diffusive molecular dynamics ju li, william t. cox, thomas j. lenosky, ning ma, yunzhi wang

22
Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

Post on 19-Dec-2015

222 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

Diffusive Molecular Dynamics

Ju Li, William T. Cox,

Thomas J. Lenosky, Ning Ma, Yunzhi Wang

Page 2: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

2

Traditional Molecular Dynamics

• Numerically integrate Newton’s equation of motion with 3N degrees of freedom, the atomic positions:

• Difficult to reach diffusive time scales due to timestep (~ ps/100) required to resolve atomic vibrations.

, 1..i i Nx

Page 3: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

3

Diffusive MD: Basic Idea

Ferris wheel seen with long camera exposure time

Variational Gaussian Method

Lesar, Najafabadi, Srolovitz, Phys. Rev. Lett. 63 (1989) 624.

, , 1..i i i N x

DMD

ci: occupation probability(vacancy, solutes)

Define i for each atomic site,to drive diffusion

, , , 1..i i i i N x c

Phase-Field Crystal: Elder, Grant, et al. Phys. Rev. Lett. 88 (2002) 245701

Phys. Rev. E 70 (2004) 051605 Phys. Rev. B 75 (2007) 064107

change of basis: planewave → Gaussian

Page 4: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

4

0 0 0

3 23 2 2 2

1

Gibbs-Bogoliubov Free Energy Bound:

1exp exp | |

2

(| |, , )

Nji

i i i j j j i j i ji i j

i j i j

F F U U

u d d

w

x x x x x x x x

x x

2

1

3 2ln thermal wavelength

2

Ni T

B Ti B

k Te mk T

Variational Gaussian Method

{xi,i}true free energy

VG free energy

Page 5: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

5

Comparison with Exact Solution

Lesar, Najafabadi, Srolovitz, Phys. Rev. Lett. 63 (1989) 624.

Page 6: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

6

Page 7: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

7

DMD thermodynamics

2

1 1

1 3(| |, , ) ln ln 1 ln 1

2 2

N Ni

i j i j i j B i i i i ii i j i

F c c w k T c c c c ce

x x

Add occupation order parameters to sites: , , , 1..i i i i N x c

VG view DMD view

0

1

c

1

0

c

Page 8: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

8

2

1 1

The chemical potential for each atomic site is easily derived:

1 3(| |, , ) ln ln

2 2 1

N Ni i

i j i j i j Bi i j ii i

A cc w k T

c e c

x x

DMD kinetics

nearest-neighbor network

1

1 , if and are nearest neighbors2

0 otherwise

Ni

ij j ij

i j

ij

ck

t

c ck i j

k

2B 0

calibrate against experimental diffusivity:

Dk

k T a Z

Page 9: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

9

log(D)

Atomic Environment-Dependent Diffusivity

Atomic coordination

number

12(perfect crystal)

9(surface)

10,11(dislocation core)

experimental or first-principles

diffusivities

Page 10: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

10

Particleon surface

(largeparticle)

Page 11: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

11

Particleon surface

(smallparticle)

Page 12: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

12

Sinteringby hot

isostatic pressing

(porosityreduction in nanoparticlessuperlattice)

Page 13: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

13

Sinteringby Hot

Isostatic Pressing

(randompowders)

Page 14: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

14

Nanoindentation

(only atomswith coordination

number ≠ 12are shown)

Page 15: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

15

Small Contact Radius, High Temperature

Page 16: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

16

Indenter accommodation by purely diffusional creep

Page 17: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

17

coordination number coloring, showing edge dislocation

Dislocation Climb

vacancy occupation > 0.1

Page 18: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

18

• DMD is atomistic realization of regular solution model, with gradient thermo, long-range elastic interaction, and short-range coordination interactions all included.

• DMD kinetics is “solving Cahn-Hilliard equation on a moving atom grid”, with atomic spatial resolution, but at diffusive timescales.

• The “quasi-continuum” version of DMD can be coupled to well-established diffusion - microelasticity equation solvers such as finite element method.

• No need to pre-build event catalog. Could be competitive against kinetic Monte Carlo.

Page 19: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

19

Quasicontinuum - DMD?

image taken from Knap and Ortiz, Phys. Rev. Lett. 90 (2003) 226102.

DMDregion?

continuum diffusion

equation solver region,

with adaptive meshing?

Page 20: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

20

Stress-Induced Bain Transformation

FCC

BCC

Page 21: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

21

Page 22: Diffusive Molecular Dynamics Ju Li, William T. Cox, Thomas J. Lenosky, Ning Ma, Yunzhi Wang

22