diabetes pathophysiology - full version

14
Diabetes Pathophysiology Claire Bryant [email protected]

Upload: minmin69

Post on 21-Jul-2016

24 views

Category:

Documents


3 download

DESCRIPTION

Diabetes patho

TRANSCRIPT

Page 1: Diabetes Pathophysiology - Full Version

Diabetes  Pathophysiology  

Claire  Bryant  [email protected]  

Page 2: Diabetes Pathophysiology - Full Version

What  we’re  going  to  cover  

•  Basic  glucose,  insulin  &  pancreas  physiology  •  Type  1  vs  Type  2  •  DKA  •  HONK  •  Hypoglycaemia  •  Long  term  complicaLons  

Page 3: Diabetes Pathophysiology - Full Version

What  is  diabetes  mellitus?  

•  A  group  of  disorders  characterised  by  hyperglycaemia  

•  Insulin  deficiency  •  Insulin  resistance  •  …  or  both  

Page 4: Diabetes Pathophysiology - Full Version

An  overview  of  glucose  metabolism  

Glucose   Glucose-­‐6-­‐phosphate   Glycogen  

ACoA/Pyruvate   Lactate  

Kreb’s  cycle  

2  ATP  

36  ATP  

CO2  +  H2O  MITOCHONDRIA  

CYTOPLASM  

Glycolysis  

Anaerobic  (Cori)  

Page 5: Diabetes Pathophysiology - Full Version

PepLde  hormones  with  opposing  effects  

Acts  to  decrease  blood  glucose  ANABOLIC  

Acts  to  increase  blood  glucose  CATABOLIC  𝛂  cells  𝜷  cells  

Insulin  vs  Glucagon  

Release  triggered  by:  1.  Metabolites  e.g.  ↑  glucose,  ↑  FA,  ↑AAs  2.  Hormones  -­‐  ↑  gut  hormones,  adrenaline  3.  Nerves  -­‐  PNS  4.  Drugs  -­‐  sulphonylureas  

AcLons:  On  glucose:  ↑  rate  of  glucose  uptake  into  cells  ↓  glucose  release  from  liver    On  fats:  ↑  lipogenesis  (adipose  Lssue),  ↓  lipolysis  and  β  oxidaLon  On  proteins:  ↓  proteolysis,  ↑  protein  synthesis    

Page 6: Diabetes Pathophysiology - Full Version

Insulin:  mechanism  of  acLon  

Insulin  Receptor  GLUT  4  

IRS-­‐1  PI3K  

PDK1  PKB   Uses  PI3K  as  a  second  messenger  

PKB  s2mulates  transloca2on  of  GLUT4  to  the  cell  membrane  

Page 7: Diabetes Pathophysiology - Full Version

Type  1  vs  Type  2  

Type  1   Type  2  

250,000  people  10%  of  diabetes  

2.5  million  people  90%  of  diabetes  

Absolute  insulin  deficiency   Insulin  resistance  

•  HLA  DR4  –  linked  to  RA  and  SLE  •  50%  concordance  in  MZ  twins  •  T-­‐cell  mediated  destrucLon  of  beta  cells  

?autoimmune  ?virally  triggered  –  similar  proteins  on  viral  coat  to  those  on  beta  cells,  body  alacks  virus,  body  alacks  beta  cells  

•  Insulin  binds  to  receptor  but  no  increase  in  glucose  transporters  

•  Glucose  can’t  get  into  the  cell  à  high  blood  glucose  •  SLmulaLon  of  beta  cells  to  produce  more  insulin  à  

hyperinsulinaemia  Impaired  glucose  tolerance  at  this  stage  with  post-­‐prandial  high  glucose    …  Then  aBer  many  years,  decompensa2on  of  beta  cells  •  Insulin  levels  drop  to  normal  •  Blood  glucose  very  high  à  diagnosis  of  DM  •  Eventually  beta  cells  become  exhausted  and  there  is  

insulin  deficiency  as  in  T1DM  

Page 8: Diabetes Pathophysiology - Full Version

DKA  

Lack  of  insulin  Why?     •  Stress/infecLon  

•  Decreased  insulin  intake  

glucose  glucose  

glucose  

glucose  glucose  

glucose  glucose  glucose  

glucose  Lots  of  glucose  in  the  bloodstream  which  can’t  get  into  cells  so  

elevated  blood  glucose,  

‘hyperglycaemia’  

Cell  

Cells  shim  to  other  substrates  to  produce  energy:  proteins  

and  lipids    

Byproducts  of  this  are  faly  acids  à  ketone  bodies  

Insulin  is  also  a  regulator  of  the  Na+/K+  pump  and  exchange  becomes  abnormal  •  Intracellular  K+  becomes  low  •  Normal  K+  levels  in  plasma  as  Lght  control  by  kidneys  •  …  but  the  enLre  body  has  become  hypokalaemic  

•  When  you  fix  the  situaLon  and  give  insulin,  K+  rapidly  floods  into  the  cells  à  paLent’s  plasma  suddenly  becomes  low  in  K+  

•  Therefore  K+  is  added  to  bags  of  fluid  in  treatment  of  DKA  

glucose  glucose  

glucose  glucose  glucose  glucose  

Plasma  glucose  is  above  the  renal  threshold  

OsmoFc  diuresis  and  glycosuria  

DehydraFon  

Coma  

Death  Acidosis  and  Ketosis  

Kussmaul  breathing  

ExhausFon  

•  2-­‐5%  mortality  •  60-­‐90%  mortality  with  cerebral  oedema  

Page 9: Diabetes Pathophysiology - Full Version

PotenLally  DKA?  

