dhhs-nih gene therapy for pediatric nidcr, niaid, nci...

10
10/27/2014 1 Gene Therapy for Pediatric Diseases Chester B. Whitley, Ph.D., M.D. Gene Therapy Center University of Minnesota Minneapolis, MN, USA American Academy of Pediatrics San Diego, October 12, 2014 Disclosure Statement Actelion – Speakers Bureau Amicus Therapeutics – Meeting Sponsor Relationship BioStrategies – Research Grant BioMarin – Research Grant GenzymeSanofi – Research Grant, Consultant and Meeting Sponsor Fairview – Speakers Bureau Pfizer – Speakers Bureau Protalix – Speakers Bureau National Institutes of Health Lysosomal Disease Network Gene Therapy for Metabolic Disorders ReGenX – Meeting Sponsor Sangamo BioSciences Shire – Research Grant, Consultant and Meeting Sponsor Synageva – Meeting Sponsor University of Minnesota Department of Pediatrics Center for Translational Science Institute (CTSI) Zebraic d.b.a. WORLD Symposia (Feb 913, 2015, Orlando, FL, USA) “We’re Organizing Research on Lysosomal Diseases” This presentation may discuss offlabel use of FDAapproved medications. Assignment: The sequencing of the human genome has led to hope and expectation of gene therapy for genetic disorders. Reports of success in treating hemophilia, Leber congenital amaurosis, leukemia, and severe combined immunodeficiency will lead to the expectation that this will soon be available for all genetic disorders. This session will provide the pediatrician with a solid understanding of the success, and limitations, of gene therapy thus far and which types of disorders will be most likely to be treated in this novel manner in the near future. Collaborative Clinical Research Public Resources and Education Centralized Data Coordination and Technology Development Training DHHS-NIH ORDR, NINDS, NIAMS, NICHD, NHLBI, NIDDK, NIDCR, NIAID, NCI The Data Management and Coordinating Center Coalition of Patient Advocacy Groups (CPAG) North American Mitochondrial Disease Consortium Nephrotic Syndrome Study Network Rare Kidney Stone Consortium Autonomic Rare Diseases Clinical Research Consortium Brain Vascular Malformation Consortium Sterol and Isoprenoid Diseases Consortium Dystonia Coalition Genetic Disorders of Mucociliary Clearance Consortium Chronic Graft Versus Host Disease Consortium Inherited Neuropathies Consortium Lysosomal Disease Network Salivary Gland Carcinomas Consortium Porphyrias Consortium Primary Immune Deficiency Treatment Consortium Angelman, Rett and PraderWilli Syndromes Consortium Vasculitis Clinical Research Consortium Coalition of Patient Advocacy Groups (CPAG) (> 95 PAG) Data Management and Coordinating Center (DMCC) Urea Cycle Disorders Consortium ORDR / NCATS Program Coordination NIAID NIDCR NCI NINDS NIDDK NICHD NHLBI NIAMS RDCRN Consortia, DMCC and CPAG Steering Committee OSMBs/DSMBs NIH Rare Diseases Clinical Research Network (RDCRN) 5 Lysosomal Diseases Aspartylglucosaminuria Wolman disease Cystinosis Danon disease Fabry disease Farber disease Fucosidosis Gaucher disease GM1Gangliosidosis types I/II/III GM2Gangliosidosis Mannosidosis types I and II Mannosidosis Metachromatic leukodystrophy Sialidosis types I and II Mucolipidosis type IV Scheie syndrome Hunter syndrome Sanfilippo syndrome type A, B, C and D Galactosialidosis types I and II Krabbe disease Sandhoff disease VogtSpielmeyer disease Hurler syndrome NiemannPick disease Icell disease PseudoHurler polydystrophy Morquio syndrome MaroteauxLamy syndrome Sly syndrome Mucopolysaccharidosis type IX Multiple sulfatase deficiency Batten disease TaySachs disease Pompe disease Batten diseases Late infantile Northern epilepsy Pycnodysostosis Schindler disease Sialuria Salla disease

Upload: others

Post on 14-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DHHS-NIH Gene Therapy for Pediatric NIDCR, NIAID, NCI Diseasesaapexperience.org/wp-content/uploads/documents/advertise/plenary/P2076.pdf · 1972 “Gene therapy” coined by Ted Freidmann

10/27/2014

1

Gene Therapy for Pediatric Diseases

Chester B. Whitley, Ph.D., M.D.

