 10 547.7 5.9 2.6 2.1 3.8 2784.4 12.4 6.9 1.3 199444.4 0.1 0.7 261.9 28.6 27745.5 25.1 0.9 39.2 44.0 3308.1 0.3 1.4 20.0 6.2 2.5 32.2Pelikan Red Germany 11 1235.3 7.1 1.3 0.9 2.9 1004.9 2.1 4.9 0.4 38.6 0.0 0.2 123.9 0.5 19.1 5.5 2.1 12.7 41.8 103.0 0.1 0.5 0.4 12.0 0.8 14.9Waterman Blue France 12 1757.7 4.3 2.5 0.5 0.1 2288.3 40.1 46.3 3.1 36.1 0.0 0.2 216.2 1.0 15.4 24.6 2.3 17.2 546.4 255.6 0.3 1.5 0.5 16.1 58.5 107.8Waterman Black France 13 2449.6 3.6 2.5 1.3 0.2 2830.2 55.1 9.5 3.0 21.4 0.0 0.2 174.0 1.7 48.0 565.0 1.2 23.4 215.7 251.3 0.4 1.3 0.8 21.6 22.7 231.7Waterman Red France 14 1977.6 5.0 1.0 1.3 0.3 1654.3 1.7 7.3 2.1 3.6 0.0 0.0 422.3 0.9 15.0 23.0 0.6 22.9 110.6 261.4 0.2 0.9 0.3 21.5 1.8 219.9Cross Black Germany 15 564.3 6.0 2.6 2.0 2.9 2637.5 11.7 5.6 1.1 150947.2 0.1 0.4 614.5 12.2 22768.8 13.8 2.6 48.6 41.8 2471.0 0.3 1.0 3.1 12.7 2.8 28.1LAMY Black Germany 16 516.5 1.6 3.8 0.9 3.8 2456.1 10.9 6.7 1.2 288886.6 0.2 1.0 333.2 67.5 809.1 20.8 0.8 44.1 61.1 132.5 0.6 0.5 37.4 9.7 3.3 59.1LAMY Light Blue Germany 17 929.9 0.4 1.5 0.4 724.6 1390.7 39.0 68.2 2.2 251.3 0.1 0.5 109.3 49.0 346.7 13.5 1.6 33.5 145.5 277.7 0.7 1.0 19.6 3.6 52.2 121.9LAMY Dark Blue Germany 18 136.5 8.2 0.8 0.7 0.5 1905.5 0.5 33.1 2403.9 12734.9 0.0 0.4 198.2 81.3 110.6 2315.9 120.0 1095.4 4113.7 5545.4 6.1 148.6 3.7 0.3 0.4 100.8WATERMAN Black France 19 2711.9 5.7 0.7 0.3 1.3 3070.8 23.1 19.8 3.4 17.5 0.0 0.1 182.9 17.2 82.4 46.9 1.3 10.1 373.3 151.8 0.1 1.6 6.0 5.1 30.4 94.5WATERMAN STH Sea Blue France 20 817.4 12.0 0.3 0.3 2.7 1618.6 3.6 28.3 4.0 9.0 0.0 0.4 118.7 2.1 110.2 103.5 2.3 53.2 699.4 2909.9 0.1 0.9 1.1 5.2 1.7 98.0WATERMAN Blue Black France 21 1233.2 5.8 0.4 0.5 1.0 1795.5 37.0 30.3 1.6 20.6 0.0 0.4 157.8 16.8 107.7 32.3 1.5 12.2 100.4 370.5 0.2 1.1 5.4 6.9 58.3 67.5OMAS Black Italy 22 296.8 41.1 0.3 0.3 2.4 1875.6 7.8 18.4 1.7 126512.9 0.1 0.2 130.2 49.7 323.7 21.4 0.4 45.1 215.7 398.3 0.1 1.4 51.5 8.8 2.0 48.0OMAS Blue Italy 23 1325.9 28.1 0.8 1.2 19.6 1815.2 11.0 37.3 1.0 27.1 0.0 1.6 125.6 40.8 15566.5 47.8 8.3 20.4 78.3 257.9 1.0 0.9 18.0 4.9 30.6 307.2OMAS Red Italy 24 1838.1 26.2 0.6 0.5 8.6 2169.5 1.8 25.5 0.7 10.8 0.0 0.8 113.9 76.6 384.5 28.4 0.1 11.7 310.9 343.9 0.1 1.3 17.8 43.4 3.7 174.8AURORA Black Italy 25 613.9 1.8 0.6 0.7 1.9 3316.0 1329.4 5.1 0.7 53870.3 0.1 1.6 276.7 32.7 364.1 45.4 0.5 15.4 42.5 77.4 0.2 3.3 11.9 16.6 73.9 13.9AURORA Blue Italy 26 476.5 2.4 0.3 0.2 0.3 2519.5 2.1 122.1 3.7 18.2 0.0 0.4 224.7 32.0 171.4 43.2 6.2 166.7 50.7 7877.5 0.1 1.5 3.7 14.5 2.9 398.9PARKER Black France 27 1965.1 4.9 0.4 0.3 2.2 2068.3 67.9 9.5 2.3 42.6 0.0 0.3 137.5 18.5 188.0 41.2 0.8 15.1 425.2 282.8 0.1 1.0 13.2 11.9 44.6 114.5PARKER Blue France 28 1798.9 3.3 1.1 0.2 0.9 2409.7 52.0 84.1 3.2 45.7 0.0 0.4 135.4 37.3 320.4 24.7 1.9 6.9 45.0 100.7 0.1 1.5 17.3 18.3 69.5 163.4CARAN d'ACHE Carbon Sw itzerland 29 1974.6 3.8 0.1 1.7 2.5 4017.8 29.5 12.9 1.6 206246.3 0.1 1.8 265.5 81.2 1372.2 10.2 0.9 16.7 184.0 95.9 0.1 2.6 26.7 25.4 4.9 36.4CARAN d'ACHE BlueSky Sw itzerland 30 135.4 0.7 0.1 0.1 0.2 1075.4 91.3 20.8 1.0 144.1 0.0 0.5 80.3 27.6 245.7 12.5 3.4 96.4 231.9 506.4 0.0 0.7 13.3 18.1 16.3 82.2GRAF VON FABERCASTELL Black Germany 31 506.9 5.8 0.9 1.5 3.9 2740.7 11.9 4.6 1.0 260027.0 0.1 2.9 270.2 421.0 33848.8 17.2 0.8 54.1 35.4 3496.3 0.3 6.2 101.1 27.0 7.7 20.5GRAF VON FABERCASTELL Royal Blue Germany 32 83.1 5.0 1.8 0.0 0.3 1191.1 0.4 39.6 0.7 63.1 0.0 0.8 68.2 46.6 253.2 18.8 3.7 115.2 38.2 739.3 0.5 1.1 9.8 12.0 1.5 160.0CROSS Black Germany 33 343.0 4.1 0.5 0.1 2.9 2208.7 9.0 3.9 0.8 169251.7 0.1 1.4 186.8 37.0 23620.9 17.0 0.6 36.1 32.6 3244.4 0.2 1.3 23.3 16.7 0.5 17.3CROSS Blue Germany 34 50.0 11.2 0.1 0.3 0.1 948.5 1.7 65.1 1.1 29.3 0.0 0.4 61.0 17.7 263.5 18.0 3.5 114.0 27.4 474.8 0.0 0.4 8.4 6.1 2.7 182.0PARKER Blue France 35 745.5 3.7 0.5 0.5 0.5 951.6 14.5 6.1 2.3 39.7 0.0 0.6 26.1 21.0 279.0 13.4 0.9 4.7 62.0 442.8 0.1 0.3 8.7 9.4 27.3 6.8WaterMan Black France 36 2807.2 5.6 1.4 0.2 1.6 2502.2 25.6 26.4 4.2 0.4 0.0 0.5 3.7 0.7 4.2 1.8 0.1 0.7 20.6 6.2 0.0 0.0 0.5 0.4 1.8 5.2Camel Royal Blue India 37 28.2 12.6 0.3 2.0 0.2 786.2 1.9 64.5 1.8 0.1 0.0 0.5 3.4 0.1 12.6 1.9 0.3 8.5 1.9 5.1 0.0 0.0 0.1 1.0 0.1 9.9Parker Quink Black India 38 2494.5 22.3 2.6 0.3 0.9 2037.6 4.6 130.0 89.9 0.5 0.0 0.3 2.8 1.3 348.9 56.0 0.2 3.2 9.1 20.3 0.1 0.0 0.3 0.3 0.1 21.4Parker Quink Blue India 39 61.0 12.4 0.3 0.1 0.3 1155.9 2.6 55.1 9.9 0.3 0.0 0.3 2.3 0.1 3.3 2.3 0.2 5.5 5.3 15.2 0.0 0.0 0.3 0.6 0.1 10.4Chelpark Black India 40 10929.7 18.2 3.1 0.9 8.4 1775.9 301.6 21.3 45.8 0.0 0.0 0.1 3.4 0.8 20.5 6.5 0.3 10.0 506.1 36.3 0.0 0.0 0.4 0.0 0.9 23.3Chelpark Royal Blue India 41 73.1 0.4 0.5 0.2 0.2 1422.6 2.1 46.1 11.4 0.1 0.0 0.2 1.4 0.2 2.5 2.6 0.3 6.6 35.3 49.2 0.0 0.0 0.2 0.6 0.1 7.9Chelpark BlueBlack India 42 2329.4 10.2 2.3 1.3 73.0 1338.9 6.5 42.9 507.4 0.1 0.0 0.0 1.5 0.6 5.9 39.2 0.3 6.8 3044.2 22.7 0.0 0.0 0.3 0.1 0.3 23.8Chelpark Crimson Violet India 43 1233.1 24.1 1.1 1.0 0.8 1369.6 3.1 32.7 9.4 0.0 0.0 0.1 0.5 0.2 10.4 2.7 0.0 1.5 4.9 12.5 0.0 0.0 0.2 0.1 0.1 15.9

Page 281: Development of Novel Physical (Electrostatic Detection

281

Appendix 2 continued Table 7Brand Numbers Fig 4.40A & B Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La Ce Pr Nd Sm Gd Hf W Pb Bi U Black Parker France 1 0.5 8.5 0.6 18.3 0.0 0.0 0.1 1.9 0.5 0.5 218.5 1.5 0.1 0.4 961.6 9.5 19.8 1.7 4.9 0.4 0.3 0.1 2.1 47.9 0.2 0.1Blue Parker France 2 0.1 4.0 0.7 25.6 0.0 0.0 0.0 0.6 0.1 0.5 129.1 1.4 0.0 1.2 23.3 0.6 2.6 0.2 0.6 0.1 0.0 0.0 2.8 7.0 0.0 0.0Black Sheaffer Slovenia 3 0.4 19.2 0.6 10.9 0.0 0.0 0.3 0.3 0.2 0.0 5.9 1.0 0.1 0.4 157.6 0.9 1.7 0.1 0.5 0.1 0.1 0.4 2.6 5.7 0.1 0.3Black Sheaffer (Bottle 2) Slovenia 4 0.4 17.0 1.5 10.6 0.0 0.0 0.2 0.1 0.2 0.1 5.4 0.9 0.1 0.3 124.3 0.7 1.5 0.1 0.4 0.1 0.1 0.4 2.5 3.4 0.0 0.3Blue Sheaffer Slovenia 5 0.1 8.4 0.2 467.7 0.0 0.0 0.1 0.2 0.6 0.7 197.0 0.6 0.1 0.2 81.6 0.2 0.4 0.0 0.1 0.0 0.0 0.2 12.5 9.4 0.0 0.3Blue Sheaffer (Bottle 2) Slovenia 6 0.1 1.9 0.5 103.1 0.0 0.0 0.1 0.2 0.2 0.6 187.1 1.1 0.0 0.2 118.1 0.5 1.1 0.1 0.1 0.1 0.0 0.1 4.7 4.6 0.1 0.3Red Sheaffer Slovenia 7 0.2 5.8 0.4 1.4 0.0 0.0 0.1 0.0 0.1 0.6 207.5 10.4 0.1 0.1 59.8 0.4 0.9 0.1 0.2 0.1 0.0 0.1 3.2 2.2 0.0 0.2Red Sheaffer (Bottle 2) Slovenia 8 0.2 5.6 0.2 1.4 0.0 0.0 0.1 0.1 0.0 0.7 206.4 14.5 0.1 0.1 73.8 0.6 1.1 0.2 0.3 0.1 0.0 0.1 2.7 2.8 0.0 0.2Pelikan Blue Germany 9 0.1 1.6 2.5 126.7 0.0 0.0 0.3 0.3 0.2 0.1 8.3 1.0 0.2 0.1 133.8 1.7 3.5 0.1 0.1 0.1 0.2 0.4 11.6 16.7 0.9 0.9Pelikan Black Germany 10 0.4 10.1 1.6 10.8 0.1 0.0 0.2 0.1 0.2 0.0 4.3 3.3 0.1 0.5 30.9 1.6 3.3 0.1 0.3 0.1 0.3 0.4 5.0 7.0 0.6 0.5Pelikan Red Germany 11 0.3 2.1 1.3 2.0 0.1 0.0 0.1 0.2 0.6 0.1 4.0 0.9 0.7 0.1 9.4 1.8 3.0 0.1 0.2 0.1 0.2 0.1 3.0 3.1 0.1 0.0Waterman Blue France 12 0.2 2.2 1.2 44.4 0.1 0.0 0.2 0.2 0.2 0.0 3.5 1.1 0.1 2.3 96.1 1.2 2.8 0.1 0.4 0.1 0.2 0.1 5.1 6.9 0.5 0.1Waterman Black France 13 0.1 2.9 1.3 24.6 0.1 0.1 0.1 0.1 0.1 0.0 3.3 1.0 0.1 1.0 73.5 1.6 3.2 0.1 0.5 0.1 0.2 0.0 4.0 2457.5 0.7 0.2Waterman Red France 14 0.1 1.8 0.4 3.0 0.0 0.0 0.0 0.1 0.2 0.1 2.6 0.8 0.0 0.0 201.3 1.9 4.0 0.1 0.6 0.1 0.2 0.1 3.2 13.5 0.1 0.0Cross Black Germany 15 0.3 5.2 3.8 7.9 0.1 0.1 0.3 0.2 0.2 0.8 205.4 0.5 0.0 0.3 28.6 2.0 4.3 0.2 0.4 0.1 0.4 0.2 31.2 4.0 0.1 0.3LAMY Black Germany 16 0.3 9.0 0.5 9.8 0.0 0.0 0.1 0.1 0.1 0.1 4.5 3.0 0.1 0.7 43.4 0.9 1.8 0.1 0.1 0.0 0.1 0.7 5.1 3.4 0.1 0.5LAMY Light Blue Germany 17 0.2 11.8 0.2 38.3 0.0 0.0 0.0 0.1 0.2 0.0 3.6 1.4 0.1 1.7 183.0 0.6 1.3 0.0 0.1 0.0 0.0 0.6 2.9 4.4 0.1 1.3LAMY Dark Blue Germany 18 0.1 1.5 0.3 35.6 0.0 0.0 0.1 0.2 1.0 0.2 29.0 1.1 0.0 0.1 84.3 0.3 2.0 0.0 0.1 0.0 0.0 0.3 2.0 170.4 0.2 0.1WATERMAN Black France 19 0.2 0.8 0.1 11.7 0.0 0.0 0.0 0.1 0.1 0.0 1.4 0.7 0.1 1.3 68.8 0.5 1.3 0.2 0.6 0.1 0.4 0.1 2.3 111.5 0.0 0.1WATERMAN STH Sea Blue France 20 0.0 0.4 0.1 2.5 0.0 0.0 0.0 0.4 0.1 0.0 1.4 1.0 0.1 0.1 79.5 0.3 0.5 0.1 0.3 0.0 0.1 0.0 0.6 38.9 0.0 0.9WATERMAN Blue Black France 21 0.1 2.4 0.1 19.7 0.0 0.0 0.1 0.0 0.1 0.0 1.6 0.7 0.2 1.8 92.4 0.4 1.7 0.2 0.3 0.1 0.1 0.2 2.2 16.7 0.1 0.2OMAS Black Italy 22 0.1 2.5 0.2 3.7 0.1 0.0 0.0 0.1 0.1 0.7 258.4 1.7 0.0 0.2 17.1 0.1 0.1 0.0 0.1 0.0 0.0 0.1 1.5 7.4 0.2 0.3OMAS Blue Italy 23 0.2 3.9 0.3 0.7 0.1 0.0 0.0 37.0 0.1 0.7 242.5 1.1 0.0 3.3 13.4 0.4 1.1 0.2 0.5 0.1 0.1 0.1 2.9 15.4 0.0 5.2OMAS Red Italy 24 0.1 1.7 0.1 0.2 0.0 0.0 0.0 0.1 0.1 0.1 15.0 0.1 0.1 0.0 82.7 0.2 0.4 0.0 0.1 0.0 0.1 0.4 0.1 8.0 0.0 0.1AURORA Black Italy 25 0.1 6.5 0.3 2.9 0.1 0.0 0.1 0.1 0.1 0.2 2.2 0.3 0.2 0.3 46.4 0.3 0.8 0.0 0.2 0.0 0.1 0.2 5.3 5.4 0.1 0.1AURORA Blue Italy 26 0.1 2.6 0.2 151.0 0.0 0.0 0.1 0.2 1.0 0.3 72.6 1.2 0.1 0.2 237.7 0.3 0.3 0.0 0.1 0.0 0.0 0.1 5.3 20.3 0.0 0.1PARKER Black France 27 0.1 0.4 0.1 24.5 0.0 0.0 0.0 0.0 0.2 0.4 131.0 0.4 0.2 1.8 23.6 0.1 0.3 0.0 0.0 0.0 0.0 0.1 2.5 59.2 0.0 0.0PARKER Blue France 28 0.0 1.2 0.1 41.4 0.0 0.0 0.0 0.1 0.1 0.5 178.9 0.5 0.2 2.1 51.2 0.1 0.3 0.0 0.0 0.0 0.0 0.1 2.8 2.2 0.0 0.0CARAN d'ACHE Carbon Sw itzerland 29 0.3 6.6 0.5 5.3 0.1 0.0 0.0 0.0 0.1 0.7 214.2 9.3 0.0 0.2 38.2 0.4 1.2 0.1 0.2 0.1 0.1 0.2 2.7 4.6 0.0 0.3CARAN d'ACHE BlueSky Sw itzerland 30 0.0 2.1 0.2 129.8 0.0 0.0 0.1 0.0 0.3 0.8 15.3 0.5 0.0 0.1 20.7 0.2 0.5 0.0 0.1 0.0 0.0 0.2 4.1 27.7 0.1 0.0GRAF VON FABERCASTELL Black Germany 31 0.7 11.6 0.6 10.7 0.4 0.0 0.1 0.0 0.1 0.0 2.4 2.2 0.0 0.4 21.7 0.5 1.5 0.1 0.3 0.1 0.1 1.0 5.4 2.4 0.0 0.4GRAF VON FABERCASTELL Royal Blue Germany 32 0.3 1.4 0.2 119.7 0.1 0.0 0.1 0.3 0.2 0.0 1.2 0.4 0.0 0.1 72.7 0.4 1.0 0.0 0.1 0.0 0.0 0.0 2.6 13.8 0.2 0.1CROSS Black Germany 33 0.2 6.0 0.4 6.8 0.3 0.0 0.0 0.1 0.0 0.5 149.7 1.8 0.1 0.3 14.9 0.3 2.1 0.0 0.2 0.0 0.1 0.2 2.4 3.1 0.1 0.3CROSS Blue Germany 34 0.1 1.3 0.2 123.9 0.0 0.0 0.1 0.2 0.2 0.0 5.0 0.3 0.0 0.1 53.3 0.2 0.4 0.0 0.1 0.0 0.0 0.0 3.3 4.1 0.0 0.1PARKER Blue France 35 0.0 5.2 0.0 19.4 0.1 0.0 0.0 0.0 0.1 0.4 97.6 0.4 0.2 1.0 12.9 0.1 0.3 0.0 0.0 0.0 0.0 0.1 1.1 4.5 0.0 0.0WaterMan Black France 36 0.0 0.1 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 5.3 0.0 0.0Camel Royal Blue India 37 0.0 0.1 0.0 4.2 0.0 0.0 0.0 0.0 0.2 0.1 0.1 0.0 0.0 0.0 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0Parker Quink Black India 38 0.0 0.1 0.0 2.3 0.0 0.0 0.0 0.3 0.0 0.0 1.2 0.1 0.0 0.0 4.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 121.2 0.0 0.0Parker Quink Blue India 39 0.0 0.0 0.0 7.5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 3.6 0.0 0.1Chelpark Black India 40 0.0 0.1 0.0 1.8 0.0 0.0 0.0 0.1 0.2 0.0 2.4 0.1 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 5.0 0.0 0.1Chelpark Royal Blue India 41 0.0 0.1 0.0 8.0 0.0 0.0 0.0 0.1 0.1 0.1 0.9 0.4 0.0 0.0 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 5.1 0.0 0.0Chelpark BlueBlack India 42 0.0 0.3 0.0 7.0 0.0 0.1 0.0 0.0 0.0 0.0 0.6 0.1 0.0 0.0 4.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.6 2.2 0.1 0.4Chelpark Crimson Violet India 43 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 2.4 0.0 0.0

Page 282: Development of Novel Physical (Electrostatic Detection

282

Appendix 3 Statistical data for Fountain Pen Ink Experiments

Page 283: Development of Novel Physical (Electrostatic Detection

283

Appendix 3

Appendix 3 Reproducibility of elemental concentrations in four different measurements weighing from (20μL, 50μL, 100μL, and 200μL) of Black Parker samples 187-198 made in France, other elements are expressed as ppb).Table1 analysed in triplicate (Na, Mg, Al, P, S, K, Ca & Fe concentrations are expressed as ppm all Sample *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga 187-189 Black Parker 200μL Average 2144 27.30 1.45 1.08 39.30 3637 957.00 28.90 1.52 21931 0.01 0.23 242.00 9.21 2747 3312 5.03 160 597 676 0.54

STD DEV 429.00 6.32 0.18 0.07 2.05 342.00 39.30 3.44 0.18 875.00 0.01 0.01 11.10 0.67 285.00 164.00 0.15 9.85 22.20 32.30 0.09CoV% 20.01 23.15 12.48 6.76 5.22 9.40 4.11 11.90 11.51 3.99 35.71 3.08 4.59 7.29 10.37 4.95 2.94 6.16 3.72 4.78 15.65

190-192 Black Parker 100μL Average 1878 25.40 1.33 1.48 36.10 3274 917.00 28.40 1.47 21980 0.01 0.28 289.00 9.25 2796 3482 4.70 164 594 698 0.53STD DEV 198.00 2.45 0.22 0.23 0.51 174.00 85.90 3.12 0.20 1247.00 0.00 0.02 42.80 0.98 130.00 83.10 0.35 8.70 70.70 29.50 0.11

CoV% 10.54 9.65 16.17 15.74 1.40 5.31 9.37 10.99 13.40 5.67 33.33 8.30 14.81 10.57 4.65 2.39 7.38 5.30 11.90 4.23 21.33193-195 Black Parker 50μL Average 1954 25.20 1.60 1.54 34.60 3557 911.00 26.70 1.51 21450 0.01 0.24 275.00 8.75 2862 3639 5.16 166 555 695 0.56

STD DEV 266.00 2.22 0.03 0.34 2.51 194.00 71.60 0.90 0.20 941.00 0.00 0.01 35.60 1.14 34.10 148.00 0.31 4.03 55.60 7.35 0.07CoV% 13.61 8.81 2.00 22.27 7.25 5.45 7.86 3.37 12.98 4.39 0.00 4.15 12.95 13.03 1.19 4.07 5.93 2.43 10.02 1.06 12.14

196-198 Black Parker 20μL Average 2280 29.00 1.47 1.31 37.30 3672 947.00 28.90 1.63 21402 0.01 0.26 239.00 8.10 2792 3324 4.78 163 594 730 0.61STD DEV 197.00 1.98 0.33 0.21 1.74 344.00 29.80 2.31 0.04 418.00 0.00 0.03 8.00 0.19 77.60 47.10 0.38 7.62 25.50 19.40 0.05

CoV% 8.64 6.83 22.72 16.26 4.66 9.37 3.15 7.99 2.70 1.95 7.69 10.98 3.35 2.35 2.78 1.42 7.97 4.67 4.29 2.66 7.72Sample Ge As Se Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La

0.50 Black Parker 200μL Average 0.25 4.19 8.75 118.00 48.90 0.49 8.78 0.70 27.10 0.02 0.02 0.14 1.97 0.49 0.55 208.00 1.35 0.10 0.47 912.00 10.10STD DEV 0.04 0.29 0.46 3.46 3.74 0.08 0.53 0.07 7.91 0.00 0.00 0.04 0.14 0.08 0.06 24.10 0.20 0.00 0.09 49.80 2.20

CoV% 15.94 6.85 5.27 2.93 7.65 16.02 6.00 9.66 29.19 13.64 18.75 30.00 6.90 16.08 10.89 11.59 15.11 1.92 18.55 5.46 21.78190-192 Black Parker 100μL Average 0.29 4.04 9.15 112.00 54.60 0.49 9.09 0.79 32.00 0.03 0.01 0.17 1.96 0.53 0.60 213.00 1.63 0.10 0.49 954.00 10.30

STD DEV 0.05 0.56 0.16 3.64 1.34 0.04 1.10 0.05 1.58 0.01 0.00 0.05 0.34 0.06 0.08 15.20 0.23 0.02 0.13 49.40 1.84CoV% 17.59 13.81 1.76 3.25 2.45 8.81 12.10 5.94 4.94 20.00 9.09 27.91 17.09 10.42 12.98 7.14 14.17 23.23 25.72 5.18 17.86

193-195 Black Parker 50μL Average 0.27 4.22 9.59 113.00 51.20 0.52 9.80 0.84 30.10 0.03 0.01 0.14 2.33 0.50 0.51 212.00 1.68 0.10 0.44 940.00 10.50STD DEV 0.03 0.32 0.50 6.60 1.58 0.03 0.80 0.03 1.70 0.00 0.00 0.03 0.07 0.07 0.07 12.50 0.38 0.01 0.14 17.50 2.83

CoV% 12.18 7.68 5.16 5.84 3.09 5.04 8.20 2.98 5.65 11.54 18.18 18.84 3.18 13.03 13.48 5.90 22.32 14.43 31.45 1.86 26.95196-198 Black Parker 20μL Average 0.34 4.16 9.16 115.00 50.50 0.48 9.93 0.85 37.60 0.03 0.02 0.19 2.22 0.48 0.49 210.00 2.13 0.13 0.60 977.00 12.00

STD DEV 0.07 0.15 0.15 3.38 2.45 0.01 0.36 0.13 5.21 0.00 0.00 0.01 0.18 0.02 0.00 7.64 0.19 0.01 0.07 62.00 1.07CoV% 21.18 3.53 1.68 2.94 4.85 2.11 3.58 14.94 13.86 10.34 6.67 2.66 8.24 3.13 0.20 3.64 9.11 7.09 11.09 6.35 8.92

Sample Ce Pr Nd Eu Sm Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U 187-189 Black Parker 200μL Average 22.40 1.89 5.19 0.15 0.43 0.36 0.02 0.06 0.02 0.05 0.01 0.03 0.01 0.15 0.01 2.09 0.12 44.20 0.25 0.17 0.12

STD DEV 5.51 0.41 1.16 0.05 0.10 0.06 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.04 0.01 0.09 0.02 3.31 0.03 0.06 0.02CoV% 24.60 21.90 22.35 35.10 22.69 17.13 30.43 11.11 31.58 15.56 16.67 14.71 16.67 25.83 62.50 4.21 14.41 7.49 13.25 32.76 18.18

190-192 Black Parker 100μL Average 22.40 1.90 5.23 0.14 0.43 0.37 0.02 0.07 0.03 0.05 0.01 0.03 0.01 0.17 0.01 2.22 0.13 43.20 0.31 0.08 0.14STD DEV 5.12 0.36 1.01 0.03 0.08 0.07 0.01 0.02 0.01 0.01 0.00 0.01 0.00 0.06 0.01 0.53 0.01 2.41 0.06 0.00 0.02

CoV% 22.86 19.05 19.31 20.00 18.52 19.84 22.73 26.09 42.31 12.50 16.67 18.18 14.29 36.36 91.67 23.96 7.87 5.58 19.22 3.70 11.68193-195 Black Parker 50μL Average 22.10 1.98 5.42 0.14 0.50 0.44 0.04 0.15 0.05 0.12 0.02 0.09 0.02 0.19 0.04 2.39 0.13 43.60 0.27 0.11 0.16

STD DEV 6.01 0.55 1.65 0.04 0.21 0.24 0.03 0.16 0.03 0.12 0.02 0.11 0.01 0.06 0.03 0.47 0.03 3.58 0.07 0.01 0.03CoV% 27.19 27.98 30.44 27.54 41.53 54.82 88.57 103.92 56.00 102.56 117.65 115.22 81.25 29.57 83.78 19.54 23.62 8.21 25.27 9.91 20.63

196-198 Black Parker 20μL Average 25.00 2.24 6.34 0.19 0.53 0.49 0.05 0.15 0.04 0.08 0.01 0.07 0.01 0.19 0.04 2.45 0.17 47.60 0.26 0.14 0.16STD DEV 2.45 0.19 0.46 0.02 0.04 0.05 0.02 0.03 0.01 0.04 0.00 0.01 0.00 0.08 0.02 0.47 0.03 3.92 0.02 0.03 0.03

CoV% 9.80 8.39 7.27 12.30 8.27 9.61 43.48 19.46 21.05 44.87 33.33 16.18 28.57 42.55 46.15 19.02 18.34 8.24 6.20 19.01 20.51

Page 284: Development of Novel Physical (Electrostatic Detection

284

Appendix 3 continued

Table 2 Reproducibility of elemental concentrations in four different measurements weighing from (20μL, 50μL, 100μL, and 200μL) of Blue Sheaffer samples 247-258 made in Slovenia, analysed in triplicate (Na, Mg, Al, P, S, K, Ca & Fe concentrations are expressed as ppm all other elements are expressed as ppb).

