dinamika reaktivasi y220c-p53 oleh adduct mq-sistein

16
perpustakaan.uns.ac.id digilib.uns.ac.id i DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN Disusun Oleh : THERA FEMALEDA LABAN M0307079 SKRIPSI Diajukan untuk memenuhi sebagian persyaratan mendapatkan gelar Sarjana Sains Kimia JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SEBELAS MARET SURAKARTA 2013

Upload: lydiep

Post on 13-Feb-2017

233 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.id

i

DINAMIKA REAKTIVASI Y220C-p53

OLEH ADDUCT MQ-SISTEIN

Disusun Oleh :

THERA FEMALEDA LABAN

M0307079

SKRIPSI

Diajukan untuk memenuhi sebagian

persyaratan mendapatkan gelar Sarjana Sains Kimia

JURUSAN KIMIA

FAKULTAS MATEMATIKADAN ILMUPENGETAHUAN ALAM

UNIVERSITAS SEBELAS MARET

SURAKARTA

2013

Page 2: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idii

Page 3: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idiii

PERNYATAAN

Dengan ini saya menyatakan bahwa skripsi saya yang berjudul

“DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN ”

belum pernah diajukan untuk memperoleh gelar kesarjanaan di suatu perguruan

tinggi, dan sepanjang pengetahuan saya juga belum pernah ditulis atau

dipublikasikan oleh orang lain, kecuali yang secara tertulis diacu dalam naskah ini

dan disebutkan dalam daftar pustaka.

Surakarta, Juni 2013

THERA FEMALEDA LABAN

Page 4: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idiv

DINAMIKA REAKTIVASI Y220C-p53

OLEH ADDUCT MQ-SISTEIN

THERAFEMALEDA LABAN

Jurusan Kimia. Fakultas MIPA. Universitas Sebelas Maret.

ABSTRAK

Pembentukkan adduct MQ-Sistein merupakan salah satu mekanisme yang diketahui dapatmengembalikan fungsi p53. Mutasi Y220C-p53 (mutasi tirosin menjadi sistein)kehilangan fungsi p53 sebagai gen penekan tumor. Mutasi tersebut menginduksi suatucavity pada residu 220 dan mengubah stabilitas termalnya. Sistein 220 yang beradadidalam cavity diketahui dapat menjadi target obat. Di sisi lain, beberapa sistein pada p53DNA binding domain dapat membentuk adduct MQ-Sistein. Banyaknya sistein yang adamenjelaskan bahwa mekanisme restorasi belum sepenuhnya diketahui. Simulasi dinamikamolekuler dari Y220C-p53 yang mengandung adduct MQ-Sistein telah kami lakukanuntuk memahami mekanisme tersebut. Trajectory-trajectory hasil simulasi selama 100 nsmenunjukkan adanya perubahan kestabilan karena penambahan adduct. Perubahantersebut dapat ditandai oleh perubahan pada konformasi backbone protein. Sistein padalokasi yang berbeda memberikan pengaruh interaksi yang berbeda, sehinggamemungkinkan terjadinya perbedaan perubahan konformasi. Adduct MQ-Sistein padaresidu 220 dan 275 menunjukkan perubahan konformasi yang relatif sama pada loop 1dan loop 3 (L1 dan L3). Oleh sebab itu, kami menduga bahwa adduct MQ-Sisteinmenginduksi modifikasi local, dan mengubah sebagian konformasi Y220C-p53menyerupai wild type-p53.

Kata kunci : reaktivasi, R175H-p53, adduct MQ-Sistein, dinamika molekuler

Page 5: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idv

THE DYNAMICS OF Y220C-p53 REACTIVATION

BY MQ-CYSTEINE ADDUCT

THERAFEMALEDA LABAN

Department of Chemistry. Faculty of Mathematics and Natural Sciences.Sebelas Maret University.

