diaphargm wall design

32
Detailed Analysis and Design of Diaphragm wall TABLE OF CONTENTS SL.NO PAGE NO 1.0 INTRODUCTION 2 2.0 STRUCTURAL ARRANGEMENT 2 3.0 TIDAL DATA 2 4.0 MATERIALS AND COVER 3 5.0 LOADS 3 6.0 LOAD COMBINATION 5 7.0 ANALYSIS 6 8.0 DESIGN 6 9.0 SUMMARY 6 10.0 ANNEXURE –I EARTH PRESSURE CALCULATION 8 DIFFERENTIAL WATER PRESSURE 9 SPRING CONSTANT CALCULATION 11 SEISMIC FORCE CALCULATION 12 11.0 ANNEXURE –II ANALYSIS FOR CALCULATING FREQUENCY 14 MAIN ANALYSIS 17 12.0 ANNEXURE – III DESIGN OF DIAPHRAGM WALL 22 13.0 ANNEXURE – IV DRAWINGS 24 OEC Private Limited 1

Upload: surajoffshore

Post on 21-Nov-2014

152 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

TABLE OF CONTENTS

SL.NO PAGE NO

1.0 INTRODUCTION 2

2.0 STRUCTURAL ARRANGEMENT 2

3.0 TIDAL DATA 2

4.0 MATERIALS AND COVER 3

5.0 LOADS 3

6.0 LOAD COMBINATION 5

7.0 ANALYSIS 6

8.0 DESIGN 6

9.0 SUMMARY 6

10.0 ANNEXURE –I

EARTH PRESSURE CALCULATION 8

DIFFERENTIAL WATER PRESSURE 9

SPRING CONSTANT CALCULATION 11

SEISMIC FORCE CALCULATION 12

11.0 ANNEXURE –II

ANALYSIS FOR CALCULATING FREQUENCY 14

MAIN ANALYSIS 17

12.0 ANNEXURE – III

DESIGN OF DIAPHRAGM WALL 22

13.0 ANNEXURE – IV

DRAWINGS 24

OEC Private Limited1

Page 2: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

ANALYSIS AND DESIGN OF DIAPHRAGM WALL

FOR THRESPURAM

1.0 Introduction:

The Mahindra Consulting Engineers Ltd, letter dated on 11/12/2008 have placed the

work order with IITM,for carrying out the consultancy services for the Analysis and

Design of one wharf cum Retaining wall . In place of Retaining wall, this office is

proposing Diaphragm Wall and its Analysis and Design is summarized below.

2.0 Structural arrangement:

The proposed diaphragm wall will have thickness of 600mm and Length of

319.23 m and divided in to panels. Each panel is having 4.0m length. The Layout of

the diaphragm wall is given in figure 1.

Dimensions

Thickness of Diaphragm wall - 600 mm thick

The top level of Diaphragm wall is +2.2 m.

The Dredge level of Diaphragm wall is -2.11 m

Founding Level of Diaphragm Wall

The founding level is kept as -7.0 m (Tentative) based on soil profile from bore

holes done near the proposed diaphragm wall.

3.0 Tidal Data

The tidal levels at Tuticorin

Highest High Water - +1.07m

Mean High Water Spring (MHWS) - +0.99m

Mean High Water Neap (MHWN) - +0.m

Mean Low Water Neap (MLWN) - +0.5m

Mean Low Water Spring (MLWS) - +0.29m

Lowest Low Water - -0.00m

Mean Sea Level - +0.64

OEC Private Limited2

Page 3: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

4.0 Materials And Cover

Concrete

M-30 grade concrete is proposed for diaphragm wall

Reinforcement

High yield strength deformed bars of grade Fe 415 conforming to

IS 1789-1979, are considered.

Clear cover to be provided

Diaphragm wall : 75 mm

5.0 Loads

The following loads are considered to be acting on the structure. Load

calculations are given in Annexure II.

(i) Dead Load

Self Weight of all structural members is considered as dead load on the

structure. Density of reinforced cement concrete is taken as 25 kN/m3.

