diode circuits: part 2sequel/ee101/mc_diodes_2.pdfclamper circuits 0v vi clamper vo 0v 0v vi clamper...

133
Diode Circuits: Part 2 M. B. Patil [email protected] www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay M. B. Patil, IIT Bombay

Upload: others

Post on 20-Jan-2020

26 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Diode Circuits: Part 2

M. B. [email protected]

www.ee.iitb.ac.in/~sequel

Department of Electrical EngineeringIndian Institute of Technology Bombay

M. B. Patil, IIT Bombay

Page 2: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0 V

Ron→ 0Ω

Roff →∞Ω

C

DiD

Vc

VD

iD

VD

Vs

Vs

Vs < Vc

τ =RoffC

Vs > Vc

τ =RonC

Ron

Roff

C

C

Vs Vc

VcVs

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 3: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0 V

Ron→ 0Ω

Roff →∞Ω

C

DiD

Vc

VD

iD

VD

Vs

Vs

Vs < Vc

τ =RoffC

Vs > Vc

τ =RonC

Ron

Roff

C

C

Vs Vc

VcVs

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 4: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0 V

Ron→ 0Ω

Roff →∞Ω

C

DiD

Vc

VD

iD

VD

Vs

Vs

Vs < Vc

τ =RoffC

Vs > Vc

τ =RonC

Ron

Roff

C

C

Vs Vc

VcVs

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 5: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0 V

Ron→ 0Ω

Roff →∞Ω

C

DiD

Vc

VD

iD

VD

Vs

Vs

Vs < Vc

τ =RoffC

Vs > Vc

τ =RonC

Ron

Roff

C

C

Vs Vc

VcVs

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 6: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0 V

Ron→ 0Ω

Roff →∞Ω

C

DiD

Vc

VD

iD

VD

Vs

Vs

Vs < Vc

τ =RoffC

Vs > Vc

τ =RonC

Ron

Roff

C

C

Vs Vc

VcVs

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 7: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0 V

Ron→ 0Ω

Roff →∞Ω

C

DiD

Vc

VD

iD

VD

Vs

Vs

Vs < Vc

τ =RoffC

Vs > Vc

τ =RonC

Ron

Roff

C

C

Vs Vc

VcVs

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 8: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0 V

Ron→ 0Ω

Roff →∞Ω

C

DiD

Vc

VD

iD

VD

Vs

Vs

Vs < Vc

τ =RoffC

Vs > Vc

τ =RonC

Ron

Roff

C

C

Vs Vc

VcVs

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 9: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0.7V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

C

D

Vc

iD

VD

VDVon

Vs

iD

Vs

Vs < Vc + Von

τ =RoffC

Vs > Vc + Von

τ =RonC

RonVon

Roff

C

C

Vs Vc

Vs Vc

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 10: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0.7V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

C

D

Vc

iD

VD

VDVon

Vs

iD

Vs

Vs < Vc + Von

τ =RoffC

Vs > Vc + Von

τ =RonC

RonVon

Roff

C

C

Vs Vc

Vs Vc

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 11: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0.7V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

C

D

Vc

iD

VD

VDVon

Vs

iD

Vs

Vs < Vc + Von

τ =RoffC

Vs > Vc + Von

τ =RonC

RonVon

Roff

C

C

Vs Vc

Vs Vc

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 12: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0.7V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

C

D

Vc

iD

VD

VDVon

Vs

iD

Vs

Vs < Vc + Von

τ =RoffC

Vs > Vc + Von

τ =RonC

RonVon

Roff

C

C

Vs Vc

Vs Vc

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 13: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0.7V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

C

D

Vc

iD

VD

VDVon

Vs

iD

Vs

Vs < Vc + Von

τ =RoffC

Vs > Vc + Von

τ =RonC

RonVon

Roff

C

C

Vs Vc

Vs Vc

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 14: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0.7V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

C

D

Vc

iD

VD

VDVon

Vs

iD

Vs

Vs < Vc + Von

τ =RoffC

Vs > Vc + Von

τ =RonC

RonVon

Roff

C

C

Vs Vc

Vs Vc

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 15: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Peak detector (with Von =0.7V)

1050 15 20 25

time (msec)

4

2

0

−2

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

C

D

Vc

iD

VD

VDVon

Vs

iD

Vs

Vs < Vc + Von

τ =RoffC

Vs > Vc + Von

τ =RonC

RonVon

Roff

C

C

Vs Vc

Vs Vc

SEQUEL file: ee101 peak detector 1.sqproj

Vo

M. B. Patil, IIT Bombay

Page 16: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

Clamper VoVi0V 0V

Clamper VoVi0V 0V

* A clamper circuit provides a “level shift.” (The shape of the input signal is not altered.)

* The shift could be positive or negative.

M. B. Patil, IIT Bombay

Page 17: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

Clamper VoVi0V 0V

Clamper VoVi0V 0V

* A clamper circuit provides a “level shift.” (The shape of the input signal is not altered.)

* The shift could be positive or negative.

M. B. Patil, IIT Bombay

Page 18: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

Clamper VoVi0V 0V Clamper VoVi0V 0V

* A clamper circuit provides a “level shift.” (The shape of the input signal is not altered.)

* The shift could be positive or negative.

M. B. Patil, IIT Bombay

Page 19: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

−5

0

5

10

time (msec)

1 2 3 4 0

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

iD

VD

VD VoVs

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc + Vs = 0→ Vc =−Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm, i.e., a positive level shift.

* Note that we are generally interested only in the steady-state behaviour and not in the transient at thebeginning.

M. B. Patil, IIT Bombay

Page 20: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

−5

0

5

10

time (msec)

1 2 3 4 0

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

iD

VD

VD VoVs

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc + Vs = 0→ Vc =−Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm, i.e., a positive level shift.

* Note that we are generally interested only in the steady-state behaviour and not in the transient at thebeginning.

M. B. Patil, IIT Bombay

Page 21: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

−5

0

5

10

time (msec)

1 2 3 4 0

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

iD

VD

VD VoVs

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc + Vs = 0→ Vc =−Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm, i.e., a positive level shift.

* Note that we are generally interested only in the steady-state behaviour and not in the transient at thebeginning.