ABSTRACT

Methylene Quinuclidinone-Cysteine (MQ-Cysteine) adduct formation is one of p53restoration mechanisms have been discovered. Y220C-p53 mutation (Tyrosine becomeCysteine) has loss of p53 function as a tumor suppressor gene. The mutation has induceda cavity at residue 220 and its also changed thermal stability. Cysteine 220, which locatedin the cavity is known as a drug target residue. On the other hand, there are several sitesof cysteines in p53 DNA binding domain can also form the adduct. So that, restorationmechanism is not fully discovered yet. In order to understand the mechanism, we haveperformed molecular dynamics simulation of Y220C-p53 containing MQ-Cysteineadduct. The simulations results of 100 ns trajectories show the stability changes becauseof adduct formation. The changes of stability may indicated by the alterations of proteinbackbone conformations. Cysteine on different site provides different interaction effect, itallows different conformational alterations. MQ-Cysteine adduct at residue number 220and 275 introduced the same conformational alterations on loop 1 and loop 3 (L1 andL3). Thus we can surmise that the adduct induces local modification, and partly resembleY220C-p53 conformational behavior of wild type-p53.

Keywords : reactivation, Y220C-p53, MQ-Cysteine adduct, molecular dynamics

Page 6: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idvi

MOTTO

Ia membuat segala sesuatu indah pada waktunya, bahkan Ia memberikan kekekalan

dalam hati mereka. Tetapi manusia tidak dapat menyelami pekerjaan yang dilakukan

Allah dari awal sampai akhir

(Pengkotbah 3:11)

Dalam susah pun senang, dalam segala hal, aku bermazmur dan ucap syukur, itu

kehendak-Nya.

(Kidung Jemaat 450)

Terus maju, karena waktu tak pernah berjalan mundur !

(bapak & ibuk)

Page 7: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idvii

PERSEMBAHAN

Karya ini penulis persembahkan teruntuk:

Computational Chemistry Community

Bapak , ibuk, mas niko, mba tiara, mas erik, mba ella, dan taka sebagai motivator

sekaligus keluarga yang sangat luar biasa.

Bang welly sebagai sahabat spesial sepanjang masa.

Kimia angkatan 2007, khususnya Alin, cita, dan sinta sebagai sahabat setia di kala susah

maupun senang.

Page 8: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idviii

KATA PENGANTAR

Puji syukur kehadirat Tuhan YME atas limpahan rahmat-Nya bagi penulis

sehingga skripsi ini dapat terselesaikan sebagai salah satu persyaratan dalam

memperoleh gelar sarjana sains Jurusan Kimia Fakultas Matematika dan Ilmu

Pengetahuan Alam Universitas Sebelas Maret Surakarta. Atas segala karunia-Nya

pulalah penulis menyadari bahwa segala sesuatu memiliki proses dan waktunya

masing-masing.

Dalam menyusun skripsi ini penulis menemui berbagai hambatan dan

permasalahan yang beragam. Namun, atas bimbingan, kritikan, saran, dan

dorongan semangat yang bermanfaat dari berbagai pihak, semua hambatan dan

permasalahan tersebut dapat penulis atasi dengan baik. Oleh karena itu, penulis

ingin menyampaikan terima kasih kepada pihak-pihak yang telah membantu

penulis, yaitu sebagai berikut.

1. Ir. Ari Handono Ramelan, M.Sc., Ph.D., selaku dekan Fakultas Matematika dan Ilmu

Pengetahuan Alam Universitas Sebelas Maret Surakarta.

2. Dr. Eddy Heraldy, M.Si., selaku ketua Jurusan Kimia Fakultas Matematika dan Ilmu

Pengetahuan Alam Universitas Sebelas Maret Surakarta.

3. Dr. rer. nat. Fajar R. Wibowo, M.Si., selaku dosen pembimbing I, yang dengan penuh

kesabaran membimbing penulis menyelesaikan skripsi ini, memberikan banyak

kesempatan, pengalaman dan inspirasi bagi penulis.

4. Candra Purnawan, MSc., selaku pembimbing akademis yang memberikan

bimbingannya selama perkuliahan.

5. Edi Pramono, M.Si., selaku ketua laboratorium Kimia Dasar yang telah memberikan

akses bagi penulis melakukan penelitian di laboratorium Kimia Dasar bagian

Komputasi Kimia.