Sample *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga 247-249 Blue Sheaffer 200μL Average 167.00 9.30 1.55 0.26 1.35 1083.00 2.06 28.10 1.85 7.41 0.01 0.05 146.00 5.58 19.20 14.10 2.19 59.90 49.80 540.00 0.07

STD DEV 4.10 0.12 0.07 0.09 0.05 6.52 0.10 0.31 0.08 0.16 0.00 0.01 1.26 0.37 1.49 0.82 0.05 2.59 3.27 13.00 0.01CoV% 2.46 1.24 4.65 34.88 3.78 0.60 5.05 1.11 4.43 2.17 9.09 22.00 0.86 6.68 7.76 5.84 2.19 4.32 6.57 2.41 20.59

250-252 Blue Sheaffer 100μL Average 170.00 9.82 1.80 0.26 1.31 1157.00 2.38 30.40 1.40 8.47 0.01 0.05 148.00 6.60 17.00 14.60 2.57 60.60 44.20 540.00 0.09STD DEV 8.03 0.13 0.22 0.03 0.07 26.80 0.18 1.71 0.26 0.14 0.00 0.00 3.50 0.30 0.50 0.53 0.21 0.97 2.16 26.80 0.01

CoV% 4.72 1.29 12.17 9.89 5.57 2.32 7.61 5.63 18.86 1.63 15.38 4.44 2.36 4.58 2.94 3.62 8.02 1.61 4.89 4.96 11.24253-255 Blue Sheaffer 50μL Average 177.00 9.52 1.75 0.28 1.40 1043.00 2.56 31.90 1.72 8.20 0.01 0.04 147.00 6.18 16.90 15.70 2.58 59.90 49.50 567.00 0.07

STD DEV 5.07 0.44 0.14 0.04 0.04 14.60 0.32 1.93 0.07 0.40 0.00 0.01 5.32 0.70 0.45 0.60 0.35 2.82 2.06 18.90 0.01CoV% 2.86 4.57 7.77 14.44 2.93 1.40 12.46 6.05 4.01 4.89 8.33 17.50 3.62 11.31 2.63 3.82 13.68 4.71 4.16 3.33 12.16

256-258 Blue Sheaffer 20μL Average 176.00 9.27 1.68 0.24 1.41 1081.00 2.48 27.50 1.87 10.30 0.01 0.05 144.00 6.74 17.60 16.40 2.74 57.00 46.00 601.00 0.09STD DEV 2.01 0.10 0.09 0.02 0.09 40.10 0.04 1.19 0.04 2.27 0.00 0.01 9.45 0.60 0.78 0.55 0.27 1.47 3.46 16.00 0.02

CoV% 1.14 1.06 5.06 7.41 6.10 3.71 1.69 4.33 1.98 22.04 27.27 10.64 6.56 8.93 4.41 3.38 9.96 2.58 7.52 2.66 18.48Sample Ge As Se Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La247-249 Blue Sheaffer 200μL Average 0.30 1.81 2.20 2.86 132.00 0.16 1.91 0.57 101.00 0.01 0.01 0.05 0.16 0.19 0.60 191.00 1.25 0.04 0.26 119.00 0.53

STD DEV 0.05 0.25 0.16 0.40 2.00 0.01 0.15 0.08 2.99 0.00 0.00 0.00 0.04 0.03 0.05 7.90 0.22 0.00 0.03 2.73 0.06CoV% 15.10 13.76 7.41 13.99 1.52 5.81 7.96 13.81 2.96 16.67 20.00 1.85 25.64 16.93 8.99 4.14 17.60 10.26 10.73 2.29 11.61

250-252 Blue Sheaffer 100μL Average 0.37 2.06 2.50 3.22 140.00 0.13 2.03 0.57 97.10 0.01 0.01 0.05 0.18 0.20 0.66 195.00 1.64 0.05 0.27 128.00 0.40STD DEV 0.01 0.19 0.42 0.62 3.43 0.01 0.19 0.06 2.92 0.00 0.00 0.01 0.05 0.03 0.03 4.37 0.16 0.00 0.03 7.23 0.04

CoV% 3.01 9.22 16.84 19.13 2.45 6.72 9.16 11.31 3.01 16.67 16.67 18.87 26.37 13.00 4.97 2.24 10.00 4.35 12.45 5.65 9.93253-255 Blue Sheaffer 50μL Average 0.37 2.08 2.81 2.91 136.00 0.14 2.03 0.58 95.30 0.01 0.01 0.06 0.15 0.17 0.70 199.00 1.64 0.05 0.27 129.00 0.58

STD DEV 0.03 0.10 0.23 0.26 4.16 0.01 0.22 0.08 2.88 0.00 0.00 0.00 0.00 0.00 0.02 3.16 0.07 0.00 0.03 5.96 0.01CoV% 7.88 4.57 8.33 8.80 3.06 5.07 10.99 14.43 3.02 16.67 33.33 4.69 2.63 0.00 2.30 1.59 4.02 8.16 12.08 4.62 1.38

256-258 Blue Sheaffer 20μL Average 0.36 2.10 2.97 2.64 135.00 0.15 1.92 0.63 94.70 0.01 0.01 0.06 0.17 0.17 0.62 206.00 1.46 0.05 0.24 128.00 0.51STD DEV 0.01 0.18 0.26 0.18 2.47 0.03 0.33 0.04 1.79 0.00 0.00 0.00 0.07 0.03 0.02 2.65 0.06 0.01 0.01 10.40 0.07

CoV% 2.48 8.62 8.86 6.86 1.83 17.53 17.29 6.21 1.89 0.00 20.00 7.14 41.82 15.38 2.90 1.29 4.32 11.32 4.10 8.13 13.28Sample Ce Pr Nd Eu Sm Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U 247-249 Blue Sheaffer 200μL Average 1.08 0.11 0.14 0.02 0.07 0.03 0.00 0.05 0.01 0.02 0.00 0.02 0.00 0.09 0.00 4.42 0.05 4.17 0.07 0.07 0.26

STD DEV 0.10 0.03 0.03 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.28 0.01 0.42 0.01 0.01 0.03CoV% 9.44 30.28 18.38 16.67 12.68 31.25 66.67 15.38 40.00 26.09 0.00 14.29 33.33 11.70 25.00 6.33 14.58 10.14 16.67 10.14 11.33

250-252 Blue Sheaffer 100μL Average 0.82 0.08 0.16 0.02 0.07 0.03 0.00 0.05 0.01 0.02 0.00 0.02 0.00 0.08 0.00 4.80 0.05 4.12 0.06 0.06 0.27STD DEV 0.09 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.19 0.01 0.50 0.00 0.01 0.02

CoV% 10.32 9.09 6.10 4.76 11.43 11.76 25.00 14.81 16.67 22.22 0.00 22.73 0.00 9.21 25.00 4.04 13.04 12.18 1.64 11.29 6.30253-255 Blue Sheaffer 50μL Average 1.10 0.11 0.14 0.02 0.06 0.04 0.01 0.06 0.00 0.02 0.00 0.02 0.00 0.08 0.01 5.38 0.07 4.16 0.07 0.06 0.29

STD DEV 0.06 0.00 0.02 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 < 0.0001 0.00 0.00 0.60 0.01 0.56 0.00 0.00 0.05CoV% 5.45 3.77 14.18 9.52 11.86 17.14 20.00 5.26 25.00 31.82 0.00 20.00 #VALUE! 4.94 60.00 11.23 20.00 13.56 4.41 4.92 15.86

256-258 Blue Sheaffer 20μL Average 1.26 0.12 0.16 0.02 0.06 0.03 0.00 0.05 0.00 0.02 0.00 0.02 0.00 0.08 0.00 5.54 0.06 3.79 0.06 0.05 0.28STD DEV 0.13 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.77 0.02 0.77 0.01 0.02 0.02

CoV% 10.08 6.90 5.66 4.35 8.77 25.81 0.00 9.62 0.00 40.00 0.00 20.00 50.00 11.90 0.00 13.88 28.07 20.29 24.14 28.30 7.09

Page 285: Development of Novel Physical (Electrostatic Detection

285

Appendix 3 continued

Elemental concentrations of analytes for comparison of WATERMAN Blue samples 280-282, made in France, WATERMAN South Sea Blue samples 304-306, made in France, Table 3 and WATERMAN Blue Black samples 307-309, made in France, analysed in triplicate . Note (* concentrations expresssed as ppm, no asterisk results expressed as ppb)Sample Brand *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga 292 - 294 Waterman Blue Average 1767.00 4.29 2.26 0.65 0.13 2257.00 40.40 47.20 3.11 37.80 0.01 0.19 230.00 1.21 16.60 24.90 2.49 16.80 552.00 252.00 0.30

STD DEV 11.60 0.03 0.27 0.21 0.01 30.70 0.56 0.95 0.12 2.30 0.00 0.02 16.40 0.17 1.03 0.84 0.38 0.38 14.30 3.22 0.07CoV% 0.66 0.68 11.86 32.42 8.27 1.36 1.37 2.01 3.86 6.08 27.27 11.34 7.13 13.80 6.20 3.37 15.14 2.28 2.59 1.28 23.05

316 - 318 WATERMAN STH Sea Blue Average 812.00 11.60 0.43 0.31 2.49 1633.00 3.17 29.00 3.73 8.70 0.01 0.43 118.00 2.38 116.00 102.00 2.01 53.80 676.00 2890.00 0.04STD DEV 7.45 0.58 0.09 0.05 0.34 12.80 0.66 1.29 0.51 0.40 0.00 0.12 1.06 0.33 8.85 6.59 0.33 2.52 26.30 25.70 0.01

CoV% 0.92 5.03 21.08 16.83 13.45 0.78 20.66 4.45 13.54 4.60 16.67 28.27 0.90 13.78 7.63 6.46 16.27 4.68 3.89 0.89 32.56319 - 321 WATERMAN Blue Black Average 1285.00 5.64 0.40 0.55 1.05 1844.00 37.80 33.40 1.81 21.40 0.02 0.35 155.00 15.60 111.00 29.70 1.99 12.10 100.00 378.00 0.17

STD DEV 74.10 0.51 0.04 0.04 0.20 42.30 2.27 3.30 0.21 2.78 0.02 0.06 4.20 1.89 6.04 3.79 0.49 1.42 5.53 7.35 0.05CoV% 5.77 9.08 10.45 7.97 18.76 2.29 6.01 9.88 11.44 12.99 69.57 15.67 2.71 12.12 5.44 12.76 24.82 11.74 5.53 1.94 29.89

Sample Brand Ge As Se Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La292 - 294 Waterman Blue Average 1.61 0.51 17.10 59.20 105.00 0.12 2.53 1.28 43.80 0.07 0.01 0.14 0.18 0.27 0.04 3.73 1.16 0.07 2.51 93.30 1.17

STD DEV 0.08 0.01 1.24 1.27 2.81 0.03 0.31 0.17 0.94 0.01 0.00 0.02 0.06 0.04 0.01 0.66 0.15 0.01 0.35 2.93 0.02CoV% 4.97 2.14 7.25 2.15 2.68 27.05 12.09 13.52 2.16 13.70 33.33 15.60 31.25 13.81 20.93 17.59 13.28 18.92 13.98 3.14 1.62

316 - 318 WATERMAN STH Sea Blue Average 0.81 1.34 5.36 1.40 95.30 0.05 0.48 0.08 2.66 0.01 0.01 0.03 0.41 0.08 0.01 1.44 0.85 0.07 0.07 74.90 0.20STD DEV 0.11 0.26 0.42 0.22 2.42 0.00 0.13 0.01 0.53 0.00 0.00 0.01 0.08 0.01 0.00 0.18 0.19 0.01 0.01 4.52 0.05

CoV% 13.65 19.10 7.78 16.00 2.54 0.00 26.89 11.11 19.96 16.67 14.29 20.69 19.46 12.20 21.43 12.50 22.22 9.09 19.18 6.03 26.73319 - 321 WATERMAN Blue Black Average 1.34 4.81 6.15 58.60 87.20 0.05 2.53 0.08 20.30 0.01 0.01 0.06 0.06 0.11 0.02 1.49 0.79 0.21 2.28 91.00 0.52

STD DEV 0.51 0.95 0.69 2.50 18.80 0.02 0.08 0.01 2.33 0.00 0.00 0.01 0.01 0.03 0.00 0.13 0.10 0.02 0.45 6.38 0.08CoV% 37.99 19.81 11.20 4.27 21.56 28.85 3.32 5.95 11.48 23.08 33.33 12.28 20.34 27.62 4.55 8.93 12.39 7.98 19.56 7.01 16.18

Sample Brand Ce Pr Nd Eu Sm Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U 292 - 294 Waterman Blue Average 2.38 0.12 0.39 0.05 0.12 0.21 0.02 0.14 0.01 0.09 0.02 0.05 0.01 0.07 0.02 6.74 0.08 7.15 0.53 0.10 0.07

STD DEV 0.37 0.00 0.03 0.00 0.01 0.00 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 1.43 0.02 0.68 0.14 0.02 0.01CoV% 15.67 3.36 7.16 1.85 9.40 0.00 20.00 14.07 7.14 22.99 12.50 20.41 16.67 9.46 11.76 21.22 21.43 9.47 25.61 25.26 8.57

316 - 318 WATERMAN STH Sea Blue Average 0.50 0.06 0.34 0.04 0.03 0.13 0.03 0.04 0.07 0.14 0.02 0.02 0.01 0.03 0.01 0.74 0.03 37.10 0.04 0.07 0.85STD DEV 0.05 0.02 0.05 0.01 0.01 0.03 0.01 0.01 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.12 0.01 1.63 0.01 0.01 0.04

CoV% 9.33 26.67 15.16 15.00 17.65 24.06 19.23 13.16 27.78 21.32 26.09 26.67 20.00 6.45 15.38 15.59 36.00 4.39 33.33 16.67 4.80319 - 321 WATERMAN Blue Black Average 1.54 0.23 0.35 0.04 0.08 0.14 0.02 0.02 0.13 0.32 0.05 0.04 0.01 0.15 0.02 2.13 0.05 19.20 0.08 0.15 0.24

STD DEV 0.22 0.07 0.07 0.01 0.01 0.01 0.00 0.01 0.02 0.02 0.01 0.01 0.00 0.05 0.01 0.31 0.01 2.77 0.01 0.03 0.04CoV% 14.22 29.78 21.14 21.62 12.66 4.90 5.56 20.83 16.54 6.90 16.67 17.14 20.00 32.89 30.00 14.37 20.00 14.43 6.41 19.46 17.50

Page 286: Development of Novel Physical (Electrostatic Detection

286

Appendix 3 continued

Table 4 The elemental concentrations of PARKER Blue fountain ink from the same brand, manufactured in different countries, PARKER Blue samples 328-330, and samples 349-351, made in France , and PARKER Quink Blue PARKER samples 361-363,made in India fountain inks were analysed in triplicate. Note (* concentrations expressed as ppm; no asterisk results expressed as ppb).

Sample Brand *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga 340 - 342 PARKER Blue Average 1793.00 3.83 1.17 0.19 0.89 2358.00 53.40 82.50 3.54 44.00 0.02 0.43 145.00 36.40 329.00 25.80 2.19 7.63 43.70 96.90 0.14

STD DEV 12.00 0.50 0.16 0.06 0.06 52.50 1.20 1.45 0.34 2.16 0.01 0.01 20.10 0.83 16.10 2.05 0.28 0.76 1.13 3.54 0.04CoV% 0.67 13.03 13.50 29.47 6.89 2.23 2.25 1.76 9.69 4.91 28.57 3.25 13.86 2.29 4.89 7.95 12.79 9.90 2.59 3.65 24.31

361 - 363 PARKER Blue Average 777.00 4.06 0.65 0.35 0.50 896.00 11.60 5.73 2.49 39.30 0.01 0.55 26.70 22.10 297.00 12.40 0.93 5.08 67.60 386.00 0.09STD DEV 38.20 0.46 0.21 0.13 0.10 64.30 2.47 0.32 0.31 1.44 0.00 0.15 1.62 1.69 17.50 0.81 0.20 0.38 5.98 53.00 0.02

CoV% 4.92 11.28 31.85 37.39 19.44 7.18 21.29 5.64 12.25 3.66 10.00 26.58 6.07 7.65 5.89 6.55 21.44 7.50 8.85 13.73 23.33373-375 Parker Quink Blue Average 61.70 12.40 0.29 0.08 0.25 1108.00 2.11 56.30 8.45 0.36 0.00 0.28 2.23 0.13 2.72 2.22 0.19 5.02 4.81 14.90 0.02

STD DEV 4.92 0.40 0.03 0.02 0.02 64.20 0.46 2.42 1.23 0.02 0.00 0.04 0.04 0.02 0.62 0.16 0.02 0.55 0.44 1.90 0.01CoV% 7.97 3.25 10.54 23.75 8.80 5.79 21.90 4.30 14.56 4.48 0.00 12.68 1.88 14.93 22.83 7.07 8.25 10.94 9.17 12.75 33.33

Sample Brand Ge As Se Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La340 - 342 PARKER Blue Average 1.71 17.10 19.30 72.40 163.00 0.05 1.23 0.16 39.80 0.03 0.01 0.03 0.06 0.10 0.57 186.00 0.63 0.24 2.45 51.70 0.12

STD DEV 0.28 0.17 0.89 2.51 1.30 0.01 0.07 0.04 1.39 0.01 0.00 0.01 0.01 0.01 0.08 6.10 0.08 0.03 0.31 0.49 0.00CoV% 16.61 0.98 4.63 3.47 0.80 10.87 5.37 22.09 3.49 18.75 14.29 20.00 8.06 5.83 13.09 3.28 12.90 10.33 12.49 0.94 2.46

361 - 363 PARKER Blue Average 0.30 7.73 9.42 30.30 6.35 0.06 6.02 0.02 21.90 0.07 0.00 0.05 0.01 0.11 0.43 88.90 0.38 0.27 0.99 12.10 0.13STD DEV 0.04 0.84 0.08 2.99 0.79 0.02 1.40 0.02 2.43 0.01 0.00 0.01 0.00 0.03 0.05 7.61 0.04 0.07 0.21 0.83 0.01

CoV% 13.16 10.91 0.85 9.87 12.38 31.15 23.26 62.50 11.10 17.81 25.00 20.75 16.67 28.97 12.01 8.56 9.33 27.61 21.09 6.86 8.33373-375 Parker Quink Blue Average 0.01 0.23 0.63 0.10 11.10 0.01 0.05 0.00 6.94 0.01 0.00 0.01 0.02 0.03 0.02 0.10 0.09 0.01 0.01 6.92 0.04

STD DEV 0.00 0.03 0.05 0.02 0.89 0.00 0.02 0.00 0.53 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.72 0.00CoV% 20.00 13.91 7.64 21.21 8.03 14.29 37.50 0.00 7.62 20.00 #DIV/0! 0.00 11.76 19.23 33.33 14.58 11.76 40.00 14.29 10.40 2.78

Sample Brand Ce Pr Nd Eu Sm Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U 340 - 342 PARKER Blue Average 0.25 0.01 0.05 0.01 0.02 0.02 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.08 0.02 3.65 0.09 2.87 0.03 0.06 0.05

STD DEV 0.01 0.00 0.01 0.00 0.00 0.00 < 0.0001 0.00 0.00 0.00 < 0.0001 0.00 < 0.0001 0.01 0.00 0.75 0.01 0.57 0.01 0.01 0.01CoV% 2.38 14.29 11.11 33.33 0.00 12.50 11.76 0.00 0.00 0.00 17.95 20.00 20.58 7.95 19.79 28.00 19.35 27.66

361 - 363 PARKER Blue Average 0.35 0.02 0.05 0.01 0.02 0.01 0.01 0.01 0.00 0.03 0.00 0.01 0.00 0.06 0.00 1.74 0.06 4.74 0.02 0.02 0.02STD DEV 0.07 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.55 0.01 0.45 0.01 0.00 0.01

CoV% 18.86 12.50 22.45 12.50 5.56 7.14 20.00 25.00 50.00 23.08 33.33 16.67 33.33 23.21 33.33 31.72 22.58 9.51 38.89 26.67 22.73373-375 Parker Quink Blue Average 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.01 3.18 0.01 0.00 0.06

STD DEV 0.00 0.00 0.00 0.00 0.00 0.00 < 0.0001 < 0.0001 < 0.0001 0.00 < 0.0001 0.00 < 0.0001 0.00 < 0.0001 0.00 0.00 0.37 0.00 0.00 0.00CoV% 18.18 0.00 33.33 0.00 25.00 0.00 0.00 0.00 50.00 2.86 22.22 11.73 14.29 25.00 6.35

Page 287: Development of Novel Physical (Electrostatic Detection

287

Appendix 3 continued

Table 5 The elemental concentrations of PELIKAN Black samples 274-276 made in Germany, and CROSS Black samples 289-291 made in Germany fountain pen inks were analysed in triplicate. Note (* concentrations expressed as ppm; no asterisk results expressed as ppb)

Sample Brand *Na *Mg *Al *Si *P *S *K *Ca *Fe Li Be Sc Ti V Cr Mn Co Ni Cu Zn Ga 286-288 Pelikan Black Average 533.00 5.61 2.32 2.32 3.65 2674.00 11.70 6.54 1.31 200056.00 0.08 0.79 249.00 26.40 28514.00 26.50 0.92 36.20 47.30 3319.00 0.32

STD DEV 12.70 0.21 0.27 0.26 0.15 112.00 0.63 0.59 0.01 9504.00 0.01 0.09 15.30 2.17 909.00 1.78 0.04 2.61 2.90 58.30 0.05CoV% 2.38 3.78 11.59 11.08 4.16 4.19 5.37 8.94 1.07 4.75 16.87 11.41 6.14 8.22 3.19 6.72 4.81 7.21 6.13 1.76 13.98

313 - 315 Cross Black Average 568.00 6.08 2.64 1.93 2.98 2718.00 12.00 5.42 1.09 150626.00 0.06 0.40 607.00 12.20 22408.00 14.70 2.33 48.00 42.10 2468.00 0.36STD DEV 6.66 0.11 0.48 0.30 0.03 71.30 0.39 0.39 0.03 3493.00 0.01 0.03 7.36 0.14 371.00 1.23 0.28 0.56 1.94 32.60 0.02

CoV% 1.17 1.78 18.11 15.28 0.97 2.62 3.25 7.23 2.94 2.32 15.00 6.22 1.21 1.11 1.66 8.37 12.15 1.16 4.61 1.32 4.97Sample Brand Ge As Se Rb Sr Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Te Cs Ba La286-288 Pelikan Black Average 1.37 19.10 6.29 2.37 29.40 0.43 10.70 1.38 9.71 0.08 0.00 0.15 0.11 0.20 0.04 4.47 3.01 0.08 0.47 28.30 1.47

STD DEV 0.06 0.86 0.09 0.17 2.48 0.04 1.00 0.20 1.20 0.01 0.00 0.02 0.01 0.01 0.00 0.37 0.27 0.00 0.06 2.23 0.14CoV% 4.23 4.48 1.49 7.00 8.44 8.24 9.33 14.13 12.36 10.13 33.33 11.49 5.66 5.53 5.41 8.34 8.90 2.67 12.61 7.88 9.39

313 - 315 Cross Black Average 1.10 3.28 13.20 2.97 28.00 0.26 5.44 3.79 7.79 0.11 0.12 0.34 0.27 0.22 0.94 202.00 0.70 0.02 0.32 28.20 1.90STD DEV 0.14 0.35 0.51 0.18 0.66 0.02 0.41 0.19 0.55 0.01 0.01 0.02 0.03 0.02 0.11 4.29 0.20 0.01 0.06 0.52 0.15

CoV% 12.55 10.52 3.83 5.99 2.36 6.98 7.52 4.99 7.06 12.38 9.76 5.29 9.36 9.46 11.22 2.12 28.80 28.57 19.24 1.85 8.05Sample Brand Ce Pr Nd Eu Sm Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Tl Pb Bi Th U 286-288 Pelikan Black Average 3.21 0.12 0.37 0.02 0.11 0.26 0.02 0.10 0.02 2.75 0.01 0.05 0.01 0.36 0.01 5.28 0.20 7.25 0.62 0.15 0.53

STD DEV 0.07 0.01 0.03 0.00 0.01 0.00 0.00 0.02 0.01 0.34 0.00 0.01 0.00 0.03 0.00 0.57 0.02 0.51 0.03 0.03 0.02CoV% 2.27 10.48 7.26 13.04 7.02 1.17 6.67 17.82 26.32 12.33 14.29 17.78 33.33 8.59 12.50 10.80 9.31 6.98 5.35 21.71 3.61

313 - 315 Cross Black Average 4.00 0.17 0.39 0.02 0.15 0.35 0.01 0.05 0.02 5.96 0.00 0.02 0.01 0.21 0.01 14.60 0.25 4.46 0.22 0.20 0.30STD DEV 0.34 0.02 0.01 0.00 0.03 0.01 0.00 0.01 0.00 0.11 0.00 0.01 0.00 0.08 0.00 14.70 0.03 0.61 0.10 0.12 0.08

CoV% 8.38 9.83 1.55 11.11 20.69 2.87 12.50 12.77 10.53 1.78 0.00 25.00 14.29 37.38 50.00 100.68 10.71 13.74 43.75 61.42 26.78

Page 288: Development of Novel Physical (Electrostatic Detection

288

Appendix 4 Pencil Analytical Data Experiments

Page 289: Development of Novel Physical (Electrostatic Detection

289

Appendix 4 Pencil Analytical Data Appendix 4

Table1 Sample No. Manufactured Samples Brand Bought in Li7 Be9 B11 Na23 Mg24 Al27 P31 S34 K39 Ca44 Sc45 Ti49 V51 Cr52 Mn55 Fe57 Co59 Ni60 Cu65 Zn66

1 China Box 1 PaperMate 2B Australia 669704 1895 182495 4027216 28175620 134225482 130964 48871 33911835 910789 54330 925419 323177 745164 1061567 1706238 102961 56710 64215 2411592 China Box 1 PaperMate 2B Australia 718670 2030 196757 4852894 27290720 139554112 155617 37288 28021182 991048 48385 897887 270732 778115 1104768 1745486 115587 53937 53715 2445493 China Box 1 PaperMate 2B Australia 621669 1992 149564 3815535 28501268 125717683 139062 54505 30764772 909678 53568 926092 315676 788451 799404 1786167 104652 57353 76407 2416774 China Box 1 PaperMate 2B Australia 673452 1618 208025 3888159 27196553 145508341 151796 36799 33857776 897256 58878 1010011 348332 776147 1079423 1698516 96842 55721 51692 2011135 China Box 1 PaperMate 2B Australia 633452 2011 121804 3965820 26545227 124144667 156836 41378 28435268 902841 59028 859973 357425 736093 1152985 1949432 113767 69934 50888 1999656 China Box 2 PaperMate 2B UK 616104 6170 152414 16015284 105625176 673804928 238113 1584394 27303660 3093647 276314 3799866 1678181 1866777 2837910 14683547 327167 215205 307909 11405107 China Box 2 PaperMate 2B UK 575634 5309 156147 17955410 103723688 611394944 225160 1473599 26768770 3297129 233442 3847561 1457646 1673021 2701591 13058905 324502 193292 296773 10691918 China Box 2 PaperMate 2B UK 534097 5473 147426 16485959 102801032 661483712 218486 1456207 28294330 2704106 241155 4167949 1511670 1663589 2367120 13180367 305356 199865 295041 10233239 China Box 2 PaperMate 2B UK 597114 6616 160777 19275120 97421464 662818688 241724 1613495 27462978 3056822 249691 4038066 1628679 1699945 2611480 12632977 320808 194999 297733 111908310 China Box 2 PaperMate 2B UK 571390 5771 142062 19027996 96347760 664040832 217492 1592501 28297328 3026694 249550 3631519 1612972 1628050 2332945 13535792 315949 196752 291090 118807411 China Box 3 PaperMate 2B China 614192 5679 202693 17501904 99159840 645225152 238729 1978734 28624312 2795026 201416 4612932 1317907 1632275 3126972 12505483 337972 181589 237326 91955112 China Box 3 PaperMate 2B China 555508 5670 250410 17318994 90397840 637973632 213431 1711660 28036106 2643767 190249 4742677 1491213 1503691 2987438 11929294 313913 172118 225774 94284713 China Box 3 PaperMate 2B China 548551 5367 221195 15954338 92212024 551591552 225863 2083623 26710918 2778929 198025 4565969 1410124 1668936 2478323 11833718 323281 215166 227481 98523014 China Box 3 PaperMate 2B China 590936 5105 269898 16839464 91158432 588919872 212710 1868222 29443294 2782322 200843 4562654 1443630 1577311 3291082 11304168 318057 212756 191183 98311715 China Box 3 PaperMate 2B China 598213 5460 266770 18661386 95878728 634316192 234636 1973468 28017932 2612473 197778 4784846 1408961 1695625 2457605 12513859 338132 193433 211021 98219316 China Box 4 PaperMate 2B Batch 2 Australia 1801832 9403 316315 19656871 190463692 983322874 582763 1398214 151360449 3390638 330603 5117356 4181322 3639208 3241633 15891996 398788 364748 178740 163525817 China Box 4 PaperMate 2B Batch 2 Australia 1138228 9241 261051 21689077 119141827 917973654 577028 1253443 186855599 3768906 340833 5669078 4238020 3926797 3653792 13278920 391819 418569 199159 188541418 China Box 4 PaperMate 2B Batch 2 Australia 1474390 9500 307869 21685928 159403056 946086104 530934 1220185 155889853 3069093 322815 4847889 4660394 3574808 3343834 15431341 377194 365976 187557 173099519 China Box 5 PaperMate 2B Batch 3 Australia 1141625 7617 303971 12333236 132861583 812272377 648045 1033798 185463217 3545554 263308 5756588 3899872 3679122 5218948 13466178 472808 335747 183162 70935420 China Box 5 PaperMate 2B Batch 3 Australia 1172048 7453 483968 12744916 135648903 934245079 639657 1118931 219329532 3658691 239420 6173194 3376882 3824686 5064276 12402116 456001 280724 209057 83228221 China Box 5 PaperMate 2B Batch 3 Australia 1098137 7850 216290 12426407 159309376 1015840068 669905 1204990 223084462 4331936 302591 6953375 4038453 4437400 4354680 13683259 504058 302053 209211 106802722 China Box 6 PaperMate 2B Batch 4 UK 1439670 7143 411835 12534036 102322166 888960684 360438 1499634 201688549 3839512 300320 4183239 4213148 4516450 4031632 9255268 436154 382685 186636 66985523 China Box 6 PaperMate 2B Batch 4 UK 1420331 7356 448234 13235611 124584272 896907063 363748 1342049 201521733 3839180 263641 3979110 4358129 4446661 3860393 9531659 425027 364355 172587 67563024 China Box 6 PaperMate 2B Batch 4 UK 1569400 8214 423962 13789080 129189570 997600078 372421 1338676 224078187 3730795 276527 3770394 4255923 4628987 4327353 9548580 452262 383893 190997 78088725 China Box 7 PaperMate 2B Batch 5 UK 1108306 7312 319238 11325957 159210204 949407083 445250 1194939 189585928 5039632 334847 7879191 4495148 3994373 3754127 15904876 401709 302758 181482 54849926 China Box 7 PaperMate 2B Batch 5 UK 1145783 8569 283746 13710449 161087967 907868634 492123 1098631 174700952 4228098 240461 5120372 3742321 3969670 4197074 12051703 356407 355463 171658 53507727 China Box 7 PaperMate 2B Batch 5 UK 1263024 7983 263915 11213190 131656237 881894837 501515 1215290 161666279 4910221 207748 6367530 4193494 3751516 3782560 13738380 402790 325772 191580 49870028 China Box 8 PaperMate 2B Batch 6 China 1390054 8989 221747 11819147 149977379 908227737 660964 1249063 174811163 3640839 271628 6615555 4130197 3965553 4643652 12670031 389807 347426 230631 60817329 China Box 8 PaperMate 2B Batch 6 China 1404773 7973 205184 10855599 155994406 960639107 584296 1182232 176678719 3627540 265690 7511661 3948190 4156885 4911631 12979247 404961 408309 275681 68851130 China Box 8 PaperMate 2B Batch 6 China 1279099 8252 206675 9157372 130681492 975557919 579245 1230774 167570880 3340851 256253 7149896 3735355 4037464 4983924 11403683 361628 380790 231114 615228

Page 290: Development of Novel Physical (Electrostatic Detection

290

Appendix 4 continued Pencil Analytical Data Appendix 4

Table1 Sample No. Manufactured Samples Brand Bought in Ga71 Ge73 As75 Rb85 Sr88 Y89 Zr90 Nb93 Mo98 Ag109 Cd111 In115 Sn120 Sb121 Cs133 Ba138 La139 Ce140 Pr141 Nd146

1 China Box 1 PaperMate 2B Australia 26013 370 1274 32555 228719 12734 51257 30545 219141 1041 96 122 7092 3507 2917 123061 18670 42422 4477 26222 China Box 1 PaperMate 2B Australia 24030 300 1126 24575 271601 11129 53478 28364 225550 1028 93 144 5859 3429 2668 104774 17438 38368 3753 24063 China Box 1 PaperMate 2B Australia 24643 344 1269 30125 220935 13842 46096 30506 188872 1131 149 109 8348 3672 2958 99972 19696 39995 4122 25294 China Box 1 PaperMate 2B Australia 26157 288 1499 25475 243128 12397 67044 20022 183039 1078 82 214 5695 3902 1874 104872 17327 44134 4681 20395 China Box 1 PaperMate 2B Australia 27459 428 1415 29030 253838 15196 54358 33630 171288 1361 79 141 6958 4231 2937 103462 18543 48463 6361 22246 China Box 2 PaperMate 2B UK 81570 3430 10566 148998 541784 77954 365664 171212 214944 5475 166 1465 32200 25622 14822 3786891 76800 240554 23510 138567 China Box 2 PaperMate 2B UK 86849 2669 11620 144059 545459 72269 368812 148449 198147 4873 208 1372 34237 24232 13789 4044322 76079 222270 23497 158758 China Box 2 PaperMate 2B UK 88733 2414 10236 136168 588766 76817 383945 157358 221758 5268 205 1252 26836 23403 12554 3855929 89289 244574 26036 175059 China Box 2 PaperMate 2B UK 83310 3078 11269 136557 524549 81109 380507 160352 227492 5397 251 1207 28028 25379 12925 3242452 78265 281353 28635 1485610 China Box 2 PaperMate 2B UK 86150 2823 10586 137350 563588 76435 374434 162632 225625 5328 196 1456 33792 23814 11689 3416706 83113 298643 27053 1488511 China Box 3 PaperMate 2B China 84552 2237 7487 126945 566798 90384 313945 166060 120257 4997 177 1363 11661 7895 12810 3640152 95210 290681 28986 1878212 China Box 3 PaperMate 2B China 87256 2077 6915 135201 559696 77669 320906 145662 133429 4184 212 1158 12598 8664 12081 4439952 87079 266117 23746 1988913 China Box 3 PaperMate 2B China 84855 2011 7865 128556 527285 90594 338805 167225 106522 4923 218 1229 13164 8099 13349 3509356 88560 294255 30836 1786514 China Box 3 PaperMate 2B China 89574 2164 7897 138927 545861 83345 376736 167436 123593 4531 141 1375 11184 7735 13165 4319866 83948 312109 33487 1851815 China Box 3 PaperMate 2B China 91411 2290 7536 129054 555771 85544 328721 144705 106436 4736 124 1130 12063 7250 12035 3511279 93575 289563 30268 1961716 China Box 4 PaperMate 2B Batch 2 Australia 138590 3491 6505 309897 636536 62928 431541 120055 119194 2372 745 2262 54461 19352 32299 424299 61337 244606 27268 1642517 China Box 4 PaperMate 2B Batch 2 Australia 128116 2451 7735 246892 684864 57657 397414 137782 139061 2142 617 2187 50012 19275 31272 424373 69685 267552 21333 1540318 China Box 4 PaperMate 2B Batch 2 Australia 155792 3254 6271 288960 620540 61153 433980 121530 123871 2822 718 2282 58306 15386 32245 404377 58820 252841 30489 1735719 China Box 5 PaperMate 2B Batch 3 Australia 130329 3537 1822 258793 748441 79122 444270 159962 82371 3095 527 4129 50418 19962 41727 528220 94841 172851 22753 1619420 China Box 5 PaperMate 2B Batch 3 Australia 121804 2832 1703 256599 696279 69124 437618 142441 100659 2564 637 3730 48648 16283 39065 543406 93591 142784 16366 1869421 China Box 5 PaperMate 2B Batch 3 Australia 120547 2951 1583 298672 739552 65727 460629 145637 92360 3217 617 3459 48177 17387 42592 587190 102757 163225 27824 1847622 China Box 6 PaperMate 2B Batch 4 UK 145231 2580 12319 287134 861708 63913 409490 163544 68764 3205 662 2469 42156 3232 39845 444342 74271 120030 65976 1998623 China Box 6 PaperMate 2B Batch 4 UK 137333 2820 10395 263676 918546 60716 412871 158592 71322 3449 649 2719 42900 4153 42667 467407 85242 138095 67297 1873424 China Box 6 PaperMate 2B Batch 4 UK 163377 2597 12719 261431 827943 63750 429360 175249 69876 3868 825 2437 41541 3719 38750 500105 86374 115813 66755 2156125 China Box 7 PaperMate 2B Batch 5 UK 113756 1050 18274 219910 733021 89319 338505 146488 199106 1961 523 2304 32199 13722 34223 465341 72924 135605 31838 1969826 China Box 7 PaperMate 2B Batch 5 UK 120048 1202 18278 234412 752301 96907 293527 141478 199164 2098 670 1958 27299 11733 29808 413374 70262 159540 27028 1924427 China Box 7 PaperMate 2B Batch 5 UK 115938 1169 20379 228673 678683 79416 283864 146011 200420 1959 399 2459 26275 15801 33234 411158 66512 145075 28803 1661428 China Box 8 PaperMate 2B Batch 6 China 138048 2050 6341 253447 759359 60390 408109 164329 142196 2629 777 4033 56762 24131 44479 462135 92098 200374 29594 1777829 China Box 8 PaperMate 2B Batch 6 China 142601 2374 6494 231668 809422 51029 431217 181841 160327 3024 883 4401 56330 28006 47969 470861 104841 220175 24840 1530730 China Box 8 PaperMate 2B Batch 6 China 151380 2312 6189 292279 791316 58419 399725 154915 159518 2755 660 3983 74931 31357 38167 452521 114092 229710 27621 16776

