di usion inertia model for simulation multiphase turbulent ......governing equations interfacial...

52
Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM Roman Mukin Nuclear Safety Institute Russian Academy of Science Riga, Latvia, October 20-21, 2011 1 / 45 Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM N

Upload: others

Post on 06-Nov-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Diffusion Inertia Model for SimulationMultiphase Turbulent Flows andimplementation into OpenFOAM

Roman Mukin

Nuclear Safety Institute Russian Academy of Science

Riga, Latvia, October 20-21, 2011

1 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 2: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Introduction

Contents

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

2 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 3: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Introduction

Contents

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

2 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 4: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Introduction

Contents

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

2 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 5: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

Mathematical formulation of DIM

The model is based on the kinetic equation for the probability density function(PDF) of the particles velocity distribution, and is valid for two-phase flowswith particles, which dynamic relaxation time does not exceed the Lagrangianintegral timescale of the turbulence.

Particle mass concentration equation∂M

∂t+∂UiM

∂xi︸ ︷︷ ︸transport

+∂

∂xi

[τp

(Fi −

DUi

Dt

)M

]︸ ︷︷ ︸

inertia

=∂

∂xi

[(DBδij +DTp ij

) ∂M∂xj

]︸ ︷︷ ︸

turbulent dispersion

+

+∂

∂xi

(M∂quDTp ij

∂xj

)︸ ︷︷ ︸

turbulent migration

Relative velocity

Vri = Ui − Vi =(DBδij +DTp ij

)∂ lnM∂xj

+ τp

(Fi − DUi

Dt− ∂(quDTp ij)

∂xj

)

3 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 6: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

Flow rate of depositing particles

Boundary condition, a relation between the flow rate of depositing particles JW andthe particle concentration in the near-wall region outside the viscous sub-layer ΦW :

Jw =V +CFu∗Φ1

1− exp(−V +

CF

/V +DT

) ,V +CF = UW + τp

(FW −

[DU

Dt

]W

)– convection-force component

V +DT =

[ScTκ

ln y+ +(V +DF + V +

TR

)−1]−1

– the diffusion-turbulence component

V +DF =

0.115

Sc3/4B

– diffusion term

V +TR =

2 · 10−4τ2.5+

1 + 10−3τ2.5+

– turbophoresis term

4 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 7: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

5 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 8: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

Aerosol Deposition in Straight Tube

j+ – dimensionless deposition velocityτ+ – dimensionless relaxation time dp=10 µm, Re = 10000

6 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 9: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

7 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 10: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

Explicit Self-Consistent Algebraic RSMS.S. Girimaji, Fully Explicit and Self-Consistent ARSM // Theoret. Comput. Fluid Dynamics 8, 387 (1996).

Reynolds stress

〈u′iu′j〉 =2k

3δij − 2C∗µ

k2

ε

{S∗ij −

k

ε

[B1

(S∗ikS

∗jk −

1

3S∗knS

∗knδij

)+

+B2

(S∗ikW

∗jk + S∗jkW

∗ik

) ]}C∗µ =

3A1A2

3A21 − 2A2

3S̄∗II − 6A2

4W̄∗II

, B1 = 2A3A1

, B2 = A4A1

A31 −

(C0

1 − 2)A2

1 −{[

2A2

(C1

1 + 2)

+2A2

3

3

]S̄∗II + 2A2

4W̄∗II

}A1+

+ 2(C0

1 − 2)(A2

3S̄∗II

3+A2

4W̄∗II

)= 0

S∗ij = (1 +Mfu1)Sij W ∗ij = (1 +Mfu1)Wij

Sij = 12

(∂Ui∂xj

+∂Uj∂xi

)Wij = 1

2

(∂Ui∂xj− ∂Uj

∂xi

)A2 = 4

3− C2, A3 = 2− C3, A4 = 2− C4,

8 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 11: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

Turbulence model

Turbulent energy balance equation

(1 +Mfu1)

(∂k

∂t+ Ui

∂k

∂xi

)=

∂xi

{[ν + (1 +Mfu1)

C∗µk2

σkε

]∂k

∂xi

}−

− (1 +Mfu1) 〈u′iu′j〉∂Ui

∂xj− (ε+ εp + Gp)

Turbulence dissipation balance equation

(1 +Mfu1)

(∂ε

∂t+ Ui

∂ε

∂xi

)=

∂xi

{[ν + (1 +Mfu1)

C∗µk2

σεε

]∂ε

∂xi

}−

−ε

k

[Cε1 (1 +Mfu1) 〈u′iu′j〉

∂Ui

∂xj+ Cε2 (ε+ εp + Gp)

]

9 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 12: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

10 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 13: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

Deposition of aerosol particles in tube bend

11 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 14: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

Deposition of aerosol particles in tube bend

Experiment: D.Y.H. Pui et al. // Aerosol Sci. Technol. 7 (1987) 301315.

