diastereoselective construction of remote stereocenters...

41
Diastereoselective Construction of Remote Stereocenters: The use of Chiral Allylstannes & Claisen Rearrangements Scott Peterson Evans' Group Friday Seminar May 24, 2002 R R' X Y 01-Title 5/24/02 11:03 AM

Upload: others

Post on 10-Sep-2019

13 views

Category:

Documents


0 download

TRANSCRIPT

Diastereoselective Construction of Remote Stereocenters:The use of Chiral Allylstannes & Claisen Rearrangements

Scott PetersonEvans' Group Friday Seminar

May 24, 2002

R R'

XY

01-Title 5/24/02 11:03 AM

Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond

Coupling of Chiral Fragments

Asymmetric Induction by Reagent Control

Asymmetric Induction by Substrate Control

Chirality Transfer Methodology

Useful references:

Warren, S. Perkin I. 1999, 1899

Thomas, E.J. Chemtracts. 1994, 7, 207

02-Overview 5/23/02 5:47 PM

Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond

Coupling of Chiral Fragments

Asymmetric Induction by Reagent Control

Asymmetric Induction by Substrate Control

Chirality Transfer Methodology

Danishefsky, S.J. ACIEE 1996, 35, 2801

Me

OP

MeOP'

OMeMeO

S

N

MeOAc

I

Me

Me

OP

OP'

S

N

Me

i) 9-BBNii) PdCl2(dppf)2, Cs2CO3, Ph3As

Epothilone AOMe

OMeOAc

Me

03-Overview-Coupling-1 5/23/02 5:47 PM

Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond

Corey, E.J. J. Am. Chem Soc. 1987, 109, 7925

Coupling of Chiral Fragments

Asymmetric Induction by Reagent Control

Asymmetric Induction by Substrate Control

Chirality Transfer Methodology

O

O

THPO

O

OH

O

THPO

O

9:1

N B

O

H PhPh

CH3

BH3•THF

04-Overview-Reagent-1 5/23/02 5:47 PM

Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond

Coupling of Chiral Fragments

Asymmetric Induction by Reagent Control

Asymmetric Induction by Substrate Control

Chirality Transfer Methodology

Evans, D.A. J. Am. Chem. Soc. 2002, 124, 5654

Xp

OO

Me Me

OHMeOTBS

OPMB

Xp

OO

Me Me

OHMeOTBS

OPMB

13 913 9

N O

Me

OOO

Bn

Me

O

H

MeOTBS

OPMB

O

H

MeOTBS

OPMB

Cy2BCl, EtNMe2-78 °C

diastereoselection 55:45 diastereoselection 92:8

05-Overview-Substrate-1 5/23/02 5:49 PM

Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond

Coupling of Chiral Fragments

Asymmetric Induction by Reagent Control

Asymmetric Induction by Substrate Control

Chirality Transfer Methodology

Mikami, K. J. Org. Chem. 1992, 57, 6105

OTBDPS

CH3

MeO2COTBDPS

OH CH3

MeO2CCHOSnCl4, -78 oC

O

H

TBDPSO

H

CH3

HH

OMeO SnCl4

1,5 syn:anti 94:676% yield

06-Overview-Substrate-2 5/23/02 5:57 PM

Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond

Coupling of Chiral Fragments

Asymmetric Induction by Reagent Control

Asymmetric Induction by Substrate Control

Chirality Transfer Methodology

Bu3Sn

OBn

i.) SnCl4, 5 min, -78 oC

ii.) PhCHO, 1 hour

Ph

OH

OBn

1,5 syn:anti >98:2Z olefin formed exclusively

90% yield

Thomas, E.J. Tetrahedron Lett. 1990, 31, 6239

07-Overview-Substrate-3 5/23/02 6:01 PM

SnCl4 Catalyzed Allylstannane Reactions

SnCl4, -78 oC

Keck, G.E. Tetrahedron Lett. 1984, 25, 3927Keck, G.E. J. Am. Chem. Soc. 1989, 111, 8136Denmark, S.E. J. Am. Chem Soc. 1988, 110, 984