(ii) Earth Pressure

Earth pressure is calculated based on the code IS 2911 – 1979.

The following formula is used to calculate.

a)Active earth pressure

Pa =

Ka =

Where

r = Unit weight of the soil in kN/m3

h = Depth of the soil above the section

q = Surcharge in k N /m2

= Angle of internal factor of the soil.

Ka = Coefficient of active earth pressure

C = Cohesion in k N/ m2

b) Calculation of Sub grade Modulus

OEC Private Limited3

Page 4: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

The sub grade modulus is calculated as per the following equations.

=

Where,

Es = Elastic modulus of soil

Ep = Elastic modulus of pile / wall materials

Ip = Moment of inertia

D = Diameter of the pile

= Poisson ratio

Calculation of Soil Spring Values

The soil springs are used to idealize the soil support for pile. The following

formula is used to calculate the individual spring constants.

Top Spring Value

K1 =

Intermediate Spring Value

K(i) =

Bottom Spring Value

Kn =

Where,

B = Lateral dimension of pile / Diaphragm wall

L = Segment length of pile (Spacing between springs)

Ks = Modulus of sub grade

(iii)Differential water pressure

Differential water pressure has been considered.

(iv)Seismic ForceSeismic force is calculated according to IS 1893, considering 100% dead load

+50% live load as acting on the structure. As per IS code, Threspuram is under

Zone II and the basic horizontal seismic coefficient is calculated accordingly.

6.0 Load Combination

OEC Private Limited4

Page 5: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

Load Combination factors for the analysis is in accordance with IS

4651. The following load combination has been considered in the analysis.

Limit state of serviceability

1.0DL+1.0AEP+1.0PEP+1.0DWF+1.0 MF

1.0DL+1.0AEP+1.0PEP+1.0DWF+1BF

Limit state of collapsibility

1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5MF

1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5BF

0.9DL+1.0AEP+1.0PEP+1.2DWP

1.2DL+1AEP+1PEP+1.2DWP

0.9DL+1AEP+1.0PEP+1.0DWP+1.5SF

1.2DL+1.0AEP+1.0PEP+1.0DWP+1.5SF

Where

DL - Dead Load

AEP - Effective Active Earth Pressure

DWP - Differential Water Pressure

PEP - Passive Earth Pressure

SF - Seismic Force

BF - Berthing force

MF - Mooring Force

Reference Codes:

IS 4651 (Part-4) : Planning and Design of Ports & Harbours.

IS 1893 – 2002 : Criteria for Earthquake Resistant Design of Structures

SP – 16 : Design Aids for Reinforced Concrete to IS 456-1978.

7.0 Analysis

OEC Private Limited5

Page 6: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

A two dimensional analysis has been carried out using STAAD Pro package.

The Discretisation diagrams and input data are given in Annexure. The Load

Combination is considered in the analysis as per IS 4651 for limit state of

serviceability and limit state of collapsibility.

8.0 Design

The design of diaphragm wall is done for maximum moments from

Staad Pro 2005.

9.0 Summary

This report gives the analysis and design details for Construction of Diaphragm Wall

for the development of Fishing Harbour at Threspuram in Tamil Nadu.The design is

prepared to satisfy all relevant codal requirements.

(Mr.S.Sakthivel) (Prof. R. SUNDRAVADIVELU )Manager –Operations Department of Ocean Engineering

OEC Private Limited IIT, Madras

OEC Private Limited6

Page 7: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

ANNEXURE -1

Load Calculation

OEC Private Limited7

Page 8: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

LOAD CALCULATION

1.0 EARTH PRESSURE CALCULATION

Borehole No 03 has been used for earth pressures calculation for the design of Diaphragm wall.