Gene Therapy Center

University of Minnesota

Minneapolis, MN, USA

American Academy of Pediatrics

San Diego, October 12, 2014

Disclosure StatementActelion – Speakers BureauAmicus Therapeutics – Meeting Sponsor RelationshipBioStrategies – Research GrantBioMarin – Research GrantGenzyme‐Sanofi – Research Grant, Consultant and Meeting SponsorFairview – Speakers BureauPfizer – Speakers BureauProtalix – Speakers  BureauNational Institutes of Health

• Lysosomal Disease Network• Gene Therapy for Metabolic Disorders

ReGenX – Meeting SponsorSangamo BioSciencesShire – Research Grant, Consultant and Meeting SponsorSynageva – Meeting SponsorUniversity of Minnesota

• Department of Pediatrics• Center for Translational Science Institute (CTSI)

Zebraic d.b.a. WORLD Symposia (Feb 9‐13, 2015, Orlando, FL, USA)“We’re Organizing Research on Lysosomal Diseases”

This presentation may discuss off‐label use of FDA‐approved medications.

Assignment: The sequencing of the human genome has led to hope and expectation of gene therapy for genetic disorders. Reports of success in treating hemophilia, Leber congenital amaurosis, leukemia, and severe combined immunodeficiency will lead to the expectation that this will soon be available for all genetic disorders. 

This session will provide the pediatrician with a solid understanding of the success, and limitations, of gene therapy thus far and which types of disorders will be most likely to be treated in this novel manner in the near future.

• Collaborative Clinical Research

• Public Resources and Education

• Centralized Data Coordination and Technology Development

• Training

DHHS-NIHORDR, NINDS, NIAMS, NICHD, NHLBI, NIDDK,

NIDCR, NIAID, NCI

The Data Management and Coordinating Center

Coalition of PatientAdvocacy Groups

(CPAG)

North American Mitochondrial Disease Consortium 

Nephrotic Syndrome Study Network

Rare Kidney Stone Consortium 

Autonomic Rare Diseases Clinical Research Consortium 

Brain Vascular Malformation Consortium 

Sterol and IsoprenoidDiseases Consortium 

Dystonia Coalition

Genetic Disorders of Mucociliary Clearance Consortium

Chronic Graft Versus Host Disease Consortium 

Inherited Neuropathies Consortium

Lysosomal Disease Network

Salivary Gland Carcinomas Consortium

Porphyrias Consortium

Primary Immune Deficiency Treatment Consortium 

Angelman, Rett and Prader‐Willi Syndromes Consortium 

Vasculitis Clinical Research Consortium

Coalition of Patient Advocacy Groups (CPAG) (> 95 PAG)

Data Management and Coordinating Center (DMCC)

Urea Cycle Disorders Consortium 

ORDR / NCATSProgram Coordination

NIAID

NIDCR

NCI NINDS NIDDKNICHD

NHLBI

NIAMS

RDCRN Consortia, DMCC and CPAG

Steering Committee OSMBs/DSMBs

NIH

Rare Diseases Clinical Research Network (RDCRN)

5

Lysosomal Diseases• Aspartylglucosaminuria• Wolman disease• Cystinosis• Danon disease• Fabry disease• Farber disease• Fucosidosis• Gaucher disease• GM1‐Gangliosidosis types I/II/III