R

OH

CH3

Bu3Sn CH3

RCHO

syn and anti

R CH3

OH

E and ZR and S

Bu3Sn CH3

SnCl4

CH3

Cl3Sn

Cl3Sn CH3

RCHO RCHO RCHO

R

OH

CH3

R CH3

OH

R

OH

CH3

O

SnBu3H3C

H

RO

SnCl3H

R

CH3

08-SnCl4 Cat allylstannane 5/23/02 6:06 PM

1,5-Asymmetric Induction Using 4-Alkoxy-allylstannanes

Bu3Sn

OBn

i.) SnCl4, 5min, -78 oC

ii.) RCHO, 1 hourR

OH

OBn

1,5 syn favored

Aldehydes Yield

PhCHO

p-ClC6H4CHO

p-NO2C6H4CHO

p-MeOC6H4CHO

furfural

CH3CH2CH2CHO

(CH3)2CHCHO

(CH2)5CHCHO

PhCH=CHCHO

MeO2CCHO

90

77

77

77

72

84

84

78

64

68

1,5 syn : anti

98 : 2

94 : 6

95 : 5

97 : 3

95 : 5

95 : 5

93 : 7

92 : 8

95 : 5

95 : 5

Thomas, E.J. Tetrahedron Lett. 1990, 31, 6239Thomas, E.J. Chemtracts 1994, 7, 207

09-initial allylstannane 1,5 5/23/02 6:08 PM

Mechanism for 1,5 Induction with 4-Alkoxy-allylstannanes

i.) SnCl4, -78 oC

Thomas, E.J. Tetrahedron Lett. 1990, 31, 6239

Bu3Snii.) RCHO

SnCl4

CH3

OBnR

OH

CH3

OBn

syn : anti >95:5

Bu3SnCH3

OBn Cl3Sn OBn

CH3

R

OH

CH3

OBn

RCHO

SnO

H

R

OBn

H

H CH3

ClCl

Cl

SnO

H

R

OBn

H

H CH3

ClCl

Cl

RCHOH2O

10-1,5 mechanism 1 5/23/02 6:09 PM

Mechanism for 1,5 Induction with 4-Alkoxy-allylstannanes

Thomas, E.J. Chem. Commun. 1998, 8, 899

SnCl4Bu3SnCH3

OBn Cl3Sn OBn

CH3

Ph3SnCH3

OBn

i) SnCl4, -78 oC, 5 min

ii) PhLi

iii.)

H3C CH3

OBn

Ph3Sn

Ph3Sn OBn

CH3H3C

H3C CH3

H

HO

H3C H

H

CH3

O

Ph3SnLi

Ph3SnLi

H3C CH3

SnPh3

OH

H3C CH3

OH

Ph3Sn

H3C CH3

OH

Ph3Sn

H3C CH3

SnPh3

OH

NaH, BnBr

NaH, BnBr

N N

H H

11-1,5 mecanism allyltintric 5/23/02 6:11 PM

Mechanism for 1,5 Induction with 4-Alkoxy-allylstannanes

Thomas, E.J. Chem. Commun. 1998, 8, 899

SnCl4Bu3SnCH3

OBn Cl3Sn OBn

CH3

Bu3Sn

OBn

H CH3

Cl3Sn

Cl

H

Cl

Favored: A1,3 minimized

H3C HH

OBn

Bu3Sn

Cl3Sn

Cl

ClA1,3

Disfavored

12-1,5 mecanism form allyltin 5/23/02 6:13 PM

Mechanism for 1,5 Induction with 4-Alkoxy-allylstannanes

Thomas, E.J. Chem. Commun. 1998, 8, 899

Cl3Sn OBn

CH3

R

OH

CH3

OBn

RCHO SnO

H

R

OBn

H

H CH3

ClCl

Cl

Cl3Sn OCH3HO

OCH3 HO OCH3

SnO

H

H

OCH3

ClCl

Cl

H

CH2O

SnO

H

H

H

Cl ClCl

OCH3

∆E = 1.9 kcal•mol-1 ∆E = 12.0 kcal•mol-1

2.222

2.380

2.370

2.182

2.374

3.297

favored

(GAUSSIAN94 Calculation, split valence basis)

