digital image and video coding 11. basics of video coding h. danyali [email protected]

68
Digital Image and Video Coding 11. Basics of Video Coding H. Danyali [email protected]

Upload: annabella-fowler

Post on 16-Jan-2016

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

Digital Image and Video Coding

11. Basics of Video Coding

H. [email protected]

Page 2: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

This lecture is based on the material provided in:

2

Page 3: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

Outline

3

Page 4: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

4

Page 5: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

5

Page 6: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

6

Page 7: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

7

Page 8: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

8

Page 9: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

9

Page 10: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

10

Page 11: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

11

Page 12: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

12

Page 13: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

13

Page 14: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

14

Page 15: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

Global motion compensation

• In global motion compensation, the motion model basically reflects camera motions such as:

– Dolly - moving the camera forward or backwards

– Track - moving the camera left or right

– Boom - moving the camera up or down

– Pan - rotating the camera around its Y axis, moving the view left or right

– Tilt - rotating the camera around its X axis, moving the view up or down

– Roll - rotating the camera around the view axis

• It works best for still scenes without moving objects.

• There are several advantages of global motion compensation:– It models the dominant motion usually found in video sequences with just a few parameters. The share in bit-

rate of these parameters is negligible.

– It does not partition the frames. This avoids artifacts at partition borders.

– A straight line (in the time direction) of pixels with equal spatial positions in the frame corresponds to a continuously moving point in the real scene. Other MC schemes introduce discontinuities in the time direction.

• Moving objects within a frame are not sufficiently represented by global motion compensation. Thus, local motion estimation is also needed.

15

Page 16: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

16

Page 17: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

17

Page 18: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

18

Page 19: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

19

Page 20: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

20

Page 21: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

21

Page 22: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

Nearest neighbor interpolation

Original

zoomed

A grid:Size: the same as the original imagePixels: the same as the zoomed image

overlap

Pixel enlargement

22

Page 23: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

Linear interpolation

39

23

Page 24: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

Bilinear interpolation

– bilinear interpolation is an extension of linear interpolation for interpolating functions of two variables on a regular grid. The key idea is to perform linear interpolation first in one direction, and then again in the other direction.

– generates an image of smoother appearance that nearest neighbour

– requires 3 to 4 times the computation time of the nearest neighbour method

( , )f x y ax by cxy d

See interp2 function in Matlab

24

Page 25: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

25

Page 26: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

26

Page 27: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

27

Page 28: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

28

Page 29: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

29

Page 30: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

30

Page 31: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

31

Page 32: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

32

Page 33: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

33

Page 34: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

34

Page 35: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

35

Page 36: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

36

Page 37: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

37

Page 38: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

38

Page 39: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

39

Page 40: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

40

Page 41: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

41

Page 42: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

42

Page 43: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

43

Page 44: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

44

Page 45: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

45

Page 46: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

46

Page 47: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

47

Page 48: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

48

Page 49: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

49

Page 50: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

50

Page 51: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

51

Page 52: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

52

Page 53: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

53

Page 54: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

54

Page 55: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

55

Page 56: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

56

Page 57: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

57

Page 58: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

The search for standards:the FCC & the NTSC

• 1953 - The NTSC standard had to be revised to adapt to color TV.

• Engineers split the signal into two components: luma, which contained the brightness information, and chrominance, which contained the color information.

• Field refresh rate of 60 Hz was slowed down by a factor of 1000/1001 to 59.94 Hz.

• Broadcast television downshifted from 30 to 29.97 frames per second

Page 59: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

Same old standard(The song remains the same)

• Many improvements were made in cameras, production and broadcast gear, and in television receivers

• Despite advances, the quality of analog broadcast was still limited to the NTSC standard of 60 fields and 525 horizontal scan lines

• Stuck with more or less same standards created in 1941.

Page 60: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

Same old standard(The song remains the same)

• By the 1980s, manufacturers had been developing and using both analog and digital HD systems

• It became clear that the replacement for analog would use digital television technology.

• Needed a new set of standards to ensure compatibility.

Page 61: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

ATSC

• Formed in 1982• The Advanced Television Systems Committee is a

not-for-profit organization whose purpose is to develop standards for the transition to DTV.

• Its published broadcast standards are voluntary unless adopted and mandated by the FCC.

• ATSC proposed DTV Standard (A/53) that specifies the protocol for high-definition broadcasting through a standard 6MHz channel

Page 62: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

DTV

• In December 1996, the FCC adopted standards proposed by the ATSC, mandating that broadcasters begin broadcasting digitally.

• WRAL of Raleigh, North Carolina was the first station to broadcast in digital.

• FCC terminated analog broadcasting 2009

Page 63: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

DTV, SDTV, & HDTV

• NTSC standards defined one analog format

• ATSC created a framework supporting multiple digital formats

• There is considerable confusion among consumers regarding SDTV, DTV and HDTV.

• Broadcaster do not have to broadcast in HD, just in DTV.

Page 64: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

HDTV & SDTV Comparison

Page 65: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

DTV formats

HDTV/SDTV

Horizontal lines

Vertical lines

Aspect Ratio

Frame Rate

SDTV 640 480 4:3 60p, 60i, 30p, 24p

SDTV 704 480 4:3 and 16:9

60p, 60i, 30p, 24p

HDTV 1280 720 16:9 60p, 30p, 24p

HDTV 1920 1080 16:9 60i, 30p, 24p

Note: Non-integer formats (eg. 29.97) omitted for clarity.

Page 66: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

66

During the transition from monochrome to color television, certain interference constraints needed to be satisfied among the horizontal, sound, and color frequencies. These constraints were resolved by reducing the 60.00 Hz field rate of monochrome television by a factor of exactly 1000/1001 to create the color NTSC field rate of about 59.94 Hz. This led to the dropframe timecode that is familiar to anyone that has been involved in videotape editing.

http://www.poynton.com/notes/video/Timecode/index.html

About non-integreer field rates in NTSC video

Page 67: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

About non-integreer field rates in NTSC video

67

When a transmitter broadcasts an NTSC signal, it amplitude-modulates a radio-frequency carrier with the NTSC signal just described, while it frequency-modulates a carrier 4.5 MHz higher with the audio signal. If non-linear distortion happens to the broadcast signal, the 3.579545 MHz color carrier may beat with the sound carrier to produce a dot pattern on the screen. To make the resulting pattern less noticeable, designers adjusted the original 60 Hz field rate down by a factor of 1.001 (0.1%), to approximately 59.94 fields per second. This adjustment ensures that the sums and differences of the sound carrier and the color subcarrier and their multiples (i.e., the intermodulation products of the two carriers) are not exact multiples of the frame rate, which is the necessary condition for the dots to remain stationary on the screen, making them most noticeable.

http://en.wikipedia.org/wiki/NTSC#Color_encoding

Page 68: Digital Image and Video Coding 11. Basics of Video Coding H. Danyali hdanyali@ieee.org

Digital Watermarking, Shiraz University of

Technology, 89-2

68