• GM2‐Gangliosidosis • ‐Mannosidosis types I and II 

• ‐Mannosidosis• Metachromaticleukodystrophy

• Sialidosis types I and  II • Mucolipidosis type IV • Scheie syndrome 

• Hunter syndrome • Sanfilippo syndrome type A, B, C and D

• Galactosialidosis types I  and II

• Krabbe disease• Sandhoff disease • Vogt‐Spielmeyer disease • Hurler syndrome • Niemann‐Pick disease • I‐cell disease• Pseudo‐Hurler polydystrophy

• Morquio syndrome• Maroteaux‐Lamysyndrome

• Sly syndrome• Mucopolysaccharidosis 

type IX 

• Multiple sulfatasedeficiency 

• Batten disease • Tay‐Sachs disease• Pompe disease• Batten diseases• Late infantile Northern 

epilepsy• Pycnodysostosis• Schindler disease • Sialuria• Salla disease

Page 2: DHHS-NIH Gene Therapy for Pediatric NIDCR, NIAID, NCI Diseasesaapexperience.org/wp-content/uploads/documents/advertise/plenary/P2076.pdf · 1972 “Gene therapy” coined by Ted Freidmann

10/27/2014

2

Milestones in Gene Therapy

1972 “Gene therapy” coined by Ted Freidmann

Gene Therapy(AAVrh.10-SGSH)

Genetic Engineering and Gene Therapy c. 1972

“…gene therapy may ameliorate some human genetic diseases in the future.  For this reason, we believe that research directed at the development of techniques for gene therapy should continue.  For the foreseeable future, however, we oppose any further attempts at gene therapy in human patients because:

(i) Our understanding of such basic processes as gene regulation and genetic recombination in human cells is inadequate; 

(ii) Our understanding of the details of the relation between the molecular defect and the disease state is rudimentary for essentially all genetic diseases; and

(iii) We have no information on the short‐range and long‐term side effects of gene therapy

Friedmann T, Roblin R. Gene therapy for human genetic disease? Science. 1972 Mar 3;175(4025):949‐55.

Genetic Engineering and Gene Therapy c. 1972

We therefore propose that a sustained effort be made to formulate a complete set of ethicoscientific criteria to guide the development and clinical application of gene therapy techniques.  Such an endeavor could go a long way toward ensuring that gene therapy is used in humans only in those instances where it will prove beneficial, and toward preventing its misuse through premature application.

Friedmann T, Roblin R. Gene therapy for human genetic disease? Science. 1972 Mar 3;175(4025):949‐55.

Milestones in Gene Therapy

1972 “Gene therapy” coined by Ted Friedmann

1973 Self-imposed moratorium on recombinant DNA research by the molecular biology scientific community

1975 Asilomar Conference on Recombinant DNA leading to establishment of the NIH Recombinant DNA Committee (RAC)

Page 3: DHHS-NIH Gene Therapy for Pediatric NIDCR, NIAID, NCI Diseasesaapexperience.org/wp-content/uploads/documents/advertise/plenary/P2076.pdf · 1972 “Gene therapy” coined by Ted Freidmann

10/27/2014

3

NIH Recombinant DNA Advisory Committee (RAC)Human Gene Therapy Protocols

9007-002

Blaese, R. Michael; National Institutes of Health, Bethesda, Maryland; Treatment of Severe Combined Immune Deficiency (SCID) due to Adenosine Deaminase (ADA) Deficiency with Autologous Lymphocytes Transduced with the Human ADA Gene: An Experimental Study

*RAC Recommends Approval: 7-31-90/NIH Approval: 9-6-90

Gene Therapy/Phase I/Monogenic Disease/Severe Combined Immune Deficiency due to Adenosine Deaminase Deficiency/In Vitro/Autologous Peripheral Blood Cells/CD34+ Autologous Peripheral Blood Cells/Cord Blood/Placenta Cells/Retrovirus/Adenosine Deaminase cDNA/Neomycin Phosphotransferase cDNA/Intravenous

Gene Therapy for Hunter Syndrome(Mucopolysaccharidosis type II)1. Jonsson JJ, Aronovich EL, Braun SE, Whitley CB:  Molecular diagnosis of 

mucopolysaccharidosis type II (Hunter syndrome) by automated sequencing and computer‐assisted analysis:  toward mutation mapping of the iduronate‐2‐sulfatase gene, Am J Hum Genet 56:597‐607, 1995.