M. B. Patil, IIT Bombay

Page 22: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

−5

0

5

10

time (msec)

1 2 3 4 0

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

iD

VD

VD VoVs

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc + Vs = 0→ Vc =−Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm, i.e., a positive level shift.

* Note that we are generally interested only in the steady-state behaviour and not in the transient at thebeginning.

M. B. Patil, IIT Bombay

Page 23: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

−5

0

5

10

time (msec)

1 2 3 4 0

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

iD

VD

VD VoVs

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc + Vs = 0→ Vc =−Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm, i.e., a positive level shift.

* Note that we are generally interested only in the steady-state behaviour and not in the transient at thebeginning.

M. B. Patil, IIT Bombay

Page 24: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

−5

0

5

10

time (msec)

1 2 3 4 0

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

iD

VD

VD VoVs

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc + Vs = 0→ Vc =−Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm, i.e., a positive level shift.

* Note that we are generally interested only in the steady-state behaviour and not in the transient at thebeginning.

M. B. Patil, IIT Bombay

Page 25: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

−5

0

5

10

time (msec)

1 2 3 4 0

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

iD

VD

VD VoVs

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc + Vs = 0→ Vc =−Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm, i.e., a positive level shift.

* Note that we are generally interested only in the steady-state behaviour and not in the transient at thebeginning.

M. B. Patil, IIT Bombay

Page 26: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

−5

0

5

10

time (msec)

1 2 3 4 0

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

iD

VD

VD VoVs

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc + Vs = 0→ Vc =−Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm, i.e., a positive level shift.

* Note that we are generally interested only in the steady-state behaviour and not in the transient at thebeginning.

M. B. Patil, IIT Bombay

Page 27: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

−5

0

5

10

time (msec)

1 2 3 4 0

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

iD

VD

VD VoVs

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc + Vs = 0→ Vc =−Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm, i.e., a positive level shift.

* Note that we are generally interested only in the steady-state behaviour and not in the transient at thebeginning.

M. B. Patil, IIT Bombay

Page 28: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

time (msec)

1 2 3 4 0

−5

0

5

10

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

VD

VD

iD

Von

VoVs

Vo

Vs

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small (as in the last circuit).In this phase,Vc + Vs + Von = 0→ Vc =−Vs − Von.

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm − Von), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm − Von. In this case, Vo gets clamped at −0.7 V.

M. B. Patil, IIT Bombay

Page 29: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

time (msec)

1 2 3 4 0

−5

0

5

10

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

VD

VD

iD

Von

VoVs

Vo

Vs

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small (as in the last circuit).In this phase,Vc + Vs + Von = 0→ Vc =−Vs − Von.

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm − Von), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm − Von. In this case, Vo gets clamped at −0.7 V.

M. B. Patil, IIT Bombay

Page 30: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

time (msec)

1 2 3 4 0

−5

0

5

10

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

VD

VD

iD

Von

VoVs

Vo

Vs

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small (as in the last circuit).In this phase,Vc + Vs + Von = 0→ Vc =−Vs − Von.

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm − Von), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm − Von. In this case, Vo gets clamped at −0.7 V.

M. B. Patil, IIT Bombay

Page 31: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

time (msec)

1 2 3 4 0

−5

0

5

10

iD

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

C

Vc

VD

VD

iD

Von

VoVs

Vo

Vs

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small (as in the last circuit).In this phase,Vc + Vs + Von = 0→ Vc =−Vs − Von.

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm − Von), it cannot change any more. We then haveVo(t) =Vs(t) + Vc (t) =Vs(t) + Vm − Von. In this case, Vo gets clamped at −0.7 V.

M. B. Patil, IIT Bombay

Page 32: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

5

0

−5

−10 0 1 2 3 4

time (msec)

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

CVo

iD iD

VD

Vc

Vs VD

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc − Vs = 0→ Vc =Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t)− Vc (t) =Vs(t)− Vm, i.e., a negative level shift.

M. B. Patil, IIT Bombay

Page 33: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

5

0

−5

−10 0 1 2 3 4

time (msec)

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

CVo

iD iD

VD

Vc

Vs VD

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc − Vs = 0→ Vc =Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t)− Vc (t) =Vs(t)− Vm, i.e., a negative level shift.

M. B. Patil, IIT Bombay

Page 34: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

5

0

−5

−10 0 1 2 3 4

time (msec)

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

CVo

iD iD

VD

Vc

Vs VD

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc − Vs = 0→ Vc =Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t)− Vc (t) =Vs(t)− Vm, i.e., a negative level shift.

M. B. Patil, IIT Bombay

Page 35: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

5

0

−5

−10 0 1 2 3 4

time (msec)

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

CVo

iD iD

VD

Vc

Vs VD

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc − Vs = 0→ Vc =Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t)− Vc (t) =Vs(t)− Vm, i.e., a negative level shift.

M. B. Patil, IIT Bombay

Page 36: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

5

0

−5

−10 0 1 2 3 4

time (msec)

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

CVo

iD iD

VD

Vc

Vs VD

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc − Vs = 0→ Vc =Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t)− Vc (t) =Vs(t)− Vm, i.e., a negative level shift.

M. B. Patil, IIT Bombay

Page 37: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

5

0

−5

−10 0 1 2 3 4

time (msec)

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

CVo

iD iD

VD

Vc

Vs VD

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc − Vs = 0→ Vc =Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t)− Vc (t) =Vs(t)− Vm, i.e., a negative level shift.

M. B. Patil, IIT Bombay

Page 38: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

5

0

−5

−10 0 1 2 3 4

time (msec)

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von = 0 V

Ron→ 0Ω

Roff →∞Ω

CVo

iD iD

VD

Vc

Vs VD

Vs

Vo

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small. In this phase,VD = 0→ Vc − Vs = 0→ Vc =Vs .

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm), it cannot change any more. We then haveVo(t) =Vs(t)− Vc (t) =Vs(t)− Vm, i.e., a negative level shift.

M. B. Patil, IIT Bombay

Page 39: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

0 1 2 3 4

time (msec)

5

0

−5

−10

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

CVo

iD

Vc

VD

iD

Von

Vs VD

Vo

Vs

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small (as in the last circuit).In this phase,Vc + Von − Vs = 0→ Vc =Vs − Von.