•  Polyuria  •  Polydipsia  •  Polyphagia  +  weight  loss  •  Puking  (N&V)  

•  Diuresis  and  dehydraLon  •  Dizziness  •  Dam  –  mental  state  changes  

•  KetoLc  breath  •  Kussmaul  breathing  

•  Abdo  pain  &  cramps  •  Arrythmia  +  arrest  

<3mmol/L  or  ++  in  urine  

<11.1mmol/L  venous  pH  <7.3  

Ketonaemia  

Hyperglycaemia  Acidaemia  

Page 10: Diabetes Pathophysiology - Full Version

Aims  of  treatment  

•  Fluids  to  correct  dehydraFon  –  0.9%  saline  –  40mmol  K+  added  to  each  bag  to  avoid  hypokalaemia  –  Strict  fluid  balance:  NG  tube  and  catheter  with  fluid  balance  chart  –  Check  electrolytes  and  glucose  every  hour  

•  Insulin  –  0.1  units/kg  intravenous  insulin  infusion  (IVII)  –  Reduce  glucose  by  3mmol/L  per  hour,  faster  à  increased  risk  cerebral  oedema  due  to  rapid  changes  in  serum  osmolality  

•  Introduce  10%  glucose  when  BMs<14  –  Need  to  keep  the  insulin  going  to  switch  off  ketogenesis,  but  if  you  don’t  add  glucose  the  paLent  will  become  hypoglycaemic  

•  Treat  the  underlying  cause  

Page 11: Diabetes Pathophysiology - Full Version

HONK  State  

•  Can  develop  due  to  the  same  reasons  as  DKA  •  More  common  in  frail  elderly    •  Extreme  hyperglycaemia  (>40)  with  serum  hyperosmolarity  (>340)  •  Hyperosmolarity  leads  to  osmoLc  shim  of  water  into  the  intravascular  compartment  =  severe  

intracellular  dehydraLon  •  OsmoLc  diuresis  with  significant  dehydraLon  and  altered  mental  state  •  Overt  ketosis  does  not  occur  as  low  levels  of  insulin  prevent  lipolysis,  but  levels  are  insufficient  to  

reduce  blood  glucose  

•  Signs  and  symptoms:  marked  dehydraLon,  weakness,  confusion,  neurological  signs  or  seizures.  Coma  is  rare,  affecLng  only  10%.  If  they  are  dehydrated,  what  signs  might  they  have?  

•  ComplicaFons:  thromboembolic  events,  infarcLon,  DIC,  cerebral  oedema,  mulLorgan  failure  •  Overall  mortality  up  to  30%  -­‐  slightly  more  than  DKA  as  elderly  populaLon  

Page 12: Diabetes Pathophysiology - Full Version

Plasma  osmolality  and  anion  gap  

•  Plasma  osmolality  is  increased  in  DKA  and  HONK  •  Plasma  osmolality  =  2(Na  +  K)  +  Urea  +  Glucose  –  In  DKA,  usually  >290  mOsm/kg  –  In  HONK,  usually  >320  mOsm/kg    

•  Anion  gap  =  (Na  –  Cl)  +  HCO3  –  In  DKA,  usually  >13  mmol/L  

Page 13: Diabetes Pathophysiology - Full Version

Hypoglycaemia  

•  Whipple’s  triad:  – Hypoglycaemia  – Symptoms  alributable  to  a  low  blood  sugar  level  – ResoluLon  of  symptoms  with  correcLon  of  hypoglycaemia  

•  Usually  a  paLent  on  insulin  or  sulphonylureas  •  Symptoms:  – SNS  mediated  2.5-­‐3:  increased  HR,  sweaLng,  pallor,  fine  tremor  – Central  ‘neuroglycopenia’  <2.5:  blurred  vision,  slurred  speech,  disorientaLon,  coma,  cardiorespiratory  arrest  

Page 14: Diabetes Pathophysiology - Full Version

Long  term  complicaLons  

3  main  pathways  of  pathology  1.  Non-­‐enzymaLc  glycosylaLon  i.e.  direct  toxicity  of  hyperglycaemia  on  cells  •  Directly  related  to  poorly  controlled  blood  glucose  levels  (increased  levels  =  increased  risk)  •  GlycosylaLon  of  collagen  and  proteins  become  ‘advanced  glycosylaLon  end  products’  (AGE)  

–  Trap  intersLLal  proteins  in  blood  vessels  (eg.  LDL)  à  atherogenesis  –  Trap  albumin  in  renal  vessels  à  thickened  glycosylated  basement  membrane  –  AGE  receptors  cause  release  of  cytokines  à  increased  endothelial  permeability  and  procoagulaLon  

2.  AcLvaLon  of  Protein  Kinase  C  •  Diacylglycerol  (DAG)  is  a  second  messenger,  hyperglycaemia  increases  synthesis  •  DAG  and  calcium  ions  acLvate  PKC  in  cells  •  PKC  acLvaLon  has  many  downstream  effects:    

–  Proangiogenic  molecules  e.g.  vascular  endothelial  growth  factor  (VEGF)  –  ProfibroLc  molecules  e.g.  transforming  growth  factor  beta  (TGFβ)  

3.  Polyol  Pathway  •  In  cells  that  do  not  require  insulin  for  glucose  uptake,  hyperglycaemia  causes  increased  intracellular  glucose  •  Aldose  reductase  transforms  it  into  sorbitol  (a  polyol),  which  is  transformed  into  fructose  •  Increased  intracellular  osmolarity  and  water  influx  à  cell  oedema  •  Increased  risk  of  oxidaLve  stress  (anLoxidant  reserves  are  reduced  with  sorbitol  metabolism)