1. Braun, SE, Pan, D Aronovich, EL Jonsson, JJ, McIvor, RS, Whitley, CB:  Preclinical studies of lymphocyte gene therapy for mild Hunter syndrome (mucopolysaccharidosis type II), Hum Gene Ther 7(3):283‐290, 1996.

2. Braun SE, Aronovich EL, Anderson RA, Crotty PL, McIvor RS, Whitley CB:  Correction of mucopolysaccharidosis type II (Hunter syndrome) by retroviral‐mediated gene transfer and expression of human iduronate‐2‐sulfatase in lymphoblastoid cell lines.  Proc Natl Acad Sci USA 90:11830‐11834, 1993.

NIH Recombinant DNA Advisory Committee (RAC)Human Gene Therapy Protocols

9409‐087 

Whitley, Chester B.; University of Minnesota, Minneapolis, Minnesota; Retroviral‐Mediated Transfer of the Iduronate‐2‐Sulfatase Gene into Lymphocytes for Treatment of Mild Hunter Syndrome (Mucopolysaccharidosis Type II)

Gene Therapy/Phase I/Monogenic Disease/Hunter Syndrome/In Vitro/Autologous Peripheral Blood Cells/Retrovirus/Iduronate‐2‐Sulfatase cDNA/Intravenous 

NIH Recombinant DNA Advisory Committee (RAC)Human Gene Therapy Protocols

9409‐087 

Whitley, Chester B.; University of Minnesota, Minneapolis, Minnesota; Retroviral‐Mediated Transfer of the Iduronate‐2‐Sulfatase Gene into Lymphocytes for Treatment of Mild Hunter Syndrome (Mucopolysaccharidosis Type II)

Gene Therapy/Phase I/Monogenic Disease/Hunter Syndrome/In Vitro/Autologous Peripheral Blood Cells/Retrovirus/Iduronate‐2‐Sulfatase cDNA/Intravenous 

NIH Recombinant DNA Advisory Committee (RAC)Human Gene Therapy Protocols

9512-139

Batshaw, Mark; Institute for Human Gene Therapy, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania; A Phase I Study of Adenoviral Vector Mediated Gene Transfer to Liver in Adults with Partial Ornithine Transcarbamylase Deficiency

Gene Therapy/Phase I/Monogenic Disease/Partial Ornithine Transcarbamylase (OTC) Deficiency/In Vivo/Autologous Peripheral Blood Cells/Adenovirus/Type 5 (E2a Temperature-Sensitive Mutant)/Ornithine Transcarbamylase cDNA/Intravenous

NIH Recombinant DNA Advisory Committee (RAC)Human Gene Therapy Protocols

0312‐619

Crystal, Ronald, Weill Medical College of Cornell University, New York, New York; Administration of a Replication Deficient Adeno‐Associated Virus Gene Transfer Vector Expressing the Human CLN2 cDNA to the Brain of Children with Late Infantile Neuronal Ceroid Lipofuscinosis

Gene Therapy/Monogenic Disease/ Late Infantile Neuronal Ceroid Lipofuscinosis/In Vivo/Brain/Adeno‐Associated Virus 2/CLN2 (Tripeptidyl Peptidase) cDNA/Intraparenchymal Injection

Page 4: DHHS-NIH Gene Therapy for Pediatric NIDCR, NIAID, NCI Diseasesaapexperience.org/wp-content/uploads/documents/advertise/plenary/P2076.pdf · 1972 “Gene therapy” coined by Ted Freidmann