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm − Von), it cannot change any more. We then haveVo(t) =Vs(t)− Vc (t) =Vs(t)− Vm + Von. In this case, Vo gets clamped at 0.7 V.

M. B. Patil, IIT Bombay

Page 40: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

0 1 2 3 4

time (msec)

5

0

−5

−10

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

CVo

iD

Vc

VD

iD

Von

Vs VD

Vo

Vs

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small (as in the last circuit).In this phase,Vc + Von − Vs = 0→ Vc =Vs − Von.

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm − Von), it cannot change any more. We then haveVo(t) =Vs(t)− Vc (t) =Vs(t)− Vm + Von. In this case, Vo gets clamped at 0.7 V.

M. B. Patil, IIT Bombay

Page 41: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

0 1 2 3 4

time (msec)

5

0

−5

−10

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

CVo

iD

Vc

VD

iD

Von

Vs VD

Vo

Vs

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small (as in the last circuit).In this phase,Vc + Von − Vs = 0→ Vc =Vs − Von.

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm − Von), it cannot change any more. We then haveVo(t) =Vs(t)− Vc (t) =Vs(t)− Vm + Von. In this case, Vo gets clamped at 0.7 V.

M. B. Patil, IIT Bombay

Page 42: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Clamper circuits

0 1 2 3 4

time (msec)

5

0

−5

−10

Vs(t)=Vm sinωt

Vc(0) = 0 V

Von= 0.7 V

Ron→ 0Ω

Roff →∞Ω

CVo

iD

Vc

VD

iD

Von

Vs VD

Vo

Vs

Vc

* When D conducts, the capacitor charges instantaneously since Ron is small (as in the last circuit).In this phase,Vc + Von − Vs = 0→ Vc =Vs − Von.

* Vc can only increase since a decrease in Vc would require the diode to conduct in the reverse direction.

* After Vc reaches its maximum value (Vm − Von), it cannot change any more. We then haveVo(t) =Vs(t)− Vc (t) =Vs(t)− Vm + Von. In this case, Vo gets clamped at 0.7 V.

M. B. Patil, IIT Bombay

Page 43: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Voltage doubler (peak-to-peak detector)

Positive

clamper

Peak

Detector VoViVo

Vm

−Vm

2Vm

0V

2Vm

0VVi

V1

0V

* Input voltage: −Vm to Vm

* Output of positive clamper (V1): 0 to 2Vm

* The peak detector detects the peak of V1(t), i.e., 2Vm (dc).

M. B. Patil, IIT Bombay

Page 44: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Voltage doubler (peak-to-peak detector)

Positive

clamper

Peak

Detector VoViVo

Vm

−Vm

2Vm

0V

2Vm

0VVi

V1

0V

* Input voltage: −Vm to Vm

* Output of positive clamper (V1): 0 to 2Vm

* The peak detector detects the peak of V1(t), i.e., 2Vm (dc).

M. B. Patil, IIT Bombay

Page 45: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Voltage doubler (peak-to-peak detector)

Positive

clamper

Peak

Detector VoViVo

Vm

−Vm

2Vm

0V

2Vm

0VVi

V1

0V

* Input voltage: −Vm to Vm

* Output of positive clamper (V1): 0 to 2Vm

* The peak detector detects the peak of V1(t), i.e., 2Vm (dc).

M. B. Patil, IIT Bombay

Page 46: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Voltage doubler (peak-to-peak detector)

Positive

clamper

Peak

Detector VoViVo

Vm

−Vm

2Vm

0V

2Vm

0VVi

V1

0V

* Input voltage: −Vm to Vm

* Output of positive clamper (V1): 0 to 2Vm

* The peak detector detects the peak of V1(t), i.e., 2Vm (dc).

M. B. Patil, IIT Bombay

Page 47: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Voltage doubler (peak-to-peak detector)

Positive

clamper

Peak

Detector

Positive

clamper

Peak

Detector

VoV1Vi

V1VoVi

C1

D1 C2

D2

10

0

-10

20Von= 0V

0 1 2 3 4 5 6 7 8 9 10

10

0

-10

20Von= 0.7 V

time (msec)

SEQUEL file: ee101 voltage doubler.sqproj

M. B. Patil, IIT Bombay

Page 48: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Voltage doubler (peak-to-peak detector)

Positive

clamper

Peak

Detector

Positive

clamper

Peak

Detector

VoV1Vi

V1VoVi

C1

D1 C2

D2

10

0

-10

20Von= 0V

0 1 2 3 4 5 6 7 8 9 10

10

0

-10

20Von= 0.7 V

time (msec)

SEQUEL file: ee101 voltage doubler.sqproj

M. B. Patil, IIT Bombay

Page 49: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Voltage doubler (peak-to-peak detector)

Positive

clamper

Peak

Detector

Positive

clamper

Peak

Detector

VoV1Vi

V1VoVi

C1

D1 C2

D2

10

0

-10

20Von= 0V

0 1 2 3 4 5 6 7 8 9 10

10

0

-10

20Von= 0.7 V

time (msec)

SEQUEL file: ee101 voltage doubler.sqproj

M. B. Patil, IIT Bombay

Page 50: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Voltage doubler (peak-to-peak detector)

Positive

clamper

Peak

Detector

Positive

clamper

Peak

Detector

VoV1Vi

V1VoVi

C1

D1 C2

D2

10

0

-10

20Von= 0V

0 1 2 3 4 5 6 7 8 9 10

10

0

-10

20Von= 0.7 V

time (msec)

SEQUEL file: ee101 voltage doubler.sqproj

M. B. Patil, IIT Bombay

Page 51: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Diode circuit example

R1

D1

R2

D2

Vo

C ID

VCiC

0.7 V VD

Vi

Vm

−Vm

T1 T2

Assuming R1C and R2C to be large compared to T , find Vo(t) insteady state.

* Charging time constant τ1 =R1C .

* Discharging time constant τ2 =R2C .

* Since τ1 T and τ2 T , we expect VC to be nearlyconstant in steady state,

i.e., VC (t) ≈ constant ≡ V 0C .

* Vo(t) = Vi (t)− VC (t) ≈ Vi (t)− V 0C .

Let us look at an example.