13-1,5 mecanism calculations 5/23/02 6:15 PM

1,5-Asymmetric Induction Using 5-Alkoxy-allylstannanes

Bu3Sn

CH3

i.) SnCl4, 5min, -78 oC

ii.) RCHO, 1 hourR

OH

CH3

Aldehydes Yield

PhCHO

p-ClC6H4CHO

p-MeOC6H4CHO

CH3CH2CHO

(CH3)2CHCHO

86

67

65

70

81

1,5-anti : 1,5 syn

96 : 4

96 : 4

96 : 4

95 : 5

95 : 5

Thomas, E.J. Synlett 1992, 585

OBn OBn

1,5 anti

14-init 5-o-allylstannane 1,5 5/23/02 8:06 PM

1,5-Asymmetric Induction Using 5-Alkoxy-allylstannanes

Bu3Sn

CH3

i.) SnCl4, 5min, -78 oC

ii.) RCHO, 1 hourR

OH

CH3

Thomas, E.J. Synlett 1992, 585

OBn OBn

1,5 anti

SnCl4Bu3Sn

CH3

R

OH

CH3

RCHO

SnO

H

R

HH3C

ClCl

Cl

RCHOH2O

OBnOBn

Cl3Sn OBn

CH3

BnOSn

O

H

R

HH3C

ClCl

Cl

BnO

15-mech 5-o-allylstan 1,5 5/23/02 8:07 PM

1,5-Asymmetric Induction Using 5-Alkoxy-allylstannanes

Bu3Sn

CH3

i.) Lewis Acid, -78 oC

ii.) PhCHO, -78 oCPh

OH

CH3

Lewis Acids Yield

SnCl4BuSnCl3SnBr4

Bu2SnCl2TiCl4BF3•OEt2AlCl3•i-PrOH

86

40

75

low

low

low

low

1,5-anti : 1,5 syn

96 : 4

95 : 5

99 : 1

--

--

--

--

Thomas, E.J. Synlett 1992, 585

OBn OBn

1,5 anti

16-LA Screen 5-o-allylstan 1,5 5/23/02 8:07 PM

1,5-Asymmetric Induction Using 5-Alkoxy-allylstannanes

Bu3Sn

CH3

i.) SnCl4, -78 oC

ii.) PhCHO, -78 oCPh

OH

CH3

R Yield

p-MeOC6H4CH2

MOM

SEM

SiMe2tBu

SiPh2tBu

80

66

71

60

61

1,5-anti : 1,5 syn

80 : 20

81 : 19

80 : 20

Thomas, E.J. Tetrahedron Lett. 1993, 34, 3933

OR OR

1,5 anti

95 : 5

93 : 7

17-OP - 5-o-allylstan 1,5-cor 5/24/02 8:45 AM

1,5-Asymmetric Induction Using 5-Alkoxy-allylstannanes

Bu3Sn

CH3

i.) SnCl4, -78 oC

ii.) RCHO, -78 oCR

OH

CH3

Thomas, E.J. Perkin Trans. I ,1993, 2863

OP OP

1,5 anti : syn >99:1yield >70%

CH3

CH3

P=MOM, H, Bn R=Ph, Aliphatic

H CH3

OBnCl3Sn

Bu3Sn

H3CH3C

H CH3

OBnCl3Sn

Bu3Sn

E-isomer Z-isomer

E or Z

18-2 sub 5-o-allylstan 1,5 5/24/02 8:42 AM

1,5-Asymmetric Induction with Imines

Bu3Sn

OBn

i.) SnCl4, -78 oC

ii.)