10/27/2014

4

NIH Recombinant DNA Advisory Committee (RAC)Human Gene Therapy Protocols

0904‐977

Crystal, Ronald G.; Weill Cornell Medical College; New York, New York; Direct CNS Administration of a Replication Deficient Adeno‐Associated Virus Gene Transfer Vector Serotype rh.10 Expressing the Human CLN2 cDNA to Children with Late Infantile Neuronal Ceroid Lipofuscinosis

(Open; RAC reviewed with recommendations) Gene Therapy/Phase I/Monogenic Disease/Late Infantile Neuronal Ceroid Lipofuscinosis/In Vivo/Brain/Adeno‐Associated Virus 10/CLN2 cDNA/Intraparenchymal Injection

Emerging Trends in Gene Therapy

• Glybera approval by European Commission

• Leber congenital amaurosis

• Lentiviral-mediated hematopoeitic cell transplantation (ADA-deficient SCID, Don Kohn)

• Intravenous lentiviral gene therapy for Hurler syndrome

• Sanfilippo syndrome type A, AAV injection into the brain, Lysogene

• Giant axonal neuropathy, AAV intrathecal injection

Leber Congenital Amaurosis

The first retinal gene therapy in human blindness from RPE65 mutations has focused on safety and efficacy, as defined by improved vision. The disease component not studied, however, has been the fate of photoreceptors in this progressive retinal degeneration.  We show that gene therapy improves vision for at least 3 y, but photoreceptor degeneration progresses unabated in humans … The study shows the need for combinatorial therapy to improve vision in the short term but also slow retinal degeneration in the long term.

NIH Recombinant DNA Advisory Committee (RAC)Human Gene Therapy Protocols

0910‐1006

Kohn, Donald; University of California, Los Angeles; Los Angeles, California; and Candotti, Fabio; National Institutes of Health; Bethesda, Maryland; Treatment of Subjects with Adenosine Deaminase (ADA) Deficient Severe Combined Immunodeficiency (SCID) with Autologous Bone Marrow CD34+ Stem/Progenitor Cells after Addition of a Normal Human ADA cDNA by the EFS‐ADA Lentiviral Vector

Gene Therapy/Gene Therapy/Phase I/II/Monogenic Disease/Severe Combined Immune Deficiency due to Adenosine Deaminase Deficiency (ADA)/In Vitro/Autologous CD34+ Cells from Bone Marrow/Lentivirus/Adenosine Deaminase cDNA/Intravenous Infusion

Page 5: DHHS-NIH Gene Therapy for Pediatric NIDCR, NIAID, NCI Diseasesaapexperience.org/wp-content/uploads/documents/advertise/plenary/P2076.pdf · 1972 “Gene therapy” coined by Ted Freidmann

10/27/2014

5

Normal gene

Hematopoietic Stem Cell Differentiation

CD34+

Gene Therapy Using Hematopoietic Stem Cells

First and Second Generation Retroviral and Lentiviral Vectors

Shaw K and Kohn DBA Tale of Two SCIDS.Sci Trans Med, 2011

Hu ADAEFSΨ

WP

RE

The EFS-ADA Lentiviral Vector

Recruit Screen Intervention

End -Point

Evaluations

Long - term

Follow - up

Years 3 -15

Active

Follow -up

EligibilityConfirmed

Consent

Completed

Infuse Final Cell Product

BM Harvest

Process Cells

IV Busulfan

Phase:

Event:

Years 0 -2

Monitor

Safety(separate study)

D/C ERT

Clinical Trial Experimental Time-Line

IDAge at entry

Gender RaceCD34+

x 106/kgVCN

Busulfan AUC

(mmol/L*min)