M. B. Patil, IIT Bombay

Page 52: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Diode circuit example

R1

D1

R2

D2

Vo

C ID

VCiC

0.7 V VD

Vi

Vm

−Vm

T1 T2

Assuming R1C and R2C to be large compared to T , find Vo(t) insteady state.

* Charging time constant τ1 =R1C .

* Discharging time constant τ2 =R2C .

* Since τ1 T and τ2 T , we expect VC to be nearlyconstant in steady state,

i.e., VC (t) ≈ constant ≡ V 0C .

* Vo(t) = Vi (t)− VC (t) ≈ Vi (t)− V 0C .

Let us look at an example.

M. B. Patil, IIT Bombay

Page 53: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Diode circuit example

R1

D1

R2

D2

Vo

C ID

VCiC

0.7 V VD

Vi

Vm

−Vm

T1 T2

Assuming R1C and R2C to be large compared to T , find Vo(t) insteady state.

* Charging time constant τ1 =R1C .

* Discharging time constant τ2 =R2C .

* Since τ1 T and τ2 T , we expect VC to be nearlyconstant in steady state,

i.e., VC (t) ≈ constant ≡ V 0C .

* Vo(t) = Vi (t)− VC (t) ≈ Vi (t)− V 0C .

Let us look at an example.

M. B. Patil, IIT Bombay

Page 54: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Diode circuit example

R1

D1

R2

D2

Vo

C ID

VCiC

0.7 V VD

Vi

Vm

−Vm

T1 T2

Assuming R1C and R2C to be large compared to T , find Vo(t) insteady state.

* Charging time constant τ1 =R1C .

* Discharging time constant τ2 =R2C .

* Since τ1 T and τ2 T , we expect VC to be nearlyconstant in steady state,

i.e., VC (t) ≈ constant ≡ V 0C .

* Vo(t) = Vi (t)− VC (t) ≈ Vi (t)− V 0C .

Let us look at an example.

M. B. Patil, IIT Bombay

Page 55: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Diode circuit example

R1

D1

R2

D2

Vo

C ID

VCiC

0.7 V VD

Vi

Vm

−Vm

T1 T2

Assuming R1C and R2C to be large compared to T , find Vo(t) insteady state.

* Charging time constant τ1 =R1C .

* Discharging time constant τ2 =R2C .

* Since τ1 T and τ2 T , we expect VC to be nearlyconstant in steady state,

i.e., VC (t) ≈ constant ≡ V 0C .

* Vo(t) = Vi (t)− VC (t) ≈ Vi (t)− V 0C .

Let us look at an example.

M. B. Patil, IIT Bombay

Page 56: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Diode circuit example

R1

D1

R2

D2

Vo

C ID

VCiC

0.7 V VD

Vi

Vm

−Vm

T1 T2

Assuming R1C and R2C to be large compared to T , find Vo(t) insteady state.

* Charging time constant τ1 =R1C .

* Discharging time constant τ2 =R2C .

* Since τ1 T and τ2 T , we expect VC to be nearlyconstant in steady state,

i.e., VC (t) ≈ constant ≡ V 0C .

* Vo(t) = Vi (t)− VC (t) ≈ Vi (t)− V 0C .

Let us look at an example.

M. B. Patil, IIT Bombay

Page 57: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

15

10

5

0

−5

−10

R1

D1

R2

D2

Vo

C ID

0.7 V VD

VCiCVi

Vm

−Vm

T1 T2

R1= 5 kR2= 10 kVon = 0.7 VT1= 0.25msT2= 0.75msC= 10µF

Vo

Vi

VC

−1.82

−1.90

VC

0 1 2

Time (msec)

−1

0

1

2

3

ee101 diode circuit 13.sqproj

SEQUEL file:

iC (mA)

M. B. Patil, IIT Bombay

Page 58: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

15

10

5

0

−5

−10

R1

D1

R2

D2

Vo

C ID

0.7 V VD

VCiCVi

Vm

−Vm

T1 T2

R1= 5 kR2= 10 kVon = 0.7 VT1= 0.25msT2= 0.75msC= 10µF

Vo

Vi

VC

−1.82

−1.90

VC

0 1 2

Time (msec)

−1

0

1

2

3

ee101 diode circuit 13.sqproj

SEQUEL file:

iC (mA)

M. B. Patil, IIT Bombay

Page 59: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

15

10

5

0

−5

−10

R1

D1

R2

D2

Vo

C ID

0.7 V VD

VCiCVi

Vm

−Vm

T1 T2

R1= 5 kR2= 10 kVon = 0.7 VT1= 0.25msT2= 0.75msC= 10µF

Vo

Vi

VC

−1.82

−1.90

VC

0 1 2

Time (msec)

−1

0

1

2

3

ee101 diode circuit 13.sqproj

SEQUEL file:

iC (mA)

M. B. Patil, IIT Bombay

Page 60: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

0 1 2

Time (msec)

−1

0

1

2

3

−1.82

−1.90

15

10

5

0

−5

−10

R1

D1

R2

D2

Vo

C ID

VCiC

0.7 V VD

Vi

R1= 5 kR2= 10 kVon= 0.7 VT1= 0.25msT2= 0.75msC= 10µF

iC (mA)

Vo

Vi

VC

VC

Charge conservation:

∆Q =

∫ T

0iC dt =

∫ T1

0iC dt +

∫ T1+T2

T1

iC dt = 0.

T1

(Vm − VC − Von

R1

)− T2

(0− (−Vm − VC )− Von

R2

)= 0.(

T1

R1−

T2

R2

)(Vm − Von) = VC

(T1

R1+

T2

R2

).

→ VC =

(T1

R1−

T2

R2

)(T1

R1+

T2

R2

) (Vm − Von) = −1.86 V.

M. B. Patil, IIT Bombay

Page 61: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

0 1 2

Time (msec)

−1

0

1

2

3

−1.82

−1.90

15

10

5

0

−5

−10

R1

D1

R2

D2

Vo

C ID

VCiC

0.7 V VD

Vi

R1= 5 kR2= 10 kVon= 0.7 VT1= 0.25msT2= 0.75msC= 10µF

iC (mA)

Vo

Vi

VC

VC

Charge conservation:

∆Q =

∫ T

0iC dt =

∫ T1

0iC dt +

∫ T1+T2

T1

iC dt = 0.

