digital communications lecture 6new · delta modulation problems • there are two problems in dm...

28
EE3220, Digital Communications Lecture 6 Digital Representation of Analog Signals, Part 3 Dr. Essam Sourour

Upload: others

Post on 27-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

EE3220, Digital CommunicationsLecture 6

Digital Representation of Analog Signals, Part 3

Dr. Essam Sourour

Page 2: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

2

Delta Modulation

• We have seen that Pulse Code Modulation typically generates bit rate of 64 kpbs– Sampling at 8 ksps– Each sample is converted to 8 bits

• PCM does not take advantage of the high correlation between successive samples in analog audio signal

• Another method of converting the analog signal to digital signal is Delta Modulation– Sampling at higher rate, about 32 ksps– Samples are highly correlated, i.e., small change from sample to next sample– Compare each sample to the previous sample– Generate 1 if higher and generate 0 if lower– Hence, each sample is converted to 1 bit– Bit rate is 32 kbps (50% saving over PCM in this example)

Page 3: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

3

Delta Modulation

• DM works well if the changes between successive samples is small

Page 4: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

4

Delta Modulation

Page 5: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

5

Delta Demodulation

• To get back the analog signal we accumulate the delta steps• After accumulating the delta steps a low pass filter is needed 

to smooth the signal and get back the analog signal 

Page 6: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

6

Delta Modulation problems

• There are two problems in DM due to the value of the step 1. Slope overload distortion:

– Occurs when Δ is smaller than the maximum slope of analog signal

– Mathematically, it occurs when:   ∆

2. Granular noise:– Occurs when the analog signal amplitude is not changing– The DM output is going up and down– If Δ is too large noise is higher

Page 7: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

7

Delta Modulation problems, cont.

Page 8: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

8

Baseband pulses and matched filter

• In the previous lecture we have seen the pulse representation of the binary bits

• Each bit (0 or 1) is represented by a pulse • The received signal x(t) is given by:

, 0  t  T• The term w(t) is the additive white Gaussian noise (AWGN) 

with flat (i.e., white) power spectral density  2⁄• The receiver consists of a filter h(t) followed by sampling 

every bit at t = nT

Page 9: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

9

Matched filter

• Our goal is to find the receiver filter h(t) that maximizes the signal to noise ratio (SNR) at its output:

∗ ∗

• After sampling at time t=T:– The power of the useful signal part is – The power of the noise part is  , where E[ ] is expectation

• The SNR at the output of the filter is 

Page 10: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

10

Properties of the Matched filter

• The matched filter provides maximum SNR• In time domain: Time reversed delayed version of the transmitted pulse• In frequency domain: conjugate of the Fourier Transform of g(t), multiplied 

by  2

• The output SNR=2E/No , where E is the energy in the pulse g(t). The SNR does not depend on the specific function g(t).

• SNR depends only on the energy of g(t).

* exp 2

opt

opt

h t g T t

H f G f j fT

Page 11: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

11

Simple examples

Page 12: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

12

Matched filter for the rectangular pulse

• Consider the special case of a rectangular pulse• Using the matched filter hopt(t)

opt

opt

y t x t h t

x u h t u du

0

opt

T

y T x u h T u du

A x u du

u

x(u)

hopt(T‐u)

u

T

T

A

A

Page 13: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

13

Matched filter for the rectangular pulse

• Hence, the output of the matched filter at time T of the received signal x(t) is given by:

• This is equivalent to integrating the received signal x(t) from 0 to T • This is called “integrate and dump” receiver• Hence, in case of a rectangular pulse we can replace the matched filter by 

integrate and dump• We can ignore the scale factor A since it affects both signal and noise

0

T

y T A x u du

AWGN w(t)

signal g(t) x(t)Integrator

Sample at time t=nT

y(t) y(nT)

Page 14: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

14

Probability of error

• We want to calculate the BER at the output of the matched filter• We assume a NRZ signaling with square pulse• Hence, we use an integrate and dump receiver• The received signal x(t) is given by:

• Assume symbols 0 or 1 can be sent with equal probability.• Since symbol 1 and symbol 0 are sent with equal power (power=A2) they 

have the same probability of error• Hence, assume symbol 1 is sent: 

if symbol 1 is sentif symbol 0 is sent

A w tx t

A w t

AWGN w(t)

signal g(t) x(t)Integrator

Sample at time t=nT

y(t) y(T)Decision

Say 1 if y>0

Say 0 if y<0

Page 15: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

15

Probability of error, cont.