Page 291: Development of Novel Physical (Electrostatic Detection

291

Appendix 4 continued Pencil Analytical Data Appendix 4

Table1 Sample No. Manufactured Samples Brand Bought in Sm152 Eu153 Gd158 Tb159 Dy162 Ho165 Er166 Tm169 Yb174 Lu175 Hf178 Ta181 W182 Hg202 Tl205 Pb208 Bi209 Th232 U238

1 China Box 1 PaperMate 2B Australia 1011 488 388 235 536 519 336 378 409 190 871 1208 2249 4311 555 35821 939 3086 13592 China Box 1 PaperMate 2B Australia 845 435 437 278 576 486 351 384 428 180 830 1069 1983 4051 501 36402 931 3197 11743 China Box 1 PaperMate 2B Australia 1021 442 304 233 472 525 249 361 323 188 817 1158 2325 4552 559 43221 1149 3216 12904 China Box 1 PaperMate 2B Australia 1187 486 487 231 651 491 362 281 412 182 906 1229 2311 3457 374 31428 1081 3902 15415 China Box 1 PaperMate 2B Australia 1063 471 353 213 620 595 471 386 499 182 909 1267 2421 4030 667 38170 986 2570 13866 China Box 2 PaperMate 2B UK 5087 3358 4461 2922 3209 3325 2739 1490 2855 1160 5534 7200 9248 6979 3455 236480 3656 23570 63257 China Box 2 PaperMate 2B UK 5915 3800 4662 2675 3731 3611 2889 1547 2714 1022 5723 7724 9204 6122 2605 216343 2566 19167 57328 China Box 2 PaperMate 2B UK 5909 3003 4892 2983 4634 3795 3155 1455 3128 1238 5904 7604 9125 6480 3042 208144 4006 21706 65889 China Box 2 PaperMate 2B UK 6087 3530 4465 3119 3561 3386 2835 1402 3097 1184 5811 7220 8572 6650 2723 198024 3040 22451 610510 China Box 2 PaperMate 2B UK 5934 3738 4311 2840 4196 3113 3139 1405 3035 1238 5509 7951 8966 6502 3138 190218 3132 22512 598711 China Box 3 PaperMate 2B China 7076 3537 4786 2989 4215 3380 3067 1518 2659 977 5668 9082 7088 3690 3478 227714 3786 25253 643512 China Box 3 PaperMate 2B China 6588 3021 3982 2446 3808 3346 3135 1633 2424 943 5522 9612 7838 4009 3083 194643 2668 22444 656813 China Box 3 PaperMate 2B China 7097 3285 3352 2907 4148 3266 2185 1577 2448 933 5501 8969 7916 3959 2955 229774 3704 22122 573514 China Box 3 PaperMate 2B China 7023 3629 4281 2937 4705 3225 2954 1650 3101 943 5861 9352 7659 3749 2933 190438 3026 21230 604115 China Box 3 PaperMate 2B China 7486 3225 4061 2971 3839 3179 2814 1486 2436 984 5537 9362 7425 3752 3739 210697 3823 22948 669916 China Box 4 PaperMate 2B Batch 2 Australia 6231 2622 3512 2128 4749 2680 2409 1369 2684 812 6815 7942 13459 6195 5739 224482 6999 26366 3048817 China Box 4 PaperMate 2B Batch 2 Australia 5164 2641 3084 2720 4118 2411 2283 1014 2176 878 6202 7252 14460 6403 3678 224943 7496 21061 2240518 China Box 4 PaperMate 2B Batch 2 Australia 4995 2473 2973 2277 3933 2745 2319 1524 2733 1080 6048 7361 12023 6597 5677 187400 6326 23702 2929819 China Box 5 PaperMate 2B Batch 3 Australia 4940 2778 3003 1944 1988 2611 1826 1243 2814 715 6768 6143 3732 4919 2975 303217 11216 20479 1417620 China Box 5 PaperMate 2B Batch 3 Australia 5028 2707 3476 2121 1881 2172 1406 1236 2422 698 6446 5767 3679 4998 2386 301555 11814 25432 1348721 China Box 5 PaperMate 2B Batch 3 Australia 5219 2477 3315 2353 2097 3186 2047 1213 2217 681 6340 7829 4150 6982 2832 306608 11368 23143 1481422 China Box 6 PaperMate 2B Batch 4 UK 3557 1852 2319 1498 2520 1483 2617 812 1822 1002 6295 6465 17790 4579 3132 314286 5536 28060 1379523 China Box 6 PaperMate 2B Batch 4 UK 3657 1638 2242 1411 2579 1599 2441 903 2210 1117 6789 7676 14341 4674 3736 286097 6088 26251 1526724 China Box 6 PaperMate 2B Batch 4 UK 3665 1520 2266 1423 2578 2155 2519 905 2144 973 6817 6536 13815 4118 3952 324293 7276 23569 1482925 China Box 7 PaperMate 2B Batch 5 UK 6703 2838 4575 2250 4172 3618 3547 2455 3902 1536 7446 6716 23248 4385 3542 309970 4337 20406 2151426 China Box 7 PaperMate 2B Batch 5 UK 4989 2782 4308 2813 4626 3612 3204 1777 3705 1540 7486 6368 26843 5327 3233 292774 5808 21622 1639327 China Box 7 PaperMate 2B Batch 5 UK 4230 2291 4986 1985 4100 3829 3966 1938 3648 1763 6034 6539 23324 4882 3156 291267 4187 21293 2099228 China Box 8 PaperMate 2B Batch 6 China 6282 2951 3506 2406 2274 1902 2425 948 2442 963 6355 9268 14725 4882 3585 256749 5005 21952 1846229 China Box 8 PaperMate 2B Batch 6 China 6437 3128 2684 2230 2844 1872 1901 736 2719 799 6618 8972 13851 5001 2962 296939 6109 23978 1943030 China Box 8 PaperMate 2B Batch 6 China 7401 2800 3229 2473 3384 1722 2224 816 3022 849 7211 7813 14634 4782 3565 255390 5410 23665 20941

Page 292: Development of Novel Physical (Electrostatic Detection

292

Appendix 4 continued

Table 2 Batch/Group as ElementPencil No. Manufactured Brand shown in Figure 4.44 Li7 Be9 B11 Na23 Mg24 Al27 P31 S34 K39 Ca44 Sc45 Ti49 V51 Cr52 Mn55 Fe57 Co59 Ni60 Cu65 Zn66

1 Indonnesia Columbia 2B 1 506463 5778 157605 18217672 122913646 623558559 525811 1262280 192705471 2920221 182197 4550398 1944411 2044552 5489989 7773832 271954 318195 191319 4179782 Indonnesia Columbia 2B 1 798111 7458 189828 19369028 119157638 642951109 601967 1235043 207212817 3125071 215858 4909503 2210607 2335075 4665440 8558001 269391 293803 196498 4212073 Indonnesia Columbia 2B 1 496754 7166 120861 22485240 91043872 646435072 327036 1414318 28367034 2775986 216715 5306790 1733875 1470523 3950124 12135842 236244 201696 165453 2671254 Indonnesia Columbia 2B 1 510836 7694 119358 23184624 103514368 702322240 305539 1474483 27738734 2857264 202633 5412858 1738462 1420500 3977727 11169531 226976 217377 171476 2781775 Indonnesia Columbia 2B 1 505264 7405 127320 20537766 93824688 682023616 319363 1373704 27072414 2771635 198630 4987928 1627935 1393764 3854801 11127685 215677 201278 173108 2616376 Indonnesia Columbia 2B 1 674800 9848 154951 25877296 142654256 941765568 396417 1790551 45210648 3568247 296601 5363452 2409932 2208263 5525191 16744439 316559 304759 259670 4901447 Indonnesia Columbia 2B 1 630522 9707 160215 33933296 122979160 877582016 450476 1567116 51020764 2933312 277791 4915433 2019839 2034293 5100846 15049458 288422 278745 225011 4656328 China PaperMate 2B 2 1108306 7312 319238 11325957 159210204 949407083 445250 1194939 189585928 5039632 334847 7879191 4495148 3994373 3754127 15904876 401709 302758 181482 5484999 China PaperMate 2B 2 1279099 8252 206675 9157372 130681492 975557919 579245 1230774 167570880 3340851 256253 7149896 3735355 4037464 4983924 11403683 361628 380790 231114 61522810 China PaperMate 2B 2 1098137 7850 216290 12426407 159309376 1015840068 669905 1204990 223084462 4331936 302591 6953375 4038453 4437400 4354680 13683259 504058 302053 209211 106802711 China PaperMate 2B 2 1404773 7973 205184 10855599 155994406 960639107 584296 1182232 176678719 3627540 265690 7511661 3948190 4156885 4911631 12979247 404961 408309 275681 68851112 China PaperMate 2B 2 1145783 8569 283746 13710449 161087967 907868634 492123 1098631 174700952 4228098 240461 5120372 3742321 3969670 4197074 12051703 356407 355463 171658 53507713 China PaperMate 2B 2 1474390 9500 307869 21685928 159403056 946086104 530934 1220185 155889853 3069093 322815 4847889 4660394 3574808 3343834 15431341 377194 365976 187557 173099514 China PaperMate 2B 2 1390054 8989 221747 11819147 149977379 908227737 660964 1249063 174811163 3640839 271628 6615555 4130197 3965553 4643652 12670031 389807 347426 230631 60817315 China PaperMate 2B 2 1439670 7143 411835 12534036 102322166 888960684 360438 1499634 201688549 3839512 300320 4183239 4213148 4516450 4031632 9255268 436154 382685 186636 66985516 China PaperMate 2B 2 1172048 7453 483968 12744916 135648903 934245079 639657 1118931 219329532 3658691 239420 6173194 3376882 3824686 5064276 12402116 456001 280724 209057 83228217 China PaperMate 2B 2 1263024 7983 263915 11213190 131656237 881894837 501515 1215290 161666279 4910221 207748 6367530 4193494 3751516 3782560 13738380 402790 325772 191580 49870018 China PaperMate 2B 2 1138228 9241 261051 21689077 119141827 917973654 577028 1253443 186855599 3768906 340833 5669078 4238020 3926797 3653792 13278920 391819 418569 199159 188541419 China PaperMate 2B 2 1420331 7356 448234 13235611 124584272 896907063 363748 1342049 201521733 3839180 263641 3979110 4358129 4446661 3860393 9531659 425027 364355 172587 67563020 China PaperMate 2B 2 1801832 9403 316315 19656871 190463692 983322874 582763 1398214 151360449 3390638 330603 5117356 4181322 3639208 3241633 15891996 398788 364748 178740 163525821 China PaperMate 2B 2 1569400 8214 423962 13789080 129189570 997600078 372421 1338676 224078187 3730795 276527 3770394 4255923 4628987 4327353 9548580 452262 383893 190997 78088722 China PaperMate 2B 2 1141625 7617 303971 12333236 132861583 812272377 648045 1033798 185463217 3545554 263308 5756588 3899872 3679122 5218948 13466178 472808 335747 183162 70935423 China PaperMate 2B 3 548551 5367 221195 15954338 92212024 551591552 225863 2083623 26710918 2778929 198025 4565969 1410124 1668936 2478323 11833718 323281 215166 227481 98523024 China PaperMate 2B 3 669704 1895 182495 4027216 28175620 134225482 130964 48871 33911835 910789 54330 925419 323177 745164 1061567 1706238 102961 56710 64215 24115925 China PaperMate 2B 3 534097 5473 147426 16485959 102801032 661483712 218486 1456207 28294330 2704106 241155 4167949 1511670 1663589 2367120 13180367 305356 199865 295041 102332326 China PaperMate 2B 3 633452 2011 121804 3965820 26545227 124144667 156836 41378 28435268 902841 59028 859973 357425 736093 1152985 1949432 113767 69934 50888 19996527 China PaperMate 2B 3 616104 6170 152414 16015284 105625176 673804928 238113 1584394 27303660 3093647 276314 3799866 1678181 1866777 2837910 14683547 327167 215205 307909 114051028 China PaperMate 2B 3 571390 5771 142062 19027996 96347760 664040832 217492 1592501 28297328 3026694 249550 3631519 1612972 1628050 2332945 13535792 315949 196752 291090 118807429 China PaperMate 2B 3 555508 5670 250410 17318994 90397840 637973632 213431 1711660 28036106 2643767 190249 4742677 1491213 1503691 2987438 11929294 313913 172118 225774 94284730 China PaperMate 2B 3 575634 5309 156147 17955410 103723688 611394944 225160 1473599 26768770 3297129 233442 3847561 1457646 1673021 2701591 13058905 324502 193292 296773 106919131 China PaperMate 2B 3 614192 5679 202693 17501904 99159840 645225152 238729 1978734 28624312 2795026 201416 4612932 1317907 1632275 3126972 12505483 337972 181589 237326 91955132 China PaperMate 2B 3 598213 5460 266770 18661386 95878728 634316192 234636 1973468 28017932 2612473 197778 4784846 1408961 1695625 2457605 12513859 338132 193433 211021 98219333 China PaperMate 2B 3 673452 1618 208025 3888159 27196553 145508341 151796 36799 33857776 897256 58878 1010011 348332 776147 1079423 1698516 96842 55721 51692 20111334 China PaperMate 2B 3 597114 6616 160777 19275120 97421464 662818688 241724 1613495 27462978 3056822 249691 4038066 1628679 1699945 2611480 12632977 320808 194999 297733 111908335 China PaperMate 2B 3 718670 2030 196757 4852894 27290720 139554112 155617 37288 28021182 991048 48385 897887 270732 778115 1104768 1745486 115587 53937 53715 24454936 China PaperMate 2B 3 590936 5105 269898 16839464 91158432 588919872 212710 1868222 29443294 2782322 200843 4562654 1443630 1577311 3291082 11304168 318057 212756 191183 98311737 Mexico Ticonderoga HB 4 1310137 5517 340438 80476168 43083179 1248540286 485928 1321470 176467932 3112023 195500 6686595 2269394 1590671 925602 2497631 63421 59079 154424 15404638 Mexico Ticonderoga HB 4 1263092 6235 359646 78895414 47160802 1381270817 578664 1358270 179471815 3183455 222208 6298494 2456681 1520025 937648 2771955 66225 67219 163264 16829039 Mexico Ticonderoga HB 4 1795283 11509 232986 27157796 199837507 1114292629 689300 1756898 311192893 3953446 335632 8331650 3960151 5119559 5214521 15403873 535669 455033 788039 46349940 Mexico Ticonderoga HB 4 1480627 11481 222614 30878553 177124957 1464320939 667033 1955263 285787533 4222460 334273 8511309 4447800 4892089 4871257 15816817 580643 416094 681014 46738941 Mexico Ticonderoga HB 4 1101363 7007 216709 128352416 35271288 1000000000 481848 1657338 34916692 1593695 245621 4038791 1934862 1042741 823280 4098169 57319 65559 119250 19833542 Mexico Ticonderoga HB 4 992177 6728 208853 114212928 33288530 1000000000 513221 1401685 30933408 1541371 220222 3941831 1811776 997460 779105 3616532 56382 65831 101458 18556043 Mexico Ticonderoga HB 4 830687 7052 151522 31395362 119753328 790274368 320039 1599263 60186348 3055876 263075 5180187 2298956 2086586 3178897 14495695 291279 272378 241698 33298444 Mexico Ticonderoga HB 4 886950 7691 147238 34092632 125510952 768032576 332120 1384058 56803280 3123028 266478 4573124 2156522 2189702 2704919 14133211 289705 281474 257964 31239545 Mexico Ticonderoga HB 4 885532 7757 130785 31523810 121006776 865285696 329534 1582213 56361348 2944319 268359 4747957 2376919 2063883 2861068 14118232 283034 279539 238980 31475846 Mexico Ticonderoga HB 4 918154 8465 137771 33912048 123511600 844544192 316150 1426945 56994744 3093081 275617 4821424 2586487 2242448 3191971 14614256 291379 302291 259194 29621147 Mexico Ticonderoga HB 4 808084 7350 152301 32407152 117580704 812854272 292256 1439202 61088404 3231559 274428 5264994 2544529 2666924 3231522 14879670 281440 268560 256722 29166048 Mexico Ticonderoga HB 4 396962 3484 127759 12291564 57078848 371619648 170545 1000143 25729474 1434512 130692 2323704 1071281 911231 1499476 7067469 131293 126907 132407 183356

Page 293: Development of Novel Physical (Electrostatic Detection

293

Appendix 4 continued

Table 2 Batch/Group as Pencil No. Manufactured Brand shown in Figure 4.44 Ga71 Ge73 As75 Rb85 Sr88 Y89 Zr90 Nb93 Mo98 Ag109 Cd111 In115 Sn120 Sb121 Cs133 Ba138 La139 Ce140 Pr141 Nd146

1 Indonnesia Columbia 2B 1 85082 1896 13694 232440 558130 93308 417734 154808 206444 3868 138 851 23032 3995 23234 448112 166906 455872 54941 341192 Indonnesia Columbia 2B 1 86845 1541 13529 244413 562437 91335 424758 164902 223659 3854 121 836 21610 4155 35104 430181 148485 477895 59617 352253 Indonnesia Columbia 2B 1 95691 2523 12830 166132 543294 98412 466432 174183 163836 4669 147 995 17057 8780 17215 390163 139432 320555 46768 294584 Indonnesia Columbia 2B 1 92523 2433 13921 163627 554419 105406 463348 169989 152089 4793 199 1092 17359 9148 17832 400460 135093 335757 46473 281295 Indonnesia Columbia 2B 1 88945 2381 12601 157491 558373 97333 448358 169190 141807 5127 148 1048 14053 8251 16947 433845 139982 329347 44485 286536 Indonnesia Columbia 2B 1 145312 4524 10693 290542 729307 147071 663224 219753 184342 6213 214 1581 20766 11744 25223 513169 241973 500621 59363 419467 Indonnesia Columbia 2B 1 135120 3780 10953 285102 785325 121695 750432 207396 162394 6302 206 1548 19595 10447 24107 577216 269712 494886 52683 351518 China PaperMate 2B 2 113756 1050 18274 219910 733021 89319 338505 146488 199106 1961 523 2304 32199 13722 34223 465341 72924 135605 31838 196989 China PaperMate 2B 2 151380 2312 6189 292279 791316 58419 399725 154915 159518 2755 660 3983 74931 31357 38167 452521 114092 229710 27621 1677610 China PaperMate 2B 2 120547 2951 1583 298672 739552 65727 460629 145637 92360 3217 617 3459 48177 17387 42592 587190 102757 163225 27824 1847611 China PaperMate 2B 2 142601 2374 6494 231668 809422 51029 431217 181841 160327 3024 883 4401 56330 28006 47969 470861 104841 220175 24840 1530712 China PaperMate 2B 2 120048 1202 18278 234412 752301 96907 293527 141478 199164 2098 670 1958 27299 11733 29808 413374 70262 159540 27028 1924413 China PaperMate 2B 2 155792 3254 6271 288960 620540 61153 433980 121530 123871 2822 718 2282 58306 15386 32245 404377 58820 252841 30489 1735714 China PaperMate 2B 2 138048 2050 6341 253447 759359 60390 408109 164329 142196 2629 777 4033 56762 24131 44479 462135 92098 200374 29594 1777815 China PaperMate 2B 2 145231 2580 12319 287134 861708 63913 409490 163544 68764 3205 662 2469 42156 3232 39845 444342 74271 120030 65976 1998616 China PaperMate 2B 2 121804 2832 1703 256599 696279 69124 437618 142441 100659 2564 637 3730 48648 16283 39065 543406 93591 142784 16366 1869417 China PaperMate 2B 2 115938 1169 20379 228673 678683 79416 283864 146011 200420 1959 399 2459 26275 15801 33234 411158 66512 145075 28803 1661418 China PaperMate 2B 2 128116 2451 7735 246892 684864 57657 397414 137782 139061 2142 617 2187 50012 19275 31272 424373 69685 267552 21333 1540319 China PaperMate 2B 2 137333 2820 10395 263676 918546 60716 412871 158592 71322 3449 649 2719 42900 4153 42667 467407 85242 138095 67297 1873420 China PaperMate 2B 2 138590 3491 6505 309897 636536 62928 431541 120055 119194 2372 745 2262 54461 19352 32299 424299 61337 244606 27268 1642521 China PaperMate 2B 2 163377 2597 12719 261431 827943 63750 429360 175249 69876 3868 825 2437 41541 3719 38750 500105 86374 115813 66755 2156122 China PaperMate 2B 2 130329 3537 1822 258793 748441 79122 444270 159962 82371 3095 527 4129 50418 19962 41727 528220 94841 172851 22753 1619423 China PaperMate 2B 3 84855 2011 7865 128556 527285 90594 338805 167225 106522 4923 218 1229 13164 8099 13349 3509356 88560 294255 30836 1786524 China PaperMate 2B 3 26013 370 1274 32555 228719 12734 51257 30545 219141 1041 96 122 7092 3507 2917 123061 18670 42422 4477 262225 China PaperMate 2B 3 88733 2414 10236 136168 588766 76817 383945 157358 221758 5268 205 1252 26836 23403 12554 3855929 89289 244574 26036 1750526 China PaperMate 2B 3 27459 428 1415 29030 253838 15196 54358 33630 171288 1361 79 141 6958 4231 2937 103462 18543 48463 6361 222427 China PaperMate 2B 3 81570 3430 10566 148998 541784 77954 365664 171212 214944 5475 166 1465 32200 25622 14822 3786891 76800 240554 23510 1385628 China PaperMate 2B 3 86150 2823 10586 137350 563588 76435 374434 162632 225625 5328 196 1456 33792 23814 11689 3416706 83113 298643 27053 1488529 China PaperMate 2B 3 87256 2077 6915 135201 559696 77669 320906 145662 133429 4184 212 1158 12598 8664 12081 4439952 87079 266117 23746 1988930 China PaperMate 2B 3 86849 2669 11620 144059 545459 72269 368812 148449 198147 4873 208 1372 34237 24232 13789 4044322 76079 222270 23497 1587531 China PaperMate 2B 3 84552 2237 7487 126945 566798 90384 313945 166060 120257 4997 177 1363 11661 7895 12810 3640152 95210 290681 28986 1878232 China PaperMate 2B 3 91411 2290 7536 129054 555771 85544 328721 144705 106436 4736 124 1130 12063 7250 12035 3511279 93575 289563 30268 1961733 China PaperMate 2B 3 26157 288 1499 25475 243128 12397 67044 20022 183039 1078 82 214 5695 3902 1874 104872 17327 44134 4681 203934 China PaperMate 2B 3 83310 3078 11269 136557 524549 81109 380507 160352 227492 5397 251 1207 28028 25379 12925 3242452 78265 281353 28635 1485635 China PaperMate 2B 3 24030 300 1126 24575 271601 11129 53478 28364 225550 1028 93 144 5859 3429 2668 104774 17438 38368 3753 240636 China PaperMate 2B 3 89574 2164 7897 138927 545861 83345 376736 167436 123593 4531 141 1375 11184 7735 13165 4319866 83948 312109 33487 1851837 Mexico Ticonderoga HB 4 249857 3853 15677 282024 802623 144107 783665 219060 24758 1868 85 8689 730579 4223 39295 1033648 259054 605933 99107 5001538 Mexico Ticonderoga HB 4 281057 3189 15260 269408 892790 156687 711354 195830 20337 2076 81 9007 780597 5224 42069 971272 272836 594469 109443 5635939 Mexico Ticonderoga HB 4 170894 2050 20256 378750 950003 108277 993096 242517 408425 4700 218 931 29157 3041 40497 652825 186594 462382 61404 3699540 Mexico Ticonderoga HB 4 153796 2146 18188 320760 933460 113705 975682 204259 384978 5043 176 851 26936 3668 42293 623494 196232 423328 59799 3850741 Mexico Ticonderoga HB 4 252711 5606 9847 208284 760732 162211 553856 198437 130228 2457 26 4090 288419 10005 33218 845986 301205 583461 89732 5857742 Mexico Ticonderoga HB 4 222753 4646 8870 196497 805752 170437 618886 199961 111320 2283 29 4069 289594 9568 28334 849374 269235 535294 95854 6578043 Mexico Ticonderoga HB 4 124231 2393 17900 295059 644040 89716 439227 153705 302574 5168 59 572 12590 7096 21217 498101 126196 283982 37420 2707144 Mexico Ticonderoga HB 4 131435 2573 16287 277989 590020 73207 459127 152931 341180 4700 41 660 12455 6530 21730 495750 121992 264262 38847 2948945 Mexico Ticonderoga HB 4 129002 2257 16128 252882 584004 87007 413689 153603 325977 4981 21 651 14068 6837 22578 431114 124286 270132 37267 3187146 Mexico Ticonderoga HB 4 140526 2885 15796 306047 629457 78637 449480 155922 342274 4176 32 695 13551 7858 24291 471878 127053 252807 35020 2804147 Mexico Ticonderoga HB 4 124602 3003 15385 277818 604692 83883 455788 164086 280736 4920 21 666 12240 7303 22037 519516 124615 303254 31649 2747448 Mexico Ticonderoga HB 4 54287 1164 6715 106424 370572 43121 310757 82904 147294 3133 193 580 11506 4502 9540 266852 70041 150468 17862 14870

Page 294: Development of Novel Physical (Electrostatic Detection

294

Appendix 4 continued

Table 2 Batch/Group as Pencil No. Manufactured Brand shown in Figure 4.44 Sm152 Eu153 Gd158 Tb159 Dy162 Ho165 Er166 Tm169 Yb174 Lu175 Hf178 Ta181 W182 Hg202 Tl205 Pb208 Bi209 Th232 U238

1 Indonnesia Columbia 2B 1 10715 6115 6663 4222 5736 3721 3705 1744 3319 1376 6783 9472 23598 6084 2320 148821 8106 22744 107732 Indonnesia Columbia 2B 1 11573 5580 5459 4537 5258 4210 3233 1612 3616 1376 6539 9637 24997 6329 2995 150470 8094 28386 109653 Indonnesia Columbia 2B 1 9552 5757 6749 3757 5571 4587 4378 2004 3935 1382 8270 9980 16226 3350 2506 159919 3279 23489 103544 Indonnesia Columbia 2B 1 9648 5416 6442 3689 5494 4934 4430 2055 4052 1400 7209 9166 15654 3308 2533 160412 3071 24884 92005 Indonnesia Columbia 2B 1 9344 5456 6516 3507 5364 4622 4374 2100 4427 1418 7679 9281 14327 3156 2485 164324 3181 22107 101246 Indonnesia Columbia 2B 1 12490 8611 9127 5303 7912 5547 4712 2229 5181 1867 9717 11778 15021 6491 3756 243327 5301 30476 172737 Indonnesia Columbia 2B 1 11689 7693 8041 4886 7326 4968 4274 1966 4961 1843 10300 11657 15704 5823 4539 271530 7557 31183 125308 China PaperMate 2B 2 6703 2838 4575 2250 4172 3618 3547 2455 3902 1536 7446 6716 23248 4385 3542 309970 4337 20406 215149 China PaperMate 2B 2 7401 2800 3229 2473 3384 1722 2224 816 3022 849 7211 7813 14634 4782 3565 255390 5410 23665 2094110 China PaperMate 2B 2 5219 2477 3315 2353 2097 3186 2047 1213 2217 681 6340 7829 4150 6982 2832 306608 11368 23143 1481411 China PaperMate 2B 2 6437 3128 2684 2230 2844 1872 1901 736 2719 799 6618 8972 13851 5001 2962 296939 6109 23978 1943012 China PaperMate 2B 2 4989 2782 4308 2813 4626 3612 3204 1777 3705 1540 7486 6368 26843 5327 3233 292774 5808 21622 1639313 China PaperMate 2B 2 4995 2473 2973 2277 3933 2745 2319 1524 2733 1080 6048 7361 12023 6597 5677 187400 6326 23702 2929814 China PaperMate 2B 2 6282 2951 3506 2406 2274 1902 2425 948 2442 963 6355 9268 14725 4882 3585 256749 5005 21952 1846215 China PaperMate 2B 2 3557 1852 2319 1498 2520 1483 2617 812 1822 1002 6295 6465 17790 4579 3132 314286 5536 28060 1379516 China PaperMate 2B 2 5028 2707 3476 2121 1881 2172 1406 1236 2422 698 6446 5767 3679 4998 2386 301555 11814 25432 1348717 China PaperMate 2B 2 4230 2291 4986 1985 4100 3829 3966 1938 3648 1763 6034 6539 23324 4882 3156 291267 4187 21293 2099218 China PaperMate 2B 2 5164 2641 3084 2720 4118 2411 2283 1014 2176 878 6202 7252 14460 6403 3678 224943 7496 21061 2240519 China PaperMate 2B 2 3657 1638 2242 1411 2579 1599 2441 903 2210 1117 6789 7676 14341 4674 3736 286097 6088 26251 1526720 China PaperMate 2B 2 6231 2622 3512 2128 4749 2680 2409 1369 2684 812 6815 7942 13459 6195 5739 224482 6999 26366 3048821 China PaperMate 2B 2 3665 1520 2266 1423 2578 2155 2519 905 2144 973 6817 6536 13815 4118 3952 324293 7276 23569 1482922 China PaperMate 2B 2 4940 2778 3003 1944 1988 2611 1826 1243 2814 715 6768 6143 3732 4919 2975 303217 11216 20479 1417623 China PaperMate 2B 3 7097 3285 3352 2907 4148 3266 2185 1577 2448 933 5501 8969 7916 3959 2955 229774 3704 22122 573524 China PaperMate 2B 3 1011 488 388 235 536 519 336 378 409 190 871 1208 2249 4311 555 35821 939 3086 135925 China PaperMate 2B 3 5909 3003 4892 2983 4634 3795 3155 1455 3128 1238 5904 7604 9125 6480 3042 208144 4006 21706 658826 China PaperMate 2B 3 1063 471 353 213 620 595 471 386 499 182 909 1267 2421 4030 667 38170 986 2570 138627 China PaperMate 2B 3 5087 3358 4461 2922 3209 3325 2739 1490 2855 1160 5534 7200 9248 6979 3455 236480 3656 23570 632528 China PaperMate 2B 3 5934 3738 4311 2840 4196 3113 3139 1405 3035 1238 5509 7951 8966 6502 3138 190218 3132 22512 598729 China PaperMate 2B 3 6588 3021 3982 2446 3808 3346 3135 1633 2424 943 5522 9612 7838 4009 3083 194643 2668 22444 656830 China PaperMate 2B 3 5915 3800 4662 2675 3731 3611 2889 1547 2714 1022 5723 7724 9204 6122 2605 216343 2566 19167 573231 China PaperMate 2B 3 7076 3537 4786 2989 4215 3380 3067 1518 2659 977 5668 9082 7088 3690 3478 227714 3786 25253 643532 China PaperMate 2B 3 7486 3225 4061 2971 3839 3179 2814 1486 2436 984 5537 9362 7425 3752 3739 210697 3823 22948 669933 China PaperMate 2B 3 1187 486 487 231 651 491 362 281 412 182 906 1229 2311 3457 374 31428 1081 3902 154134 China PaperMate 2B 3 6087 3530 4465 3119 3561 3386 2835 1402 3097 1184 5811 7220 8572 6650 2723 198024 3040 22451 610535 China PaperMate 2B 3 845 435 437 278 576 486 351 384 428 180 830 1069 1983 4051 501 36402 931 3197 117436 China PaperMate 2B 3 7023 3629 4281 2937 4705 3225 2954 1650 3101 943 5861 9352 7659 3749 2933 190438 3026 21230 604137 Mexico Ticonderoga HB 4 17543 6103 8413 4395 6344 5098 6224 2208 4916 2264 7611 14785 7551 8904 2061 147365 852 45587 3543238 Mexico Ticonderoga HB 4 17000 7132 8317 4885 6335 6013 5427 2658 5822 2175 7765 13934 7561 7114 2475 140485 891 44825 4302739 Mexico Ticonderoga HB 4 12919 7649 9209 4310 6856 5597 6628 1823 3838 2345 10593 15733 36678 6796 3542 246485 1559 32438 2240840 Mexico Ticonderoga HB 4 12406 7101 9177 4179 7367 4816 6176 1971 3863 2852 9907 16831 30352 6477 3056 203613 1450 37627 2707741 Mexico Ticonderoga HB 4 28114 7997 11635 5695 8986 6425 6216 3561 5992 2818 8540 11785 7773 6004 2815 178019 1140 55414 2944042 Mexico Ticonderoga HB 4 24206 7207 10449 5701 8325 6549 7665 3537 6645 2652 8855 12143 8251 5515 2462 166676 1130 53499 3132043 Mexico Ticonderoga HB 4 8913 5104 5695 3871 5453 3968 3414 1642 3439 1393 7024 8693 18477 4509 2485 181156 981 24157 1184844 Mexico Ticonderoga HB 4 6802 4860 5741 3240 4934 3002 2887 1656 3708 1108 6796 8158 21743 4274 2446 173686 968 21397 1122845 Mexico Ticonderoga HB 4 8492 4887 5494 3577 5495 3710 3264 1734 3859 1216 6402 9027 26653 4170 2441 189150 1037 23373 1182746 Mexico Ticonderoga HB 4 9630 4750 5403 4020 5548 3705 4210 1529 3523 1204 7190 8974 18080 4806 2607 189430 1009 23415 1208947 Mexico Ticonderoga HB 4 9270 4268 5195 4067 5424 4123 4160 1707 3675 1270 6688 9370 26230 4612 2692 174818 992 24492 1218348 Mexico Ticonderoga HB 4 4941 2601 3385 2002 3318 2279 1764 927 1705 792 4639 5665 21309 6217 1545 131215 1667 14572 6373