T1

(Vm − VC − Von

R1

)− T2

(0− (−Vm − VC )− Von

R2

)= 0.(

T1

R1−

T2

R2

)(Vm − Von) = VC

(T1

R1+

T2

R2

).

→ VC =

(T1

R1−

T2

R2

)(T1

R1+

T2

R2

) (Vm − Von) = −1.86 V.

M. B. Patil, IIT Bombay

Page 62: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

0 1 2

Time (msec)

−1

0

1

2

3

−1.82

−1.90

15

10

5

0

−5

−10

R1

D1

R2

D2

Vo

C ID

VCiC

0.7 V VD

Vi

R1= 5 kR2= 10 kVon= 0.7 VT1= 0.25msT2= 0.75msC= 10µF

iC (mA)

Vo

Vi

VC

VC

Charge conservation:

∆Q =

∫ T

0iC dt =

∫ T1

0iC dt +

∫ T1+T2

T1

iC dt = 0.

T1

(Vm − VC − Von

R1

)− T2

(0− (−Vm − VC )− Von

R2

)= 0.

(T1

R1−

T2

R2

)(Vm − Von) = VC

(T1

R1+

T2

R2

).

→ VC =

(T1

R1−

T2

R2

)(T1

R1+

T2

R2

) (Vm − Von) = −1.86 V.

M. B. Patil, IIT Bombay

Page 63: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

0 1 2

Time (msec)

−1

0

1

2

3

−1.82

−1.90

15

10

5

0

−5

−10

R1

D1

R2

D2

Vo

C ID

VCiC

0.7 V VD

Vi

R1= 5 kR2= 10 kVon= 0.7 VT1= 0.25msT2= 0.75msC= 10µF

iC (mA)

Vo

Vi

VC

VC

Charge conservation:

∆Q =

∫ T

0iC dt =

∫ T1

0iC dt +

∫ T1+T2

T1

iC dt = 0.

T1

(Vm − VC − Von

R1

)− T2

(0− (−Vm − VC )− Von

R2

)= 0.(

T1

R1−

T2

R2

)(Vm − Von) = VC

(T1

R1+

T2

R2

).

→ VC =

(T1

R1−

T2

R2

)(T1

R1+

T2

R2

) (Vm − Von) = −1.86 V.

M. B. Patil, IIT Bombay

Page 64: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

0 1 2

Time (msec)

−1

0

1

2

3

−1.82

−1.90

15

10

5

0

−5

−10

R1

D1

R2

D2

Vo

C ID

VCiC

0.7 V VD

Vi

R1= 5 kR2= 10 kVon= 0.7 VT1= 0.25msT2= 0.75msC= 10µF

iC (mA)

Vo

Vi

VC

VC

Charge conservation:

∆Q =

∫ T

0iC dt =

∫ T1

0iC dt +

∫ T1+T2

T1

iC dt = 0.

T1

(Vm − VC − Von

R1

)− T2

(0− (−Vm − VC )− Von

R2

)= 0.(

T1

R1−

T2

R2

)(Vm − Von) = VC

(T1

R1+

T2

R2

).

→ VC =

(T1

R1−

T2

R2

)(T1

R1+

T2

R2

) (Vm − Von) = −1.86 V.

M. B. Patil, IIT Bombay

Page 65: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Rectifiers

ACmains

step-downtransformer

Vo

Rectifierwithoutfilter

half-wave rectifier full-wave rectifier

ACmains

step-downtransformer

Vo

Rectifierwithfilter

half-wave rectifier full-wave rectifier

* A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phonecharger.

* AC mains → step-down transformer → DC voltage ORAC mains → DC voltage → lower DC voltage

* A voltage regulator would be typically used to remove the ripple riding on the DC output.

M. B. Patil, IIT Bombay

Page 66: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Rectifiers

ACmains

step-downtransformer

Vo

Rectifierwithoutfilter

half-wave rectifier full-wave rectifier

ACmains

step-downtransformer

Vo

Rectifierwithfilter

half-wave rectifier full-wave rectifier

* A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phonecharger.

* AC mains → step-down transformer → DC voltage ORAC mains → DC voltage → lower DC voltage

* A voltage regulator would be typically used to remove the ripple riding on the DC output.

M. B. Patil, IIT Bombay

Page 67: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Rectifiers

ACmains

step-downtransformer

Vo

Rectifierwithoutfilter

half-wave rectifier full-wave rectifier

ACmains

step-downtransformer

Vo

Rectifierwithfilter

half-wave rectifier full-wave rectifier

* A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phonecharger.

* AC mains → step-down transformer → DC voltage ORAC mains → DC voltage → lower DC voltage

* A voltage regulator would be typically used to remove the ripple riding on the DC output.

M. B. Patil, IIT Bombay

Page 68: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Rectifiers

ACmains

step-downtransformer

Vo

Rectifierwithoutfilter

half-wave rectifier

full-wave rectifier

ACmains

step-downtransformer

Vo

Rectifierwithfilter

half-wave rectifier full-wave rectifier

* A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phonecharger.

* AC mains → step-down transformer → DC voltage ORAC mains → DC voltage → lower DC voltage

* A voltage regulator would be typically used to remove the ripple riding on the DC output.

M. B. Patil, IIT Bombay

Page 69: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Rectifiers

ACmains

step-downtransformer

Vo

Rectifierwithoutfilter

half-wave rectifier full-wave rectifier

ACmains

step-downtransformer

Vo

Rectifierwithfilter

half-wave rectifier full-wave rectifier

* A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phonecharger.

* AC mains → step-down transformer → DC voltage ORAC mains → DC voltage → lower DC voltage

* A voltage regulator would be typically used to remove the ripple riding on the DC output.

M. B. Patil, IIT Bombay

Page 70: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Rectifiers

ACmains

step-downtransformer

Vo

Rectifierwithoutfilter

half-wave rectifier full-wave rectifier

ACmains

step-downtransformer

Vo

Rectifierwithfilter

half-wave rectifier full-wave rectifier

* A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phonecharger.

* AC mains → step-down transformer → DC voltage ORAC mains → DC voltage → lower DC voltage

* A voltage regulator would be typically used to remove the ripple riding on the DC output.