6. Bapak Ibu dosen dan seluruh staff jurusan Kimia yang telah memberikan fasilitas dan

pelayanan yang baik bagi penulis.

7. Teman-teman kimia berbagai generasi, terimakasih atas kebersamaan dan kerja

samanya.

8. Semua pihak yang tidak dapat penulis tuliskan satu per satu yang telah memberikan

bantuannya

Page 9: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idix

Penulis menyadari bahwa penelitian dan penyusunan skripsi yang penulis

lakukan masih jauh dari sempurna sehingga membutuhkan saran dan kritik yang

membangun dari para pembaca. Namun, lepas dari semua itu, semoga para

pembaca mendapatkan manfaat setelah membaca skripsi ini.

Surakarta , Juni 2013

Penulis

Page 10: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idx

DAFTAR ISI

Halaman

HALAMAN JUDUL ...................................................................................... i

HALAMAN PERSETUJUAN ........................................................................ ii

HALAMAN PERNYATAAN ......................................................................... iii

HALAMAN ABSTRAK ................................................................................. iv

HALAMAN ABSTRACT ............................................................................... v

HALAMAN MOTTO ..................................................................................... vi

HALAMAN PERSEMBAHAN ...................................................................... vii

KATA PENGANTAR .................................................................................... viii

DAFTAR ISI .................................................................................................. x

DAFTAR TABEL ........................................................................................... xiii

DAFTAR GAMBAR ...................................................................................... xiv

DAFTAR LAMPIRAN ................................................................................... xvi

BAB I PENDAHULUAN ............................................................................... 1

A. Latar Belakang .................................................................................... 1

B. Perumusan Masalah ............................................................................. 4

1. Identifikasi Masalah ....................................................................... 4

2. Batasan Masalah ............................................................................ 5

3. Rumusan Masalah ......................................................................... 5

C. Tujuan Penelitian ................................................................................ 6

D. Manfaat Penelitian ............................................................................... 6

BAB II LANDASAN TEORI ......................................................................... 7

A. Tinjauan Pustaka ................................................................................. 7

1. Struktur Protein ............................................................................... 7

2. Ikatan Hidrogen pada Protein .............................................................. 9

3. Protein p53 ………………………………………………………. .... 10

4. Kanker …………………………………………………………… .... 11

5. Mutan Onkogenik Y220C-p53 ......................................................... 12

6. Reaktivasi p53 termutasi .................................................................. 15

7. Pemodelan Molekuler ...................................................................... 16

Page 11: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idxi

8. Simulasi Dinamika Molekuler ......................................................... 17

a) Antechamber ............................................................................... 19

b) Parmchk ..................................................................................... 19

c) LEaP .......................................................................................... 19

d) Sander ........................................................................................ 19

e) Ptraj ............................................................................................ 20

(1) RMSD (Root Mean Square Deviation) ................................. 20

(2) B-factor ............................................................................... 20

(3) Entropi ................................................................................ 21

(4) Clustering Trajectory .......................................................... 22

B. Kerangka Pemikiran ............................................................................. 22

C. Hipotesis .............................................................................................. 24

BAB III METODOLOGI PENELITIAN ......................................................... 25

A. Metode Penelitian ................................................................................ 25

B. Waktu dan Tempat Penelitian .............................................................. 25

C. Alat dan Bahan yang Dibutuhkan ........................................................ 25

1. Alat ............................................................................................... 25

2. Bahan ............................................................................................ 25

D. Prosedur Penelitian .............................................................................. 25

1. Parameterisasi Adduct MQ-Sistein ................................................. 25

2. Pemilihan Makromolekul ............................................................... 26

3. Penentuan Koordinat Awal Sistem ................................................. 26

4. Minimisasi dan Penyeimbangan (Equilibrasi) Sistem ..................... 26

5. Simulasi Sistem ............................................................................. 27

E. Teknik Pengumpulan dan Analisis Data ............................................... 27

BAB IV HASIL DAN PEMBAHASAN .......................................................... 28

A. Parameterisasi Adduct MQ-Sistein ....................................................... 28

B. Pemilihan Residu Sistein Target pada Mutan Y220C-p53 .................... 29

C. Hasil Simulasi ………………………………………………………..... 31

D. Perubahan Konformasi Parsial Mutan Y220C-p53 oleh Adduct MQ-

Sistein ................................................................................................. 38