Page 295: Development of Novel Physical (Electrostatic Detection

295

Appendix 4 continued

Table 2 Batch/Group as ElementPencil No. Manufactured Brand shown in Figure 4.44 Li7 Be9 B11 Na23 Mg24 Al27 P31 S34 K39 Ca44 Sc45 Ti49 V51 Cr52 Mn55 Fe57 Co59 Ni60 Cu65 Zn66

49 Mexico Ticonderoga HB 4 429312 3552 97760 13092548 55103340 388679296 165307 993528 22810634 1413101 134228 2599515 1026002 943277 1515362 7265349 134426 126936 132323 17138650 Mexico Ticonderoga HB 4 337997 3329 122703 12185832 56838348 364060544 132434 921272 24144676 1485334 124732 2250644 983590 1045212 1340584 6740986 121228 110528 132596 16819651 Mexico Ticonderoga HB 4 371997 3282 111998 11546894 49611644 362580864 151517 1104922 23194622 1398650 128715 2403104 993906 920294 1477613 6926980 122577 123104 129784 15415052 Mexico Ticonderoga HB 4 389339 3418 106872 12735402 53999232 396493696 137094 1055002 24647366 1572497 132016 2382903 1024282 983048 1416632 6727055 123629 115221 134560 16461353 Mexico Ticonderoga HB 4 903872 6294 191322 109627064 33472766 1000000000 253297 1494419 35264968 1710370 203678 3558843 1812688 965633 776617 3551886 53774 74870 119269 16246954 Mexico Ticonderoga HB 4 929738 6301 180493 118668440 30101108 1000000000 262092 1588160 32484816 1503399 192078 3978523 1958698 997511 740937 3864273 54274 61362 138257 15514155 Mexico Ticonderoga HB 4 813532 5194 198187 119593208 29798064 1000000000 265620 1425430 33984720 1542470 190871 3375240 1711295 947395 799633 3206467 54881 56284 139901 15194856 Mexico Ticonderoga HB 4 927894 5899 185850 120891296 34337036 1000000000 264050 1662054 33898036 1446941 189263 3970872 1786844 982441 778032 3271331 59536 72066 124313 17121957 Mexico Ticonderoga HB 4 877782 5786 197863 108439848 29831038 1000000000 231221 1480039 34514056 1459321 175131 3365660 1911915 921911 716819 3860159 54055 66420 121493 14904958 China Dixon HB UK 5 600972 5045 98238 8157666 87535552 546187392 189953 1582629 24066018 2384146 191641 3298711 1368304 1493840 3194247 11576178 222657 150551 330210 21227859 China Dixon HB UK 5 629435 5139 91530 8201125 85787960 580763008 176280 1558340 26977070 2388609 188066 3314327 1491199 1364654 3478353 11583798 227024 169983 346337 21772460 China Dixon HB UK 5 676494 5056 92631 8206407 88851856 566988928 179495 1520668 26242410 2257401 183723 3352351 1428301 1570626 2952058 10775043 215468 160629 336889 18813061 China Dixon HB UK 5 698255 5668 92081 8800208 87595960 612373952 196181 1412774 24477320 2382938 181893 3278504 1409980 1566454 3218347 11826382 226963 179466 378195 19998862 China Dixon HB UK 5 653501 5208 100505 8501375 80214536 582131648 194845 1678105 26064328 2307393 184118 3289650 1421888 1444783 3435645 11344554 215477 167798 361292 20980863 China Dixon HB UK 5 480823 3913 86942 15682966 76467400 512349888 239565 1189022 27563860 2543028 181770 2965536 1533729 1624698 2385328 10326128 218564 165072 208078 19447164 China Dixon HB UK 5 540284 4425 98873 15415714 83067224 508290528 225633 1361688 26595614 2331562 186843 3095221 1504978 1675461 2300161 10320470 227930 168224 209719 20329665 China Dixon HB UK 5 542436 5167 98057 14857020 89561544 501684224 200909 1129217 27624364 2990157 170330 3292849 1445477 1537188 2352422 10721678 222636 159894 212346 19230466 China Dixon HB UK 5 494039 4348 85532 13108456 79814080 515113536 224570 1276674 25758516 2285658 178014 2849534 1431351 1640804 2259428 9059255 202770 163277 207033 19735867 China Dixon HB UK 5 532658 4674 86995 12647091 82606368 503176192 230242 1251772 29097738 2828013 179280 3048162 1434811 1533547 2581387 10171632 204989 165813 205971 18908968 China Dixon HB UK 5 1720126 6161 167867 6977156 123216797 650500752 469542 1620545 155800985 3368497 185019 4227766 1809673 2433681 3834308 7725263 311813 279901 434464 20580569 China Dixon HB UK 5 1471748 6917 150199 6173912 120099403 604411694 488005 1651373 163030380 3326814 179234 3781463 1969847 2601018 3738372 8868179 293002 276318 411357 20805970 China Sainsbury's HB 6 1082751 9176 465734 12074464 160717200 938722795 653466 1208075 366644805 4696832 279941 5947243 2856381 3893856 3225800 12396040 461963 522935 373813 33510271 China Sainsbury's HB 6 1181008 8317 476590 12487325 146649120 813158630 629615 1279396 372664437 4496105 237424 5893981 2752255 3398964 3157649 11498762 424691 471979 373876 36206072 China Sainsbury's HB 6 731731 5507 70400 5237837 117441719 585142396 425224 1130982 91838745 2495598 196437 6927367 2268912 2912952 7436378 7917368 306089 221874 122123 69312073 China Sainsbury's HB 6 798450 5794 85510 6306870 114731808 568491502 416042 1036614 92488573 2613584 187009 6596500 2343440 2591314 7724928 7867659 298591 253822 146006 69566374 China PaperMate HB (Officew orks Australia) 7 1622828 6249 323870 6496359 99564893 525800336 472391 1176709 250408091 2528735 141360 3336128 1635796 2729430 2286374 6925495 259278 213464 354052 19623475 China PaperMate HB (Officew orks Australia) 7 1574356 5153 355294 5688866 97638383 558904584 500431 1005159 273788089 2386033 162059 3696061 1918812 2781420 2278470 6815762 229780 215000 310383 16250676 China PaperMate HB (Officew orks Australia) 7 1259266 6161 360513 6537921 94929046 537441026 449971 1017428 235881374 2403273 153006 3920094 1801057 3493402 2245801 6737287 268976 198849 337585 21059877 China PaperMate HB (Officew orks Australia) 7 1839175 6910 190072 11854110 115245836 1294892986 662935 948994 207475745 3177854 259489 5570971 3501268 5561418 3774750 13065453 788333 203134 871436 56685778 China PaperMate HB (Officew orks Australia) 7 1365468 6917 195545 10485036 122010793 1092111035 515778 1012373 195593713 3227884 236905 5598536 3194726 4296161 3213038 11447565 730948 222895 655918 48211079 China PaperMate HB (Officew orks Australia) 7 1507627 5367 229673 12143888 142308333 1016897564 595533 1191884 204656099 3156156 299084 5427569 4361782 5907872 3409405 11807589 712484 183315 608632 42131580 China PaperMate HB (Officew orks Australia) 7 1942340 7234 134304 7791769 142616582 763584991 507946 1257742 172375034 3215315 214831 8142783 3097540 3772952 3976149 11723100 400698 239768 353439 29122481 China PaperMate HB (Officew orks Australia) 7 1933701 7303 136037 6362773 163414457 876407551 539470 1121826 170119162 3403782 214344 7851380 3328945 3109673 3679748 12662204 376770 252542 231064 28052182 China PaperMate HB (Officew orks Australia) 7 1960613 8896 121873 7449885 158607596 926354104 659556 1096312 236419550 4100990 231080 6482388 2997422 3277005 3988609 12565307 375553 308352 329237 30532986 China PaperMate HB (Officew orks Australia) 7 1106839 14310 422746 14148636 141518477 1311559381 1098508 1185884 179900711 5252142 232753 8975363 5324558 4520435 4431313 14127798 412113 386140 267227 44248087 China PaperMate HB (Officew orks Australia) 7 1134337 11743 388296 15228628 158579726 1218599555 1243482 1270480 218467143 4875608 255581 7622412 5014549 4303535 4210897 14972503 460231 344468 281916 44875288 China PaperMate HB (Officew orks Australia) 7 1225544 12768 440745 14289873 143943741 1281429961 1123998 1249721 194869923 5375538 231566 7138682 4493141 3818866 4583346 10605139 407445 349391 254368 41009983 China PaperMate HB (Computer w arehouse UK) 8 846903 7570 571844 7917653 146925792 703349751 694281 804272 147381526 4516912 212472 6035815 2428356 2759564 3721235 9789422 323607 264263 480020 45902384 China PaperMate HB (Computer w arehouse UK) 8 836637 7430 435786 7208822 133415170 658522234 611595 873006 177886537 4465044 254230 5973470 2244680 2169878 3027948 8310572 251147 244821 404691 41677985 China PaperMate HB (Computer w arehouse UK) 8 867589 7175 599703 6950007 124765251 670200659 703732 816135 164915843 4232910 270516 6882369 2991348 3053146 3148235 9108374 282436 246731 453231 46166589 China PaperMate HB (Computer w arehouse UK) 8 783049 5403 146723 9931144 78894832 616802560 212788 1531768 26169452 2625968 230470 3958805 1753523 15403416 4297226 11874977 267072 198080 243534 30397190 China PaperMate HB (Computer w arehouse UK) 8 643203 5367 149494 10648126 79389400 631886912 242363 1893602 30035552 2848425 270505 3523876 1765192 13967441 4565568 13483496 277798 195320 219381 27322491 China PaperMate HB (Computer w arehouse UK) 8 711640 5414 186572 12595119 73622788 540579808 198110 1546884 29083962 2886088 199404 3959470 1360437 1520543 1871256 9771022 205674 125792 165021 20951092 China PaperMate HB (Computer w arehouse UK) 8 731378 5602 180404 12550640 79055448 575601984 211673 1559028 28140456 2660143 196919 3700338 1491530 1544756 1992685 10640536 214751 137300 161787 20389393 China PaperMate HB (Computer w arehouse UK) 8 721523 5313 165674 12128948 80506040 513574400 204813 1621504 29160764 3244744 208159 3760977 1381074 1536358 1939242 10210854 204700 141822 155300 20892594 China PaperMate HB (Computer w arehouse UK) 8 708219 5395 188569 12861478 69761792 549804608 192540 1517110 27804016 2771941 188963 3862688 1258877 1468694 1803389 9400032 205002 134108 164988 20990995 China PaperMate HB (Computer w arehouse UK) 8 777960 5919 183771 12535201 76299320 526967552 200620 1470942 28097058 2711250 188684 3582157 1430054 1556243 1914410 10441688 201663 138674 135759 21012596 China PaperMate HB (Computer w arehouse UK) 8 628135 4658 188723 5735612 94224120 534331833 449918 1408076 208404231 2259412 188247 5944148 2020212 3211900 3147311 7415461 241853 229560 211250 18902497 China PaperMate HB (Computer w arehouse UK) 8 832821 8756 213134 5204742 115120846 718441184 546949 1450180 186839158 2519502 225216 4987164 2388654 2892276 3188540 8045601 282996 260972 248008 228122

Page 296: Development of Novel Physical (Electrostatic Detection

296

Appendix 4 continued

Table 2 Batch/Group as Pencil No. Manufactured Brand shown in Figure 4.44 Ga71 Ge73 As75 Rb85 Sr88 Y89 Zr90 Nb93 Mo98 Ag109 Cd111 In115 Sn120 Sb121 Cs133 Ba138 La139 Ce140 Pr141 Nd146

49 Mexico Ticonderoga HB 4 56994 1166 6134 114987 378020 46120 312071 84708 140015 2682 186 693 11050 4748 9354 275296 62194 137530 18841 1321250 Mexico Ticonderoga HB 4 52549 1416 6913 107137 328347 44768 296086 76901 131469 2861 150 483 12019 5364 9010 263006 71736 156279 18624 1416051 Mexico Ticonderoga HB 4 52524 1165 7050 100483 302213 47257 296062 88566 138777 2102 132 612 10590 5528 9043 244407 66202 149672 17989 1257952 Mexico Ticonderoga HB 4 51899 1225 7248 90793 335014 42767 291567 86244 147600 2070 114 499 10179 4349 9343 266407 62182 143670 16381 1204653 Mexico Ticonderoga HB 4 206589 3559 8657 186148 747965 163049 626185 183796 153729 2404 44 3463 225916 9143 28446 878064 236697 533556 75116 5352854 Mexico Ticonderoga HB 4 195631 3585 9743 196308 758818 163056 603313 181703 156479 2648 62 3500 234100 9719 26176 802478 258143 564447 71316 5599555 Mexico Ticonderoga HB 4 210722 4089 9552 188100 756774 178014 540479 173572 142403 2968 32 3470 238936 10139 28305 818471 238824 550297 74900 4909656 Mexico Ticonderoga HB 4 214135 3914 9246 191697 773893 178630 597380 183798 164327 2533 36 3266 249662 11032 32413 842712 236649 549755 74308 5577557 Mexico Ticonderoga HB 4 201879 3511 9254 190069 713030 164985 598018 194012 152203 2996 77 3604 224194 10023 26509 682347 251835 556330 71598 5531458 China Dixon HB UK 5 82412 2019 14982 159240 462121 65771 340913 110517 200253 7081 357 928 12067 8893 12692 259412 112528 232929 29876 1710159 China Dixon HB UK 5 78421 1885 14208 152707 442790 70963 347515 113301 178250 7330 237 824 11746 8825 13355 273884 118840 230682 29475 1759060 China Dixon HB UK 5 78470 1970 15847 158739 430791 76169 368666 108631 202200 6965 396 762 11172 8123 13381 275066 125475 236269 28037 1866361 China Dixon HB UK 5 83276 1748 13921 154657 476582 72342 382491 118230 188133 7382 226 760 11048 8770 13221 273097 115022 241603 28862 1875462 China Dixon HB UK 5 79753 2015 14188 154853 449137 74363 356198 119811 219704 7825 355 811 12495 8596 13318 256566 103099 239359 28628 1717963 China Dixon HB UK 5 63090 1393 15051 157209 484095 66229 356427 96627 142319 2913 370 911 10194 9666 10942 305236 95288 218084 27405 1897764 China Dixon HB UK 5 70359 1630 13141 137210 449124 59063 371692 98759 133501 3219 551 816 9911 9904 11646 280723 96000 189958 22208 1988365 China Dixon HB UK 5 72246 1614 14922 137533 517750 69538 366251 101272 141949 3487 266 622 10119 9499 10063 301169 110555 215008 34127 2234166 China Dixon HB UK 5 63588 1576 14887 140442 499212 69529 342414 101102 153007 3369 283 680 9447 8960 11629 275599 116180 201440 23469 2173367 China Dixon HB UK 5 71159 1692 14881 143404 516591 62869 365472 103980 154231 3367 340 748 10961 8689 10907 288632 103937 234111 20214 1845868 China Dixon HB UK 5 89679 986 20993 266328 753948 56022 333432 125254 306822 4684 293 362 19191 11673 21737 518666 238958 554748 59208 4113269 China Dixon HB UK 5 93802 943 18444 277155 751418 59282 299212 113397 329651 4272 234 505 21852 11403 18439 538166 201764 516221 58126 4442270 China Sainsbury's HB 6 135772 2759 8555 538504 750416 150704 491569 186018 186752 4377 261 1548 26370 5586 36665 1097009 170941 433601 56501 3914671 China Sainsbury's HB 6 149385 3046 9430 590186 767601 159728 469745 206401 205740 3922 242 2304 32664 5128 39647 1272484 166221 469226 55029 3977072 China Sainsbury's HB 6 64916 956 3065 146874 580004 53619 374571 161108 33925 373 218 2049 169226 13150 17237 456057 82272 188428 25049 1596273 China Sainsbury's HB 6 64932 855 3892 140543 558447 53469 324901 169399 35493 564 192 2517 169792 12861 19893 484397 88136 178227 29491 1880974 China PaperMate HB (Officew orks Australia) 7 65937 2160 12656 196282 558596 62348 225465 149279 283957 4717 202 623 17971 2174 20658 532082 86835 339241 24974 2502175 China PaperMate HB (Officew orks Australia) 7 68931 1857 15805 175049 542894 64780 288656 101476 233759 4914 176 1000 15805 2447 13864 489834 83336 370639 28408 2028876 China PaperMate HB (Officew orks Australia) 7 69645 1179 11940 188657 561439 55770 299511 120668 211059 4835 171 745 16516 2905 18316 528220 92205 356795 29260 2013077 China PaperMate HB (Officew orks Australia) 7 134762 3468 7628 334240 1078487 73523 357112 121020 573371 10863 441 2480 38232 15123 42234 474690 101123 289632 68250 2242978 China PaperMate HB (Officew orks Australia) 7 132596 3267 8470 338979 807253 67618 421297 148760 513053 8946 475 2389 33939 18621 33186 446151 121640 303541 64597 2709079 China PaperMate HB (Officew orks Australia) 7 124619 2435 7083 319580 1009830 74289 355412 133143 444737 9026 442 2107 28107 13313 40887 439803 103425 261182 63491 2268780 China PaperMate HB (Officew orks Australia) 7 132860 2243 7900 288036 523733 62907 368225 177653 168444 5429 527 2347 86207 2660 30962 607852 123600 293707 39126 3017281 China PaperMate HB (Officew orks Australia) 7 156693 2472 6626 332307 521700 53015 435723 177057 143032 5511 442 2291 80342 2458 33939 630206 126128 304825 43979 2659982 China PaperMate HB (Officew orks Australia) 7 146908 2458 7613 361700 532627 61009 438472 192824 179978 5641 572 2517 98606 2305 34142 650496 126983 346300 46808 2720286 China PaperMate HB (Officew orks Australia) 7 216397 3985 12363 383585 840223 189098 692962 312613 148847 2005 617 3209 143398 20693 61486 935238 253366 659831 92953 4908887 China PaperMate HB (Officew orks Australia) 7 185283 3206 13006 366094 982354 156150 677732 296621 159743 1550 660 2613 104663 24709 51192 621257 242540 630291 79021 4856988 China PaperMate HB (Officew orks Australia) 7 213945 2796 12228 367124 743848 181508 631958 281350 184620 1607 528 2931 125727 24174 69268 560508 222682 629237 80904 4294383 China PaperMate HB (Computer w arehouse UK) 8 99447 1896 12757 232182 640162 100141 444270 175351 421052 5401 458 1203 19113 3602 19161 577874 124831 305605 39858 2502784 China PaperMate HB (Computer w arehouse UK) 8 82139 1470 12607 281462 774579 100249 441373 189506 450970 5937 322 1670 18083 2605 24923 626242 158194 387937 49966 3369885 China PaperMate HB (Computer w arehouse UK) 8 95043 1285 10837 316283 736702 110624 442910 170683 412073 6283 392 1450 16765 3425 26510 518469 152074 354768 41532 2928389 China PaperMate HB (Computer w arehouse UK) 8 95285 2735 27445 119927 462152 83326 466761 131728 287450 3523 449 1107 29392 26691 13444 283119 146242 254849 37794 2335890 China PaperMate HB (Computer w arehouse UK) 8 96334 2720 29332 133845 515659 77979 438447 149763 244084 3423 406 1054 30386 30414 13042 316146 142579 241767 35852 2289291 China PaperMate HB (Computer w arehouse UK) 8 83217 1780 7513 140651 434244 153250 437454 122630 348307 3336 255 727 11705 5798 12114 412496 68875 260025 23667 1385492 China PaperMate HB (Computer w arehouse UK) 8 84571 1857 8781 137970 435680 165706 431880 139062 317531 3134 294 865 12523 6076 12446 428146 72819 247109 25450 1583993 China PaperMate HB (Computer w arehouse UK) 8 85856 1889 8829 157044 450959 159615 463283 133073 325607 2749 319 913 12486 6066 12918 414626 81420 240664 23576 1838394 China PaperMate HB (Computer w arehouse UK) 8 77140 1668 7673 131357 446695 154825 442314 116370 339998 3817 279 844 11805 5694 12002 425967 80527 221930 25814 1691095 China PaperMate HB (Computer w arehouse UK) 8 76030 1724 7856 134111 435118 146638 439697 122234 335943 3404 274 933 12183 5638 12322 419113 71602 241235 23484 1688596 China PaperMate HB (Computer w arehouse UK) 8 87839 1665 14877 184937 577684 78726 463168 179047 101521 4015 20 1480 24625 3354 24383 413391 145337 331380 46945 2686697 China PaperMate HB (Computer w arehouse UK) 8 95590 2073 10826 203116 730453 66544 410277 166602 111217 3391 27 1548 26104 3858 21753 427913 121117 324631 38398 22922

Page 297: Development of Novel Physical (Electrostatic Detection

297

Appendix 4 continued

Table 2 Batch/Group as Pencil No. Manufactured Brand shown in Figure 4.44 Sm152 Eu153 Gd158 Tb159 Dy162 Ho165 Er166 Tm169 Yb174 Lu175 Hf178 Ta181 W182 Hg202 Tl205 Pb208 Bi209 Th232 U238

49 Mexico Ticonderoga HB 4 4541 2717 3407 2194 2885 2367 1764 1037 1737 848 5225 5346 25202 5436 1391 105297 1889 14474 638250 Mexico Ticonderoga HB 4 4424 2052 2948 1873 2735 1867 1680 848 1798 741 4761 4882 19671 4366 1206 98249 1731 15931 783951 Mexico Ticonderoga HB 4 4125 2228 2929 1922 2882 2068 1871 887 1719 706 4658 5215 16790 4344 1254 108246 1609 15176 653352 Mexico Ticonderoga HB 4 4289 2089 2922 1696 2404 2100 1622 985 1633 692 4419 5375 14539 4953 1396 97979 1496 14301 679753 Mexico Ticonderoga HB 4 12907 4938 8299 4712 6980 5853 5631 2359 6798 2529 9852 11932 7309 3252 2518 149016 2215 53820 2833154 Mexico Ticonderoga HB 4 12282 4225 7936 4864 7132 5271 6294 2485 6961 2607 10301 10446 7317 2659 2655 150797 1974 55915 2544155 Mexico Ticonderoga HB 4 12737 4864 8158 4981 7183 5723 5733 2469 6681 2418 9777 10486 7097 2614 2659 149222 1984 55272 2824656 Mexico Ticonderoga HB 4 13906 4327 8012 4932 7080 5619 6190 2436 7187 2711 10236 10874 7552 3449 3151 157171 2094 57060 3021257 Mexico Ticonderoga HB 4 12784 4989 8343 4326 7010 5279 6194 2296 7132 2415 9285 10604 8029 2919 2748 146527 1929 53807 2806858 China Dixon HB UK 5 6311 2800 4143 2393 3399 2370 2595 1025 2472 1137 5278 6373 11037 4432 1863 127470 10918 22228 635259 China Dixon HB UK 5 6372 2676 4287 2583 3751 2727 2802 1175 2870 1154 5480 6404 14362 4331 2158 126231 10525 21761 667260 China Dixon HB UK 5 6519 3107 3819 2237 3152 2274 2226 1177 2581 1040 5397 6846 12984 4823 1955 120431 10130 21867 763661 China Dixon HB UK 5 6303 3292 3800 2382 3577 2622 3085 1078 2627 1331 5225 6310 12459 4096 2138 142127 11391 21638 763662 China Dixon HB UK 5 6320 2881 4156 2285 3282 2370 2781 1196 2707 1140 5661 7002 11805 4049 2159 127161 10831 22578 656563 China Dixon HB UK 5 6640 3048 4465 2480 3737 2832 2685 1108 2602 1113 6417 7474 9457 4014 1756 196118 9779 24680 742164 China Dixon HB UK 5 7007 3623 3780 2106 3325 2515 2370 1201 2523 1061 6753 6164 10057 3357 1743 201484 8726 22511 769265 China Dixon HB UK 5 7043 3960 4971 3400 3571 3030 2493 1381 3030 1192 6972 6390 11098 4408 1766 179129 8897 22829 745166 China Dixon HB UK 5 6588 3113 4595 3216 3607 2844 2612 1341 2615 1112 5773 6873 10767 3770 1626 188598 8992 21809 755167 China Dixon HB UK 5 6456 3289 4019 2444 3830 2570 2466 1255 2352 1125 5883 6134 10293 3730 1844 201753 8290 21815 822568 China Dixon HB UK 5 10894 4919 4946 2632 3853 2328 1817 676 1999 989 5986 7703 19474 6529 1787 137907 8781 31706 844769 China Dixon HB UK 5 11174 4655 4891 2638 4183 2797 2234 804 1729 1147 5167 6682 21108 6148 1609 122134 8541 29390 965070 China Sainsbury's HB 6 13014 8116 9702 5502 9448 6069 5629 2595 5570 2211 9114 10393 13253 8718 2351 256289 9396 30630 1866571 China Sainsbury's HB 6 13109 8015 8768 5985 8652 5264 5229 2788 5547 2238 8760 11766 14776 7869 3415 267428 10489 30194 1673772 China Sainsbury's HB 6 5692 2601 3670 2496 2632 2029 1959 1037 2146 806 5668 9180 3498 10373 1319 89737 339 29218 1118673 China Sainsbury's HB 6 5742 2769 3788 3344 2644 1801 1915 1452 2882 855 5173 9505 3962 12923 1415 85768 388 30022 975874 China PaperMate HB (Officew orks Australia) 7 5161 2870 6071 3227 3272 3184 1637 1386 2377 869 5247 6369 26856 6737 1635 136106 12372 15405 612275 China PaperMate HB (Officew orks Australia) 7 6604 3019 7163 2911 3831 3113 1725 1021 2340 855 5591 6877 29324 5571 1160 118453 14309 19133 744776 China PaperMate HB (Officew orks Australia) 7 5472 3192 5792 2496 3254 3128 1681 1115 1955 763 4623 6282 28870 6032 1493 131926 13193 19592 632777 China PaperMate HB (Officew orks Australia) 7 8139 4782 5166 5417 4109 5737 3446 2264 3311 1074 6374 8826 45820 6181 2964 240173 6861 16155 1917678 China PaperMate HB (Officew orks Australia) 7 8834 4291 4246 4256 5463 3269 3476 2882 3380 1035 6847 8082 37984 5312 2255 193501 7745 21860 1337879 China PaperMate HB (Officew orks Australia) 7 8960 4461 5015 4119 3554 2853 3395 2130 3295 983 6059 7368 46821 6492 2448 244726 6419 19641 1784980 China PaperMate HB (Officew orks Australia) 7 7219 6272 4851 2921 3841 3685 2315 1021 2927 1281 5677 5412 17958 6054 2993 260822 9809 26387 1334681 China PaperMate HB (Officew orks Australia) 7 6742 6152 3785 2651 3520 2955 2804 875 2268 829 5880 5431 19735 5090 2562 350042 8379 24710 1446882 China PaperMate HB (Officew orks Australia) 7 6411 6252 3183 2745 3600 3592 2223 1297 3162 1461 6966 5658 14337 4051 2586 353657 8530 27861 1299886 China PaperMate HB (Officew orks Australia) 7 20173 10743 11373 7459 9844 6428 6250 3119 5997 1346 13013 11994 10608 4882 2993 236478 4977 36420 2981187 China PaperMate HB (Officew orks Australia) 7 15803 9593 10113 7772 9331 6428 5872 2678 5342 2264 10923 11105 9242 4221 2672 201870 4376 35202 3528388 China PaperMate HB (Officew orks Australia) 7 20480 9574 11890 7176 9576 6242 5825 3077 5682 1337 11823 10598 9649 2960 2224 214885 3414 38845 3374183 China PaperMate HB (Computer w arehouse UK) 8 10153 4388 5617 3561 5173 5084 3301 1359 2954 1723 6279 8332 32954 5784 1721 169253 2183 27378 1477384 China PaperMate HB (Computer w arehouse UK) 8 11061 4116 5423 4327 6149 4938 3502 1836 3193 1379 6230 8162 33650 6796 1500 179880 2311 20260 1171585 China PaperMate HB (Computer w arehouse UK) 8 12438 5082 6000 3892 5259 5574 3540 1790 3125 1448 5989 7743 32642 5661 1985 220532 1927 28965 1131089 China PaperMate HB (Computer w arehouse UK) 8 8689 3567 5084 2837 4058 3024 3183 1142 2450 1083 7363 7732 9315 6167 1537 140547 3660 21113 580890 China PaperMate HB (Computer w arehouse UK) 8 8839 3764 5461 2896 4895 3136 2682 1210 2566 1229 6472 7321 10692 6549 1751 168601 4393 22200 652291 China PaperMate HB (Computer w arehouse UK) 8 4578 2539 4109 3044 5705 3827 5188 2144 4126 1575 3618 6783 13060 3111 1416 114022 2981 21708 776792 China PaperMate HB (Computer w arehouse UK) 8 4560 2565 4719 2697 5338 3223 5841 2786 4270 1145 3977 6421 13893 3991 1480 110875 2496 25286 690093 China PaperMate HB (Computer w arehouse UK) 8 5630 2797 4095 2326 5387 3455 5447 2016 4398 1309 3348 6107 15469 3356 1396 118084 2893 26318 592194 China PaperMate HB (Computer w arehouse UK) 8 5736 2821 4288 2468 6038 2765 5578 2366 4968 1312 3348 6358 15505 3482 1598 126871 2648 23631 765095 China PaperMate HB (Computer w arehouse UK) 8 5262 2551 4075 2898 5548 3187 5559 2726 4291 1496 3502 6187 14086 3404 1407 120166 2844 22195 622996 China PaperMate HB (Computer w arehouse UK) 8 7820 4392 5137 3028 5456 2766 2365 1347 2923 707 6791 9658 9578 8718 2771 187626 3768 25288 900597 China PaperMate HB (Computer w arehouse UK) 8 7451 3398 4183 2901 5470 2787 2396 1435 2736 662 6670 8167 9110 7627 2707 167472 4288 23884 8896