M. B. Patil, IIT Bombay

Page 71: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Rectifiers

ACmains

step-downtransformer

Vo

Rectifierwithoutfilter

half-wave rectifier full-wave rectifier

ACmains

step-downtransformer

Vo

Rectifierwithfilter

half-wave rectifier

full-wave rectifier

* A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phonecharger.

* AC mains → step-down transformer → DC voltage ORAC mains → DC voltage → lower DC voltage

* A voltage regulator would be typically used to remove the ripple riding on the DC output.

M. B. Patil, IIT Bombay

Page 72: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Rectifiers

ACmains

step-downtransformer

Vo

Rectifierwithoutfilter

half-wave rectifier full-wave rectifier

ACmains

step-downtransformer

Vo

Rectifierwithfilter

half-wave rectifier full-wave rectifier

* A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phonecharger.

* AC mains → step-down transformer → DC voltage ORAC mains → DC voltage → lower DC voltage

* A voltage regulator would be typically used to remove the ripple riding on the DC output.

M. B. Patil, IIT Bombay

Page 73: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Rectifiers

ACmains

step-downtransformer

Vo

Rectifierwithoutfilter

half-wave rectifier full-wave rectifier

ACmains

step-downtransformer

Vo

Rectifierwithfilter

half-wave rectifier full-wave rectifier

* A rectifier is used to convert an AC voltage to a DC voltage (typically 5 to 20 V), e.g., a mobile phonecharger.

* AC mains → step-down transformer → DC voltage ORAC mains → DC voltage → lower DC voltage

* A voltage regulator would be typically used to remove the ripple riding on the DC output.

M. B. Patil, IIT Bombay

Page 74: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier without filter

slope=1

Vi Vo

Von

Vi

Vo

t

D on D off

Vi

Vo

D

R

* D conducts only if Vi > Von, and in that case Vo =Vi − Von, a straight line with slope = 1.

* If Vi < Von, D does not conduct → Vo = 0.

M. B. Patil, IIT Bombay

Page 75: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier without filter

slope=1

Vi Vo

Von

Vi

Vo

t

D on D off

Vi

Vo

D

R

* D conducts only if Vi > Von, and in that case Vo =Vi − Von, a straight line with slope = 1.

* If Vi < Von, D does not conduct → Vo = 0.

M. B. Patil, IIT Bombay

Page 76: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier without filter

slope=1

Vi Vo

Von

Vi

Vo

t

D on D off

Vi

Vo

D

R

* D conducts only if Vi > Von, and in that case Vo =Vi − Von, a straight line with slope = 1.

* If Vi < Von, D does not conduct → Vo = 0.

M. B. Patil, IIT Bombay

Page 77: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave (bridge) rectifier without filter

Vs

D4

D3D2

D1

R

Vo

A

B

Q P

Vs

D4

D3

D2

D1

B

P

Q

A

Vo Vs

D4

D3

D2

D1

B

P

Q

A

Vo

D1, D2 on D3, D4 onVm

0

−Vs

Vs

t

Vo

M. B. Patil, IIT Bombay

Page 78: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave (bridge) rectifier without filter

Vs

D4

D3D2

D1

R

Vo

A

B

Q P Vs

D4

D3

D2

D1

B

P

Q

A

Vo

Vs

D4

D3

D2

D1

B

P

Q

A

Vo

D1, D2 on D3, D4 onVm

0

−Vs

Vs

t

Vo

M. B. Patil, IIT Bombay

Page 79: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave (bridge) rectifier without filter

Vs

D4

D3D2

D1

R

Vo

A

B

Q P Vs

D4

D3

D2

D1

B

P

Q

A

Vo

Vs

D4

D3

D2

D1

B

P

Q

A

Vo

D1, D2 on D3, D4 onVm

0

−Vs

Vs

t

Vo

M. B. Patil, IIT Bombay

Page 80: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave (bridge) rectifier without filter

Vs

D4

D3D2

D1

R

Vo

A

B

Q P Vs

D4

D3

D2

D1

B

P

Q

A

Vo Vs

D4

D3

D2

D1

B

P

Q

A

Vo

D1, D2 on D3, D4 onVm

0

−Vs

Vs

t

Vo

M. B. Patil, IIT Bombay

Page 81: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave (bridge) rectifier without filter

Vs

D4

D3D2

D1

R

Vo

A

B

Q P Vs

D4

D3

D2

D1

B

P

Q

A

Vo Vs

D4

D3

D2

D1

B

P

Q

A

Vo

D1, D2 on D3, D4 onVm

0

−Vs

Vs

t

Vo

M. B. Patil, IIT Bombay

Page 82: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

* Similar to the peak detector except that the loadresistance provides a discharge path for thecapacitor in this case.

* Because of the load current iR , there is a drop inthe output voltage → “ripple”

* The peak diode current is much larger than theaverage load current.

* VD(t) =Vs(t)− Vo(t)≈Vs(t)− Vm

→ The maximum reverse bias (“Peak InverseVoltage” or PIV) across the diode is 2Vm.

* With Von = 0.7 V, the plots are slightly different.

iD

−Vm

−2Vm

0

VD

VoVs

VRVm

0

0

TcT

T2 t

iC

0VVon:

0.7 V

M. B. Patil, IIT Bombay

Page 83: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

* Similar to the peak detector except that the loadresistance provides a discharge path for thecapacitor in this case.

* Because of the load current iR , there is a drop inthe output voltage → “ripple”

* The peak diode current is much larger than theaverage load current.

* VD(t) =Vs(t)− Vo(t)≈Vs(t)− Vm

→ The maximum reverse bias (“Peak InverseVoltage” or PIV) across the diode is 2Vm.

* With Von = 0.7 V, the plots are slightly different.

iD

−Vm

−2Vm

0

VD

VoVs

VRVm

0

0

TcT

T2 t

iC

0VVon:

0.7 V

M. B. Patil, IIT Bombay

Page 84: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

* Similar to the peak detector except that the loadresistance provides a discharge path for thecapacitor in this case.

* Because of the load current iR , there is a drop inthe output voltage → “ripple”

* The peak diode current is much larger than theaverage load current.