Page 12: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idxii

a) Range Residu 114-124...... ............................................................ 41

b) Range Residu 176-189 ................................................................. 46

c) Range Residu 220-232 ................................................................. 51

d) Range Residu 239-250 ................................................................. 55

BAB V KESIMPULAN DAN SARAN ........................................................... 60

DAFTAR PUSTAKA ..................................................................................... 61

LAMPIRAN ................................................................................................... 68

Page 13: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idxiii

DAFTAR TABEL

Tabel 1. Nilai occupancy ikatan hidrogen untuk range residu 114-124 ........... 44

Tabel 2. Nilai occupancy ikatan hidrogen untuk range residu 176-189 ........... 49

Tabel 3. Nilai occupancy ikatan hidrogen untuk range residu 220-232 ........... 53

Tabel 4. Nilai occupancy ikatan hidrogen untuk range residu 239-250 ........... 57

Page 14: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idxiv

DAFTAR GAMBAR

Gambar 1. Empat tingkatan struktur protein ................................................. 8

Gambar 2. Siklus perkembangan sel ............................................................ 11

Gambar 3. Struktur Domain Inti p53 ............................................................ 12

Gambar 4. Struktur adduct MQ-NAC dan adduct MQ-Sistein ..................... 15

Gambar 5. Template adduct MQ-Sistein ...................................................... 28

Gambar 6. Struktur adduct MQ-Sistein teroptimasi dengan keterangan kode

atom, tipe atom, dan muatan adduct MQ-Sistein yang diperoleh

dengan RESP .............................................................................. 29

Gambar 7. Hasil pemilihan lokasi sistein target pada mutan Y220C-p53 ...... 30

Gambar 8. Grafik perbedaan RMSD sebagai fungsi waktu ........................... 31

Gambar 9. Grafik perbedaan B-factor semua atom sebagai fungsi nomor

residu dan grafik perbedaan B-factor atom backbone sebagai

fungsi nomor residu .................................................................... 33

Gambar 10. Grafik B-faktor atom backbone total keempat sistem .................. 34

Gambar 12. Grafik perbedaan order parameter vektor NH sebagai fungsi

nomor residu .............................................................................. 36

Gambar 13. Grafik order parameter sebagai fungsi residu pada keempat

sistem . ........................................................................................ 37

Gambar 14. Perbedaan konformasi p53 antara keempat sistem ...................... 40

Gambar 15. Perbedaan konformasi keempat sistem pada range residu 114-124 41

Gambar 16. Perbedaan ikatan hidrogen keempat sistem pada range residu

114-124 ...................................................................................... 42

Gambar 17. Perbedaan konformasi keempat sistem pada range residu 176-189 47

Gambar 18. Perbedaan ikatan hidrogen keempat sistem pada range residu

176-189....................................................................................... 48

Gambar 19. Perbedaan konformasi keempat sistem pada range residu 220-232 51

Gambar 20. Perbedaan ikatan hidrogen keempat sistem pada range residu

220-232....................................................................................... 52

Gambar 21. Perbedaan konformasi keempat sistem pada range residu 239-250 53

Page 15: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idxv

Gambar 22. Perbedaan ikatan hidrogen keempat sistem pada range residu

239-250....................................................................................... 56

Page 16: DINAMIKA REAKTIVASI Y220C-p53 OLEH ADDUCT MQ-SISTEIN

perpustakaan.uns.ac.id digilib.uns.ac.idxvi

DAFTAR LAMPIRAN

Lampiran 1. Diagram alir parameterisasi adduct MQ-Sistein .......................... 68

Lampiran 2. Diagram alir pemilihan makromolekul ......................................... 69

Lampiran 3. Diagram alir proses simulasi ....................................................... 70

Lampiran 4. Diagram alir analisis visualisasi konformasi ................................ 71

Lampiran 5. File prep adduct MQ-Sistein ....................................................... 72

Lampiran 6. Populasi 10 klaster dari empat sistem protein .............................. 73