Active Earth Pressure

Top layer Bottom layer Soil type

Angle of friction Dry/Submerged Cohesion

Height of layer Ka γd/sub h

Water Pressure Pa @ Pa @

Effective force

Centroidal distance

level level   Ø density of soil C h      Top of layer

Bottom of layer  

(from bottom of layer)

m m   Degrees kN/m3 kN/m2 m   kN/m2   kN/m2 kN/m2    

2.2 0 Sand 30 18 0 2.2 0.33 39.6     13.2 14.52 0.73

0 -2 Sand 37.4 9.2 0 2 0.24 18.4 20 9.67 34.17 43.84 0.81

-2 -2.4 Sandy Gravel 35.9 8.9 0 0.4 0.26 3.56 24 35.12 40.05 15.03 0.20

-2.4 -3.5 Sandy Clay 26 9.375 112.5 1.1 0.39 10.31 35 -92.56 -77.53 -93.55 0.57

-3.5 -4.5 Sandy Gravel 38 10 0 1 0.24 10 45 52.10 64.48 58.29 0.48

-4.5 -7 Boulders/Rocks 40 16 0 2.5 0.22 40 70 62.80 96.50 199.13 1.16

Passive Earth Pressure

Top layer

Bottom layer Soil type

Angle of friction Dry/Submerged Cohesion

Height of layer Kp γd/sub h

Water Pressure Pp @ Pp @

Effective force

Centroidal distance

level level   Ø density of soil C h      Top of layer

Bottom of layer  

(from bottom of layer)

m m   Degrees kN/m3 kN/m2 m   kN/m2   kN/m2 kN/m2    

0                          

-2.11 -2.4 Sandy Gravel 35.9 8.9 0 0.29 3.84 2.581 24 21.10 33.90 7.97 0.13

-2.4 -3.5 Sandy Clay 26 9.375 112.5 1.1 2.56 10.31 35 390.69 428.10 450.33 0.54

-3.5 -4.5 Sandy Gravel 38 10 0 1 4.20 10 45 89.20 141.24 115.22 0.46

-4.5 -7 Boulders/Rocks 40 16 0 2.5 4.60 40 70 150.29 359.24 636.91 1.08

OEC Private Limited 8

Page 9: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

2.0 DIFFERENTIAL WATER PRESSURE

The tidal levels at Tuticorin

Highest High Water - +1.07m

Mean High Water Spring (MHWS) - +0.99m

Mean High Water Neap (MHWN) - +0.m

Mean Low Water Neap (MLWN) - +0.5m

Mean Low Water Spring (MLWS) - +0.29m

Lowest Low Water - -0.00m

Mean Sea Level - +0.64

As per IS4651 – 1989 (Part – III)

Assumed LLW = Level between MLWS and LLW

=

= -0.145

Water Level on sea side (assumed LLW) is -0.145

Assumed Ground Water Level (GW): (for Good Drainage Condition)

MLW = Average of MLWN and MLWS

=

= +0.395

GW is 0.3m above MLW

GWL = 0.3 + 0.395

= 0.695

= 10kN/m3

= 10 × (0.695 + 0.145)