* VD(t) =Vs(t)− Vo(t)≈Vs(t)− Vm

→ The maximum reverse bias (“Peak InverseVoltage” or PIV) across the diode is 2Vm.

* With Von = 0.7 V, the plots are slightly different.

iD

−Vm

−2Vm

0

VD

VoVs

VRVm

0

0

TcT

T2 t

iC

0VVon:

0.7 V

M. B. Patil, IIT Bombay

Page 85: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

* Similar to the peak detector except that the loadresistance provides a discharge path for thecapacitor in this case.

* Because of the load current iR , there is a drop inthe output voltage → “ripple”

* The peak diode current is much larger than theaverage load current.

* VD(t) =Vs(t)− Vo(t)≈Vs(t)− Vm

→ The maximum reverse bias (“Peak InverseVoltage” or PIV) across the diode is 2Vm.

* With Von = 0.7 V, the plots are slightly different.

iD

−Vm

−2Vm

0

VD

VoVs

VRVm

0

0

TcT

T2 t

iC

0VVon:

0.7 V

M. B. Patil, IIT Bombay

Page 86: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

* Similar to the peak detector except that the loadresistance provides a discharge path for thecapacitor in this case.

* Because of the load current iR , there is a drop inthe output voltage → “ripple”

* The peak diode current is much larger than theaverage load current.

* VD(t) =Vs(t)− Vo(t)≈Vs(t)− Vm

→ The maximum reverse bias (“Peak InverseVoltage” or PIV) across the diode is 2Vm.

* With Von = 0.7 V, the plots are slightly different.

iD

−Vm

−2Vm

0

VD

VoVs

VRVm

0

0

TcT

T2 t

iC

0VVon:

0.7 V

M. B. Patil, IIT Bombay

Page 87: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

* Similar to the peak detector except that the loadresistance provides a discharge path for thecapacitor in this case.

* Because of the load current iR , there is a drop inthe output voltage → “ripple”

* The peak diode current is much larger than theaverage load current.

* VD(t) =Vs(t)− Vo(t)≈Vs(t)− Vm

→ The maximum reverse bias (“Peak InverseVoltage” or PIV) across the diode is 2Vm.

* With Von = 0.7 V, the plots are slightly different.

iD

−Vm

−2Vm

0

VD

VoVs

VRVm

0

0

TcT

T2 t

iC

0VVon:

0.7 V

M. B. Patil, IIT Bombay

Page 88: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

* Similar to the peak detector except that the loadresistance provides a discharge path for thecapacitor in this case.

* Because of the load current iR , there is a drop inthe output voltage → “ripple”

* The peak diode current is much larger than theaverage load current.

* VD(t) =Vs(t)− Vo(t)≈Vs(t)− Vm

→ The maximum reverse bias (“Peak InverseVoltage” or PIV) across the diode is 2Vm.

* With Von = 0.7 V, the plots are slightly different.

iD

−Vm

−2Vm

0

VD

VoVs

VRVm

0

0

TcT

T2 t

iC

0VVon:

0.7 V

M. B. Patil, IIT Bombay

Page 89: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

* Similar to the peak detector except that the loadresistance provides a discharge path for thecapacitor in this case.

* Because of the load current iR , there is a drop inthe output voltage → “ripple”

* The peak diode current is much larger than theaverage load current.

* VD(t) =Vs(t)− Vo(t)≈Vs(t)− Vm

→ The maximum reverse bias (“Peak InverseVoltage” or PIV) across the diode is 2Vm.

* With Von = 0.7 V, the plots are slightly different.

iD

−Vm

−2Vm

0

VD

VoVs

VRVm

0

0

TcT

T2 t

iC

0VVon:

0.7 V

M. B. Patil, IIT Bombay

Page 90: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

Vm = 16 V, f = 50 Hz, R = 100 Ω. For a ripple voltage VR = 2 V,find (a) the filter capacitance C , (b) average and peak diodecurrents, (c) maximum reverse voltage across the diode.(Let Von = 0 V.)

(a) filter capacitance

1. In the discharge phase,

Vo(t) = Vme−t/τ ≈ Vm

(1−

t

τ

).

The drop in Vo(t) is given by the second term.

Using T2≈T ,

VR = VmT

τ= Vm

T

RC.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 91: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

Vm = 16 V, f = 50 Hz, R = 100 Ω. For a ripple voltage VR = 2 V,find (a) the filter capacitance C , (b) average and peak diodecurrents, (c) maximum reverse voltage across the diode.(Let Von = 0 V.)

(a) filter capacitance

1. In the discharge phase,

Vo(t) = Vme−t/τ ≈ Vm

(1−

t

τ

).

The drop in Vo(t) is given by the second term.

Using T2≈T ,

VR = VmT

τ= Vm

T

RC.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 92: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

Vm = 16 V, f = 50 Hz, R = 100 Ω. For a ripple voltage VR = 2 V,find (a) the filter capacitance C , (b) average and peak diodecurrents, (c) maximum reverse voltage across the diode.(Let Von = 0 V.)

(a) filter capacitance

1. In the discharge phase,

Vo(t) = Vme−t/τ ≈ Vm

(1−

t

τ

).

The drop in Vo(t) is given by the second term.

Using T2≈T ,

VR = VmT

τ= Vm

T

RC.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 93: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

(a) Ripple voltage VR

2. Assuming iC = iR =Vo

R≈

Vm

Rin the discharge phase,

we get

iC =Vm

R= C

∆Vo

∆t≈ C

VR

T→ VR = Vm

T

RC.

→ C =Vm

VR

T

R=

16 V

2 V

20 ms

100 Ω= 1600µF.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 94: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

(a) Ripple voltage VR

2. Assuming iC = iR =Vo

R≈

Vm

Rin the discharge phase,

we get

iC =Vm

R= C

∆Vo

∆t≈ C

VR

T→ VR = Vm

T

RC.

→ C =Vm

VR

T

R=

16 V

2 V

20 ms

100 Ω= 1600µF.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 95: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

(a) Ripple voltage VR

2. Assuming iC = iR =Vo

R≈

Vm

Rin the discharge phase,

we get

iC =Vm

R= C

∆Vo

∆t≈ C

VR

T→ VR = Vm

T

RC.