Page 298: Development of Novel Physical (Electrostatic Detection

298

Appendix 5 Ink on Paper Experiments

Page 299: Development of Novel Physical (Electrostatic Detection

299

Appendix 5 Appendix 5 TABLE 1

INK ON PAPER 1 Sample Li7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49 V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88 Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208Blank Paper 1 1 139 4572 3893477 87795 246 5284 61013 3237100 14 115 174 1729 101 223 3922 56 200 14260 345 222 11 37 86 316 23 32 21Blank Paper 1 2 143 4236 4145301 121873 206 5564 60306 2981714 11 133 146 1629 105 202 3687 55 149 14193 354 253 13 47 77 342 21 31 18Blank Paper 1 3 136 4761 4184023 108999 220 4729 60988 2555965 21 139 143 1886 85 223 4282 47 120 12708 337 232 10 38 70 283 20 30 17Blank Paper 1 4 148 4895 3778296 100880 188 4679 62695 2097545 15 94 163 1551 69 241 4418 54 154 11441 292 210 12 48 53 328 20 26 27Blank Paper 1 5 143 5862 4728388 125663 199 4964 57010 2765110 9 109 162 2076 125 239 4006 56 150 12891 313 189 11 39 87 302 19 31 20Blank Paper 1 6 196 5209 5015037 122519 223 5578 55779 3417250 16 135 121 1835 124 294 4062 61 168 15276 357 247 10 46 54 281 23 31 23

Blue BIC 7 440 66821 12266439 2112452 17263 545497 285432 3913620 5239 300202 2561 17898 312 2150 6423512 61119 1811 58455 845 7544 7775 2716 252 4381 464 107 2910Blue BIC 8 266 74863 13248531 1923707 18236 507415 277072 3883981 5391 276453 2981 15278 385 2224 7667013 65920 1209 67927 590 6939 7639 2600 220 3683 298 121 1598Blue BIC 9 342 61103 12189574 1931768 19872 512396 298312 3312573 4636 275001 2136 15629 312 1219 6108064 71168 1672 65290 672 7402 7060 2602 218 4518 429 128 2135Blue BIC 10 592 73830 12650266 1612365 19454 463657 278192 3838543 5228 276036 2995 12258 461 1956 5709068 56649 1750 67722 940 7743 6894 2450 221 4271 419 129 2204Blue BIC 11 262 61292 13720144 1968878 16072 536745 289949 3707730 4016 341719 2158 14811 218 1770 7056056 65804 1618 64528 750 7819 8185 2982 343 4159 385 110 2147Blue BIC 12 197 68375 13714160 1765181 18869 549784 257743 3228034 5494 284901 2027 17597 258 1670 6352424 77141 2156 69815 743 7422 7629 2291 219 4192 381 98 1972

Blue Paper Mate 13 211 6211 7192873 1131624 3363463 179089 238840 3605570 333 130385 483 15170 338 15736 7220904 67623 650 122968 2177 7380 16554 1100 377 14730 1433 999 32559Blue Paper Mate 14 241 6585 7016539 1185796 3320458 177345 219967 3938863 382 128061 393 19424 393 13458 6350870 64794 439 109139 2743 6219 16174 1088 377 14475 1327 957 35673Blue Paper Mate 15 319 6278 8248740 1051795 3049675 185456 219612 3862675 427 158173 469 19795 269 13690 7664628 65244 683 106913 1702 7708 18128 1180 241 14152 1383 822 38937Blue Paper Mate 16 388 6163 7184788 1030107 3477188 186087 222742 3992061 646 131110 595 13812 348 13259 7576762 71700 404 111802 1715 6684 17475 1135 266 15143 1582 886 33389Blue Paper Mate 17 208 6725 8228344 1148186 3169041 181418 222811 4100255 647 135693 486 17124 466 14376 7899381 68283 522 95260 2102 8785 18857 1383 224 14438 1380 883 35390Blue Paper Mate 18 216 5692 8139170 1079428 2754587 178595 206650 4162562 311 109843 547 17591 402 13104 6297336 71184 597 105627 2081 8486 18632 1283 308 14479 1336 997 32729

Blue Office Works 19 386 5350 11593350 2028556 112523 10864 403291 7181492 481 103673 538 25076 641 1652 226305 78295 980 206619 3714 6423 20092 2967 575 26470 2867 1675 91934Blue Office Works 20 255 5982 11955225 2468339 127141 9802 373988 7295803 198 116078 507 25897 863 1577 223705 72389 749 185201 3152 7985 22406 2205 479 24680 2841 1671 84208Blue Office Works 21 336 6449 11540385 2155278 125475 10244 428450 7081976 275 117179 577 25602 727 1588 232718 70274 853 187686 3108 7778 21555 2417 408 24002 2617 1613 74014Blue Office Works 22 366 6228 11709787 2395797 119069 11269 434135 7061417 355 120649 466 21737 766 1566 236627 64053 744 191730 3133 7346 21182 2000 444 23486 2778 1511 74611Blue Office Works 23 359 5961 11070495 2019275 116035 12622 418166 7937185 208 103527 826 23410 806 1577 212012 68175 868 185113 3089 8501 22175 2024 428 28277 3027 1680 78451Blue Office Works 24 422 6807 11664231 1927365 120447 9056 398767 7509007 387 104724 580 25493 714 1550 262986 70154 750 184117 2859 8534 20672 2284 450 23213 2576 1688 82994

Black BIC 25 470 7849 7609521 1494341 5684 151757 304485 4716369 559 752 615 14659 18507 802 27181 4853 702 117652 2204 4904 33 1595 140 17746 1809 1237 328977Black BIC 26 383 7424 7568632 1338201 6724 133590 276469 4996214 455 844 227 16537 17816 697 23333 3528 708 129418 2592 5105 54 1633 230 15925 2055 1072 271993Black BIC 27 488 7107 7957766 1473152 6388 133755 300323 5095578 561 822 511 16110 17482 716 24283 3955 711 122978 2322 5191 65 1627 138 15963 2150 1022 286750Black BIC 28 511 7781 8247506 1405232 5605 141143 307706 5325904 633 811 588 15599 17900 644 28496 4534 611 179681 2767 4673 33 1322 188 17417 2067 1266 264572Black BIC 29 344 7909 7795024 1373469 6633 131363 332473 5341478 424 720 513 15149 17170 635 28770 4327 766 167381 2533 5803 48 1804 195 16401 2095 1308 251661Black BIC 30 499 7248 7937688 1610043 5751 146962 282853 5369070 469 765 579 15019 17969 727 25397 4959 722 115229 2408 4498 43 1519 140 15311 1912 1147 233434

Black Paper Mate 31 510 60516 8096824 128342 2760069 6124 245014 8021987 249 60001 627 23733 390 2001 220830 3691 190 113425 3095 573 4253 580 193 3318 1307 517 7226Black Paper Mate 32 534 67285 7818822 117367 2748486 6363 275090 7298556 241 64004 897 21366 386 1614 193267 3621 175 86579 2283 609 4161 606 275 2201 1488 380 6571Black Paper Mate 33 539 67590 8203964 133519 3067654 6325 239521 8580573 361 47033 612 25178 289 1712 181817 5495 193 131706 3203 515 3943 511 235 3001 1416 540 7322Black Paper Mate 34 661 66441 7328963 118007 3073098 6064 271541 7198724 371 72712 809 27101 331 1492 200983 5021 189 98215 2981 621 4132 632 261 2193 1901 409 7009Black Paper Mate 35 698 74533 7114216 118436 2650266 6291 265086 7737736 237 51930 833 21134 309 1502 217862 4389 205 104032 2671 578 3872 543 208 3019 1320 496 7129Black Paper Mate 36 533 67205 7548156 117940 3260808 5725 259717 8636704 219 60418 841 23347 405 1597 237119 4197 186 112816 3128 507 3254 500 213 3588 1155 483 6718

Black Office Works 37 247 6515 10326562 1253231 13824 9798 488167 6622576 2386 91352 605 54129 1261 18194 638766 148500 1238 203805 2836 11698 16414 11655 663 21698 3025 2308 740148Black Office Works 38 222 6358 11865692 1597648 12401 10631 535371 6439632 2267 94559 680 49754 1211 16706 587953 120766 1581 200123 3048 12931 16304 11041 187 24602 2916 2446 661800Black Office Works 39 288 5945 10176073 1525186 13931 10371 489883 7093826 2089 94694 577 46737 1200 18769 620366 125302 1233 190733 3011 12020 16294 12192 466 24790 3378 1923 763347Black Office Works 40 244 6287 9978477 1427455 15713 9948 525362 6360442 2155 92427 472 45291 1011 17163 561687 106345 1152 209955 2311 11365 15338 10404 413 24169 2905 2119 660624Black Office Works 41 260 5752 10014767 1521466 13460 9888 415297 6570417 2255 107496 733 51697 1477 17811 680295 151504 1215 219781 3004 11521 17050 12339 464 21149 3164 2055 792025Black Office Works 42 286 6802 11564302 1569770 14821 11637 489394 6444908 2333 94885 729 55740 1143 17445 578215 117764 1576 201132 3033 12584 16284 10769 443 23691 3568 1818 736786

Red BIC 43 169 7993 6204955 952503 253898 137409 708536 4658780 350 533 636 20176 6657 384 4543 414 368 79481 1698 3016 15 312 84 11859 1260 550 493Red BIC 44 211 8589 5978857 1017048 243899 149402 758387 4186608 388 566 655 21186 7646 288 5212 344 311 77303 1955 3800 17 377 74 14752 1188 588 555Red BIC 45 166 7244 5970626 1054478 253497 143036 651772 3945189 266 894 738 20216 6851 322 4995 550 450 83152 1950 2544 88 422 77 14413 1727 766 466Red BIC 46 161 7452 5965402 1016050 242074 140664 672152 5010942 327 711 694 20359 6395 288 4434 427 538 79910 1938 3445 38 433 74 12155 1261 583 399Red BIC 47 188 7281 6147511 1021666 244199 145368 796484 4542499 299 772 677 21422 6779 261 4834 477 483 71862 2194 3439 41 422 75 11871 1333 394 638Red BIC 48 155 7894 6063058 967683 256042 151195 746710 4089141 316 494 633 20658 6835 333 4517 472 494 83310 1705 2228 32 422 83 12322 1255 650 494

Red Paper Mate 49 206 55405 4464662 471022 65880 154924 424702 4873428 32 213 189 15620 304 351 12377 84 170 35079 437 6024 41 55 175 2434 28 68 51Red Paper Mate 50 193 51192 4621287 427839 66236 180283 442195 4198232 25 174 264 16242 214 328 15951 102 201 32487 532 6181 74 48 218 2182 26 72 47Red Paper Mate 51 202 50433 4271720 638685 63251 152290 467182 4238452 21 156 295 19890 133 265 13037 234 345 33286 350 6769 40 59 221 2914 29 97 90Red Paper Mate 52 165 53280 4649674 502398 73942 146023 406664 3823387 41 163 274 17143 112 389 12839 117 197 33902 437 6739 45 62 174 2009 32 100 59Red Paper Mate 53 189 57221 4263097 678778 72607 185035 387261 3831194 52 219 209 16529 207 323 20932 83 209 32392 439 6234 41 47 220 2452 67 77 45Red Paper Mate 54 175 55555 4301102 523922 69748 186064 361903 3807401 31 178 254 16150 153 331 13892 93 214 38345 491 5998 65 53 154 2451 54 61 62

Red J.B 55 202 44510 4934595 277098 286 7106 66647 3274693 43 329 233 2022 145 3382 147779 19565 271 18620 633 471 44 117 337 384 72 53 26Red J.B 56 251 44488 4392625 325526 273 7092 78154 2933412 71 417 321 2024 186 3295 150701 19526 301 18971 571 298 51 116 341 371 36 43 51Red J.B 57 221 41134 4860304 309187 371 6951 70588 2948316 39 472 361 2119 167 2608 145925 15483 372 20237 525 297 42 102 400 397 59 36 67Red J.B 58 217 40375 4600847 328644 417 7190 67200 3166118 29 276 313 2131 127 3832 152051 18164 285 20981 571 319 37 167 380 431 61 145 68Red J.B 59 184 44021 5306229 328971 263 7201 64590 3124232 20 213 319 1982 124 3276 156292 18756 269 21459 591 432 33 129 315 328 37 49 87Red J.B 60 200 44194 4506639 308104 291 7309 73489 3286241 46 453 274 2109 172 2633 123281 17260 339 21098 629 306 42 126 309 422 40 87 49

Page 300: Development of Novel Physical (Electrostatic Detection

300

Appendix 5 continued Appendix 5 TABLE 1

INK ON PAPER 2 Li7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49 V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88 Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208Blank Paper 2 61 1429 28861 15606599 2877832 24600 12303 399881 15578645 3227 3206 776 65733 797 778 2419 1333 1044 259086 4768 14698 1797 794 128 24769 3971 3692 1990Blank Paper 2 62 2086 31399 15768250 3130954 22319 13192 427661 16903462 3732 2882 939 75315 1121 805 2195 1411 1097 300118 5012 15080 1765 709 114 23454 3914 4011 2088Blank Paper 2 63 1739 33800 16737196 2450198 24397 13709 395880 15860578 3493 2754 929 66010 938 775 2757 1438 1235 311931 4711 12655 1767 887 137 26089 3935 3375 1726Blank Paper 2 64 1611 29200 15865197 3059386 21669 11817 447895 16412938 4252 2446 891 72031 862 760 2839 1302 1186 299964 5048 14168 1601 828 133 23610 3871 4048 1806Blank Paper 2 65 1327 33098 15622076 2851578 22046 12886 474856 16553673 3656 3505 925 67204 886 950 2333 1229 1130 308412 4741 15436 1594 812 121 24735 3974 3697 1882Blank Paper 2 66 1649 32927 15218632 2782334 28148 14625 429121 16005490 4197 2744 903 65940 997 802 2335 1317 1056 268004 4788 16102 1782 985 110 25997 4334 3957 2057

Blue BIC 67 1923 115771 24168024 4756908 43629 562573 718416 18551326 10183 287541 2734 88689 1176 2629 6358984 79216 3542 433696 5579 22208 9370 3224 350 29925 5074 4416 4026Blue BIC 68 2099 91726 23249359 5032555 47659 526149 748406 16393460 9421 278054 2775 84030 1265 2201 6114800 73041 2638 387931 5285 23687 8995 3658 305 29688 4866 4326 4136Blue BIC 69 2008 94156 22413116 5165085 41355 557870 725069 18401301 8901 303142 3133 82483 1079 3163 6430466 63165 3090 357884 4958 22266 9729 3809 342 31510 4623 3881 5340Blue BIC 70 2443 103856 24564903 5402804 41643 521308 723999 18720627 9495 279537 3663 87654 1488 3155 7672916 68032 2322 430952 5503 23238 9559 3624 319 30862 4659 4375 3685Blue BIC 71 1727 92811 25768899 5328665 39013 549777 751890 17710055 7994 344988 2866 86218 1236 2870 7062440 67841 2758 414358 5074 22365 9918 3946 460 29741 4471 4156 4193Blue BIC 72 2524 105485 25164769 4688795 44936 477861 691748 19391525 9174 279055 3603 80163 1509 3099 5715761 58909 3027 453143 5722 22350 8812 3566 323 29412 5153 3976 4306

Blue Paper Mate 73 2076 32901 19308525 4152582 3077462 199209 669706 18943562 4212 131226 1108 88196 1222 14672 7671364 67117 1649 409554 6315 23993 20063 2236 328 39322 5820 5020 40938Blue Paper Mate 74 1967 33981 17470403 4177523 3345218 190134 680640 19262155 4371 140701 1100 90516 1311 14417 6357430 66869 1825 453020 7579 21005 17915 2021 508 40208 6020 5275 37727Blue Paper Mate 75 2393 34685 19455542 4558525 2777994 192488 653577 18999208 4415 140927 1229 89967 1505 14035 6303239 73296 1710 448652 6994 24785 20552 2307 407 41658 5697 5251 34816Blue Paper Mate 76 1779 33546 17339550 4184257 3387555 191462 678477 19093251 4195 133325 1055 79755 1105 16749 7227858 69669 1929 402397 6290 22102 18508 2193 467 41859 5592 4773 34989Blue Paper Mate 77 1673 34244 19277099 4507973 3191982 194450 684752 18102580 4625 138962 1194 88531 1484 15476 7905765 70320 1662 425090 6426 23331 20590 2347 341 40020 5466 4929 37436Blue Paper Mate 78 2320 33818 19199291 4106537 3502670 200291 636298 19545043 4592 134129 1203 81717 1396 14402 7583455 73960 1681 477223 6497 21291 19393 2251 368 40284 6316 4733 35491

Blue Office Works 79 2112 32746 21747214 5020283 137283 23653 863964 22504784 5170 106313 1245 96168 1559 2611 232865 80370 2366 570500 8550 21209 21833 3900 706 52203 7560 5993 93988Blue Office Works 80 1934 33184 21856464 5448430 143161 23642 873772 18549098 4017 123589 1038 86322 1533 2579 243581 66099 2023 491159 7246 22068 23136 3093 534 50615 6937 5285 77041Blue Office Works 81 2093 33072 22600170 5256065 153262 23997 878544 20162863 5060 120232 1216 94003 1680 2570 239454 72147 1819 510327 7721 24063 23490 3473 495 49172 7054 5811 76015Blue Office Works 82 2599 32800 21380603 5406462 143854 22949 845694 22345653 4491 107808 1262 97869 1817 2481 268889 72266 1863 547142 7772 24833 22592 3308 549 50392 6937 5942 85081Blue Office Works 83 2187 32637 23469728 5544769 152623 24006 787544 22848785 4144 119097 1115 93802 1911 2720 230398 74649 2026 570622 7934 22592 24324 3321 581 49821 7575 5518 86310Blue Office Works 84 1824 32480 23119250 5379062 138976 25654 880107 21939510 4186 106796 1534 94817 1824 2677 218396 70212 2008 534943 7413 23047 23908 2988 545 53859 7113 5726 80497

Black BIC 85 2665 36100 19274138 4952249 29795 147648 747250 19932224 4665 3906 1193 88486 18585 1647 30186 6067 1824 486003 7235 21490 1985 2651 237 43142 6511 5276 288837Black BIC 86 2315 39079 20083135 4414631 32206 147794 690025 20549196 4401 3863 977 84442 18864 1840 30026 5788 1985 514839 7374 19712 1972 2749 332 41066 6789 4919 274095Black BIC 87 1912 35244 17941701 4426102 30725 143736 772110 19829159 4086 3660 1085 79734 17937 1648 35724 6373 2045 466810 6646 20525 2002 2897 285 43530 6254 5082 254091Black BIC 88 2237 35177 18701370 4396959 30365 153932 768379 20649196 5322 3451 1295 86691 18818 1603 35056 6609 1997 543562 7603 19459 1774 2255 319 43150 6760 5584 266626Black BIC 89 2256 37871 18997473 4710830 33538 160715 732947 18449957 5254 3818 1218 83420 18922 1709 32133 6832 1688 437870 7021 20783 1978 2575 227 40481 6349 5345 235435Black BIC 90 1935 39368 19658276 4854128 28625 164789 766426 18718694 4537 4021 1323 86066 19525 1902 33565 6890 1842 467482 6528 19450 1766 2559 257 43328 5895 5283 331023

Black Paper Mate 91 2102 94620 17965499 3170000 2772578 18736 714727 18786237 3903 66944 1469 85951 1153 2627 200221 5667 1454 386008 6396 15331 6115 1699 365 29330 5647 4154 9001Black Paper Mate 92 2236 87912 18550688 3120069 2784829 17913 705687 23345279 4938 62641 1334 94825 1308 2960 227390 5766 1576 477306 7931 15359 5994 1513 324 29051 6000 4835 9280Black Paper Mate 93 2716 96583 19520336 3612616 3091061 20218 686448 23417219 4465 50117 1294 97554 1392 2643 187720 7607 1266 494731 8116 16814 5863 1535 334 30180 5777 4794 9409Black Paper Mate 94 1998 98724 19596911 3477727 3283749 18757 721658 22639029 4197 63687 1549 94754 1423 2697 243503 6234 1326 462646 7452 15053 4987 1464 330 29170 5241 4529 8764Black Paper Mate 95 2593 98096 19843466 3194437 3098580 20268 685097 22751706 4317 75731 1417 95006 1379 2635 207676 7281 1466 483636 7763 15228 6050 1748 363 27334 6635 4256 9111Black Paper Mate 96 2455 105156 18174001 3216223 2678053 20044 715180 20818623 5022 54983 1472 89535 1262 2484 224598 6262 1121 426673 7284 16863 5807 1599 295 28189 5757 4694 9130

Black Office Works 97 2004 37138 21386347 4354018 41611 23551 938261 19703463 7171 94405 1244 122530 2214 19176 645502 150373 2204 526446 7449 27983 18349 12711 750 46868 7462 6506 742149Black Office Works 98 2154 38013 24380195 4674078 37883 24835 948927 21992614 6213 97578 1288 117659 2259 17849 594646 123026 2858 585544 7830 27538 18222 12157 289 49743 7650 6293 663902Black Office Works 99 2465 34938 21492445 5004283 37338 24264 936810 21930472 6193 97778 1259 119113 2303 19700 626269 127414 2346 553758 7924 28319 18214 13216 565 51969 7739 6177 765434Black Office Works 100 1709 37806 22027232 4787242 38654 22980 987303 20362767 6133 95696 1180 116698 2029 18263 568071 108382 2292 559785 6635 25911 17071 11368 530 49751 6991 6165 662670Black Office Works 101 1986 33148 20468631 4513193 38220 22677 875970 21893709 6944 110136 1440 122789 2395 18770 686855 153579 2601 583662 7840 26307 18791 13272 595 46882 7857 6373 794079Black Office Works 102 1854 34137 21710979 4622403 38913 24010 929031 17932589 5995 97825 1301 120325 1910 18458 585169 119810 2855 500561 7146 27306 18238 11862 533 50820 7727 5592 739216

Red BIC 103 1831 38763 18019381 4414265 276438 156068 1113713 17947514 4244 4163 1446 91623 7869 1422 11379 2587 1590 432982 6274 17090 1821 1386 194 39995 5813 4812 2512Red BIC 104 1737 35328 16351632 4005136 277990 149782 1148173 18146461 4412 3473 1208 84761 7424 1397 11497 2460 1647 378910 5811 17738 1969 1405 174 38988 5419 4324 2923Red BIC 105 2143 40244 18493360 4093478 269381 163606 1171943 19739590 4334 3585 1263 89091 8694 1431 11905 2604 1588 462724 6737 18407 1929 1493 176 39893 5922 4435 2657Red BIC 106 2338 36445 17281774 4495147 265481 154557 1119079 19847588 4431 3795 1376 92735 7498 1219 9937 2539 1651 442935 6851 19744 1958 1457 173 39334 5622 4837 2986Red BIC 107 1914 34677 16601375 4013393 268959 158157 1257157 19865791 4988 3412 1384 92514 7697 1220 11394 2552 1869 435743 7030 18225 1782 1355 206 37604 6026 4712 2692Red BIC 108 1912 38517 17122843 4068470 283829 164948 1196804 17170028 5101 3547 1272 89059 7788 1315 11253 2345 1460 405951 6318 18513 1967 1478 170 37492 5692 4848 2795

Red Paper Mate 109 1730 84799 16698429 3862185 96883 159055 868605 17825712 4019 3432 982 88550 1130 1489 19223 2154 1292 383732 5065 21285 1778 1026 291 27591 4118 4146 2105Red Paper Mate 110 1774 82740 16311339 3523655 89972 167297 864339 18361109 3694 3153 1061 80205 1071 1364 19331 2102 1449 334508 5450 20746 1995 1148 265 29563 4180 3842 2451Red Paper Mate 111 2121 88876 16777600 3755208 98089 199239 800817 19384176 3998 3238 917 84434 1255 1466 27625 2343 1486 417813 5221 20841 1959 1163 322 27593 4801 3924 2147Red Paper Mate 112 2379 79426 16588092 4117782 86658 166183 914109 19075098 4125 3240 977 92266 1236 1196 18940 2346 1458 396311 5263 23068 1960 1083 320 30093 4390 4351 2177Red Paper Mate 113 1900 81815 16681072 3528626 94023 194036 892289 17279119 4800 3177 903 84643 1167 1310 22687 1975 1167 355128 5145 22466 2009 1104 305 27352 4463 4270 2048Red Paper Mate 114 1901 82951 17754966 3515649 94508 198853 922576 19130693 4720 2818 961 87242 1071 1190 20452 2168 1600 402226 5327 20784 1806 976 285 28184 4747 4379 2116

Red J.B 115 2132 75849 17021142 3384534 25773 21513 487045 18839223 3992 3472 982 70014 1220 3776 129974 19520 1616 406519 5411 14913 1960 1242 411 25563 4774 3934 2151Red J.B 116 1941 74644 16366014 3429758 28000 20954 512684 16205119 4805 3266 958 70183 1077 4258 163028 20629 1235 336183 5204 16717 1968 1185 402 25498 4474 4247 2088Red J.B 117 1977 71884 17846489 3317253 24973 19881 538827 18196704 4760 3057 1028 73116 1104 4254 157261 21601 1687 382852 5407 15084 1792 1049 472 26104 4729 4349 2105Red J.B 118 1770 71845 16081272 3329731 24318 19479 500284 18762374 3705 3269 1005 66607 912 4395 144733 21611 1550 318049 5146 15193 1998 1210 427 27438 4231 3827 2456Red J.B 119 2398 70127 16176676 3788284 23778 20844 517515 17784962 4143 3556 1043 75395 1210 3539 151828 17595 1485 383262 5438 16526 1962 1126 499 27576 4420 4290 2154Red J.B 120 1882 71894 16649602 3688431 23358 20222 529141 17168443 4007 3545 1021 73238 1121 4932 158435 20201 1425 370811 5895 14865 1770 1131 497 26013 4147 4191 2114

Page 301: Development of Novel Physical (Electrostatic Detection

301

Appendix 5 continued Appendix 5 TABLE 1

INK ON PAPER 3 Li7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49 V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88 Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208Blank Paper 3 121 27510 37990 21870994 9621810 40876 72056 1174558 37211717 3942 5462 1778 100777 1240 2438 15764 6272 2346 622952 9202 12999 14418 1016 297 29639 6435 5906 2969Blank Paper 3 122 26712 36474 20038263 10487901 42277 77432 1037816 36060589 3691 5438 1499 98141 1258 2394 16368 6186 2381 577181 8842 12611 14537 921 260 31867 7058 6166 3365Blank Paper 3 123 23921 42743 19541170 10639493 45828 72020 1101285 35472122 3856 5350 1204 97723 1264 2494 16094 5717 2265 659260 9522 12499 15062 1036 239 30867 6724 6522 2811Blank Paper 3 124 26207 41132 20742380 9938520 47836 77475 1079851 37879799 4074 5422 1653 99711 1258 2332 16470 5595 2244 582671 8969 12208 15339 1155 246 30843 7117 6690 3390Blank Paper 3 125 30963 33650 22401090 10102162 50420 71075 1159942 36235723 3668 5289 1380 97114 1171 2278 15439 5635 2426 594067 8872 13357 14964 959 204 30641 6239 5298 3342Blank Paper 3 126 28045 44572 21826104 9508430 50513 68202 1056676 37240059 3898 5443 1457 102418 1170 2259 16791 5092 2344 577574 8957 12539 15195 998 280 30485 7178 6312 3110

Blue BIC 127 27363 112041 31972957 11810529 72539 573128 1316422 39479717 9400 282042 4462 118287 1652 4322 7679210 71362 3475 675922 9658 20161 23480 3683 443 35611 7832 7229 4972Blue BIC 128 27755 95559 29835636 12372389 70267 585598 1326290 36912061 8972 280577 3621 114308 1529 3443 6120635 77319 3862 647178 9471 20550 22270 3650 423 35433 7907 7099 5621Blue BIC 129 27201 101554 29684697 12066362 69736 617945 1338428 37682811 9084 305644 4126 114802 1416 4356 6436281 66920 4108 628204 9371 19555 23774 3902 448 36327 7810 7169 6722Blue BIC 130 27724 107625 32530051 11752542 74965 531947 1370338 39325731 9063 281487 4370 109981 1707 4220 5721121 62626 4175 701254 9884 20290 22508 3565 400 34608 7616 6291 5773Blue BIC 131 27375 97055 32999784 11886922 62487 605090 1420562 38719284 7965 347394 3889 117022 1483 4096 7068083 72147 3902 691809 9578 19940 23165 4019 588 34470 7244 6813 5416Blue BIC 132 27468 123846 30697300 12226992 70505 618012 1337162 37976949 9823 290153 3351 117310 1466 3947 6364697 83063 4556 731311 10116 19636 23238 3313 439 35253 7863 7397 5147

Blue Paper Mate 133 27177 42056 23999679 11647607 3372094 245573 1299386 38687778 4711 133313 1717 119137 1601 15735 6363143 70716 2839 770635 12116 18433 31783 2110 597 45536 8809 8256 38848Blue Paper Mate 134 27297 40734 25894802 11492416 3100070 258658 1247590 37462163 4763 163749 1954 118474 1486 15914 7677199 71395 2873 688801 10501 20856 33338 2228 446 45067 8861 7793 42423Blue Paper Mate 135 28085 39958 27064573 11170284 3532699 254377 1314888 39479249 4481 136561 1970 111535 1594 15523 7588815 77677 2829 745334 10659 19231 33089 2250 445 45480 8779 7048 36958Blue Paper Mate 136 27886 42488 27507984 11066230 3215456 249763 1353424 39111809 4596 141368 2217 119335 1731 16702 7911408 74626 2806 722541 10930 20906 33837 2420 469 44749 8239 7586 38659Blue Paper Mate 137 27537 40944 24611131 11085534 3415936 251537 1291836 37374761 4178 135827 2048 112074 1442 17942 7233673 73424 2947 692717 10703 19391 32553 2286 573 46676 8779 8061 36371Blue Paper Mate 138 27278 42870 26863596 10966250 2808890 244308 1246000 39758298 4320 115432 2028 120600 1669 15202 6309533 76626 2863 713622 11149 21708 34473 2366 531 46407 8870 8105 36103

Blue Office Works 139 27692 39561 29128045 12349707 171542 83717 1487131 40830608 4200 126091 2031 118641 1870 3772 249396 69854 3041 761479 11659 19357 37181 3186 640 55432 10124 8573 78423Blue Office Works 140 27984 43985 28788657 11814187 174750 74769 1438117 43104743 4396 110313 2061 128502 1981 3648 275183 75596 3016 792112 11927 21756 36513 3367 673 55141 10110 8796 86368Blue Office Works 141 27322 40821 28276490 12490367 164159 79092 1482710 41930407 4810 108925 1862 124789 1849 3929 238578 84217 3380 868115 13087 18637 35701 3989 795 57531 10349 8974 95109Blue Office Works 142 27337 41724 30350135 11937319 162450 80967 1548779 42948739 4157 109202 2557 125621 2071 3903 224039 74518 3152 812394 11917 20622 37155 3061 673 58588 9886 8383 81720Blue Office Works 143 27314 40905 29186447 12595899 175870 83446 1456428 40681464 4611 122755 2062 124281 1944 3812 245289 76425 3043 769574 11907 20926 36765 3465 613 54917 10095 8584 77500Blue Office Works 144 27652 39777 30835010 12608516 182652 78092 1466134 42782991 4033 121529 1882 123620 2109 3841 235758 78366 3174 818733 12096 20532 38020 3320 658 55017 10038 7833 87777

Black BIC 145 31148 43612 26889161 11412385 52099 220102 1435098 39727923 4508 6427 2346 116870 19772 3128 39208 11196 2986 744933 11032 17025 15013 2632 385 48057 8668 7940 332246Black BIC 146 32150 44285 26682192 11359974 60691 199468 1339673 40691314 4570 6411 1992 119119 18749 2814 36480 9397 2977 730973 11390 18413 15906 2710 361 47891 9684 8130 290124Black BIC 147 27447 43252 25230646 11867043 57241 209371 1387125 40074819 4962 6063 1912 115312 19108 2921 40769 10456 3011 841177 12140 16887 15642 2344 408 48478 9549 8565 267747Black BIC 148 30477 43704 25583750 12050664 56146 220164 1310831 38968558 4805 6341 2064 113698 19186 2951 37968 11110 2912 697117 11207 17646 15253 2567 345 46226 9390 8118 236920Black BIC 149 35080 44219 27448417 11478378 62235 201880 1368615 40483402 4290 6295 1602 114260 19062 2961 35386 9505 3133 762950 11536 17652 15668 2748 409 46262 9252 7234 275562Black BIC 150 29670 43642 25213282 11327379 59106 203811 1385469 39110669 4269 6162 2078 112053 18274 2841 41539 10128 3063 737130 11059 17814 16047 2990 391 48347 9441 8370 255473