12 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 15: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

Deposition of aerosol particles in tube bend

Experiment: A.R. McFarland et al. // Environ. Sci. Technol. 31 (1997) 33713377.

13 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 16: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

Deposition of aerosol particles in tube bend

Experiment: T.M. Peters, D. Leith // Ann. Occup. Hyg. 48 (2004) 483490.

14 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 17: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

Deposition of aerosol particles in mouth-throat geometry

CAD files of the Alberta mouth-throat geometry proposed by Professor W. Finlay (University of Alberta, Canada)

Schematic of the Alberta mouth-throat geometry

15 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 18: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

16 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 19: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

Circular Tube FlowExperiment: Varaksin A.Yu. et al. // High Temperature. 1998. 36, N5, P.767.

Mean velocity profiles

Re = 25600

D = 64 mm

U0 = 6.4 m/s

L/D > 20

1 0 1 0 01 0

1 5

2 0

y +

u +

dp, µm Minput Φinput, 10−5 τp, ms

Al2O3 50 ± 6 0.12, 0.18, 0.26 3.66, 5.49, 7.93 30.5

SiO2 50 ± 2 0.12, 0.18, 0.26, 0.39 5.67, 8.5, 12.23, 18.42 19.7

SiO2 100 ± 2 0.12, 0.18, 0.26, 0.39 5.67, 8.5, 12.23, 18.42 78.7

17 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 20: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

SiO2: dp = 50 µm, taup = 19.7 ms

0 . 0 0 . 2 0 . 4 0 . 6 0 . 82468

1 0

r / R

E x p . S i m .0 . 1 2 0 . 1 8 0 . 2 6 0 . 3 9

0 . 0 0 . 2 0 . 4 0 . 6 0 . 82345678

E x p . S i m .0 . 1 2 0 . 1 8 0 . 2 6 0 . 3 9

r / R

√⟨u′2x

⟩〈uc〉

,%

√⟨u′2y

⟩〈uc〉

,%

Streamwise fluctuating velocity Radial fluctuating velocity

18 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 21: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

Al2O3: dp = 50 µm, taup = 30.5 ms

0 . 0 0 . 2 0 . 4 0 . 6 0 . 82468

1 0

E x p . S i m .0 . 1 2 0 . 1 8 0 . 2 6

r / R 0 . 0 0 . 2 0 . 4 0 . 6 0 . 82345678

r / R

E x p . S i m .0 . 1 2 0 . 1 8 0 . 2 6

√⟨u′2x

⟩〈uc〉

,%

√⟨u′2y

⟩〈uc〉

,%

Streamwise fluctuating velocity Radial fluctuating velocity

19 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 22: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Aerosols Transport

SiO2: dp = 100 µm, taup = 78.7 ms

0 . 0 0 . 2 0 . 4 0 . 6 0 . 82468

1 0

r / R

E x p . S i m .0 . 1 2 0 . 1 8 0 . 2 6 0 . 3 9

0 . 0 0 . 2 0 . 4 0 . 6 0 . 82345678

E x p . S i m .0 . 1 2 0 . 1 8 0 . 2 6 0 . 3 9

r / R

√⟨u′2x

⟩〈uc〉

,%

√⟨u′2y

⟩〈uc〉

,%

Streamwise fluctuating velocity Radial fluctuating velocity

20 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 23: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

21 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 24: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Diffusion Inertia Model

Equation for numerical concentration of bubbles

∂Nα

∂t+∂NαWi

∂xi+

∂xi

{τpαNα

1 +m

[(1−A)

(gi −

DWi

Dt

)+ FLαi + FWαi

]}=

=∂

∂xi

[1

1 +m

(DT

∂Nα

∂xi+Nα

∂qαDT

∂xi

)]+ Scoα + Sbrα

Equation for mass concentration of bubbles

∂Mα

∂t+∂MαWi

∂xi+

∂xi

{τpαMα

1 +m

[(1−A)