= 8.4 kN/m2

OEC Private Limited9

Page 10: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

IDEALISED DIAPHRAGM WALL

-8.400 kN/m

-199.130 kN

636.910 kN

-8.400 kN/m

-8.400 kN/m

-8.400 kN/m

-58.290 kN

115.220 kN

-8.400 kN/m

-8.400 kN/m93.550 kN

450.330 kN

-8.400 kN/m

-15.030 kN7.970 kN

-8.400 kN/m

-8.400 kN/m

-8.400 kN/m-43.840 kN

-8.400 kN/m

-8.400 kN/m

-6.950 kN/m-8.400 kN/m-8.400 kN/m

-2.550 kN/m

-6.950 kN/m

-14.520 kN0 kN/m-2.550 kN/m

-15.000 kN-15.000 kN

Load 11X

Y

Z

-8.400 kN/m

-199.130 kN

636.910 kN

-8.400 kN/m

-8.400 kN/m

-8.400 kN/m

-58.290 kN

115.220 kN

-8.400 kN/m

-8.400 kN/m93.550 kN

450.330 kN

-8.400 kN/m

-15.030 kN7.970 kN

-8.400 kN/m

-8.400 kN/m

-8.400 kN/m-43.840 kN

-8.400 kN/m

-8.400 kN/m

-6.950 kN/m-8.400 kN/m-8.400 kN/m

-2.550 kN/m

-6.950 kN/m

-14.520 kN0 kN/m-2.550 kN/m

-15.000 kN-15.000 kN

Load 11X

Y

Z

-8.400 kN/m

-199.130 kN

636.910 kN

-8.400 kN/m

-8.400 kN/m

-8.400 kN/m

-58.290 kN

115.220 kN

-8.400 kN/m

-8.400 kN/m93.550 kN

450.330 kN

-8.400 kN/m

-15.030 kN7.970 kN

-8.400 kN/m

-8.400 kN/m

-8.400 kN/m-43.840 kN

-8.400 kN/m

-8.400 kN/m

-6.950 kN/m-8.400 kN/m-8.400 kN/m

-2.550 kN/m

-6.950 kN/m

-14.520 kN0 kN/m-2.550 kN/m

-15.000 kN-15.000 kN

Load 11X

Y

Z

-8.400 kN/m

-199.130 kN

636.910 kN

-8.400 kN/m

-8.400 kN/m

-8.400 kN/m

-58.290 kN

115.220 kN

-8.400 kN/m

-8.400 kN/m93.550 kN

450.330 kN

-8.400 kN/m

-15.030 kN7.970 kN

-8.400 kN/m

-8.400 kN/m

-8.400 kN/m-43.840 kN

-8.400 kN/m

-8.400 kN/m

-6.950 kN/m-8.400 kN/m-8.400 kN/m

-2.550 kN/m

-6.950 kN/m

-14.520 kN0 kN/m-2.550 kN/m

-15.000 kN-15.000 kN

Load 11X

Y

Z

OEC Private Limited10

Page 11: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

SPRING CONSTANTS CALCULATION

Level D l μs Ep Ip N Es ksSpring

Constants

        kN/m2 m4   Kpa        -1.51 0.6                    -2.11 0.6 0.6 0.3 27386128 0.02 39 74000 81319 0.720 63441 9706-2.71 0.6 0.6 0.3 27386128 0.02 18 49000 53846 0.696 40590 15298-3.31 0.6 0.6 0.3 27386128 0.02 18 49000 53846 0.696 40590 15466-3.91 0.6 0.6 0.3 27386128 0.02 55 80000 87912 0.725 69032 23998-4.51 0.6 0.6 0.3 27386128 0.02 55 80000 87912 0.725 69032 24852-5.11 0.6 0.6 0.3 27386128 0.02 100 80000 87912 0.725 69032 24852-5.71 0.6 0.6 0.3 27386128 0.02 100 80000 87912 0.725 69032 24852-6.31 0.6 0.6 0.3 27386128 0.02 100 80000 87912 0.725 69032 24852

-7 0.6 0.69 0.3 27386128 0.02 100 80000 87912 0.725 69032 14290

OEC Private Limited11

Page 12: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

3.0 SEISMIC FORCE CALCULATION

Dead Load

For 1m length

Diaphragm wall =

= 138 kN

Total Dead Load = 138 kN

As per IS 1893-2002,

Horizontal Seismic coefficient, Ah -

Z - Zone factor

0.10 (Zone II)

I - Importance factor (1.5)

R - Response reduction factor (3)

- Average response acceleration coefficient

From Staad output

Time Period T = 0.228 sec

Frequency = 4.371 Hz

= 2.5

Ah =

= 0.0.0625

Seismic force =

=

= 8.625 k N

OEC Private Limited12

Page 13: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

ANNEXURE - 2

Analysis Using STAADPRO

OEC Private Limited13

Page 14: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

ANALYSIS FOR CALCULATING FREQUENCY

INPUT

STAAD SPACE

START JOB INFORMATION

ENGINEER DATE 28-Jan-09

END JOB INFORMATION

INPUT WIDTH 79

UNIT METER KN

JOINT COORDINATES

1 0 2.2 0; 2 0 0 0; 3 0 -2.11 0; 4 0 -7 0; 5 0 -2.71 0; 6 0 -3.31 0;

7 0 -3.91 0; 8 0 -4.51 0; 9 0 -5.11 0; 10 0 -5.71 0; 11 0 -6.31 0;