Black Paper Mate 151 35358 100236 27208748 10258184 3128609 74354 1363687 42685912 4206 78163 2184 124824 1577 3756 213036 10998 2614 731747 11925 13168 19746 1747 440 32530 9098 6571 10578Black Paper Mate 152 31211 102968 26827796 10035984 3307223 74070 1390330 43648258 4168 66093 2572 125558 1670 3923 249146 10540 2470 740097 11956 12628 18234 1537 458 33899 8014 7186 9987Black Paper Mate 153 27446 95987 25079964 10590153 2811705 73352 1324433 42770902 4578 65253 1951 123446 1598 4278 233103 9613 2590 774921 12468 12787 19862 1602 413 34379 8789 7816 10401Black Paper Mate 154 32201 104768 26928390 10020341 3121957 72038 1278871 44176309 4370 52622 2093 128187 1556 3810 194014 10937 2419 739701 12271 13737 19784 1594 458 34929 8950 7648 10696Black Paper Mate 155 29860 102018 25237080 10071277 2800959 78811 1328086 41067747 4086 69446 2462 118270 1490 3820 206036 9422 2472 656328 10809 12620 20160 1792 471 34147 8834 7442 10383Black Paper Mate 156 30676 108989 24760278 10556057 2700661 79493 1293064 41337224 4573 57506 2318 119813 1526 3726 230433 10540 2345 685920 11470 13726 19082 1591 413 33934 8798 7467 10615

Black Office Works 157 31950 43123 28900499 11412008 68234 76084 1529233 42689562 6098 100283 2058 149746 2467 20867 632563 130744 3499 798728 12079 25242 32135 13275 689 56718 10912 9031 766721Black Office Works 158 30225 40971 27972624 11693852 64219 83000 1516145 40222064 6722 96928 2090 152808 2478 20418 651337 154651 3428 785693 11635 24846 31624 12703 868 52613 10503 9279 743634Black Office Works 159 34919 40153 31745477 11737825 67912 78921 1627517 41926820 6102 100010 2055 147477 2457 18970 600006 126743 4006 833655 11992 25478 31918 12156 366 54939 10113 8608 665369Black Office Works 160 29612 41535 28982560 11523680 67294 84085 1542390 40214099 6178 100327 2294 152644 2247 19651 590984 123565 3873 770881 11559 24595 32283 11955 639 55637 10914 8880 740598Black Office Works 161 30922 42050 29258117 11345499 62128 78293 1655975 41371996 6104 98102 2203 147502 2276 19489 573714 112688 3436 837236 11139 23486 30318 11441 658 54480 9764 8822 663893Black Office Works 162 27196 41223 26997907 11983277 65096 78116 1494716 41319332 6584 112748 2057 151410 2685 20088 692568 157426 3615 881277 12377 23735 32659 13361 684 52210 10646 9354 795200

Red BIC 163 27124 42752 23130651 11483477 295835 213596 1875903 39291414 4628 6024 2001 121135 7987 2538 17107 6399 2883 733358 11567 15653 15650 1444 295 42932 8815 7693 3813Red BIC 164 30133 42350 23709120 11408304 306437 224397 1774688 37688629 4652 6070 2118 119337 8052 2557 17088 6623 2684 665198 10504 15376 15242 1470 288 43237 8733 7621 3980Red BIC 165 34908 42384 25858642 11157225 299410 217692 1850533 39673796 4223 6017 2030 118909 8892 2552 17265 6321 2736 710835 10899 16347 15625 1492 253 45089 8385 6750 4124Red BIC 166 31823 44630 24689828 10902872 296377 206377 1711502 40606678 4336 6300 2175 123368 7662 2386 16231 5869 2804 687905 11006 16667 15879 1516 297 44083 8795 7691 3773Red BIC 167 30844 43007 25250266 10972522 299912 211381 1782385 38956743 4215 6569 2469 122427 8116 2648 17022 6893 2734 710433 10778 14665 15068 1459 322 44724 8586 7469 3735Red BIC 168 29495 42726 23623213 10906413 306371 209857 1761532 38427971 4195 5975 2201 117080 7761 2590 17312 6215 2665 649230 10224 15027 16014 1498 280 43805 8606 7612 4305

Red Paper Mate 169 34886 91016 24142882 10818955 128118 253325 1479407 39318382 3887 5670 1584 114252 1453 2587 32985 6060 2634 665924 9383 18781 15655 1162 399 32789 7264 6239 3614Red Paper Mate 170 27111 91026 21284242 10985733 121384 254292 1541322 38556316 4360 5430 1478 115863 1361 2508 26165 6015 2614 699841 9864 18212 15674 1065 374 33512 7536 7360 3237Red Paper Mate 171 29532 90138 21582920 10424932 118353 227372 1477698 38642619 3877 5655 1754 112524 1408 2557 25146 5857 2467 604828 8963 18035 16040 1241 371 34380 7367 7130 3833Red Paper Mate 172 31864 87611 22996146 10525507 117554 218003 1506532 39834188 4030 5745 1776 122899 1400 2363 25234 5676 2611 641281 9418 19991 15881 1142 444 34842 7563 7205 3464Red Paper Mate 173 30843 89043 23929314 10420442 120357 214368 1537277 38834941 3990 5838 2005 119354 1377 2715 24866 6460 2436 661183 9169 18860 15025 1099 419 32320 6891 6803 3328Red Paper Mate 174 30121 85648 22267349 10868460 116631 253485 1470173 37797720 4351 5700 1749 114921 1431 2552 28522 6253 2391 614375 9331 19329 15284 1096 423 33097 7504 7043 3533

Red J.B 175 30162 78477 22952291 10769592 50608 80403 1090568 36723720 4356 5789 1804 100461 1341 5500 168863 24907 2459 595430 9390 13580 15243 1177 520 31243 7515 7020 3573Red J.B 176 29528 79243 22352853 10231008 52699 79554 1113643 37043884 3888 5771 1798 98926 1249 5588 150548 25366 2568 588369 9159 13482 16043 1303 533 32255 7418 7115 3838Red J.B 177 30895 76138 23880487 10246688 46832 75535 1197813 38177672 3978 5951 2044 104042 1368 6158 164078 24507 2569 648262 9399 13440 15017 1204 625 30742 6920 6848 3337Red J.B 178 27187 79959 21375765 10787337 51849 75320 1157573 37622327 4400 5669 1645 101737 1394 5572 162974 25448 2701 680467 9944 13612 15660 1138 561 31432 7518 7330 3226Red J.B 179 34897 77989 24386424 10448281 55802 75599 1165635 38773429 3881 5904 1649 99832 1418 4897 135334 23237 2764 654630 9573 13853 15656 1241 488 30759 7237 6249 3618Red J.B 180 31883 78312 23584730 10196009 54674 72664 1109938 38544052 4048 6061 1842 106028 1374 4706 158122 20925 2638 628232 9593 13449 15883 1185 623 32325 7593 7144 3441

Page 302: Development of Novel Physical (Electrostatic Detection

302

Appendix 5 continued TABLE 2

INK ON PAPER 1 background removedBrand Li7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49 V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88 Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208

Blue BIC 297 61993 8101777 1997016 17050 540373 224785 1040208 5225 300078 2407 16116 209 1919 6419478 61064 1659 44913 504 7317 7764 2674 179 4072 444 76 2890Blue BIC 123 70035 9083869 1808271 18023 502291 216425 1010569 5377 276329 2827 13496 282 1993 7662979 65865 1057 54385 249 6712 7628 2558 147 3374 278 90 1578Blue BIC 199 56275 8024912 1816332 19659 507272 237665 439161 4622 274877 1982 13847 209 988 6104030 71113 1520 51748 331 7175 7049 2560 145 4209 409 97 2115Blue BIC 449 69002 8485604 1496929 19241 458533 217545 965131 5214 275912 2841 10476 358 1725 5705034 56594 1598 54180 599 7516 6883 2408 148 3962 399 98 2184Blue BIC 119 56464 9555482 1853442 15859 531621 229302 834318 4002 341595 2004 13029 115 1539 7052022 65749 1466 50986 409 7592 8174 2940 270 3850 365 79 2127Blue BIC 54 63547 9549498 1649745 18656 544660 197096 354622 5480 284777 1873 15815 155 1439 6348390 77086 2004 56273 402 7195 7618 2249 146 3883 361 67 1952

Blue Paper Mate 68 1383 3028211 1016188 3363250 173965 178193 732158 319 130261 329 13388 235 15505 7216870 67568 498 109426 1836 7153 16543 1058 304 14421 1413 968 32539Blue Paper Mate 98 1757 2851877 1070360 3320245 172221 159320 1065451 368 127937 239 17642 290 13227 6346836 64739 287 95597 2402 5992 16163 1046 304 14166 1307 926 35653Blue Paper Mate 176 1450 4084078 936359 3049462 180332 158965 989263 413 158049 315 18013 166 13459 7660594 65189 531 93371 1361 7481 18117 1138 168 13843 1363 791 38917Blue Paper Mate 245 1335 3020126 914671 3476975 180963 162095 1118649 632 130986 441 12030 245 13028 7572728 71645 252 98260 1374 6457 17464 1093 193 14834 1562 855 33369Blue Paper Mate 65 1897 4063682 1032750 3168828 176294 162164 1226843 633 135569 332 15342 363 14145 7895347 68228 370 81718 1761 8558 18846 1341 151 14129 1360 852 35370Blue Paper Mate 73 864 3974508 963992 2754374 173471 146003 1289150 297 109719 393 15809 299 12873 6293302 71129 445 92085 1740 8259 18621 1241 235 14170 1316 966 32709

Blue Office Works 243 522 7428688 1913120 112310 5740 342644 4308080 467 103549 384 23294 538 1421 222271 78240 828 193077 3373 6196 20081 2925 502 26161 2847 1644 91914Blue Office Works 112 1154 7790563 2352903 126928 4678 313341 4422391 184 115954 353 24115 760 1346 219671 72334 597 171659 2811 7758 22395 2163 406 24371 2821 1640 84188Blue Office Works 193 1621 7375723 2039842 125262 5120 367803 4208564 261 117055 423 23820 624 1357 228684 70219 701 174144 2767 7551 21544 2375 335 23693 2597 1582 73994Blue Office Works 223 1400 7545125 2280361 118856 6145 373488 4188005 341 120525 312 19955 663 1335 232593 63998 592 178188 2792 7119 21171 1958 371 23177 2758 1480 74591Blue Office Works 216 1133 6905833 1903839 115822 7498 357519 5063773 194 103403 672 21628 703 1346 207978 68120 716 171571 2748 8274 22164 1982 355 27968 3007 1649 78431Blue Office Works 279 1979 7499569 1811929 120234 3932 338120 4635595 373 104600 426 23711 611 1319 258952 70099 598 170575 2518 8307 20661 2242 377 22904 2556 1657 82974

Black BIC 327 3021 3444859 1378905 5471 146633 243838 1842957 545 628 461 12877 18404 571 23147 4798 550 104110 1863 4677 22 1553 67 17437 1789 1206 328957Black BIC 240 2596 3403970 1222765 6511 128466 215822 2122802 441 720 73 14755 17713 466 19299 3473 556 115876 2251 4878 43 1591 157 15616 2035 1041 271973Black BIC 345 2279 3793104 1357716 6175 128631 239676 2222166 547 698 357 14328 17379 485 20249 3900 559 109436 1981 4964 54 1585 65 15654 2130 991 286730Black BIC 368 2953 4082844 1289796 5392 136019 247059 2452492 619 687 434 13817 17797 413 24462 4479 459 166139 2426 4446 22 1280 115 17108 2047 1235 264552Black BIC 201 3081 3630362 1258033 6420 126239 271826 2468066 410 596 359 13367 17067 404 24736 4272 614 153839 2192 5576 37 1762 122 16092 2075 1277 251641Black BIC 356 2420 3773026 1494607 5538 141838 222206 2495658 455 641 425 13237 17866 496 21363 4904 570 101687 2067 4271 32 1477 67 15002 1892 1116 233414

Black Paper Mate 367 55688 3932162 12906 2759856 1000 184367 5148575 235 59877 473 21951 287 1770 216796 3636 38 99883 2754 346 4242 538 120 3009 1287 486 7206Black Paper Mate 391 62457 3654160 1931 2748273 1239 214443 4425144 227 63880 743 19584 283 1383 189233 3566 23 73037 1942 382 4150 564 202 1892 1468 349 6551Black Paper Mate 396 62762 4039302 18083 3067441 1201 178874 5707161 347 46909 458 23396 186 1481 177783 5440 41 118164 2862 288 3932 469 162 2692 1396 509 7302Black Paper Mate 518 61613 3164301 2571 3072885 940 210894 4325312 357 72588 655 25319 228 1261 196949 4966 37 84673 2640 394 4121 590 188 1884 1881 378 6989Black Paper Mate 555 69705 2949554 3000 2650053 1167 204439 4864324 223 51806 679 19352 206 1271 213828 4334 53 90490 2330 351 3861 501 135 2710 1300 465 7109Black Paper Mate 390 62377 3383494 2504 3260595 601 199070 5763292 205 60294 687 21565 302 1366 233085 4142 34 99274 2787 280 3243 458 140 3279 1135 452 6698

Black Office Works 104 1687 6161900 1137795 13611 4674 427520 3749164 2372 91228 451 52347 1158 17963 634732 148445 1086 190263 2495 11471 16403 11613 590 21389 3005 2277 740128Black Office Works 79 1530 7701030 1482212 12188 5507 474724 3566220 2253 94435 526 47972 1108 16475 583919 120711 1429 186581 2707 12704 16293 10999 114 24293 2896 2415 661780Black Office Works 145 1117 6011411 1409750 13718 5247 429236 4220414 2075 94570 423 44955 1097 18538 616332 125247 1081 177191 2670 11793 16283 12150 393 24481 3358 1892 763327Black Office Works 101 1459 5813815 1312019 15500 4824 464715 3487030 2141 92303 318 43509 908 16932 557653 106290 1000 196413 1970 11138 15327 10362 340 23860 2885 2088 660604Black Office Works 117 924 5850105 1406030 13247 4764 354650 3697005 2241 107372 579 49915 1374 17580 676261 151449 1063 206239 2663 11294 17039 12297 391 20840 3144 2024 792005Black Office Works 143 1974 7399640 1454334 14608 6513 428747 3571496 2319 94761 575 53958 1040 17214 574181 117709 1424 187590 2692 12357 16273 10727 370 23382 3548 1787 736766

Red BIC 26 3165 2040293 837067 253685 132285 647889 1785368 336 409 482 18394 6554 153 509 359 216 65939 1357 2789 4 270 11 11550 1240 519 473Red BIC 68 3761 1814195 901612 243686 144278 697740 1313196 374 442 501 19404 7543 57 1178 289 159 63761 1614 3573 6 335 1 14443 1168 557 535Red BIC 23 2416 1805964 939042 253284 137912 591125 1071777 252 770 584 18434 6748 91 961 495 298 69610 1609 2317 77 380 4 14104 1707 735 446Red BIC 18 2624 1800740 900614 241861 135540 611505 2137530 313 587 540 18577 6292 57 400 372 386 66368 1597 3218 27 391 1 11846 1241 552 379Red BIC 45 2453 1982849 906230 243986 140244 735837 1669087 285 648 523 19640 6676 30 800 422 331 58320 1853 3212 30 380 2 11562 1313 363 618Red BIC 12 3066 1898396 852247 255829 146071 686063 1215729 302 370 479 18876 6732 102 483 417 342 69768 1364 2001 21 380 10 12013 1235 619 474

Red Paper Mate 63 50577 300000 355586 65667 149800 364055 2000016 18 89 35 13838 201 120 8343 29 18 21537 96 5797 30 13 102 2125 8 37 31Red Paper Mate 50 46364 456625 312403 66023 175159 381548 1324820 11 50 110 14460 111 97 11917 47 49 18945 191 5954 63 6 145 1873 6 41 27Red Paper Mate 59 45605 107058 523249 63038 147166 406535 1365040 7 32 141 18108 30 34 9003 179 193 19744 9 6542 29 17 148 2605 9 66 70Red Paper Mate 22 48452 485012 386962 73729 140899 346017 949975 27 39 120 15361 9 158 8805 62 45 20360 96 6512 34 20 101 1700 12 69 39Red Paper Mate 46 52393 98435 563342 72394 179911 326614 957782 38 95 55 14747 104 92 16898 28 57 18850 98 6007 30 5 147 2143 47 46 25Red Paper Mate 32 50727 136440 408486 69535 180940 301256 933989 17 54 100 14368 50 100 9858 38 62 24803 150 5771 54 11 81 2142 34 30 42

Red J.B 59 39682 769933 161662 73 1982 6000 401281 29 205 79 240 42 3151 143745 19510 119 5078 292 244 33 75 264 75 52 22 6Red J.B 108 39660 227963 210090 60 1968 17507 60000 57 293 167 242 83 3064 146667 19471 149 5429 230 71 40 74 268 62 16 12 31Red J.B 78 36306 695642 193751 158 1827 9941 74904 25 348 207 337 64 2377 141891 15428 220 6695 184 70 31 60 327 88 39 5 47Red J.B 74 35547 436185 213208 204 2066 6553 292706 15 152 159 349 24 3601 148017 18109 133 7439 230 92 26 125 307 122 41 114 48Red J.B 41 39193 1141567 213535 50 2077 3943 250820 6 89 165 200 21 3045 152258 18701 117 7917 250 205 22 87 242 19 17 18 67Red J.B 57 39366 341977 192668 78 2185 12842 412829 32 329 120 327 69 2402 119247 17205 187 7556 288 79 31 84 236 113 20 56 29

Page 303: Development of Novel Physical (Electrostatic Detection

303

Appendix 5 continued TABLE 2

INK ON PAPER 2 background removedBrand Sample Li7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49 V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88 Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208

Blue BIC 293 83608 7988388 1892203 20271 549534 290025 2342112 6489 284723 1820 22082 264 1839 6356607 77891 2429 133655 801 7319 7604 2404 226 5173 1121 589 2090Blue BIC 469 59563 7069723 2167850 24301 513110 320015 184246 5727 275236 1861 17423 353 1411 6112423 71716 1525 87890 507 8798 7229 2838 181 4936 913 499 2200Blue BIC 378 61993 6233480 2300380 17997 544831 296678 2192087 5207 300324 2219 15876 167 2373 6428089 61840 1977 57843 180 7377 7963 2989 218 6758 670 54 3404Blue BIC 813 71693 8385267 2538099 18285 508269 295608 2511413 5801 276719 2749 21047 576 2365 7670539 66707 1209 130911 725 8349 7793 2804 195 6110 706 548 1749Blue BIC 97 60648 9589263 2463960 15655 536738 323499 1500841 4300 342170 1952 19611 324 2080 7060063 66516 1645 114317 296 7476 8152 3126 336 4989 518 329 2257Blue BIC 894 73322 8985133 1824090 21578 464822 263357 3182311 5480 276237 2689 13556 597 2309 5713384 57584 1914 153102 944 7461 7046 2746 199 4660 1200 149 2370

Blue Paper Mate 446 738 3128889 1287877 3054104 186170 241315 2734348 518 128408 194 21589 310 13882 7668987 65792 536 109513 1537 9104 18297 1416 204 14570 1867 1193 39002Blue Paper Mate 337 1818 1290767 1312818 3321860 177095 252249 3052941 677 137883 186 23909 399 13627 6355053 65544 712 152979 2801 6116 16149 1201 384 15456 2067 1448 35791Blue Paper Mate 763 2522 3275906 1693820 2754636 179449 225186 2789994 721 138109 315 23360 593 13245 6300862 71971 597 148611 2216 9896 18786 1487 283 16906 1744 1424 32880Blue Paper Mate 149 1383 1159914 1319552 3364197 178423 250086 2884037 501 130507 141 13148 193 15959 7225481 68344 816 102356 1512 7213 16742 1373 343 17107 1639 946 33053Blue Paper Mate 43 2081 3097463 1643268 3168624 181411 256361 1893366 931 136144 280 21924 572 14686 7903388 68995 549 125049 1648 8442 18824 1527 217 15268 1513 1102 35500Blue Paper Mate 690 1655 3019655 1241832 3479312 187252 207907 3335829 898 131311 289 15110 484 13612 7581078 72635 568 177182 1719 6402 17627 1431 244 15532 2363 906 33555

Blue Office Works 482 583 5567578 2155578 113925 10614 435573 6295570 1476 103495 331 29561 647 1821 230488 79045 1253 270459 3772 6320 20067 3080 582 27451 3607 2166 92052Blue Office Works 304 1021 5676828 2583725 119803 10603 445381 2339884 323 120771 124 19715 621 1789 241204 64774 910 191118 2468 7179 21370 2273 410 25863 2984 1458 75105Blue Office Works 463 909 6420534 2391360 129904 10958 450153 3953649 1366 117414 302 27396 768 1780 237077 70822 706 210286 2943 9174 21724 2653 371 24420 3101 1984 74079Blue Office Works 969 637 5200967 2541757 120496 9910 417303 6136439 797 104990 348 31262 905 1691 266512 70941 750 247101 2994 9944 20826 2488 425 25640 2984 2115 83145Blue Office Works 557 474 7290092 2680064 129265 10967 359153 6639571 450 116279 201 27195 999 1930 228021 73324 913 270581 3156 7703 22558 2501 457 25069 3622 1691 84374Blue Office Works 194 317 6939614 2514357 115618 12615 451716 5730296 492 103978 620 28210 912 1887 216019 68887 895 234902 2635 8158 22142 2168 421 29107 3160 1899 78561

Black BIC 1035 3937 3094502 2087544 6437 134609 318859 3723010 971 1088 279 21879 17673 857 27809 4742 711 185962 2457 6601 219 1831 113 18390 2558 1449 286901Black BIC 685 6916 3903499 1549926 8848 134755 261634 4339982 707 1045 63 17835 17952 1050 27649 4463 872 214798 2596 4823 206 1929 208 16314 2836 1092 272159Black BIC 282 3081 1762065 1561397 7367 130697 343719 3619945 392 842 171 13127 17025 858 33347 5048 932 166769 1868 5636 236 2077 161 18778 2301 1255 252155Black BIC 607 3014 2521734 1532254 7007 140893 339988 4439982 1628 633 381 20084 17906 813 32679 5284 884 243521 2825 4570 213 1435 195 18398 2807 1757 264690Black BIC 626 5708 2817837 1846125 10180 147676 304556 2240743 1560 1000 304 16813 18010 919 29756 5507 575 137829 2243 5894 212 1755 103 15729 2396 1518 233499Black BIC 305 7205 3478640 1989423 5267 151750 338035 2509480 843 1203 409 19459 18613 1112 31188 5565 729 167441 1750 4561 214 1739 133 18576 1942 1456 329087

Black Paper Mate 472 62457 1785863 305295 2749220 5697 286336 2577023 209 64126 555 19344 241 1837 197844 4342 341 85967 1618 442 4349 879 241 4578 1694 327 7065Black Paper Mate 606 55749 2371052 255364 2761471 4874 277296 7136065 1244 59823 420 28218 396 2170 225013 4441 463 177265 3153 470 4228 693 200 4299 2047 1008 7344Black Paper Mate 1086 64420 3340700 747911 3067703 7179 258057 7208005 771 47299 380 30947 480 1853 185343 6282 153 194690 3338 1925 4097 715 210 5428 1824 967 7473Black Paper Mate 368 66561 3417275 613022 3260391 5718 293267 6429815 503 60869 635 28147 511 1907 241126 4909 213 162605 2674 164 3221 644 206 4418 1288 702 6828Black Paper Mate 963 65933 3663830 329732 3075222 7229 256706 6542492 623 72913 503 28399 467 1845 205299 5956 353 183595 2985 339 4284 928 239 2582 2682 429 7175Black Paper Mate 825 72993 1994365 351518 2654695 7005 286789 4609409 1328 52165 558 22928 350 1694 222221 4937 8 126632 2506 1974 4041 779 171 3437 1804 867 7194

Black Office Works 374 4975 5206711 1489313 18253 10512 509870 3494249 3477 91587 330 55923 1302 18386 643125 149048 1091 226405 2671 13094 16583 11891 626 22116 3509 2679 740213Black Office Works 524 5850 8200559 1809373 14525 11796 520536 5783400 2519 94760 374 51052 1347 17059 592269 121701 1745 285503 3052 12649 16456 11337 165 24991 3697 2466 661966Black Office Works 835 2775 5312809 2139578 13980 11225 508419 5721258 2499 94960 345 52506 1391 18910 623892 126089 1233 253717 3146 13430 16448 12396 441 27217 3786 2350 763498Black Office Works 79 5643 5847596 1922537 15296 9941 558912 4153553 2439 92878 266 50091 1117 17473 565694 107057 1179 259744 1857 11022 15305 10548 406 24999 3038 2338 660734Black Office Works 356 985 4288995 1648488 14862 9638 447579 5684495 3250 107318 526 56182 1483 17980 684478 152254 1488 283621 3062 11418 17025 12452 471 22130 3904 2546 792143Black Office Works 224 1974 5531343 1757698 15555 10971 500640 1723375 2301 95007 387 53718 998 17668 582792 118485 1742 200520 2368 12417 16472 11042 409 26068 3774 1765 737280

Red BIC 201 6600 1839745 1549560 253080 143029 685322 1738300 550 1345 532 25016 6957 632 9002 1262 477 132941 1496 2201 55 566 70 15243 1860 985 576Red BIC 107 3165 171996 1140431 254632 136743 719782 1937247 718 655 294 18154 6512 607 9120 1135 534 78869 1033 2849 203 585 50 14236 1466 497 987Red BIC 513 8081 2313724 1228773 246023 150567 743552 3530376 640 767 349 22484 7782 641 9528 1279 475 162683 1959 3518 163 673 52 15141 1969 608 721Red BIC 708 4282 1102138 1630442 242123 141518 690688 3638374 737 977 462 26128 6586 429 7560 1214 538 142894 2073 4855 192 637 49 14582 1669 1010 1050Red BIC 284 2514 421739 1148688 245601 145118 828766 3656577 1294 594 470 25907 6785 430 9017 1227 756 135702 2252 3336 16 535 82 12852 2073 885 756Red BIC 282 6354 943207 1203765 260471 151909 768413 960814 1407 729 358 22452 6876 525 8876 1020 347 105910 1540 3624 201 658 46 12740 1739 1021 859

Red Paper Mate 100 52636 518793 997480 73525 146016 440214 1616498 325 614 68 21943 218 699 16846 829 179 83691 287 6396 12 206 167 2839 165 319 169Red Paper Mate 144 50577 131703 658950 66614 154258 435948 2151895 1 335 147 13598 159 574 16954 777 336 34467 672 5857 229 328 141 4811 227 15 515Red Paper Mate 491 56713 597964 890503 74731 186200 372426 3174962 304 420 3 17827 343 676 25248 1018 373 117772 443 5952 193 343 198 2841 848 97 211Red Paper Mate 749 47263 408456 1253077 63300 153144 485718 2865884 431 422 63 25659 324 406 16563 1021 345 96270 485 8179 194 263 196 5341 437 524 241Red Paper Mate 270 49652 501436 663921 70665 180997 463898 1069905 1106 359 1 18036 255 520 20310 650 54 55087 367 7577 243 284 181 2600 510 443 112Red Paper Mate 271 50788 1575330 650944 71150 185814 494185 2921479 1026 1 47 20635 159 400 18075 843 487 102185 549 5895 40 156 161 3432 794 552 180

Red J.B 502 43686 1325979 519829 2415 8474 58654 2630009 298 654 68 3407 308 2986 127597 18195 503 106478 633 24 194 422 287 811 821 107 215Red J.B 311 42481 670851 565053 4642 7915 84293 1 1111 448 44 3576 165 3468 160651 19304 122 36142 426 1828 202 365 278 746 521 420 152Red J.B 347 39721 2151326 452548 1615 6842 110436 1987490 1066 239 114 6509 192 3464 154884 20276 574 82811 629 195 26 229 348 1352 776 522 169Red J.B 140 39682 386109 465026 960 6440 71893 2553160 11 451 91 1 1 3605 142356 20286 437 18008 368 304 232 390 303 2686 278 1 520Red J.B 768 37964 481513 923579 420 7805 89124 1575748 449 738 129 8788 298 2749 149451 16270 372 83221 660 1637 196 306 375 2824 467 463 218Red J.B 252 39731 954439 823726 1 7183 100750 959229 313 727 107 6631 209 4142 156058 18876 312 70770 1117 1 4 311 373 1261 194 364 178

Page 304: Development of Novel Physical (Electrostatic Detection

304

Appendix 5 continued TABLE 2

INK ON PAPER 3 background removedBrand

Blue BIC 252 72480 10688715 1790188 25707 501090 225854 2755997 5523 276612 2984 19361 403 1959 7662979 65686 1130 87553 695 7586 8467 2676 190 4869 941 990 1746Blue BIC 644 55998 8551394 2352048 23435 513560 235722 188341 5095 275147 2143 15382 280 1080 6104404 71643 1517 58809 508 7975 7257 2643 170 4691 1016 860 2395Blue BIC 90 61993 8400455 2046021 22904 545907 247860 959091 5207 300214 2648 15876 167 1993 6420050 61244 1763 39835 408 6980 8761 2895 195 5585 919 930 3496Blue BIC 613 68064 11245809 1732201 28133 459909 279770 2602011 5186 276057 2892 11055 458 1857 5704890 56950 1830 112885 921 7715 7495 2558 147 3866 725 52 2547Blue BIC 264 57494 11715542 1866581 15655 533052 329994 1995564 4088 341964 2411 18096 234 1733 7051852 66471 1557 103440 615 7365 8152 3012 335 3728 353 574 2190Blue BIC 357 84285 9413058 2206651 23673 545974 246594 1253229 5946 284723 1873 18384 217 1584 6348466 77387 2211 142942 1153 7061 8225 2306 186 4511 972 1158 1921

Blue Paper Mate 66 2495 2715437 1627266 3325262 173535 208818 1964058 834 127883 239 20211 352 13372 6346912 65040 494 182266 3153 5858 16770 1103 344 14794 1918 2017 35622Blue Paper Mate 186 1173 4610560 1472075 3053238 186620 157022 738443 886 158319 476 19548 237 13551 7660968 65719 528 100432 1538 8281 18325 1221 193 14325 1970 1554 39197Blue Paper Mate 974 397 5780331 1149943 3485867 182339 224320 2755529 604 131131 492 12609 345 13160 7572584 72001 484 156965 1696 6656 18076 1243 192 14738 1888 809 33732Blue Paper Mate 775 2927 6223742 1045889 3168624 177725 262856 2388089 719 135938 739 20409 482 14339 7895177 68950 461 134172 1967 8331 18824 1413 216 14007 1348 1347 35433Blue Paper Mate 426 1383 3326889 1065193 3369104 179499 201268 651041 301 130397 570 13148 193 15579 7217442 67748 602 104348 1740 6816 17540 1279 320 15934 1888 1822 33145Blue Paper Mate 167 3309 5579354 945909 2762058 172270 155432 3034578 443 110002 550 21674 420 12839 6293302 70950 518 125253 2186 9133 19460 1359 278 15665 1979 1866 32877

Blue Office Works 581 0 7843803 2329366 124710 11679 396563 4106888 323 120661 553 19715 621 1409 233165 64178 696 173110 2696 6782 22168 2179 387 24690 3233 2334 75197Blue Office Works 873 4424 7504415 1793846 127918 2731 347549 6381023 519 104883 583 29576 732 1285 258952 69920 671 203743 2964 9181 21500 2360 420 24399 3219 2557 83142Blue Office Works 211 1260 6992248 2470026 117327 7054 392142 5206687 933 103495 384 25863 600 1566 222347 78541 1035 279746 4124 6062 20688 2982 542 26789 3458 2735 91883Blue Office Works 226 2163 9065893 1916978 115618 8929 458211 6225019 280 103772 1079 26695 822 1540 207808 68842 807 224025 2954 8047 22142 2054 420 27846 2995 2144 78494Blue Office Works 203 1344 7902205 2575558 129038 11408 365860 3957744 734 117325 584 25355 695 1449 229058 70749 698 181205 2944 8351 21752 2458 360 24175 3204 2345 74274Blue Office Works 541 216 9550768 2588175 135820 6054 375566 6059271 156 116099 404 24694 860 1478 219527 72690 829 230364 3133 7957 23007 2313 405 24275 3147 1594 84551