(gi −

DWi

Dt

)+ FLαi + FWαi

]}=

=∂

∂xi

[1

1 +m

(DT

∂Mα

∂xi+Mα

∂qαDT

∂xi

)]Φα = Mα

ρp– volume concentration

22 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 25: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Turbulence Model

Turbulent energy balance equation

∂ρk

∂t+∂ρkWi

∂xi=

∂xi

{[(1− Φ)µf +

ρνT

σk

]∂k

∂xi

}−

−[

(1− Φ) ρf +A∑α=1

Mαfpα

]〈u′iu′j〉

∂Wi

∂xj− ρε+ Sk1 − Sk2

Turbulence dissipation balance equation

∂ρε

∂t+∂ρεWi

∂xi=

∂xi

{[(1− Φ)µf +

ρνT

σε

]∂ε

∂xi

}−

−Cε1ε

k

[(1− Φ) ρf +

A∑α=1

Mαfpα

]〈u′iu′j〉

∂Wi

∂xj−Cε2ρε2

k+

k(Cε3Sk1 − Cε4Sk2)

Sk1 – TKE source term due to the particle hydrodynamic resistanceSk2 – additional dissipation owing to particle involvement in turbulent motion

23 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 26: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

24 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 27: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Drag coefficient

τp =4(ρp+CAρf )d3ρfCD|Vr| – particle response time

Loth E. // Int. J. Multiphase Flow. 2008. V. 34. P. 523.

CD = CWep→0

D + ∆CD

(C

Wep→∞D − CWep→0

D

)– drag coefficient for

deformable bubbles

CWep→∞D = 8

3+ 24

Rep– drag coefficient for high Weber number

CWep→0

D =

{24

Rep

(1 + 0.15Re0.687

p

)if Rep ≤ 103

0.44 if Rep > 103– drag coefficient of

spherical bubbles

∆CD = tanh[0.0038

(WepRe0.2p

)1.6]

25 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 28: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Lift coefficient

FLi =CLρfV

rj

ρp + CAρf

(∂Ui∂xj− ∂Uj∂xi

)– lift force

CL = max

(−0.27, FL(Wep)C

Wep→0

L

)– lift coefficient

Legendre D., Magnaudet J. // J. Fluid Mech. 1998. V. 368. P. 81.

CWep→0

L =

[1.88

RepSrp(1+0.2Rep/ Srp)3+

(1+16Re−1

p

)24(

1+29Re−1p

)2]1/2

Hibiki T., Ishii M. // Chem. Eng. Sc. 2007. V.62. P. 6457.

FL(Wep) = 2− exp(0.0295 ·We2.21

p

)

FWi =CW ρf |Vr|2ni(ρp + CAρf ) d

– wall force

CW = max(Cw1 + Cw2

dpyw, 0) 0 1 2 3 4 5 6 7 8

- 0 . 4

- 0 . 2

0 . 0

0 . 2

0 . 4

T o m i y a m a ��

L e g a n d r e M a g n a d u e t

26 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 29: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

27 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 30: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Coagulation and Break-Up of bubbles

Scoα = −Nα2

A∑α1=1

βαα1Nα1 – coagulation term

βαα1 – coagulation kernel function

Zaichik L.I. et al. // Int. J. H&MT. 2010. V. 53. P. 1613.

βαα1 = 4π1/2d2αα1

Vtφ(Σ)Γηco

We∗cr =3

1 + 2ρp/ρf

Sbrα =Nα,cr −Nα

τbrαH(We∗α −We∗cr)ηbr

Yao M., Morel C. // Int. J. H&MT. 2004. V. 47. P. 307.

βαα1 =πd

7/3αα1ε

1/3Γηco

6[1 +KcΦ

(We∗αα1

/We∗cr

)1/2Γ]

We∗cr = 1.24

Sbrα =Kb1Φ (1− Φ) ε1/3ηbr

3d11/3α

[1 +Kb2 (1− Φ) (We∗α/We∗cr)

1/2]

28 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 31: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

29 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 32: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Monodisperse bubbly flow