Yield

CHPh2

CMe2Ph

OBn

(1)

ent - (1)

79

75

67

72

73

anti : syn

90 : 10

90 : 10

90 : 10

90 : 10

96 : 4

Thomas, E.J. Chem. Commun. 1995, 6, 657Thomas, E.J. Tetrahedron. Assym. 1995, 4, 2575

BuO2C

NX BuO2C

HN OBnX

1,5 anti, E olefin

X

BuO2C

N

Me

Ph

(1)

Mismatched

Matched

19-initial 1,5 4-O imine 5/23/02 8:15 PM

1,5-Asymmetric Induction with Imines

Bu3Sn

OBn

i.) SnCl4, -78 oC

ii.)

Thomas, E.J. Chem .Commun. 1995, 6, 657

BuO2C

NRr BuO2C

HN OBnR

1,5 anti, E olefin

Cl3Sn OBn

CH3

BuO2C

N

CH3

Ph

N

SnCl3

BuO2C OBnH

Me

H

Ph

CH3Cl3Sn OBn

CH3H

NCO2BuHH

H3C

Ph

20-mech 1,5 4-O imine 5/23/02 8:15 PM

Limitations of the Allylstannane Chemistry

i.) SnCl4, -78 oC

Thomas, E.J. Tet rahedron Assym. 1995, 6, 2579

Bu3Snii.) PhCHO

SnCl4

CH3

OTBSPh

OH

CH3

OTBS

Bu3SnCH3

OTBS Cl3Sn OTBS

CH3

R

OH

CH3

OTBS

RCHO

Ph CH3

HO OTBS

1: 2 product ratio

SnCl4

CH3

OTBS

Cl3Sn

H SnCl3O

H

Ph

OTBS

CH3

H

RCHO

Ph CH3

HO OTBS

21-1,5 limitations, TBS-1 5/23/02 8:17 PM

Limitations of the Allylstannane Chemistry

Yield

CHPh2

(S)-CHMePh

(R)-CHMePh

CHPh2

(S)-CHMePh

(R)-CHMePh

79

73

72

74

76

93

1,5-anti : 1,5 syn

90 : 10

96 : 4

90 : 10

25 : 75

25 : 75

33 : 67

Thomas, E.J. Tet rahedron Assym. 1995, 6, 2579

Bn

Bn

Bn

TBS

TBS

TBS

i.) SnCl4, -78 oCBu3Sn

ii.)

CH3

ORBuO2C CH3

NHX OR

N

BuO2C

X BuO2C CH3

NHX OR

1,5-anti 1,5-syn

Imine (X)Stannane (R)

22-1,5 limitations, TBS-2 5/23/02 8:19 PM

Limitations of the Allylstannane Chemistry

Yield

CHPh2

(S)-CHMePh

(R)-CHMePh

CHPh2

(S)-CHMePh

(R)-CHMePh

78

82

73

77

80

74

1,5 syn : 1,5-anti

95 : 5

98 : 2

90 : 10

80 : 20

67 : 33

75 : 25

Thomas, E.J. Tetrahedron Assym. 1995, 6, 2579

Bn

Bn

Bn

SiMe2tBu

SiMe2tBu

SiMe2tBu

i.) SnCl4, -78 oC

ii.) BuO2C CH3

NHX OR

N

BuO2C

X BuO2C CH3

NHX OR

1,5-anti1,5-syn

Imine (X)Stannane (R)

Bu3Sn

CH3

OR

23-1,5 limitations, TBS-3 5/23/02 8:24 PM

1,5-Asymmetric Induction with 4/5-Alkoxy-allylstannanes

Bu3Sn

CH3

i.) Lewis Acid, -78 oC

ii.) RCHO, -78 oCR

OH

CH3

OP OP

1,5 anti selective, Z olefin

R'

Bu3Sn

OP

i.) Lewis Acid, -78 oCR

OH

OP

1,5 syn selective, Z olefin

ii.) RCHO, -78 oC

SnCl4 or SnBr4

Chelating protecting group on oxygen is necessary Other heteroatoms are also effective (N, S)