Black BIC 4037 4051 5604919 1392044 5267 148064 344530 3004203 631 997 868 17944 18523 765 22977 5520 641 156564 2069 4450 1 1625 132 17315 1777 1701 329020Black BIC 5039 4724 5397950 1339633 13859 127430 249105 3967594 693 981 514 20193 17500 451 20249 3721 632 142604 2427 5838 893 1703 108 17149 2793 1891 286898Black BIC 336 3691 3946404 1846702 10409 137333 296557 3351099 1085 633 434 16386 17859 558 24538 4780 666 252808 3177 4312 629 1337 155 17736 2658 2326 264521Black BIC 3366 4143 4299508 2030323 9314 148126 220263 2244838 928 911 586 14772 17937 588 21737 5434 567 108748 2244 5071 240 1560 92 15484 2499 1879 233694Black BIC 7969 4658 6164175 1458037 15403 129842 278047 3759682 413 865 124 15334 17813 598 19155 3829 788 174581 2573 5077 655 1741 156 15520 2361 995 272336Black BIC 2559 4081 3929040 1307038 12274 131773 294901 2386949 392 732 600 13127 17025 478 25308 4452 718 148761 2096 5239 1034 1983 138 17605 2550 2131 252247

Black Paper Mate 8247 60675 5924506 237843 3081777 2316 273119 5962192 329 72733 706 25898 328 1393 196805 5322 269 143378 2962 593 4733 740 187 1788 2207 332 7352Black Paper Mate 4100 63407 5543554 15643 3260391 2032 299762 6924538 291 60663 1094 26632 421 1560 232915 4864 125 151728 2993 53 3221 530 205 3157 1123 947 6761Black Paper Mate 335 56426 3795722 569812 2764873 1314 233865 6047182 701 59823 473 24520 349 1915 216872 3937 245 186552 3505 212 4849 595 160 3637 1898 1577 7175Black Paper Mate 5090 65207 5644148 1 3075125 1 188303 7452589 493 47192 615 29261 307 1447 177783 5261 74 151332 3308 1162 4771 587 205 4187 2059 1409 7470Black Paper Mate 2749 62457 3952838 50936 2754127 6773 237518 4344027 209 64016 984 19344 241 1457 189805 3746 127 67959 1846 45 5147 785 218 3405 1943 1203 7157Black Paper Mate 3565 69428 3476036 535716 2653829 7455 202496 4613504 696 52076 840 20887 277 1363 214202 4864 1 97551 2507 1151 4069 584 160 3192 1907 1228 7389

Black Office Works 4839 3562 7616257 1391667 21402 4046 438665 5965842 2221 94853 580 50820 1218 18504 616332 125068 1154 210359 3116 12667 17122 12268 436 25976 4021 2792 763495Black Office Works 3114 1410 6688382 1673511 17387 10962 425577 3498344 2845 91498 612 53882 1229 18055 635106 148975 1083 197324 2672 12271 16611 11696 615 21871 3612 3040 740408Black Office Works 7808 592 10461235 1717484 21080 6883 536949 5203100 2225 94580 577 48551 1208 16607 583775 121067 1661 245286 3029 12903 16905 11149 113 24197 3222 2369 662143Black Office Works 2501 1974 7698318 1503339 20462 12047 451822 3490379 2301 94897 816 53718 998 17288 574753 117889 1528 182512 2596 12020 17270 10948 386 24895 4023 2641 737372Black Office Works 3811 2489 7973875 1325158 15296 6255 565407 4648276 2227 92672 725 48576 1027 17126 557483 107012 1091 248867 2176 10911 15305 10434 405 23738 2873 2583 660667Black Office Works 85 1662 5713665 1962936 18264 6078 404148 4595612 2707 107318 579 52484 1436 17725 676337 151750 1270 292908 3414 11160 17646 12354 431 21468 3755 3115 791974

Red BIC 13 3191 1846409 1463136 249003 141558 785335 2567694 751 594 523 22209 6738 175 876 723 538 144989 2604 3078 637 437 42 12190 1924 1454 587Red BIC 3022 2789 2424878 1387963 259605 152359 684120 964909 775 640 640 20411 6803 194 857 947 339 76829 1541 2801 229 463 35 12495 1842 1382 754Red BIC 7797 2823 4574400 1136884 252578 145654 759965 2950076 346 587 552 19983 7643 189 1034 645 391 122466 1936 3772 612 485 1 14347 1494 511 898Red BIC 4712 5069 3405586 882531 249545 134339 620934 3882958 459 870 697 24442 6413 23 1 193 459 99536 2043 4092 866 509 44 13341 1904 1452 547Red BIC 3733 3446 3966024 952181 253080 139343 691817 2233023 338 1139 991 23501 6867 285 791 1217 389 122064 1815 2090 55 452 69 13982 1695 1230 509Red BIC 2384 3165 2338971 886072 259539 137819 670964 1704251 318 545 723 18154 6512 227 1081 539 320 60861 1261 2452 1001 491 27 13063 1715 1373 1079

Red Paper Mate 7775 51455 2858640 798614 81286 181287 388839 2594662 10 240 106 15326 204 224 16754 384 289 77555 420 6206 642 155 146 2047 373 1 388Red Paper Mate 0 51465 1 965392 74552 182254 450754 1832596 483 1 1 16937 112 145 9934 339 269 111472 901 5637 661 58 121 2770 645 1121 11Red Paper Mate 2421 50577 298678 404591 71521 155334 387130 1918899 1 225 276 13598 159 194 8915 181 122 16459 0 5460 1027 234 118 3638 476 891 607Red Paper Mate 4753 48050 1711904 505166 70722 145965 415964 3110468 153 315 298 23973 151 1 9003 1 266 52912 455 7416 868 135 191 4100 672 966 238Red Paper Mate 3732 49482 2645072 400101 73525 142330 446709 2111221 113 408 527 20428 128 352 8635 784 91 72814 206 6285 12 92 166 1578 0 564 102Red Paper Mate 3010 46087 983107 848119 69799 181447 379605 1074000 474 270 271 15995 182 189 12291 577 46 26006 368 6754 271 89 170 2355 613 804 307

Red J.B 3051 38916 1668049 749251 3776 8365 1 1 479 359 326 1535 92 3137 152632 19231 114 7061 427 1005 230 170 267 501 624 781 347Red J.B 2417 39682 1068611 210667 5867 7516 23075 320164 11 341 320 1 1 3225 134317 19690 223 1 196 907 1030 296 280 1513 527 876 612Red J.B 3784 36577 2596245 226347 1 3497 107245 1453952 101 521 566 5116 119 3795 147847 18831 224 59893 436 865 4 197 372 1 29 609 111Red J.B 76 40398 91523 766996 5017 3282 67005 898607 523 239 167 2811 145 3209 146743 19772 356 92098 981 1037 647 131 308 690 627 1091 1Red J.B 7786 38428 3102182 427940 8970 3561 75067 2049709 4 474 171 906 169 2534 119103 17561 419 66261 610 1278 643 234 235 17 346 10 392Red J.B 4772 38751 2300488 175668 7842 626 19370 1820332 171 631 364 7102 125 2343 141891 15249 293 39863 630 874 870 178 370 1583 702 905 215

Page 305: Development of Novel Physical (Electrostatic Detection

305

Appendix 5 continued

Table 3Elemental profiles and statistics for inks on the three study papers

BLUE INKBrand Li7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49 V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88 Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208

Blue BIC Paper 1 297 61993 8101777 1997016 17050 540373 224785 1040208 5224.5 300078 2407 16116 209 1919 6419478 61063.5 1659 44913 504 7317 7764 2673.5 178.5 4072 443.5 76 2889.5Blue BIC Paper 1 123 70035 9083869 1808271 18023 502291 216425 1010569 5376.5 276329 2827 13496 282 1993 7662979 65864.5 1057 54385 249 6712 7628 2557.5 146.5 3374 277.5 90 1577.5Blue BIC Paper 1 199 56275 8024912 1816332 19659 507272 237665 439161 4621.5 274877 1982 13847 209 988 6104030 71112.5 1520 51748 331 7175 7049 2559.5 144.5 4209 408.5 97 2114.5Blue BIC Paper 1 449 69002 8485604 1496929 19241 458533 217545 965131 5213.5 275912 2841 10476 358 1725 5705034 56593.5 1598 54180 599 7516 6883 2407.5 147.5 3962 398.5 98 2183.5Blue BIC Paper 1 119 56464 9555482 1853442 15859 531621 229302 834318 4001.5 341595 2004 13029 115 1539 7052022 65748.5 1466 50986 409 7592 8174 2939.5 269.5 3850 364.5 79 2126.5Blue BIC Paper 1 54 83547 9549498 1649745 18656 544660 197096 354622 5479.5 284777 1873 15815 155 1439 6348390 77085.5 2004 56273 402 7195 7618 2248.5 145.5 3883 360.5 67 1951.5Blue BIC Paper 2 293 83608 7988388 1892203 20271 549534 290025 2342112 6489 284723 1820 22082 264 1839 6356607 77891 2428.5 133655 801 7319 7604 2404 225.5 5173 1121 589 2090Blue BIC Paper 2 469 59563 7069723 2167850 24301 513110 320015 184246 5727 275236 1861 17423 353 1411 6112423 71716 1524.5 87890 507 8798 7229 2838 180.5 4936 913 499 2200Blue BIC Paper 2 378 61993 6233480 2300380 17997 544831 296678 2192087 5207 300324 2219 15876 167 2373 6428089 61840 1976.5 57843 180 7377 7963 2989 217.5 6758 670 54 3404Blue BIC Paper 2 813 71693 8385267 2538099 18285 508269 295608 2511413 5801 276719 2749 21047 576 2365 7670539 66707 1208.5 130911 725 8349 7793 2804 194.5 6110 706 548 1749Blue BIC Paper 2 97 60648 9589263 2463960 15655 536738 323499 1500841 4300 342170 1952 19611 324 2080 7060063 66516 1644.5 114317 296 7476 8152 3126 335.5 4989 518 329 2257Blue BIC Paper 2 894 73322 8985133 1824090 21578 464822 263357 3182311 5480 276237 2689 13556 597 2309 5713384 57584 1913.5 153102 944 7461 7046 2746 198.5 4660 1200 149 2370Blue BIC Paper 3 252 72480 10688715 1790188 25707 501090 225854 2755997 5523 276612 2984 19361 403 1959 7662979 65686 1130 87553 695 7586 8467 2676 190 4869 941 990 1746Blue BIC Paper 3 644 55998 8551394 2352048 23435 513560 235722 188341 5095 275147 2143 15382 280 1080 6104404 71643 1517 58809 508 7975 7257 2643 170 4691 1016 860 2395Blue BIC Paper 3 90 61993 8400455 2046021 22904 545907 247860 959091 5207 300214 2648 15876 167 1993 6420050 61244 1763 39835 408 6980 8761 2895 195 5585 919 930 3496Blue BIC Paper 3 613 68064 11245809 1732201 28133 459909 279770 2602011 5186 276057 2892 11055 458 1857 5704890 56950 1830 112885 921 7715 7495 2558 147 3866 725 52 2547Blue BIC Paper 3 264 57494 11715542 1866581 15655 533052 329994 1995564 4088 341964 2411 18096 234 1733 7051852 66471 1557 103440 615 7365 8152 3012 335 3728 353 574 2190Blue BIC Paper 3 357 84285 9413058 2206651 23673 545974 246594 1253229 5946 284723 1873 18384 217 1584 6348466 77387 2211 142942 1153 7061 8225 2306 186 4511 972 1158 1921

Average Paper 1 206.8 66219.3 8800190.3 1770289.2 18081.3 514125.0 220469.7 774001.5 4986.2 292261.3 2322.3 13796.5 221.3 1600.5 6548655.5 66244.7 1550.7 52080.8 415.7 7251.2 7519.3 2564.3 172.0 3891.7 375.5 84.5 2140.5

Standard deviation 1σ Paper 1 144.9 10338.9 692849.7 173861.3 1426.2 32264.3 13882.0 301660.7 566.9 25978.0 435.9 2057.3 87.6 367.7 701609.1 7233.3 307.0 3999.4 123.8 313.1 476.7 235.4 49.5 285.6 56.9 12.5 428.1Coefficient of variation % Paper 1 70 16 8 10 8 6 6 39 11 9 19 15 40 23 11 11 20 8 30 4 6 9 29 7 15 15 20

Average Paper 2 490.7 68471.2 8041875.7 2197763.7 19681.2 519550.7 298197.0 1985501.7 5500.7 292568.2 2215.0 18265.8 380.2 2062.8 6556850.8 67042.3 1782.7 112953.0 575.5 7796.7 7631.2 2817.8 225.3 5437.7 854.7 361.3 2345.0Standard deviation 1σ Paper 2 307.8 9439.9 1234527.9 293636.8 3042.5 31614.8 21935.5 1035200.6 727.5 26078.1 414.8 3246.9 172.2 380.4 701306.4 7161.7 421.2 34727.9 299.4 620.9 427.2 245.5 56.4 815.2 269.5 221.9 560.6

Coefficient of variation % Paper 2 63 14 15 13 15 6 7 52 13 9 19 18 45 18 11 11 24 31 52 8 6 9 25 15 32 61 24

Average Paper 3 370.0 66719.0 10002495.5 1998948.3 23251.2 516582.0 260965.7 1625705.5 5174.2 292452.8 2491.8 16359.0 293.2 1701.0 6548773.5 66563.5 1668.0 90910.7 716.7 7447.0 8059.5 2681.7 203.8 4541.7 821.0 760.7 2382.5Standard deviation 1σ Paper 3 218.1 10639.0 1412155.8 245882.8 4192.8 33033.5 38384.6 1001664.3 617.2 26040.7 433.1 3015.0 113.7 339.6 701546.6 7272.5 361.9 37410.2 276.3 385.7 575.6 250.0 66.6 683.7 250.2 396.5 620.0

Coefficient of variation % Paper 3 59 16 14 12 18 6 15 62 12 9 17 18 39 20 11 11 22 41 39 5 7 9 33 15 30 52 26

Page 306: Development of Novel Physical (Electrostatic Detection

306

Appendix 5 continued

Table 3Elemental profiles and statistics for inks on the three study papers

BLUE INKBrand Li7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49 V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88 Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208

Blue Paper Mate Paper 1 68 1383 3028211 1016188 3363250 173965 178193 732158 318.5 130261 329 13388 235 15505 7216870 67567.5 498 109426 1836 7153 16543 1057.5 303.5 14421 1412.5 968 32538.5Blue Paper Mate Paper 1 98 1757 2851877 1070360 3320245 172221 159320 1065451 367.5 127937 239 17642 290 13227 6346836 64738.5 287 95597 2402 5992 16163 1045.5 303.5 14166 1306.5 926 35652.5Blue Paper Mate Paper 1 176 1450 4084078 936359 3049462 180332 158965 989263 412.5 158049 315 18013 166 13459 7660594 65188.5 531 93371 1361 7481 18117 1137.5 167.5 13843 1362.5 791 38916.5Blue Paper Mate Paper 1 245 1335 3020126 914671 3476975 180963 162095 1118649 631.5 130986 441 12030 245 13028 7572728 71644.5 252 98260 1374 6457 17464 1092.5 192.5 14834 1561.5 855 33368.5Blue Paper Mate Paper 1 65 1897 4063682 1032750 3168828 176294 162164 1226843 632.5 135569 332 15342 363 14145 7895347 68227.5 370 81718 1761 8558 18846 1340.5 150.5 14129 1359.5 852 35369.5Blue Paper Mate Paper 1 73 864 3974508 963992 2754374 173471 146003 1289150 296.5 109719 393 15809 299 12873 6293302 71128.5 445 92085 1740 8259 18621 1240.5 234.5 14170 1315.5 966 32708.5Blue Paper Mate Paper 2 446 738 3128889 1287877 3054104 186170 241315 2734348 518 128408 194 21589 310 13882 7668987 65792 535.5 109513 1537 9104 18297 1416 203.5 14570 1867 1193 39002Blue Paper Mate Paper 2 337 1818 1290767 1312818 3321860 177095 252249 3052941 677 137883 186 23909 399 13627 6355053 65544 711.5 152979 2801 6116 16149 1201 383.5 15456 2067 1448 35791Blue Paper Mate Paper 2 763 2522 3275906 1693820 2754636 179449 225186 2789994 721 138109 315 23360 593 13245 6300862 71971 596.5 148611 2216 9896 18786 1487 282.5 16906 1744 1424 32880Blue Paper Mate Paper 2 149 1383 1159914 1319552 3364197 178423 250086 2884037 501 130507 141 13148 193 15959 7225481 68344 815.5 102356 1512 7213 16742 1373 342.5 17107 1639 946 33053Blue Paper Mate Paper 2 43 2081 3097463 1643268 3168624 181411 256361 1893366 931 136144 280 21924 572 14686 7903388 68995 548.5 125049 1648 8442 18824 1527 216.5 15268 1513 1102 35500Blue Paper Mate Paper 2 690 1655 3019655 1241832 3479312 187252 207907 3335829 898 131311 289 15110 484 13612 7581078 72635 567.5 177182 1719 6402 17627 1431 243.5 15532 2363 906 33555Blue Paper Mate Paper 3 66 2495 2715437 1627266 3325262 173535 208818 1964058 834 127883 239 20211 352 13372 6346912 65040 494 182266 3153 5858 16770 1103 344 14794 1918 2017 35622Blue Paper Mate Paper 3 186 1173 4610560 1472075 3053238 186620 157022 738443 886 158319 476 19548 237 13551 7660968 65719 528 100432 1538 8281 18325 1221 193 14325 1970 1554 39197Blue Paper Mate Paper 3 974 397 5780331 1149943 3485867 182339 224320 2755529 604 131131 492 12609 345 13160 7572584 72001 484 156965 1696 6656 18076 1243 192 14738 1888 809 33732Blue Paper Mate Paper 3 775 2927 6223742 1045889 3168624 177725 262856 2388089 719 135938 739 20409 482 14339 7895177 68950 461 134172 1967 8331 18824 1413 216 14007 1348 1347 35433Blue Paper Mate Paper 3 426 1383 3326889 1065193 3369104 179499 201268 651041 301 130397 570 13148 193 15579 7217442 67748 602 104348 1740 6816 17540 1279 320 15934 1888 1822 33145Blue Paper Mate Paper 3 167 3309 5579354 945909 2762058 172270 155432 3034578 443 110002 550 21674 420 12839 6293302 70950 518 125253 2186 9133 19460 1359 278 15665 1979 1866 32877

Average Paper 1 120.8 1447.7 3503747.0 989053.3 3188855.7 176207.7 161123.3 1070252.3 443.2 132086.8 341.5 15370.7 266.3 13706.2 7164279.5 68082.5 397.2 95076.2 1745.7 7316.7 17625.7 1152.3 225.3 14260.5 1386.3 893.0 34759.0Standard deviation 1σ Paper 1 73.7 362.0 592770.7 60322.4 260497.7 3689.0 10295.0 197822.7 151.7 15545.1 69.3 2342.0 67.0 987.2 689521.5 2891.7 113.4 9018.0 380.9 997.6 1100.8 116.1 66.8 335.7 93.9 71.5 2430.0

Coefficient of variation % Paper 1 61 25 17 6 8 2 6 18 34 12 20 15 25 7 10 4 29 9 22 14 6 10 30 2 7 8 7

Average Paper 2 404.7 1699.5 2495432.3 1416527.8 3190455.5 181633.3 238850.7 2781752.5 707.7 133727.0 234.2 19840.0 425.2 14168.5 7172474.8 68880.2 629.2 135948.3 1905.5 7862.2 17737.5 1405.8 278.7 15806.5 1865.5 1169.8 34963.5Standard deviation 1σ Paper 2 287.1 610.4 988178.6 197753.3 260729.1 4192.2 18775.9 486323.3 182.2 4166.9 69.6 4549.8 155.6 1001.2 689697.3 2987.3 111.0 28624.0 507.9 1524.3 1106.3 114.1 71.9 991.7 309.3 231.0 2334.8

Coefficient of variation % Paper 2 71 36 40 14 8 2 8 17 26 3 30 23 37 7 10 4 18 21 27 19 6 8 26 6 17 20 7

Average Paper 3 432.3 1947.3 4706052.2 1217712.5 3194025.5 178664.7 201619.3 1921956.3 631.2 132278.3 511.0 17933.2 338.2 13806.7 7164397.5 68401.3 514.5 133906.0 2046.7 7512.5 18165.8 1269.7 257.2 14910.5 1831.8 1569.2 35001.0Standard deviation 1σ Paper 3 367.7 1134.5 1420835.8 269699.7 260810.0 5395.8 41083.8 1016636.8 227.6 15568.7 162.8 3979.1 108.6 1003.3 689513.0 2781.2 49.1 31431.0 587.4 1252.4 946.7 109.1 66.3 750.9 240.2 442.7 2355.6

Coefficient of variation % Paper 3 85 58 30 22 8 3 20 53 36 12 32 22 32 7 10 4 10 23 29 17 5 9 26 5 13 28 7

Page 307: Development of Novel Physical (Electrostatic Detection

307

Appendix 5 continued

Table 3Elemental profiles and statistics for inks on the three study papers

BLUE INKBrand Li7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49 V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88 Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208

Blue Office Works Paper 1 243 522 7128688 1913120 112310 5740 342644 4308080 467 103549 384 23294 538 1421 222271 78240 828 193077 3373 6196 20081 2925 502 26161 2847 1644 91914Blue Office Works Paper 1 112 1154 6790563 2352903 126928 4678 313341 4422391 184 115954 353 24115 760 1346 219671 72334 597 171659 2811 7758 22395 2163 406 24371 2821 1640 84188Blue Office Works Paper 1 193 1621 7375723 2039842 125262 5120 367803 4208564 261 117055 423 23820 624 1357 228684 70219 701 174144 2767 7551 21544 2375 335 23693 2597 1582 73994Blue Office Works Paper 1 223 1400 7545125 2280361 118856 6145 373488 4188005 341 120525 312 19955 663 1335 232593 63998 592 178188 2792 7119 21171 1958 371 23177 2758 1480 74591Blue Office Works Paper 1 216 1133 6905833 1903839 115822 7498 357519 5063773 194 103403 672 21628 703 1346 207978 68120 716 171571 2748 8274 22164 1982 355 27968 3007 1649 78431Blue Office Works Paper 1 279 1979 5899569 1811929 120234 3932 338120 4635595 373 104600 426 23711 611 1319 258952 70099 598 170575 2518 8307 20661 2242 377 22904 2556 1657 82974Blue Office Works Paper 2 482 583 5567578 2155578 113925 10614 435573 6295570 1476 103495 331 29561 647 1821 230488 79045 1253 270459 3772 6320 20067 3080 582 27451 3607 2166 92052Blue Office Works Paper 2 304 4021 5676828 2583725 119803 10603 445381 2339884 323 120771 124 19715 621 1789 241204 64774 910 191118 2468 7179 21370 2273 410 25863 2984 1458 75105Blue Office Works Paper 2 463 4909 6420534 2391360 129904 10958 450153 3953649 1366 117414 302 27396 768 1780 237077 70822 706 210286 2943 9174 21724 2653 371 24420 3101 1984 74079Blue Office Works Paper 2 969 3637 5200967 2541757 120496 9910 417303 6136439 797 104990 348 31262 905 1691 266512 70941 750 247101 2994 9944 20826 2488 425 25640 2984 2115 83145Blue Office Works Paper 2 557 5474 7290092 2680064 129265 10967 359153 6639571 450 116279 201 27195 999 1930 228021 73324 913 270581 3156 7703 22558 2501 457 25069 3622 1691 84374Blue Office Works Paper 2 194 5317 6939614 2514357 115618 12615 451716 5730296 492 103978 620 28210 912 1887 216019 68887 895 234902 2635 8158 22142 2168 421 29107 3160 1899 78561Blue Office Works Paper 3 581 2123 7843803 2329366 124710 11679 396563 4106888 323 120661 553 19715 621 1409 233165 64178 696 173110 2696 6782 22168 2179 387 24690 3233 2334 75197Blue Office Works Paper 3 873 4424 7504415 1793846 127918 2731 347549 6381023 519 104883 583 29576 732 1285 258952 69920 671 203743 2964 9181 21500 2360 420 24399 3219 2557 83142Blue Office Works Paper 3 211 1260 6992248 2470026 117327 7054 392142 5206687 933 103495 384 25863 600 1566 222347 78541 1035 279746 4124 6062 20688 2982 542 26789 3458 2735 91883Blue Office Works Paper 3 226 2163 9065893 1916978 115618 8929 458211 6225019 280 103772 1079 26695 822 1540 207808 68842 807 224025 2954 8047 22142 2054 420 27846 2995 2144 78494Blue Office Works Paper 3 203 1344 7902205 2575558 129038 11408 365860 3957744 734 117325 584 25355 695 1449 229058 70749 698 181205 2944 8351 21752 2458 360 24175 3204 2345 74274Blue Office Works Paper 3 541 216 9550768 2588175 135820 6054 375566 6059271 156 116099 404 24694 860 1478 219527 72690 829 230364 3133 7957 23007 2313 405 24275 3147 1594 84551

Average Paper 1 211.0 1301.5 6940916.8 2050332.3 119902.0 5518.8 348819.2 4471068.0 302.8 110847.7 428.3 22753.8 649.8 1354.0 228358.2 70501.2 672.0 176535.7 2834.8 7534.2 21336.0 2273.7 390.5 24712.3 2763.8 1608.7 81014.8Standard deviation 1σ Paper 1 56.5 495.7 582687.6 219861.7 5542.3 1244.4 22162.7 333567.4 110.5 7822.8 126.9 1630.9 77.2 35.2 17215.7 4721.3 94.5 8556.0 284.4 794.7 884.1 355.7 59.3 1973.9 167.6 68.5 6781.3

Coefficient of variation % Paper 1 27 38 8 11 5 23 6 7 36 7 30 7 12 3 8 7 14 5 10 11 4 16 15 8 6 4 8

Average Paper 2 494.8 3990.2 6182602.2 2477806.8 121501.8 10944.5 426546.5 5182568.2 817.3 111154.5 321.0 27223.2 808.7 1816.3 236553.5 71298.8 904.0 237407.8 2994.7 8079.7 21447.8 2527.2 443.8 26258.3 3243.0 1885.5 81219.3Standard deviation 1σ Paper 2 267.1 1818.8 831129.6 183769.8 6734.8 904.1 35367.5 1683009.3 494.1 7824.2 169.6 3978.8 154.4 84.5 17033.3 4750.8 192.3 32160.3 456.0 1321.3 904.4 321.6 72.9 1724.5 295.8 269.0 6729.7

Coefficient of variation % Paper 2 54 46 13 7 6 8 8 32 60 7 53 15 19 5 7 7 21 14 15 16 4 13 16 7 9 14 8

Average Paper 3 439.2 1921.7 8143222.0 2278991.5 125071.8 7975.8 389315.2 5322772.0 490.8 111039.2 597.8 25316.3 721.7 1454.5 228476.2 70820.0 789.3 215365.5 3135.8 7730.0 21876.2 2391.0 422.3 25362.3 3209.3 2284.8 81256.8Standard deviation 1σ Paper 3 272.8 1417.1 970882.5 343219.4 7600.6 3419.2 38185.7 1079956.2 296.7 7814.3 251.9 3228.3 104.8 101.1 17297.0 4731.9 136.6 38813.2 503.9 1124.6 775.0 322.3 62.9 1560.5 149.9 394.9 6639.8

Coefficient of variation % Paper 3 62 74 12 15 6 43 10 20 60 7 42 13 15 7 8 7 17 18 16 15 4 13 15 6 5 17 8

Page 308: Development of Novel Physical (Electrostatic Detection

308

Appendix 5 continued

Table 3Elemental profiles and statistics for inks on the three study papers

BLACK INKBrand Li7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49 V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88 Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208

Black BIC Paper 1 327 3021 3444859 1378905 5471 146633 243838 1842957 545 628 461 12877 18404 571 23147 4798 550 104110 1863 4677 22 1553 67 17437 1789 1206 328957Black BIC Paper 1 240 2596 3403970 1222765 6511 128466 215822 2122802 441 720 73 14755 17713 466 19299 3473 556 115876 2251 4878 43 1591 157 15616 2035 1041 271973Black BIC Paper 1 345 2279 3793104 1357716 6175 128631 239676 2222166 547 698 357 14328 17379 485 20249 3900 559 109436 1981 4964 54 1585 65 15654 2130 991 286730Black BIC Paper 1 368 2953 4082844 1289796 5392 136019 247059 2452492 619 687 434 13817 17797 413 24462 4479 459 166139 2426 4446 22 1280 115 17108 2047 1235 264552Black BIC Paper 1 201 3081 3630362 1258033 6420 126239 271826 2468066 410 596 359 13367 17067 404 24736 4272 614 153839 2192 5576 37 1762 122 16092 2075 1277 251641Black BIC Paper 1 356 2420 3773026 1494607 5538 141838 222206 2495658 455 641 425 13237 17866 496 21363 4904 570 101687 2067 4271 32 1477 67 15002 1892 1116 233414Black BIC Paper 2 1035 3937 3094502 2087544 6437 134609 318859 3723010 971 1088 279 21879 17673 857 27809 4742 711 185962 2457 6601 219 1831 113 18390 2558 1449 286901Black BIC Paper 2 685 6916 3903499 1549926 8848 134755 261634 4339982 707 1045 63 17835 17952 1050 27649 4463 872 214798 2596 4823 206 1929 208 16314 2836 1092 272159Black BIC Paper 2 282 3081 1762065 1561397 7367 130697 343719 3619945 392 842 171 13127 17025 858 33347 5048 932 166769 1868 5636 236 2077 161 18778 2301 1255 252155Black BIC Paper 2 607 3014 2521734 1532254 7007 140893 339988 4439982 1628 633 381 20084 17906 813 32679 5284 884 243521 2825 4570 8 1435 195 18398 2807 1757 264690Black BIC Paper 2 626 5708 2817837 1846125 10180 147676 304556 2240743 1560 1000 304 16813 18010 919 29756 5507 575 137829 2243 5894 213 1755 103 15729 2396 1518 233499Black BIC Paper 2 305 7205 3478640 1989423 5267 151750 338035 2509480 843 1203 409 19459 18613 1112 31188 5565 729 167441 1750 4561 212 1739 133 18576 1942 1456 329087Black BIC Paper 3 4037 4051 5604919 1392044 5267 148064 344530 3004203 631 997 868 17944 18523 765 22977 5520 641 156564 2069 4450 214 1625 132 17315 1777 1701 329020Black BIC Paper 3 5039 4724 5397950 1339633 13859 127430 249105 3967594 693 981 514 20193 17500 451 20249 3721 632 142604 2427 5838 893 1703 108 17149 2793 1891 286898Black BIC Paper 3 336 3691 3946404 1846702 10409 137333 296557 3351099 1085 633 434 16386 17859 558 24538 4780 666 252808 3177 4312 629 1337 155 17736 2658 2326 264521Black BIC Paper 3 3366 2143 4299508 2030323 9314 148126 220263 2244838 928 911 586 14772 17937 588 21737 5434 567 108748 2244 5071 240 1560 92 15484 2499 1879 233694Black BIC Paper 3 7969 1658 6164175 1458037 15403 129842 278047 3759682 413 865 124 15334 17813 598 19155 3829 788 174581 2573 5077 655 1741 156 15520 2361 995 272336Black BIC Paper 3 2559 3081 3929040 1307038 12274 131773 294901 2386949 392 732 600 13127 17025 478 25308 4452 718 148761 2096 5239 1034 1983 138 17605 2550 2131 252247

Average Paper 1 306.2 2725.0 3688027.5 1333637.0 5917.8 134637.7 240071.2 2267356.8 502.3 661.7 351.5 13730.2 17704.3 472.5 22209.3 4303.8 551.3 125181.2 2130.0 4802.0 35.0 1540.8 98.3 16151.5 1994.2 1144.3 272877.3Standard deviation 1σ Paper 1 68.8 339.1 251909.0 98459.1 508.1 8274.6 19893.4 256801.1 79.9 47.4 142.7 709.7 455.3 61.1 2252.4 545.8 50.8 27674.1 201.8 459.4 12.5 158.5 38.3 940.9 128.0 113.7 32909.8

Coefficient of variation % Paper 1 22 12 7 7 9 6 8 11 16 7 41 5 3 13 10 13 9 22 9 10 36 10 39 6 6 10 12

Average Paper 2 590.0 4976.8 2929712.8 1761111.5 7517.7 140063.3 317798.5 3478857.0 1016.8 968.5 267.8 18199.5 17863.2 934.8 30404.7 5101.5 783.3 186053.3 2289.8 5347.5 182.3 1794.3 151.7 17697.5 2473.3 1421.2 273081.8Standard deviation 1σ Paper 2 277.4 1886.2 750879.5 246078.3 1753.5 8256.8 31320.0 918415.2 487.3 202.3 130.8 3048.3 516.2 119.8 2416.4 436.4 135.4 37875.3 419.4 830.8 86.0 215.9 43.2 1319.0 337.1 228.1 32874.2

Coefficient of variation % Paper 2 47 38 26 14 23 6 10 26 48 21 49 17 3 13 8 9 17 20 18 16 47 12 29 7 14 16 12