12 0 -0.422 0; 13 0 -0.844 0; 14 0 -1.266 0; 15 0 -1.688 0; 16 0 1.76 0;

17 0 1.32 0; 18 0 0.88 0; 19 0 0.44 0;

MEMBER INCIDENCES

1 1 16; 2 2 12; 3 3 5; 4 5 6; 5 6 7; 6 7 8; 7 8 9; 8 9 10; 9 10 11; 10 11 4;

11 12 13; 12 13 14; 13 14 15; 14 15 3; 15 16 17; 16 17 18; 17 18 19; 18 19 2;

DEFINE MATERIAL START

ISOTROPIC CONCRETE

E 2.17185e+007

POISSON 0.17

DENSITY 25

ALPHA 1e-005

DAMP 0.05

END DEFINE MATERIAL

MEMBER PROPERTY AMERICAN

1 TO 18 PRIS YD 0.6 ZD 1

CONSTANTS

MATERIAL CONCRETE MEMB 1 TO 18

SUPPORTS

3 FIXED BUT FY MX MY MZ KFX 9706 KFZ 9706

5 FIXED BUT FY MX MY MZ KFX 15298 KFZ 15298

6 FIXED BUT FY MX MY MZ KFX 15466 KFZ 15466

7 FIXED BUT FY MX MY MZ KFX 23998 KFZ 23998

8 FIXED BUT FY MX MY MZ KFX 24852 KFZ 24852

9 FIXED BUT FY MX MY MZ KFX 24852 KFZ 24852

10 FIXED BUT FY MX MY MZ KFX 24852 KFZ 24852

11 FIXED BUT FY MX MY MZ KFX 24852 KFZ 24852

4 FIXED BUT MX MZ KFX 14290 KFY 14920 KFZ 14920

LOAD 1 LOADTYPE Dead TITLE SELF WEIGHT

SELFWEIGHT Y -1

MEMBER LOAD

17 CON GX -14.52 0.15

OEC Private Limited14

Page 15: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

12 CON GX -43.84 0.35

3 CON GX -15.03 0.09

4 CON GX 93.55 0.22

6 CON GX -58.29 0.11

9 CON GX -199.13 0.13

MEMBER LOAD

3 CON GX 7.97 0.16

4 CON GX 450.33 0.25

6 CON GX 115.22 0.13

9 CON GX 636.91 0.21

MEMBER LOAD

17 TRAP GX 0 -2.55 0.185 0.44

18 LIN Y -2.55 -6.95

2 TRAP GX -6.95 -8.4 0 0.145

2 TRAP GX -8.4 -8.4 0.145 0.42

3 TO 14 LIN Y -8.4 -8.4

MODAL CALCULATION REQUESTED

PERFORM ANALYSIS PRINT ALL

FINISH

OEC Private Limited15

Page 16: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

OUT PUT

CALCULATED FREQUENCIES FOR LOAD CASE 1

MODE FREQUENCY(CYCLES/SEC) PERIOD(SEC) ACCURACY

1 4.371 0.22877 6.028E-16

2 5.329 0.18766 8.316E-15

3 7.365 0.13578 2.867E-14

4 14.015 0.07135 7.342E-13

5 43.247 0.02312 8.296E-09

6 65.775 0.01520 6.510E-08

OEC Private Limited16

Page 17: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

MAIN ANALYSIS

INPUTS:

STAAD SPACE

START JOB INFORMATION

ENGINEER DATE 28-Jan-09

END JOB INFORMATION

INPUT WIDTH 79

UNIT METER KN

JOINT COORDINATES

1 0 2.2 0; 2 0 0 0; 3 0 -2.11 0; 4 0 -7 0; 5 0 -2.71 0; 6 0 -3.31 0;

7 0 -3.91 0; 8 0 -4.51 0; 9 0 -5.11 0; 10 0 -5.71 0; 11 0 -6.31 0;

12 0 -0.422 0; 13 0 -0.844 0; 14 0 -1.266 0; 15 0 -1.688 0; 16 0 1.76 0;