2-Substitution on the olefin is acceptable SM olefin geometry is not important

High selectivities for a range of aldehydes and imines Generally >95:5 diastereoselctivity

R'

24-general 1,5 aldehyde 4,5-O 5/24/02 8:43 AM

1,6-Asymmetric Induction Using 5-Alkoxy-allylstannanes

Bu3Sni.) SnBr4, 10 min, -78 oC

ii.) R'CHO, 1 hourR'

OH

Thomas, E.J. Tet rahedron Lett. 1993, 24, 3935

CH3 CH3

1,6 syn >90:10yields >70%

OR OR

R=Me, H R'=aromatic, aliphatic

(3:2 E:Z)

SnBr4 RCHO

SnO

H

R

ClCl

Cl

RCHOH2O

Br3Sn OH

O

Bu3Sn CH3

OH

CH3

H

Br3Sn

H

CH3O

H HH3C

HSn

O

H

R

ClCl

Cl

O

HH3C

H

R'

OH

CH3

OR

25-init 5-o-allylstannane 1,6 5/23/02 8:27 PM

1,7-Asymmetric Induction Using 6-Alkoxy-allylstannanes

Bu3Sni.) SnBr4, 10 min, -78 oC

ii.) RCHO, 1 hourR

OH

Thomas, E.J. Chem. Commun. 1994, 3, 283

1,7 syn >90:10yield >50%

OH

CH3

OH

Bu3SnCH3

OHBr3Sn

OH

CH3

SnBr4 RCHO

R

OH

CH3

OH

Sn OHOBr Br

Br

H3C

H

RSn OHO

Br BrBr

H3C

H

RBr3Sn O CH3

H

R=aromatic, aliphatic

26-mech 6-o-allylstan 1,7 5/23/02 8:28 PM

Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond

Coupling of Chiral Fragments

Asymmetric Induction by Reagent Control

Asymmetric Induction by Substrate Control

Chirality Transfer Methodology

Ph

OBn

O

O

OP

Ph OCH3

OBn OP

O

I

OP OP OP

OP

OP

i) LiHMDS, TMSClii) TMSCHN2, MeOH

C1 - C16 - Amphidinol 3

27-Overview-Transfer 5/23/02 8:30 PM

2-Step 1,8-Asymmetric Induction via Chirality Transfer (Ireland-Claisen Rearrangement)

Thomas, E.J. Tetrahedron Lett. 1999, 40, 471

OH

CH3

OSEM

1,5 syn : anti 96:4

O

CH3

OSEM

O

BnO

[3,3]CH3

OSEM

CH3O

O

OBn

CH3

OSEMO

HTMSO

BnO

H

1,8 anti

28-initial 1,8 5/23/02 8:37 PM

2-Step 1,8-Asymmetric Induction Synthesis of (±)-Patulolide

Thomas, E.J. Tetrahedron Lett. 1999, 40, 471

OH

CH3

OSEM

1,5 syn : anti 96:477% from (±)-stannane

O

CH3

OSEM

O

BnO

CH3

OSEM

CH3O

O

OBn

1,8 anti : syn 86:14

BnOCH2COCl

Et3N, DMAP84%

i) LiHMDS, -78 oC

ii) TMSCl, -78 to RTiii)TMSCHN2

80%

i)