• The integrate and dump output is:

• Since w(t) is Gaussian with zero mean, then the noise part v is Gaussian with zero mean

• We need to find the variance of v : 

• Then, y is a Gaussian random variable with mean AT and variance NoT/2 

0 0

T T

signal

noise v

y x t dt AT w t dt

2

0 0

0 0

0 0 2

2

T T

T T

T To

o

E v E w t w u dt du

E w t w u dt du

N t u dt du

N T

Page 16: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

16

Probability of error, cont.

• Then 

• The noise v is Gaussian with zero mean and variance  2⁄• The probability of error is the probability that y < 0

– (i.e., we say 0 is transmitted while actually 1 is transmitted)

• Error happens when y = AT + v < 0• Then, error happens when v < ‐AT• This probability of error is Pr(v < ‐AT) = Pr(v > AT)• Note that for any Gaussian random variable X we have

• The energy per bit is Eb=A2T 2 2be bit

o

EP Q QN

X

X

xP X x Q

Pr Pr

2o

ATerror v AT QN T

22Pro

A Terror QN

Page 17: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

17

BER of the Matched Filter

Page 18: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

18

Intersymbol Interference

• So far we assumed the channel effect is to add AWGN only• However, some channels have filtering effect Hc(f), with 

impulse response hc(t), that distorts the transmitted pulse shape g(t)

• This causes intersymbol interference (ISI)• The overall pulse shape  ∗ ∗ may 

overlap at the sampling time nT, which causes ISI

Page 19: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

19

Intersymbol Interference, cont.

• At the sampling time at the receiver (T, 2T, 3T, …) there is overlap between successive pulse shapes 

• This causes ISI and many errors may happen• ISI can be observed using the eye diagram

Page 20: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

20

Examples without ISI 

t

+V +V +V +V

‐V ‐V

T 2T 3T 4T 5T 6T

No ISI

t

+V +V +V +V

‐V ‐V

T 2T 3T 4T 5T 6T

No ISI

T 2T 3T 4T 5T 6T

t

No ISI

Page 21: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

21

The eye diagram without ISI

• The eye pattern is the superposition of all possible realization of the signal for a particular interval

• The sampling time nT should be open• This is eye diagram without ISI and “raised cosine pulse” (explained next)

Page 22: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

22

Example with ISI 

• At the sampling time nT there is pulse overlap from previous and next pulses

• This causes large ISI which can cause many errors in detecting the transmitted bits

t

T 2T 3T 4T 5T 6T

Large ISI

Page 23: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

23

The eye diagram with ISI

• With ISI the eye diagram starts to close

Page 24: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

24

Nyquist criteria

• For ISI free transmission the pulse shape must have zero value at the nT,  , 2 , 3 , …

• The overall pulse shape must satisfy the Nyquist criteria:

1 00 0

np nT

n

Page 25: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

25

Nyquist filter

• In many cases we know the channel impulse response hc(t)• We can design the overall pulse shape  ∗ ∗ such 

that no ISI occurs• This means that at the sampling time (T, 2T, 3T, …) there is no ISI• This overall pulse shape p(t) is called Nyquist filter or Nyquist pulse• The most important and commonly used is the raised cosine pulse shape

Page 26: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

26

Raised Cosine Pulse Shape

• The raised cosine pulse shape satisfies Nyquist requirements that no ISI occurs

• Note that at the sampling instant (t=t, 2T, 3T, …) this pulse =0• Hence, if the overall channel impulse response p(t) is a raised cosine

shape, it does not cause ISI • The raised cosine pulse shape has a parameter called rolloff factor• The rolloff factor r decides the BW of the pulse shape

Page 27: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

27

Raised Cosine Pulse Shape, cont.

• The minimum bandwidth is when the rolloff factor r=0– Minimum BW = 1/2T

• The maximum bandwidth is when the rolloff factor r=1– Maximum BW = 1/T

• In general the bandwidth is given by12 1

Page 28: digital Communications Lecture 6New · Delta Modulation problems • There are two problems in DM due to the value of the step 1.Slope overload distortion: – Occurs when Δis smaller

28

Raised Cosine Pulse Shape, cont.

• The bandwidth is  1

• Wo=1/2T• The Raised cosine frequency response is:

• The impulse response is:

• The rolloff factor:

2

1 for 2

2cos for 2

40 for

o

oo

o

f W W

f W WP f W W f W

W Wf W

2

cos 22 sinc 2

1 4o

o o

o

W W tp t W W t

W W t

, 0 1o or W W W r sin

sinc( )x

xx