17 0 1.32 0; 18 0 0.88 0; 19 0 0.44 0;

MEMBER INCIDENCES

1 1 16; 2 2 12; 3 3 5; 4 5 6; 5 6 7; 6 7 8; 7 8 9; 8 9 10; 9 10 11; 10 11 4;

11 12 13; 12 13 14; 13 14 15; 14 15 3; 15 16 17; 16 17 18; 17 18 19; 18 19 2;

DEFINE MATERIAL START

ISOTROPIC CONCRETE

E 2.17185e+007

POISSON 0.17

DENSITY 25

ALPHA 1e-005

DAMP 0.05

END DEFINE MATERIAL

MEMBER PROPERTY AMERICAN

1 TO 18 PRIS YD 0.6 ZD 1

CONSTANTS

MATERIAL CONCRETE MEMB 1 TO 18

SUPPORTS

3 FIXED BUT FY MX MY MZ KFX 9706 KFZ 9706

5 FIXED BUT FY MX MY MZ KFX 15298 KFZ 15298

6 FIXED BUT FY MX MY MZ KFX 15466 KFZ 15466

7 FIXED BUT FY MX MY MZ KFX 23998 KFZ 23998

8 FIXED BUT FY MX MY MZ KFX 24852 KFZ 24852

9 FIXED BUT FY MX MY MZ KFX 24852 KFZ 24852

10 FIXED BUT FY MX MY MZ KFX 24852 KFZ 24852

11 FIXED BUT FY MX MY MZ KFX 24852 KFZ 24852

4 FIXED BUT MX MZ KFX 14290 KFY 14920 KFZ 147920

LOAD 1 LOADTYPE Dead TITLE SELF WEIGHT

SELFWEIGHT Y -1

LOAD 2 LOADTYPE Soil TITLE ACTIVE EARTH PRESSURE

MEMBER LOAD

17 CON GX -14.52 0.15

OEC Private Limited17

Page 18: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

12 CON GX -43.84 0.35

3 CON GX -15.03 0.09

4 CON GX 93.55 0.22

6 CON GX -58.29 0.11

9 CON GX -199.13 0.13

LOAD 3 LOADTYPE Soil TITLE PASSIVE EARTH PRESSURE

MEMBER LOAD

3 CON GX 7.97 0.16

4 CON GX 450.33 0.25

6 CON GX 115.22 0.13

9 CON GX 636.91 0.21

LOAD 4 LOADTYPE Soil TITLE DIFFERENTIAL WATER PRESSURE

MEMBER LOAD

17 TRAP GX 0 -2.55 0.185 0.44

18 LIN Y -2.55 -6.95

2 TRAP GX -6.95 -8.4 0 0.145

2 TRAP GX -8.4 -8.4 0.145 0.42

3 TO 14 LIN Y -8.4 -8.4

LOAD 5 LOADTYPE Seismic TITLE SEISMIC FORCE

JOINT LOAD

1 FX -8.625

LOAD 6 LOADTYPE None TITLE BERTHING FORCE

JOINT LOAD

1 FX 10 FZ 10

LOAD 7 LOADTYPE None TITLE MOORING FORCE

JOINT LOAD

1 FX -10 FZ -10

LOAD COMB 8 1.0DL+1.0AEP+1.0PEP+1.0DWF+1BF

1 1.0 2 1.0 3 1.0 4 1.0 6 1.0

LOAD COMB 9 1.0DL+1.0AEP+1.0PEP+1.0DWF+1MF

1 1.0 2 1.0 3 1.0 4 1.0 7 1.0

LOAD COMB 10 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5BF

1 1.5 2 1.0 3 1.0 4 1.0 6 1.5

LOAD COMB 11 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5MF

1 1.5 2 1.0 3 1.0 4 1.0 7 1.5

LOAD COMB 12 0.9DL+1.0AEP+1.0PEP+1.2DWP

1 0.9 2 1.0 3 1.0 4 1.2

LOAD COMB 13 1.2DL+1AEP+1PEP+1.2DWP

1 1.2 4 1.2 2 1.0 3 1.0

LOAD COMB 14 0.9DL+1AEP+1.0PEP+1.0DWP+1.5SF

1 0.9 2 1.0 3 1.0 4 1.0 5 1.5

LOAD COMB 15 1.2DL+1.0AEP+1.0PEP+1.0DWP+1.5SF

1 1.2 2 1.0 3 1.0 4 1.0 5 1.5

PERFORM ANALYSIS PRINT ALL

FINISH

OEC Private Limited18

Page 19: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

Beam L/C Node Fx kN Fy kN Fz kNMx kNm

My kNm

Mz kNm

Max Fx 1010 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5BF 4 195.1 51.584 -8.133 0 0 0

Min Fx 1 12 0.9DL+1.0AEP+1.0PEP+1.2DWP 1 0 0 0 0 0 0