ii) H2 / Pdiii) TBDPSCl, imid

71%

CH3O CH3

OSEM

OTBDPS

ON N

H H

O

O

OH

H3C

29-1,8-claisen-pat-1 5/24/02 8:47 AM

CH3O CH3

OSEM

OTBDPS

O i) DIBAl-H

ii) Swerniii) PH3P=CHCO2Me

72%

CH3

OSEM

OTBDPS

MeO2C

i) MgBr2, BuSH, K2CO3ii) LiOH, MeOH-H2O

81%

CH3

OH

OTBDPS

HO2C

i) , Et3N

ii) DMAP, ∆ (separate isomers)iii) TBAF, THF

27%

O

O

OH

H3C

(±)-Patulolide

15 steps from stannane

Cl

OCl

ClCl

1,8 syn:anti 86:14

2-Step 1,8-Asymmetric Induction Synthesis of (±)-Patulolide

Thomas, E.J. Tetrahedron Lett. 1999, 40, 471

O

O

OH

H3C

30-1,8-claisen-pat-2 5/24/02 8:49 AM

2-Step 1,8-Asymmetric Induction via Chirality Transfer (2,3 Wittig Rearrangement)

Thomas, E.J. Tet rahedron Lett. 1999, 40, 475

OH

CH3

OSEM

1,5 syn : anti 96:4

O

CH3

OSEM

CH3

OSEMOH

1,8 syn : anti 90:10

PhPh

NaH, cinnamyl-Br

Bu4NI

70% 74%

-78 oC

n-BuLi

CH3

OSEM

OH

Ph

H

31-1,8-wittig-1 5/23/02 8:40 PM

2-Step 1,8-Asymmetric InductionSynthesis of (±)-Epipatulolide

Thomas, E.J. Tet rahedron Lett. 1999, 40, 475

i) SmI2ii) O3, DMSiii) PH3P=CHCO2Me

34%

CH3

OSEM

OTBDPS

MeO2C

22 %

O

O

OH

H3C

(±)-Epipatulolide

14 steps from stannane

PhCH3

OOTBDPS

OSEM

CH3

OSEMOH

Ph

5 steps

i) VO(acac)2, tBuOOH

ii) TBDPSCl, imid

iii)N N

H H1,8 syn : anti

90 : 10

32-1,8-wittig-2 5/23/02 8:42 PM

2-Step 1,8-Asymmetric Induction Syntheses of Epothilones B and D

Thomas, E.J. Tetrahedron Lett. 2001, 42, 8373

IOO

DMPU, nBuLi

CH3

PhSO2

OO

CH3

SO2Ph

i) Amberlyst

ii) TBDMSCl, imidiii) Bu3SnH

TBSO

OH

CH3

SnBu3

1:1 E:Z

86 %53 %

i) SnBr4

ii)

H CH3

O

Me OH

CH3

1,6 anti 85:1560% of desired

OH

HO

iii) TBAF

CH3 O

CH3

O

O

i)

MeO OMe

ii) O

HOOPMB

O

OPMB

DIC, DMAP

66 %

33-Epothilone-1 5/23/02 8:42 PM

2-Step 1,8-Asymmetric Induction Syntheses of Epothilones B and D

Thomas, E.J. Tet rahedron Lett. 2001, 42, 8373

Me O

Me

O

O

O

OPMB

i) LiHMDS, TMSCl

ii) TMSCHN2

Me

O

O

Me

CO2Me

OPMB

i) MCPBAii) H2/PtO2iii)KSeCN

78 %

Me

O

O

OPMBMe

CO2Me

i) DDQ

ii) LiAlH4iii) NaIO4, NaBH4

68 %

46 %

Me

O

O

Me

OH

O

Me

Me

Me

OH

MeS

N

Me

O O

OH

34-Epothilone-2 5/23/02 8:45 PM

1,9-Relationship Constructed by 1,7 InductionFollowed by a Claisen Rearrangement

Bu3Sn

i.) SnBr4, 10min, -78 oC

ii.) PhCHO, 1 hour

Ph

OH

Thomas, E.J. Tetrahedron. 1999, 55, 3723

1,7 syn 90:10yield 64%

OHOH

i) TBDPSCl, imidii) NaH, PMBCliii) TBAFiiii) Ac2O, NEt3

Ph

OPMB

O

49 %

i) LDA, TBSCl

ii) CH2N2Ph

OPMB

OCH3

OCH3

73 %1,9 anti:syn 90:1060% ee

CH3

CH3

CH3

60% ee

CH3

O

35-initial 1,9 5/23/02 8:56 PM

Fe(CO)3 Complexes as Chiral Transfer Groups

Takemoto, Y. Chem. Commun. 2000, 15, 1445

R'