Flow condition

Case Jinc , m/s α dp, mm Flow direction Pipe diam, mm

Wang 1 0.43 0.132 2.8 Up 57.15

Wang 2 0.43 0.310 3.0 Up 57.15

Wang 3 0.43 0.383 3.2 Up 57.15

Wang 4 0.71 0.145 2.8 Down 57.15

Wang 5 0.71 0.288 3.0 Down 57.15

Wang 6 0.71 0.371 3.2 Down 57.15

Serizawa 1 1.03 0.0397 4.0 Up 60

Serizawa 2 1.03 0.1023 4.0 Up 60

Serizawa 3 1.03 0.1627 4.0 Up 60

Liu 4 1.0 0.087 6.6 Up 57.2

Liu 5 1.0 0.095 3.7 Up 57.2

Liu 6 1.0 0.106 2.81 Up 57.2

30 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 33: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Monodisperse bubbly flow

Φ

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 10 . 20 . 30 . 40 . 50 . 60 . 7

r / R

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 00 . 10 . 20 . 30 . 40 . 50 . 6

r / R Void fraction

U,m/s

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

r / R

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 20 . 40 . 60 . 81 . 01 . 2

r / RLiquid velocity

Wang 1

Wang 2

Wang 3

Wang 4

Wang 5

Wang 6

31 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 34: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Monodisperse bubbly flow

Φ

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 1

0 . 2

0 . 3

r / R

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 1

0 . 2

0 . 3

r / R

Void fraction

U,m/s

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 40 . 60 . 81 . 01 . 21 . 4

r / R

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 40 . 60 . 81 . 01 . 21 . 4

r / R

Liquid velocity

Serizawa 1

Serizawa 2

Serizawa 3

Liu 6

Liu 7

Liu 8

32 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 35: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

1 Aerosols TransportDIM and flow rate of depositing particlesAerosol deposition in straight tubeAlgebraic Reynolds Stress ModelDeposition of aerosol particles in tube bendFeedback of Particles on Turbulence

2 Bubbly flowsGoverning equationsInterfacial forcesCoagulation and break-up of bubblesMonodisperse bubbly flowPolydisperse bubbly flow

3 Subcooled Boiling flows

33 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 36: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Polydisperse bubbly flow

Flow pattern map of MTLOOP experiments

Case Jinc , m/s Jing , m/s

MTLOOP-074 1.017 0.0368

MTLOOP-071 0.255 0.0368

MTLOOP-095 0.641 0.0898

MTLOOP-107 1.017 0.140

MTLOOP-118 1.017 0.219D. Lucas, E. Krepper, H.-M. Prasser // Int. J. Multiphase Flow 31 (2005) P.1304

34 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 37: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Polydisperse bubbly flow

MTLOOP-071

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

������������������������ ��

����

Void fraction

0 2 4 6 8 1 0 1 20

2

4

6

8 o u t l e t i n l e t

h(dp),

[%/m

m]

d p , [ m m ]Comparison bubble size distribution at the inlet and

outlet

0 . 0 1 0 . 1 14

5

6

7 1 d e l t a 2 d e l t a 4 d e l t a E x p e r i m e n t

D32, [

mm]

L , [ m ]

Comparison of the spatial averaged Sauter mean diameter

35 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 38: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Polydisperse bubbly flow

MTLOOP-074

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 3

0 . 0 6

0 . 0 9

0 . 1 2���������������������������� ��

����

Void fraction

MTLOOP-095

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

���� ����� ����� ����� ������������

����

Void fraction

MTLOOP-107

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 5

������������������������ ��

����

Void fraction

MTLOOP-118

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

���������������������������� ��

����

Void fraction

MTLOOP-118

0 . 0 1 0 . 1 15

1 0

1 5

2 0 1 d e l t a 2 d e l t a 4 d e l t a E x p e r i m e n t

L , [ m ]

D32, [

mm]

Spatial averaged Sauter mean diameter

36 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 39: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Validation matrix of polydisperse bubbly flows

Flow parameters

Jinc , m/s α Ref Tube diam., mm

Hibiki 1 0.986 0.203 4.3× 104 50.8

Hibiki 2 0.986 0.108 4.3× 104 50.8

Hibiki 3 0.986 0.0512 4.3× 104 50.8

MTLOOP 071 0.255 0.155 1.1× 104 51.2

MTLOOP 074 1.017 0.04 4.5× 104 51.2

MTLOOP 095 0.641 0.14 2.8× 104 51.2

MTLOOP 107 1.017 0.13 4.5× 104 51.2

MTLOOP 118 1.017 0.172 4.5× 104 51.2

TOPFLOW 074 1.017 0.04 2.6× 105 195.3

TOPFLOW 107 1.017 0.13 2.6× 105 195.3

37 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 40: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Polydisperse bubbly flow in vertical tube