Average Paper 3 3884.3 3224.7 4890332.7 1562296.2 11087.7 137094.7 280567.2 3119060.8 690.3 853.2 521.0 16292.7 17776.2 573.0 22327.3 4622.7 668.7 164011.0 2431.0 4997.8 610.8 1658.2 130.2 16801.5 2439.7 1820.5 273119.3Standard deviation 1σ Paper 3 2555.7 1165.6 954478.1 301505.3 3611.0 9125.8 42860.7 706780.2 276.3 144.0 243.4 2498.0 496.5 111.2 2405.2 769.4 76.3 48573.5 413.5 556.1 333.5 213.7 25.7 1027.8 356.0 459.6 32800.3

Coefficient of variation % Paper 3 66 36 20 19 33 7 15 23 40 17 47 15 3 19 11 17 11 30 17 11 55 13 20 6 15 25 12

Page 309: Development of Novel Physical (Electrostatic Detection

309

Appendix 5 continued

Table 3Elemental profiles and statistics for inks on the three study papers

BLACK INKBrand Li7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49 V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88 Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208

Black Paper Mate Paper 1 367 55688 3932162 12906 2759856 1000 184367 5148575 235 59877 473 21951 287 1770 216796 3636 38 99883 2754 346 4242 538 120 3009 1287 486 7206Black Paper Mate Paper 1 391 62457 3654160 1931 2748273 1239 214443 4425144 227 63880 743 19584 283 1383 189233 3566 23 73037 1942 382 4150 564 202 1892 1468 349 6551Black Paper Mate Paper 1 396 62762 4039302 18083 3067441 1201 178874 5707161 347 46909 458 23396 186 1481 177783 5440 1 118164 2862 288 3932 469 162 2692 1396 509 7302Black Paper Mate Paper 1 518 61613 3164301 2571 3072885 940 210894 4325312 357 72588 655 25319 228 1261 196949 4966 37 84673 2640 394 4121 590 188 1884 1881 378 6989Black Paper Mate Paper 1 555 69705 2949554 3000 2650053 1167 204439 4864324 223 51806 679 19352 206 1271 213828 4334 3 90490 2330 351 3861 501 135 2710 1300 465 7109Black Paper Mate Paper 1 390 62377 3383494 2504 3260595 601 199070 5763292 205 60294 687 21565 302 1366 233085 4142 34 99274 2787 280 3243 458 140 3279 1135 452 6698Black Paper Mate Paper 2 472 62457 1785863 305295 2749220 5697 286336 2577023 209 64126 555 19344 241 1837 197844 4342 341 85967 1618 442 4349 879 241 4578 1694 327 7065Black Paper Mate Paper 2 606 55749 2371052 255364 2761471 4874 277296 7136065 1244 59823 420 28218 396 2170 225013 4441 463 177265 3153 470 4228 693 200 4299 2047 1008 7344Black Paper Mate Paper 2 1086 64420 3340700 747911 3067703 7179 258057 7208005 771 47299 380 30947 480 1853 185343 6282 153 194690 3338 1925 4097 715 210 5428 1824 967 7473Black Paper Mate Paper 2 368 66561 3417275 613022 3260391 5718 293267 6429815 503 60869 635 28147 511 1907 241126 4909 213 162605 2674 164 3221 644 206 4418 1288 702 6828Black Paper Mate Paper 2 963 65933 3663830 329732 3075222 7229 256706 6542492 623 72913 503 28399 467 1845 205299 5956 353 183595 2985 339 4284 928 239 2582 2682 429 7175Black Paper Mate Paper 2 825 72993 1994365 351518 2654695 7005 286789 4609409 1328 52165 558 22928 350 1694 222221 4937 8 126632 2506 1974 4041 779 171 3437 1804 867 7194Black Paper Mate Paper 3 8247 60675 5924506 237843 3081777 2316 273119 5962192 329 72733 706 25898 328 1393 196805 5322 269 143378 2962 593 4733 740 187 1788 2207 332 7352Black Paper Mate Paper 3 4100 63407 5543554 15643 3260391 2032 299762 6924538 291 60663 1094 26632 421 1560 232915 4864 125 151728 2993 53 3221 530 205 3157 1123 947 6761Black Paper Mate Paper 3 335 56426 3795722 569812 2764873 1314 233865 6047182 701 59823 473 24520 349 1915 216872 3937 245 186552 3505 212 4849 595 160 3637 1898 1577 7175Black Paper Mate Paper 3 5090 65207 5644148 1 3075125 1 188303 7452589 493 47192 615 29261 307 1447 177783 5261 74 151332 3308 1162 4771 587 205 4187 2059 1409 7470Black Paper Mate Paper 3 2749 62457 3952838 50936 2754127 6773 237518 4344027 209 64016 984 19344 241 1457 189805 3746 127 67959 1846 45 5147 785 218 3405 1943 1203 7157Black Paper Mate Paper 3 3565 69428 3476036 535716 2653829 7455 202496 4613504 696 52076 840 20887 277 1363 214202 4864 1 97551 2507 1151 4069 584 160 3192 1907 1228 7389

Average Paper 1 436.2 62433.7 3520495.5 6832.5 2926517.2 1024.7 198681.2 5038968.0 265.2 59225.7 615.8 21861.2 248.7 1422.0 204612.3 4346.8 22.7 94253.5 2552.5 340.2 3924.8 519.5 157.3 2577.7 1410.7 439.8 6975.3Standard deviation 1σ Paper 1 79.2 4453.3 430839.6 6914.8 240362.4 238.6 14339.5 616397.0 67.7 9039.2 120.1 2275.5 48.3 188.7 20293.5 739.7 16.9 15392.8 352.5 47.2 363.0 52.9 32.1 576.2 256.2 62.9 294.9

Coefficient of variation % Paper 1 18 7 12 101 8 23 7 12 26 15 19 10 19 13 10 17 74 16 14 14 9 10 20 22 18 14 4

Average Paper 2 720.0 64685.5 2762180.8 433807.0 2928117.0 6283.7 276408.5 5750468.2 779.7 59532.5 508.5 26330.5 407.5 1884.3 212807.7 5144.5 254.7 155125.7 2712.3 885.7 4036.7 773.0 210.7 4123.7 1889.8 716.7 7179.8Standard deviation 1σ Paper 2 283.7 5638.9 809014.6 198363.1 239192.3 986.6 15596.6 1816913.7 434.3 9010.5 94.9 4309.1 100.7 156.9 20367.2 798.7 163.4 41271.6 616.7 831.1 415.8 111.1 26.2 987.3 461.4 284.6 223.6

Coefficient of variation % Paper 2 39 9 29 46 8 16 6 32 56 15 19 16 25 8 10 16 64 27 23 94 10 14 12 24 24 40 3

Average Paper 3 4014.3 62933.3 4722800.7 234991.8 2931687.0 3315.2 239177.2 5890672.0 453.2 59417.2 785.3 24423.7 320.5 1522.5 204730.3 4665.7 140.2 133083.3 2853.5 536.0 4465.0 636.8 189.2 3227.7 1856.2 1116.0 7217.3Standard deviation 1σ Paper 3 2623.8 4364.6 1093009.8 260675.6 239878.0 3057.1 41921.9 1229743.3 211.3 8983.6 232.6 3708.7 62.2 203.8 20215.1 669.4 101.7 42776.7 599.6 520.1 704.6 101.0 24.7 799.8 377.8 438.6 255.0

Coefficient of variation % Paper 3 65 7 23 111 8 92 18 21 47 15 30 15 19 13 10 14 73 32 21 97 16 16 13 25 20 39 4

Page 310: Development of Novel Physical (Electrostatic Detection

310

Appendix 5 continued

Table 3Elemental profiles and statistics for inks on the three study papers

BLACK INKBrand Li7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49 V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88 Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208

Black Office Works Paper 1 104 1687 6161900 1137795 13611 4674 427520 3749164 2372 91228 451 52347 1158 17963 634732 148445 1086 190263 2495 11471 16403 11613 590 21389 3005 2277 740128Black Office Works Paper 1 79 1530 7701030 1482212 12188 5507 474724 3566220 2253 94435 526 47972 1108 16475 583919 120711 1429 186581 2707 12704 16293 10999 114 24293 2896 2415 661780Black Office Works Paper 1 145 1117 6011411 1409750 13718 5247 429236 4220414 2075 94570 423 44955 1097 18538 616332 125247 1081 177191 2670 11793 16283 12150 393 24481 3358 1892 763327Black Office Works Paper 1 101 1459 5813815 1312019 15500 4824 464715 3487030 2141 92303 318 43509 908 16932 557653 106290 1000 196413 1970 11138 15327 10362 340 23860 2885 2088 660604Black Office Works Paper 1 117 924 5850105 1406030 13247 4764 354650 3697005 2241 107372 579 49915 1374 17580 676261 151449 1063 206239 2663 11294 17039 12297 391 20840 3144 2024 792005Black Office Works Paper 1 143 1974 7399640 1454334 14608 6513 428747 3571496 2319 94761 575 53958 1040 17214 574181 117709 1424 187590 2692 12357 16273 10727 370 23382 3548 1787 736766Black Office Works Paper 2 374 4975 5206711 1489313 18253 10512 509870 3494249 3477 91587 330 55923 1302 18386 643125 149048 1091 226405 2671 13094 16583 11891 626 22116 3509 2679 740213Black Office Works Paper 2 524 5850 8200559 1809373 14525 11796 520536 5783400 2519 94760 374 51052 1347 17059 592269 121701 1745 285503 3052 12649 16456 11337 165 24991 3697 2466 661966Black Office Works Paper 2 835 2775 5312809 2139578 13980 11225 508419 5721258 2499 94960 345 52506 1391 18910 623892 126089 1233 253717 3146 13430 16448 12396 441 27217 3786 2350 763498Black Office Works Paper 2 79 5643 5847596 1922537 15296 9941 558912 4153553 2439 92878 266 50091 1117 17473 565694 107057 1179 259744 1857 11022 15305 10548 406 24999 3038 2338 660734Black Office Works Paper 2 356 985 4288995 1648488 14862 9638 447579 5684495 3250 107318 526 56182 1483 17980 684478 152254 1488 283621 3062 11418 17025 12452 471 22130 3904 2546 792143Black Office Works Paper 2 224 1974 5531343 1757698 15555 10971 500640 1723375 2301 95007 387 53718 998 17668 582792 118485 1742 200520 2368 12417 16472 11042 409 26068 3774 1765 737280Black Office Works Paper 3 4839 3562 7616257 1391667 21402 4046 438665 5965842 2221 94853 580 50820 1218 18504 616332 125068 1154 210359 3116 12667 17122 12268 436 25976 4021 2792 763495Black Office Works Paper 3 3114 1410 6688382 1673511 17387 10962 425577 3498344 2845 91498 612 53882 1229 18055 635106 148975 1083 197324 2672 12271 16611 11696 615 21871 3612 3040 740408Black Office Works Paper 3 7808 592 10461235 1717484 21080 6883 536949 5203100 2225 94580 577 48551 1208 16607 583775 121067 1661 245286 3029 12903 16905 11149 113 24197 3222 2369 662143Black Office Works Paper 3 2501 1974 7698318 1503339 20462 12047 451822 3490379 2301 94897 816 53718 998 17288 574753 117889 1528 182512 2596 12020 17270 10948 386 24895 4023 2641 737372Black Office Works Paper 3 3811 2489 7973875 1325158 15296 6255 565407 4648276 2227 92672 725 48576 1027 17126 557483 107012 1091 248867 2176 10911 15305 10434 405 23738 2873 2583 660667Black Office Works Paper 3 85 1662 5713665 1962936 18264 6078 404148 4595612 2707 107318 579 52484 1436 17725 676337 151750 1270 292908 3414 11160 17646 12354 431 21468 3755 3115 791974

Average Paper 1 114.8 1448.5 6489650.2 1367023.3 13812.0 5254.8 429932.0 3715221.5 2233.0 95778.2 478.7 48776.0 1114.2 17450.3 607179.7 128308.0 1180.5 190712.8 2532.8 11792.8 16269.7 11357.5 365.8 23040.8 3138.8 2080.5 725767.8Standard deviation 1σ Paper 1 25.7 380.7 836352.4 126340.6 1139.2 694.3 42169.3 265191.7 110.1 5856.6 101.3 4096.1 153.5 740.1 44040.9 17917.7 193.0 9832.8 286.2 621.2 547.5 786.5 152.1 1549.3 267.1 234.7 53788.5

Coefficient of variation % Paper 1 22 26 13 9 8 13 10 7 5 6 21 8 14 4 7 14 16 5 11 5 3 7 42 7 9 11 7

Average Paper 2 398.7 3700.3 5731335.5 1794497.8 15411.8 10680.5 507659.3 4426721.7 2747.5 96085.0 371.3 53245.3 1273.0 17912.7 615375.0 129105.7 1412.5 251585.0 2692.7 12338.3 16381.5 11611.0 419.2 24586.8 3618.0 2357.3 725972.3Standard deviation 1σ Paper 2 261.2 2060.5 1317673.7 224279.5 1499.7 810.8 35936.1 1634050.4 488.5 5672.4 86.8 2503.0 181.3 664.1 44003.6 17868.5 288.1 33134.6 505.0 942.9 571.3 765.6 148.9 2077.8 312.7 316.9 53796.4

Coefficient of variation % Paper 2 66 56 23 12 10 8 7 37 18 6 23 5 14 4 7 14 20 13 19 8 3 7 36 8 9 13 7

Average Paper 3 3693.0 1948.2 7691955.3 1595682.5 18981.8 7711.8 470428.0 4566925.5 2421.0 95969.7 648.2 51338.5 1186.0 17550.8 607297.7 128626.8 1297.8 229542.7 2833.8 11988.7 16809.8 11474.8 397.7 23690.8 3584.3 2756.7 726009.8Standard deviation 1σ Paper 3 2570.4 1010.8 1592165.3 236263.1 2412.2 3107.2 65124.2 966431.1 280.0 5726.8 99.9 2413.0 159.0 683.1 44080.2 17894.4 243.0 40631.0 440.4 803.1 815.0 763.9 161.9 1742.6 458.3 284.2 53742.9

Coefficient of variation % Paper 3 70 52 21 15 13 40 14 21 12 6 15 5 13 4 7 14 19 18 16 7 5 7 41 7 13 10 7

Page 311: Development of Novel Physical (Electrostatic Detection

311

Appendix 5 continued

Table 3Elemental profiles and statistics for inks on the three study papers

RED INKBrand Li7 B11 Na23 Mg24 P31 S34 K39 Ca44 Ti49 V51 Cr53 Fe57 Co59 Ni60 Cu65 Zn66 Rb85 Sr88 Y89 Zr90 Mo98 Sn120 Sb121 Ba138 La139 Ce140 Pb208

Red BIC Paper 1 26 3165 2040293 837067 253685 132285 647889 1785368 336 409 482 18394 6554 153 509 359 216 65939 1357 2789 4 270 11 11550 1240 519 473Red BIC Paper 1 68 3761 1814195 901612 243686 144278 697740 1313196 374 442 501 19404 7543 57 1178 289 159 63761 1614 3573 6 335 1 14443 1168 557 535Red BIC Paper 1 23 2416 1805964 939042 253284 137912 591125 1071777 252 770 584 18434 6748 91 961 495 298 69610 1609 2317 77 380 4 14104 1707 735 446Red BIC Paper 1 18 2624 1800740 900614 241861 135540 611505 2137530 313 587 540 18577 6292 57 400 372 386 66368 1597 3218 27 391 1 11846 1241 552 379Red BIC Paper 1 45 2453 1982849 906230 243986 140244 735837 1669087 285 648 523 19640 6676 30 800 422 331 58320 1853 3212 30 380 2 11562 1313 363 618Red BIC Paper 1 12 3066 1898396 852247 255829 146071 686063 1215729 302 370 479 18876 6732 102 483 417 342 69768 1364 2001 21 380 10 12013 1235 619 474Red BIC Paper 2 1 6600 1839745 1549560 253080 143029 685322 1738300 550 1345 532 25016 6957 632 9002 1262 477 132941 1496 2201 55 566 70 15243 1860 985 576Red BIC Paper 2 107 3165 171996 1140431 254632 136743 719782 1937247 318 655 294 18154 6512 607 9120 1135 534 78869 1033 2849 203 585 50 14236 1466 497 987Red BIC Paper 2 513 8081 2313724 1228773 246023 150567 743552 3530376 640 767 349 22484 7782 641 9528 1279 475 162683 1959 3518 163 673 52 15141 1969 608 721Red BIC Paper 2 708 4282 1102138 1630442 242123 141518 690688 3638374 737 977 462 26128 6586 429 7560 1214 538 142894 2073 4855 192 637 49 14582 1669 1010 550Red BIC Paper 2 284 2514 421739 1148688 245601 145118 828766 3656577 1294 594 470 25907 6785 430 9017 1227 756 135702 2252 3336 16 535 82 12852 2073 885 756Red BIC Paper 2 282 6354 943207 1203765 260471 151909 768413 960814 1407 729 358 22452 6876 525 8876 1020 347 105910 1540 3624 201 658 46 12740 1739 1021 559Red BIC Paper 3 13 3191 1846409 1463136 249003 141558 785335 2567694 751 594 523 22209 6738 175 876 723 538 144989 2604 3078 637 437 42 12190 1924 1454 587Red BIC Paper 3 3022 2789 2424878 1387963 259605 152359 684120 964909 775 640 640 20411 6803 194 857 947 339 76829 1541 2801 229 463 35 12495 1842 1382 754Red BIC Paper 3 7797 2823 4574400 1136884 252578 145654 759965 2950076 346 587 552 19983 7643 189 1034 645 391 122466 1936 3772 612 485 1 14347 1494 511 898Red BIC Paper 3 4712 5069 3405586 882531 249545 134339 620934 3882958 459 870 697 24442 6413 23 1 193 459 99536 2043 4092 866 509 44 13341 1904 1452 547Red BIC Paper 3 3733 3446 3966024 952181 253080 139343 691817 2233023 338 1139 991 23501 6867 285 791 1217 389 122064 1815 2090 55 452 69 13982 1695 1230 509Red BIC Paper 3 2384 3165 2338971 886072 259539 137819 670964 1704251 318 545 723 18154 6512 227 1081 539 320 60861 1261 2452 1001 491 27 13063 1715 1373 1079

Average Paper 1 32.0 2914.2 1890406.2 889468.7 248721.8 139388.3 661693.2 1532114.5 309.8 537.7 518.2 18887.5 6757.5 81.7 721.8 391.8 288.7 65627.7 1565.7 2851.7 27.5 355.5 4.3 12586.3 1316.8 557.5 487.0Standard deviation 1σ Paper 1 20.9 519.3 102033.5 37792.9 6177.7 5229.6 54917.8 402333.8 42.0 156.5 39.9 525.1 420.1 43.5 309.0 69.6 85.2 4255.2 185.5 599.6 26.5 46.5 4.5 1322.9 196.3 122.2 81.5

Coefficient of variation % Paper 1 65 18 5 4 2 4 8 26 14 29 8 3 6 53 43 18 30 6 12 21 96 13 105 11 15 22 17

Average Paper 2 315.8 5166.0 1132091.5 1316943.2 250321.7 144814.0 739420.5 2576948.0 824.3 844.5 410.8 23356.8 6916.3 544.0 8850.5 1189.5 520.7 126499.8 1725.5 3397.2 138.3 609.0 57.7 14132.3 1796.0 834.3 691.5Standard deviation 1σ Paper 2 259.8 2181.0 819754.5 215611.6 6887.3 5704.7 53902.6 1176918.5 432.0 277.9 90.6 3019.5 456.6 97.7 670.6 96.9 134.2 29654.0 451.5 886.2 81.9 55.1 14.5 1099.3 218.6 226.3 169.3

Coefficient of variation % Paper 2 82 42 72 16 3 4 7 46 52 33 22 13 7 18 8 8 26 23 26 26 59 9 25 8 12 27 24

Average Paper 3 3610.2 3413.8 3092711.3 1118127.8 253891.7 141845.3 702189.2 2383818.5 497.8 729.2 687.7 21450.0 6829.3 182.2 773.3 710.7 406.0 104457.5 1866.7 3047.5 566.7 472.8 36.3 13236.3 1762.3 1233.7 729.0Standard deviation 1σ Paper 3 2590.3 847.5 1060505.8 256549.2 4684.3 6386.6 60436.4 1009924.0 211.4 231.6 168.0 2359.2 435.1 87.4 394.2 350.5 80.8 31512.9 459.4 768.0 363.6 26.8 22.3 833.7 162.1 363.3 225.1

Coefficient of variation % Paper 3 72 25 34 23 2 5 9 42 42 32 24 11 6 48 51 49 20 30 25 25 64 6 61 6 9 29 31

Page 312: Development of Novel Physical (Electrostatic Detection

312

Appendix 5 continued

Table 3Elemental profiles and statistics for inks on the three study papers

RED INKRed Paper Mate Paper 1 1 52636 518793 997480 73525 146016 440214 1616498 325 614 68 21943 218 699 16846 829 179 83691 287 6396 12 206 167 2839 165 319 169Red Paper Mate Paper 1 144 50577 131703 658950 66614 154258 435948 2151895 1 335 147 13598 159 574 16954 777 336 34467 672 5857 229 328 141 4811 227 15 515Red Paper Mate Paper 1 491 56713 597964 890503 74731 186200 372426 3174962 304 420 3 17827 343 676 25248 1018 373 117772 443 5952 193 343 198 2841 848 97 211Red Paper Mate Paper 1 749 47263 408456 1253077 63300 153144 485718 2865884 431 422 63 25659 324 406 16563 1021 345 96270 485 8179 194 263 196 5341 437 524 241Red Paper Mate Paper 1 270 49652 501436 663921 70665 180997 463898 1069905 1106 359 1 18036 255 520 20310 650 54 55087 367 7577 243 284 181 2600 510 443 112Red Paper Mate Paper 1 271 50788 1575330 650944 71150 185814 494185 2921479 1026 1 47 20635 159 400 18075 843 487 102185 549 5895 40 156 161 3432 794 552 180Red Paper Mate Paper 2 63 50577 300000 355586 65667 149800 364055 2000016 18 89 35 13838 201 120 8343 29 18 21537 96 5797 30 13 102 2125 8 37 1Red Paper Mate Paper 2 50 46364 456625 312403 66023 175159 381548 1324820 1 50 110 14460 111 97 11917 47 49 18945 191 5954 63 6 145 1873 6 41 27Red Paper Mate Paper 2 59 45605 107058 523249 63038 147166 406535 1365040 7 32 141 18108 30 34 9003 179 193 19744 9 6542 29 17 148 2605 9 66 70Red Paper Mate Paper 2 22 48452 485012 386962 73729 140899 346017 949975 27 39 120 15361 9 158 8805 62 45 20360 96 6512 34 20 101 1700 12 69 39Red Paper Mate Paper 2 46 52393 98435 563342 72394 179911 326614 957782 38 95 55 14747 104 92 16898 28 57 18850 98 6007 30 5 147 2143 47 46 25Red Paper Mate Paper 2 32 50727 136440 408486 69535 180940 301256 933989 17 54 100 14368 50 100 9858 38 62 24803 150 5771 54 1 81 2142 34 30 42Red Paper Mate Paper 3 7775 51455 2858640 798614 81286 181287 388839 2594662 10 240 106 15326 204 224 16754 384 289 77555 420 6206 642 155 146 2047 373 1 388Red Paper Mate Paper 3 1 51465 1 965392 74552 182254 450754 1832596 483 1 1 16937 112 145 9934 339 269 111472 901 5637 661 58 121 2770 645 1121 11Red Paper Mate Paper 3 2421 50577 298678 404591 71521 155334 387130 1918899 1 225 276 13598 159 194 8915 181 122 16459 1 5460 1027 234 118 3638 476 891 607Red Paper Mate Paper 3 4753 48050 1711904 505166 70722 145965 415964 3110468 153 315 298 23973 151 1 9003 1 266 52912 455 7416 868 135 191 4100 672 966 238Red Paper Mate Paper 3 3732 49482 2645072 400101 73525 142330 446709 2111221 113 408 527 20428 128 352 8635 784 91 72814 206 6285 12 92 166 1578 1 564 102Red Paper Mate Paper 3 3010 46087 983107 848119 69799 181447 379605 1074000 474 270 271 15995 182 189 12291 577 46 26006 368 6754 271 89 170 2355 613 804 307

Average Paper 1 321.0 51271.5 622280.3 852479.2 69997.5 167738.2 448731.5 2300103.8 532.2 358.5 54.8 19616.3 243.0 545.8 18999.3 856.3 295.2 81578.7 467.2 6642.7 151.8 263.3 173.5 3644.0 496.8 325.0 238.0Standard deviation 1σ Paper 1 264.9 3189.9 494084.0 243546.2 4311.1 18492.9 44096.6 833578.2 438.3 200.7 53.6 4120.3 79.3 128.6 3357.8 143.6 154.1 31228.8 135.7 994.7 99.8 71.8 22.0 1154.9 282.2 225.0 142.5

Coefficient of variation % Paper 1 83 6 79 29 6 11 10 36 82 56 98 21 33 24 18 17 52 38 29 15 66 27 13 32 57 69 60

Average Paper 2 45.3 49019.7 263928.3 425004.7 68397.7 162312.5 354337.5 1255270.3 17.6 59.8 93.5 15147.0 84.2 100.2 10804.0 63.3 70.7 20706.5 106.7 6097.2 40.0 9.9 120.2 2098.0 18.8 48.2 33.6Standard deviation 1σ Paper 2 15.8 2674.1 176386.4 97987.1 4183.5 18255.1 37986.5 413874.1 13.2 26.2 40.4 1534.0 70.0 40.5 3242.4 57.8 61.9 2239.1 61.4 345.0 14.7 7.4 29.5 306.8 17.0 15.9 22.7

Coefficient of variation % Paper 2 35 5 67 23 6 11 11 33 75 44 43 10 83 40 30 91 88 11 58 6 37 74 25 15 90 33 68

Average Paper 3 3615.3 49519.3 1416233.7 653663.8 73567.5 164769.5 411500.2 2106974.3 205.7 243.2 246.5 17709.5 156.0 184.2 10922.0 377.7 180.5 59536.3 391.8 6293.0 580.2 127.2 152.0 2748.0 463.3 724.5 275.5Standard deviation 1σ Paper 3 2587.2 2125.7 1193335.2 246730.9 4172.1 18988.6 31385.3 696067.3 219.3 135.7 180.5 3814.3 33.9 114.0 3156.1 278.2 106.2 35276.3 300.6 721.9 377.2 62.8 29.0 962.8 253.4 399.7 212.1

Coefficient of variation % Paper 3 72 4 84 38 6 12 8 33 107 56 73 22 22 62 29 74 59 59 77 11 65 49 19 35 55 55 77

Page 313: Development of Novel Physical (Electrostatic Detection

313

Appendix 5 continued

Table 3Elemental profiles and statistics for inks on the three study papers

RED INKRed J.B Paper 1 59 39682 769933 161662 13 1982 6000 401281 28.5 205 79 240 42 3151 133745 19509.5 119 5078 292 244 33 74.5 263.5 75 51.5 22 5.5Red J.B Paper 1 108 39660 227963 210090 60 1968 17507 60000 56.5 293 167 242 83 3064 146667 19470.5 149 5429 230 71 40 73.5 267.5 62 15.5 12 30.5Red J.B Paper 1 78 36306 695642 193751 158 1827 9941 74904 24.5 348 207 1237 4 2377 141891 15427.5 220 6695 184 70 31 59.5 326.5 88 38.5 5 46.5Red J.B Paper 1 74 35547 436185 213208 204 2066 6553 292706 14.5 152 159 49 24 3601 148017 18108.5 133 7439 230 92 26 124.5 306.5 122 40.5 114 47.5Red J.B Paper 1 41 39193 1141567 213535 50 2077 1943 250820 5.5 89 165 200 21 3045 152258 18700.5 117 7917 250 205 22 86.5 241.5 19 16.5 18 66.5Red J.B Paper 1 57 39366 341977 192668 78 2185 12842 412829 31.5 329 120 327 69 2402 119247 17204.5 187 7556 288 79 31 83.5 235.5 113 19.5 56 28.5Red J.B Paper 2 502 43686 841506 519829 2415 8474 58654 2630009 298 654 68 3407 308 2986 127597 18195 502.5 106478 633 24 194 422 286.5 811 821 107 215Red J.B Paper 2 311 42481 186378 565053 4642 7915 84293 -4095 1111 448 44 3576 165 3468 160651 19304 121.5 36142 426 1828 202 365 277.5 746 521 420 152Red J.B Paper 2 347 39721 1666853 452548 1615 6842 110436 1987490 1066 239 114 6509 192 3464 154884 20276 573.5 82811 629 195 26 229 347.5 1352 776 522 169Red J.B Paper 2 140 39682 -98364 465026 960 6440 71893 2553160 11 451 91 1 1 3605 142356 20286 436.5 18008 368 304 232 390 302.5 2686 278 1 520Red J.B Paper 2 768 37964 -2960 923579 420 7805 89124 1575748 449 738 129 8788 298 2749 149451 16270 371.5 83221 660 1637 196 306 374.5 2824 467 463 218Red J.B Paper 2 52 39731 469966 823726 1 7183 100750 959229 313 727 107 6631 209 4142 156058 18876 311.5 70770 1117 1 4 311 372.5 1261 194 364 178Red J.B Paper 3 3051 38916 1668049 749251 3776 8365 1 1 479 359 326 1535 92 3137 152632 19231 114 7061 427 1005 230 170 267 501 624 781 347Red J.B Paper 3 2417 39682 1068611 210667 5867 7516 23075 320164 11 341 320 1 1 3225 134317 19690 223 1 196 907 1030 296 280 1513 527 876 612Red J.B Paper 3 3784 36577 2596245 226347 1 3497 107245 1453952 101 521 566 5116 119 3795 147847 18831 224 59893 436 865 4 197 372 1 29 609 111Red J.B Paper 3 76 40398 91523 766996 5017 3282 67005 898607 523 239 167 2811 145 3209 146743 19772 356 92098 981 1037 647 131 308 690 627 1091 1Red J.B Paper 3 7786 38428 3102182 427940 8970 3561 75067 2049709 4 474 171 906 169 2534 119103 17561 419 66261 610 1278 643 234 235 17 346 10 392Red J.B Paper 3 4772 38751 2300488 175668 7842 626 19370 1820332 171 631 364 7102 125 2343 141891 15249 293 39863 630 874 870 178 370 1583 702 905 215

Average Paper 1 69.5 38292.3 602211.2 197485.7 93.8 2017.5 9131.0 248756.7 26.8 236.0 149.5 382.5 40.5 2940.0 140304.2 18070.2 154.2 6685.7 245.7 126.8 30.5 83.7 273.5 79.8 30.3 37.8 37.5Standard deviation 1σ Paper 1 23.0 1857.3 335592.9 19920.5 72.3 121.6 5526.3 153605.4 17.4 104.0 44.2 428.4 30.3 472.1 12098.0 1559.8 41.2 1183.6 40.6 77.1 6.2 22.1 36.1 37.4 15.1 41.3 20.9

Coefficient of variation % Paper 1 33 5 56 10 77 6 61 62 65 44 30 112 75 16 9 9 27 18 17 61 20 26 13 47 50 109 56

Average Paper 2 353.3 40544.2 510563.2 624960.2 1675.5 7443.2 85858.3 1616923.5 541.3 542.8 92.2 4818.7 195.5 3402.3 148499.5 18867.8 386.2 66238.3 638.8 664.8 142.3 337.2 326.8 1613.3 509.5 312.8 242.0Standard deviation 1σ Paper 2 257.8 2114.8 661478.9 199312.5 1687.8 755.2 18836.4 1010164.2 447.4 197.0 31.5 3119.1 111.5 489.2 12009.3 1509.0 159.4 32969.0 263.8 836.7 99.8 69.5 43.4 917.0 254.2 209.8 138.6

Coefficient of variation % Paper 2 73 5 130 32 101 10 22 62 83 36 34 65 57 14 8 8 41 50 41 126 70 21 13 57 50 67 57

Average Paper 3 3647.7 38792.0 1804516.3 426144.8 5245.5 4474.5 48627.2 1090460.8 214.8 427.5 319.0 2911.8 108.5 3040.5 140422.2 18389.0 271.5 44196.2 546.7 994.3 570.7 201.0 305.3 717.5 475.8 712.0 279.7Standard deviation 1σ Paper 3 2570.4 1298.2 1100116.8 271907.6 3184.9 2912.4 40856.5 825137.9 230.5 141.4 147.0 2713.6 58.7 526.1 12149.9 1735.2 108.4 35717.9 264.2 155.7 387.0 57.5 56.0 697.7 251.0 378.4 218.1

Coefficient of variation % Paper 3 70 3 61 64 61 65 84 76 107 33 46 93 54 17 9 9 40 81 48 16 68 29 18 97 53 53 78

Page 314: Development of Novel Physical (Electrostatic Detection

314