R

HO

FeOC

COCO

R'FeOC

COCO

R

HOOO

R'FeOC

COCOR

HO

OH

[1,3]

RR'

OH

OH

1,8 anti diol

Fe(CO)3 moiety shifts to the electron deficient olefin

Hydride is delivered from opposite face of Fe complex

[R] H

[O]

base

36-FeCO3 1,3 shift initial 5/23/02 8:57 PM

Fe(CO)3 Complexes as Chiral Transfer Groups: Formal Synthesis of Epipatulolide

Takemoto, Y. Chem. Commun. 2000, 15, 1445

HH3C

TBSO

FeOC

COCO

H3C

TBSO

OH

H3C

OTBS

OH

HH3C

TBSO

O

O

OPMB

HWE

54%

i) KHMDS

ii) NaBH4

51%

i) H2O2, NaOHii) H2, Pt

OPMB

OPMB

H3C

OH

OTBDPS

CO2Me i) TBDPSCl, imid

ii) DDQiii) Swerniv) Ph3P=CHCO2Mev) AcOH, THF, H2O

24 %

O

O

OH

H3C

Epipatulolide C

>98:2 dr86%ee

Thomas, E.J. Tetrahedron Lett. 1999, 40, 475

89%

FeOC

COCO Fe

OCCO

CO

86% ee

15 steps from aldehyde

37-FeCO3 1,3 shift epipat 5/23/02 9:01 PM

Fe(CO)3 Complexes as Chiral Transfer Groups

Ley, S.V. Perkin Trans. I 1997, 3299

R CH3

OO Fe2(CO)9

RH

CH3

OO

O

Fe(CO)3

HR

CH3

OO

O

Fe(CO)3

HR

CH3

OHO

O

Fe(CO)3

R''

X2AlR''

endo : exo 4:1

dr >99:1yield >70%

CH3

OH

R''R

Fe(CO)3

X2AlR'' = Me3AlEt3AlBu3Al

AlMe2Bu

BuAlMe2

Ba(OH)2, MeOH

38-Ley-1,5 5/23/02 9:02 PM

Possibility for 1,10-Asymmetric Combining the Work of Ley and Takemoto

OFe2(CO)9

Ba(OH)2, MeOH

R

OP

CH3

O

R

OH

OP

CH3

OR

PO

FeOC

COCO

CH3

OR

PO O

O

Fe(CO)3

39-Ley-1,5-PROP 5/23/02 9:04 PM

Possibility for 1,10-Asymmetric Induction Using Fe(CO)3 Complexes

CH3

O

C5H11

TBSO

CH3

OH

C5H11

TBSO

H

C5H11CH3

TBSO

OH

KHMDS

70 %

NaBH4

72 %

(S)

Stereochemistry determined by Mosher Ester Analysis

i) H2O2, NaOH

89 %

ii) H2, Pt

Takemoto, Y. Chem. Commun. 2000, 15, 1445

CH3

OC5H11

TBSO

FeOC

COCO

FeOC

COCO

FeOC

COCO

40-1,10-proposal-1 5/23/02 9:04 PM

Synthetic Strategies for the Construction of Remote Stereogenic Centers Across a Double Bond

Coupling of Chiral Fragments

Asymmetric Induction by Reagent Control

Asymmetric Induction by Substrate Control

Chirality Transfer Methodology

Bu3Sn

i.) SnCl4, 5min, -78 oC

ii.) RCHO, 1 hour R

OH

CH3 CH3

OR

n

OR

n

1,5 to 1,9Induction

R'

R

HO

FeOC

COCO

O

RR'

OH

OH

i.) B-

ii) [R]iii.) [O]

1,8 & 1,10Induction

41-Summary 5/23/02 9:05 PM