Max Fy 411 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5MF 6 116.8 310.285 5.761 0

-66.197 299.292

Min Fy 910 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5BF 10 167.7 -473.519 -17.265 0 28.129 86.372

Max Fz 711 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5MF 10 167.7 16.624 23.662 0 -43.78 -6.973

Min Fz 710 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5BF 10 167.7 -29.384 -23.662 0 43.78 -86.774

Max Mx 110 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5BF 1 0 0 0 0 0 0

Min Mx 110 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5BF 1 0 0 0 0 0 0

Max My 310 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5BF 5 104.119 -143.9 5.459 0 69.121 125.58

Min My 311 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5MF 5 104.119 -151.7 -5.458 0

-69.121 259.59

Max Mz 411 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5MF 5 109.208 -158.3 5.761 0

-66.542 314.816

Min Mz 610 1.5DL+1.0AEP+1.0PEP+1.0DWP+1.5BF 8 0 89.775 0 0 0 -86.774

STAAD OUTPUT

OEC Private Limited19

Page 20: Diaphargm Wall Design

Max: 46.833 kNm

Max: 117.184 kNmMax: 54.553 kNm

Max: -15.436 kNm

Max: 73.014 kNm

Max: 206.584 kNm

Max: 314.816 kNmMax: 259.592 kNm

Max: 170.153 kNm

Max: 131.496 kNm

Max: 94.335 kNm

Max: 74.013 kNm

Max: 58.344 kNm

Max: 44.159 kNm

Max: 30.638 kNm

Max: 19.800 kNm

Max: 13.200 kNm

Max: 6.600 kNm

Bending ZLoad 11 : Moment - kNm

XY

Z

Detailed Analysis and Design of Diaphragm wall

Bending Moment Diagram

OEC Private Limited20

Page 21: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

ANNEXURE - 3

Design of Diaphragm Wall

OEC Private Limited21

Page 22: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

2.0 DESIGN OF DIAPHRAGM WALL

Grade of Concrete = M30

Grade of Steel = Fe 415

Moment = 314.816 kNm

Shear force = 474 kN

Clear cover = 75 mm

Effective Depth = 600 – 75 – 25/2

= 512.5 mm

Mu =

314.816 x 106 =

Ast= 1787.525mm2 (for 1 m width)

Ast= 7150.10 mm2 (for 4 m width)

Minimum. Percentage of steel as 0.2 %

Ast =

= 4800 mm2

Provide 16Nos Y-25 bars on both faces

OEC Private Limited22

Page 23: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

Check for Shear

Vu = 474 kN

=

=

= 0.92

Pt =

=

= 0.38

= 0.4375 N/mm2

Max Permissible Shear Stress (Table - 20)

= 3.5 N/ mm2

> <

Minimum Shear reinforcement is to be Provided.

Provide 2 legged Y – 12 bars

Vus = bd

= 0.4375X 1000 X512.5

= 224.218 kN

Vus =

=

= 186.67mm c/c

Provide shear reinforcement of 8L stirrups Y12 @150 C/ C ( in 4 m panel)

OEC Private Limited23

Page 24: Diaphargm Wall Design

Detailed Analysis and Design of Diaphragm wall

ANNEXURE - IV

DRAWINGS

OEC Private Limited24