Upward flowRef = 4.99× 104, D = 50.8 , 〈Φ〉 = 5%

Local void fraction Liquid and gas velocities Bubbles diameter

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

r / R

Z a i c h i k m o d i f i e d Y a o M o r e l

E x p e r i m e n t : z / D = 5 3 . 5

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 60 . 81 . 01 . 21 . 41 . 6

E x p e r i m e n t : z / D = 5 3 . 5 l i q u i d z / D = 5 3 . 5 g a s s i n g l e p h a s e

G a s v e l o c i t y : L i q u i d v e l o c i t y : Y a o M o r e l Y a o M o r e l Z a i c h i k m o d i f i e d Z a i c h i k m o d i f i e d s i n g l e p h a s e

U, m/

s

r / R0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 02 . 0

2 . 42 . 83 . 23 . 64 . 0

d bubble

, mm

r / R

Z a i c h i k m o d i f i e d E x p e r i m e n t : Y a o M o r e l z / D = 5 3 . 5 i n l e t z / D = 6

Experiment T. Hibiki et al. Int. J. Heat Mass Transfer, 44 (2001) 1869-1888

38 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 41: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Polydisperse bubbly flow in vertical tube

Upward flow in vertical tubeRef = 4.99× 104, D = 50.8 mm, 〈Φ〉 = 10%

Local void fraction Liquid and gas velocities Bubbles diameter

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

r / R

Z a i c h i k m o d i f i e d Y a o M o r e l

E x p e r i m e n t : z / D = 5 3 . 5

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 60 . 81 . 01 . 21 . 41 . 6

E x p e r i m e n t : s i n g l e p h a s e z / D = 5 3 . 5 l i q u i d z / D = 5 3 . 5 g a s s i n g l e p h a s e

G a s v e l o c i t y : L i q u i d v e l o c i t y : Y a o M o r e l Y a o M o r e l Z a i c h i k m o d i f i e d Z a i c h i k m o d i f i e d

U, m/

s

r / R0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 02 . 0

2 . 42 . 83 . 23 . 64 . 0

d bubble

, mm

r / R

Z a i c h i k m o d i f i e d E x p e r i m e n t : Y a o M o r e l z / D = 5 3 . 5 i n l e t z / D = 6

Experiment T. Hibiki et al. Int. J. Heat Mass Transfer, 44 (2001) 1869-1888

39 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 42: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

Experiments MTLOOP and TOPFLOW

Flow pattern in MTLOOP experiments

40 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 43: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

MTLOOP-074

Ref = 4.99× 104, D = 51.2 , 〈Φ〉 = 4%

Radial gas volume fraction Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2

M T L O O P - 0 7 4

r / R2 3 4 5 6 70

1 02 03 04 05 06 07 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2

M T L O O P - 0 7 4

r / R2 3 4 5 6 70

1 0

2 0

3 0

4 0

H(d p ),

%/mm

d p , m m

H(dp) = dΦddp

Φ =∫∞0 H(dp)ddp

41 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 44: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

MTLOOP-074

Ref = 4.99× 104, D = 51.2 , 〈Φ〉 = 4%

Radial gas volume fraction Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2

M T L O O P - 0 7 4

r / R2 3 4 5 6 70

1 02 03 04 05 06 07 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2

M T L O O P - 0 7 4

r / R2 3 4 5 6 70

1 0

2 0

3 0

4 0

H(d p ),

%/mm

d p , m m

41 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 45: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

MTLOOP-074

Ref = 4.99× 104, D = 51.2 , 〈Φ〉 = 4%

Radial gas volume fraction Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2

Z a i c h i k m o d i f i e d , 2 m o m e n t s Y a o M o r e l , 2 m o m e n t s M T L O O P - 0 7 4

r / R2 3 4 5 6 70

1 02 03 04 05 06 07 0

H(d p ),

%/m

m

d p , m m 2 3 4 5 6 701 02 03 04 05 06 07 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 20 . 0 40 . 0 60 . 0 80 . 1 00 . 1 2

Z a i c h i k m o d i f i e d , 4 m o m e n t s Y a o M o r e l , 4 m o m e n t s M T L O O P - 0 7 4

r / R2 3 4 5 6 70

1 0

2 0

3 0

4 0

H(d p ),

%/mm

d p , m m 2 3 4 5 6 70

1 0

2 0

3 0

4 0

H(d p ),

%/mm

d p , m m

41 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 46: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