Monthson

Protocol

501U 7 mos F H 11.1 2.9 5,673 11 mos

502U 3.6 y F AA 5.6 2.4 4,518 9 mos

503U 3.0 y M H n.d. (<1) 1.7 n.d. N/A

504U 4 mos M C 15.0 1.6 5.199 4 mos

505U 9 mos M AA 9.0 6.3 3,673 3 mos

506N 2 y M H 3.0 2.8 4,055 2 mos

507U 10 mos F C 15.0 Pend 3,247 0

508U 6.5 mos F C Pend Pend Pend pend

Phase I/II Trial: EFS-ADA Lentiviral Vector

Final Cell Product:11.1 X 10^6 CD34+/kgEFS-ADA Vector copy/cell: 2.9ADA enzyme activity: 6974 (U)

Diagnosed by CA NBSAdagen started @ 1 m/oAge at Transplant: 8 m/o

Busulfan dose: 4mg/kgBusulfan AUC: 5673 umol/L minAdagen stopped day +30

LLN CD3+

LLN CD19+

Page 6: DHHS-NIH Gene Therapy for Pediatric NIDCR, NIAID, NCI Diseasesaapexperience.org/wp-content/uploads/documents/advertise/plenary/P2076.pdf · 1972 “Gene therapy” coined by Ted Freidmann

10/27/2014

6

Gene Therapy for Hurler Syndrome

• Hematopoietic stem cell transplant stabilizes disease (1982)

• Donor engraftment halts IQ loss of 1.6 IQ points/month

• Complicated by significant morbidity and mortality

Hypothesis

Would simple, early intravenousadministration of a lentiviral vector to a newborn achieve high levels of gene transfer and gene expression, resulting in correction of MPS I?

Murine MPS I is Indistinguishable in Newborn Pups but Readily Differentiated in

Older Mice

MPS I homozygote Normal

Self-inactivating Lentiviral Vector CSP1 for Expression of Human -L-iduronidase

CMV R U5 U5RU3

PGK IDUA

SD SA

CMV VSVG polyA

pMD.G

REVRSV polyA

RSV-RevSD SA

CMVPRO POL

RREGAG

pMDLg/pRRE

polyA

Four Plasmids for Production of a Third-generation Self-inactivating HIV-based Lentiviral

Vector

cIDUAGARRERSV

SD pRRL.SIN-18

Page 7: DHHS-NIH Gene Therapy for Pediatric NIDCR, NIAID, NCI Diseasesaapexperience.org/wp-content/uploads/documents/advertise/plenary/P2076.pdf · 1972 “Gene therapy” coined by Ted Freidmann

10/27/2014

7

-L-Iduronidase Activity in Plasma After IV Lentiviral Gene Therapy

This image cannot currently be displayed.

0.1

1

10

100

1000

IDU

A E

nzy

me

Act

ivit

y( n

mol

/ml/

hr)

40 50 60 70 80 90

Duration After Injection (day)

This Carrier level

67

66

65

64

63

62

61

56

55

54

100

-L-Iduronidase Activity in MPS I Mice 100 Days After IV Lentiviral Gene TherapyMice Liver Spleen Brain Gonad

54 15.1 1.0 0.10 0.23

55   1.12 1.3 0.09 UD

56   0.85 1.1 0.06 0.29

61 50.5 2.7 0.16 0.08

62 67.6 2.9 0.26 0.16

63 44.3 2.2 0.22 0.07

64 47.3 2.2 0.13 0.11

65   0.29 0.26 0.15 0.20

66   0.82 0.71 0.14 0.12

67 52 2.47 0.09 0.32

Carrier 4.0 +  0.42 14.9 +  2.4 3.7 +  0.55 15.8 +  5.766

UD, undetectable, <  0.01 nmol/mg/hr.

Murine Hurler Syndrome Liver Pathology

Lentiviral TreatmentUntreated

Normal Treated MPS I MPS I

Correction of Craniofacial Dysmorphology in MPS I Mice 100 Days After Neonatal Treatment

Correction of GM2-Ganglioside Accumulation in the Hippocampus of

Murine Hurler SyndromeMurine MPS I

MPS Itreated

Normal

Habituation: Locomotor Activity

-80

-70

-60

-50

-40

-30

-20

-10

0

Het

eroz

ygot

es

MPS

I

MPS

I(5

0+10

0)

% C

ha

ng

e B

etw

ee

n F

irst

an

d F

ina

l T

ria

l

*

*p = 0.064 vs. MPS I*p = 0.014 vs. Carrier

Page 8: DHHS-NIH Gene Therapy for Pediatric NIDCR, NIAID, NCI Diseasesaapexperience.org/wp-content/uploads/documents/advertise/plenary/P2076.pdf · 1972 “Gene therapy” coined by Ted Freidmann

10/27/2014

8

‐Iduronidase Expression in the Brain of Mice iht Hurler Syndrome after Intravenous Administration of 

Lentiviral Vector

Sanfilippo Syndrome Type A(Mucopolysaccharidosis Type III A)

• Progressive neurodegenerative disease

• Normal at birth

• Peak developmental age of 28 months

• Survival to 15 ‐ 30 years of age

Lysogene MPS IIIA development overview

• AAV vector serotype rh10

– Transduces a large area of the CNS with high levelof transgene expression (Swain et al. Gene Ther. 2013)

– Favorable immunogenicity profile (Chirmule1999, Halbert 2006)

• Carrying a normal copy of the N‐sulfoglycosaminesulfohydrolase (SGSH) gene

• Intracerebral administered gene therapy using frameless stereotactic guidance: the most advanced and proven strategy in humans (Batten1, Canavantrials2, Metachromatic Leukodystrophy3 and Sanfilippo B4)

• Orphan drug status in EU and US

Concept: Correction of defect should reduce/reverse toxic storage, improve functions and health status 1Souweidane et al. J Neur Ped 2010

2Leone et al. Sci Transl Med 20123ClinicalTrials.gov number: NCT01801709

4Institut Pasteur

2007 2008 2009 2010 2011 2012 2013

Activities

Proof of concept and vector design

Selection of manufacturer

Production of GLP batches / tox. batches

Production, import, QA & release of GMP vector

Efficacy studies

Toxicology & Biodistribution studies

CTA submission, review& approval (AFSSAPS + ERB)

CT phase I/II

Translation from bench to bedside in < 5 YEARS

2007 2008 2009 2010 2011 2012 2013

Phase I/II Study Design

• Primary objective: to assess tolerance and safety of SAF‐301

• Secondary: Definition of clinical endpoints for future efficacy studies (brain imaging, neuropsychological tests and biological markers)

• Open‐label non‐controlled monocentric study– 4 patients treated in a single neurosurgical procedure with one year 

follow‐up Aug 2011 – May 2013

– Immunosuppressive treatment to prevent transduced cells elimination

Patient 1 Patient 2 Patient 3 Patient 4

Age at inclusion

6y 7m 6y 5m 5y 10m 2y 8m

Phase I/II safety results

• Good tolerance

• Neurosurgery itself wasuneventful

• Absence of adverse eventsrelated to the injectedproduct

• No increase in the numberof infectious events

• No biological sign of toxicity related to immunosuppressive drugs

Safety (primary endpoint)Tardieu et al. (2014) Human Gene 

Therapy

Page 9: DHHS-NIH Gene Therapy for Pediatric NIDCR, NIAID, NCI Diseasesaapexperience.org/wp-content/uploads/documents/advertise/plenary/P2076.pdf · 1972 “Gene therapy” coined by Ted Freidmann

10/27/2014

9

Phase I/II Efficacy Results

Tardieu et al. (2014) Human Gene Therapy

• Neuropsychological evaluations 

suggested improvement, although 

moderate, in behaviour and 

attention in the 3 older patients 

who showed cognitive decline at 

inclusion.