MTLOOP-107

Ref = 4.99× 104, D = 51.2 , 〈Φ〉 = 13%

Radial gas volume fraction Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

M T L O O P - 1 0 7

r / R2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

M T L O O P - 1 0 7

r / R2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

H(dp) = dΦddp

Φ =∫∞0 H(dp)ddp

42 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 47: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

MTLOOP-107

Ref = 4.99× 104, D = 51.2 , 〈Φ〉 = 13%

Radial gas volume fraction Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

M T L O O P - 1 0 7

r / R2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

M T L O O P - 1 0 7

r / R2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

42 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 48: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

MTLOOP-107

Ref = 4.99× 104, D = 51.2 , 〈Φ〉 = 13%

Radial gas volume fraction Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

M T L O O P - 1 0 7 Y a o M o r e l Z a i c h i k m o d i f i e d

r / R2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 00 . 0 50 . 1 00 . 1 50 . 2 00 . 2 50 . 3 0

M T L O O P - 1 0 7 Y a o M o r e l Z a i c h i k m o d i f i e d

r / R2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

m

d p , m m

2 4 6 8 1 0 1 20

2

4

6

8

1 0

H(d p ),

%/m

md p , m m

42 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 49: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

TOPFLOW-074 TOPFLOW-107

Ref = 2.6× 105, D = 195.3 , 〈Φ074〉 = 4%, 〈Φ107〉 = 13%

Radial gas volume fraction Gas velocity Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

T O P F L O W 0 7 4

void f

ractio

n

r / R0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 4

0 . 8

1 . 2

1 . 6

r / R

U, m/

s

T O P F L O W 0 7 4

2 4 6 8 1 0 1 20

1 0

2 0

3 0

4 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

r / R

T O P F L O W 1 0 7

void f

ractio

n

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 4

0 . 8

1 . 2

1 . 6

r / R

U, m/

s

T O P F L O W 1 0 70 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 50

5

1 0

1 5

2 0

H(d p ),

%/m

m

d p , m m

43 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 50: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Bubbly flows

TOPFLOW-074 TOPFLOW-107

Ref = 2.6× 105, D = 195.3 , 〈Φ074〉 = 4%, 〈Φ107〉 = 13%

Radial gas volume fraction Gas velocity Bubble size distribution

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

1 m o m e n t 2 m o m e n t s T O P F L O W 0 7 4

void f

ractio

n

r / R0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 4

0 . 8

1 . 2

1 . 6

r / R

U, m/

s g a s l i q u i d T O P F L O W 0 7 4

2 4 6 8 1 0 1 20

1 0

2 0

3 0

4 0

H(d p ),

%/m

m

d p , m m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

r / R

1 m o m e n t 2 m o m e n t s T O P F L O W 1 0 7

void f

ractio

n

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00 . 4

0 . 8

1 . 2

1 . 6

r / R

U, m/

s

g a s l i q u i d T O P F L O W 1 0 7

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 50

5

1 0

1 5

2 0

H(d p ),

%/m

m

d p , m m

43 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 51: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Subcooled Boiling flows

Vertical annular flowExperiment: T.H. Lee , G.C. Park, D.J. Lee // , Int. J. of Multiphase Flow 28 (2002) 1351–1368

44 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N

Page 52: Di usion Inertia Model for Simulation Multiphase Turbulent ......Governing equations Interfacial forces Coagulation and break-up of bubbles Monodisperse bubbly ow Polydisperse bubbly

Subcooled Boiling flows

Diffusion-Inertia Model (DIM) of a dispersed flow

DIM is 1-fluid Eulerian mixture approach to modeling ofmultiphase flows in complex geometry for 3D simulation of:

aerosols (drops) transport and deposition (NPP’s primary circuitand containment)

bubbles(vessel outer cooling)

It was specially designed to account for particle-turbulenceinteraction.Why DIM among other existing multiphase models?

universal description of particles, droplets, and bubbles withreasonable accuracy

actually claims to be a self-consistent description ofparticles/bubbles interaction with the turbulence

robust and effective

developable to expansion of its application field

45 / 45Diffusion Inertia Model for Simulation Multiphase Turbulent Flows and implementation into OpenFOAM

N