• Neurocognitive benefit was more 

marked in the youngest patient

• Improvement in behavioural 

disorders, hyperactivity and sleep, 

reported by the parents (stopped 

symptomatic medications)

Efficacy (secondary endpoint)

Lessons learned

Younger patients most likely to benefit from new therapy

Need quantified validated data on hyperactivity, sleeping disorders and quality of life

Improved dosing and administration: cerebellarinjections

Phase II/III Study design

• Single‐arm, non‐randomised open‐label study including 12 patients worldwide

• Total dose increased versus SAF‐301

• Additional injection site (cerebellum)

• Anticipate minimum three clinical trial sites in Europe & US

• Duration: average 2 year follow up post dosing per patient depending on age of patient at inclusion

• Start: Q4 2015 

• Immunosuppressive treatment

• European Medicines Agency (EMA) protocole assistance completed 09/14

• USA: Pre‐IND (investigational new drug) procedure

Nalani et al., European Journal of Medical Genetics, 2008

Giant Axonal Neuropathy (GAN)

• Rare autosomal recessive disease of the central and peripheral nervous system caused by loss of gigaxonin gene (GAN)

• Loss of gigaxonin protein results in intermediate filament (IF) accumulation

• Axonal accumulation of IFs causes the most severe disease symptoms

gigaxonin

Cul3Rbx1

Ubiquitin Ligase

Map1BMap8TBC‐B

gigaxonin

UbUb Ub

Ub

GFAPKeratinNF‐HVimentinPeripherinAlpha‐Internexin

Other IFs

Phase I Trial to Treat Giant Axonal Neuropathy

Gigaxonin coding, 1897 bpsynth. polyA

JeT promoter

self‐complementary genome

AAV9 Capsid

Targets:• Primary targets will be spinal cord and brainstem motor neurons, DRG (to treat 

peripheral motor and sensory disease)• Secondary targets will be the brain (to address white matter abnormalities and protein 

aggregations / inclusion bodies)

Preliminary Clinical Approach• Agent:  GMP scAAV9/JeT‐GANopt vector manufactured by the UNC Vector Core 

Human Applications Lab• Dose = 3.5x1013 vg per person (~2.5x1011 vg per mL CSF)• Route = intrathecal (1 administration)• Patient Age = 5 yrs and older• Phase I (safety).  Approved by the RAC, IRB, and FDA.

Page 10: DHHS-NIH Gene Therapy for Pediatric NIDCR, NIAID, NCI Diseasesaapexperience.org/wp-content/uploads/documents/advertise/plenary/P2076.pdf · 1972 “Gene therapy” coined by Ted Freidmann

10/27/2014

10

Gigaxoninexpression

Peripherinaggregates

CONCLUSIOS:• Intrathecal injection of AAV9 in juvenile pigs resulted 

in 50‐100% of spinal cord motor neuron transduction across the entire spinal cord.

Gene Therapy, 2013

CONCLUSIONS:• Intrathecal administration of AAV9 leads to global vector distribution and 

transgene expression to the CNS.• Intrathecal administration allows for a lower dose, avoidance of anti‐capsid 

antibodies, and reduced peripheral organ biodistribution.• This approach translates effectively from rodents to non‐human primates

NIH Recombinant DNA Advisory Committee (RAC)Human Gene Therapy Protocols

1304‐1231

Bonnemann, Carsten; National Institutes of Health; Bethesda, Maryland; A Phase I Study of Intrathecal Administration of scAAV9/JeT‐GAN for the Treatment of Giant Axonal Neuropathy. Sponsor: Hannah’s Hope Fund

Giant Axonal Neuropathy/n Vivo/Adenovirus Associated Virus Serotype 9/GAN Gene, Encodes the Protein Gigaxonin/Intrathecal Administration

SummaryGene Therapy for Pediatric Diseases

• Convergence of the human genome project, and gene therapy technolgy,  have offered hope for the treatment of many genetic disorders for more than 40 years. 

• Recent successes in the past few years predict steady, and accelerating progress in the future. 

• The successes − and limita ons − of gene therapy promise novel treatments particularly for serious, lethal disorders.