→ C =Vm

VR

T

R=

16 V

2 V

20 ms

100 Ω= 1600µF.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 96: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

(b) Average diode current

Using charge balance,∫ T

T−Tc

(iD − iR) dt =

∫ T−Tc

0iR dt

→∫ T

T−Tc

iD dt =

∫ T

0iR dt.

iavD =

1

T

∫ T

0iD dt =

1

T

∫ T

T−Tc

iD dt

=1

T

∫ T

0iR dt ≈

Vm

R.

iavD ≈

16 V

100 Ω= 160 mA.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 97: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

(b) Average diode current

Using charge balance,∫ T

T−Tc

(iD − iR) dt =

∫ T−Tc

0iR dt

→∫ T

T−Tc

iD dt =

∫ T

0iR dt.

iavD =

1

T

∫ T

0iD dt =

1

T

∫ T

T−Tc

iD dt

=1

T

∫ T

0iR dt ≈

Vm

R.

iavD ≈

16 V

100 Ω= 160 mA.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 98: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

(b) Average diode current

Using charge balance,∫ T

T−Tc

(iD − iR) dt =

∫ T−Tc

0iR dt

→∫ T

T−Tc

iD dt =

∫ T

0iR dt.

iavD =

1

T

∫ T

0iD dt =

1

T

∫ T

T−Tc

iD dt

=1

T

∫ T

0iR dt ≈

Vm

R.

iavD ≈

16 V

100 Ω= 160 mA.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 99: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

(b) Average diode current

Using charge balance,∫ T

T−Tc

(iD − iR) dt =

∫ T−Tc

0iR dt

→∫ T

T−Tc

iD dt =

∫ T

0iR dt.

iavD =

1

T

∫ T

0iD dt =

1

T

∫ T

T−Tc

iD dt

=1

T

∫ T

0iR dt ≈

Vm

R.

iavD ≈

16 V

100 Ω= 160 mA.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 100: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Half-wave rectifier with capacitor filter

RC

iRiC

DiD

VD

Vs Vo

(b) Average diode current

Using charge balance,∫ T

T−Tc

(iD − iR) dt =

∫ T−Tc

0iR dt

→∫ T

T−Tc

iD dt =

∫ T

0iR dt.

iavD =

1

T

∫ T

0iD dt =

1

T

∫ T

T−Tc

iD dt

=1

T

∫ T

0iR dt ≈

Vm

R.

iavD ≈

16 V

100 Ω= 160 mA.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 101: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

RC

iRiC

DiD

VD

Vs Vo

(b) Peak diode current

ipeakD = C

d

dt(Vm cosωt)

∣∣∣∣t=−Tc

+Vm

R

= −ωC Vm sin(−ωTc ) +16 V

100 Ω= ωC Vm sinωTc + 0.16

Vm cos(−ωTc ) = Vm − VR , giving

ωTc = cos−1

(1−

VR

Vm

)= cos−1

(1−

2

16

)= 29.

ipeakD = 2π × 50× 1600× 10−6 × 16× sin 29 + 0.16

= 3.89 + 0.16 = 4.05 A.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 102: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

RC

iRiC

DiD

VD

Vs Vo

(b) Peak diode current

ipeakD = C

d

dt(Vm cosωt)

∣∣∣∣t=−Tc

+Vm

R

= −ωC Vm sin(−ωTc ) +16 V

100 Ω= ωC Vm sinωTc + 0.16

Vm cos(−ωTc ) = Vm − VR , giving

ωTc = cos−1

(1−

VR

Vm

)= cos−1

(1−

2

16

)= 29.

ipeakD = 2π × 50× 1600× 10−6 × 16× sin 29 + 0.16

= 3.89 + 0.16 = 4.05 A.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 103: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

RC

iRiC

DiD

VD

Vs Vo

(b) Peak diode current

ipeakD = C

d

dt(Vm cosωt)

∣∣∣∣t=−Tc

+Vm

R

= −ωC Vm sin(−ωTc ) +16 V

100 Ω= ωC Vm sinωTc + 0.16

Vm cos(−ωTc ) = Vm − VR , giving

ωTc = cos−1

(1−

VR

Vm

)= cos−1

(1−

2

16

)= 29.

ipeakD = 2π × 50× 1600× 10−6 × 16× sin 29 + 0.16

= 3.89 + 0.16 = 4.05 A.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 104: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

RC

iRiC

DiD

VD

Vs Vo

(b) Peak diode current

ipeakD = C

d

dt(Vm cosωt)

∣∣∣∣t=−Tc

+Vm

R

= −ωC Vm sin(−ωTc ) +16 V

100 Ω= ωC Vm sinωTc + 0.16

Vm cos(−ωTc ) = Vm − VR , giving

ωTc = cos−1

(1−

VR

Vm

)= cos−1

(1−

2

16

)= 29.

ipeakD = 2π × 50× 1600× 10−6 × 16× sin 29 + 0.16

= 3.89 + 0.16 = 4.05 A.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 105: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

RC

iRiC

DiD

VD

Vs Vo

(b) Peak diode current

ipeakD = C

d

dt(Vm cosωt)

∣∣∣∣t=−Tc

+Vm

R

= −ωC Vm sin(−ωTc ) +16 V

100 Ω= ωC Vm sinωTc + 0.16

Vm cos(−ωTc ) = Vm − VR , giving

ωTc = cos−1

(1−

VR

Vm

)= cos−1

(1−

2

16

)= 29.

ipeakD = 2π × 50× 1600× 10−6 × 16× sin 29 + 0.16

= 3.89 + 0.16 = 4.05 A.

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 106: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

RC

iRiC

DiD

VD

Vs Vo

(b) Peak diode current: analytic expression

Vm cos(−ωTc ) = Vm − VR → cosωTc = 1−VR

Vm≡ 1− x

sinωTc =√

1− cos2 ωTc =√

1− (1− x)2

=√

1− (1− 2x + x2) ≈√

2x =

√2VR

Vm

ipeakD = iR + C

d

dt(Vm cosωt)

∣∣∣∣t=−Tc

= iR + ωC Vm sinωTc

= iR + ωC Vm

√2VR

Vm

(c) Maximum reverse bias≈ 2Vm = 32 V.

SEQUEL file: ee101 half rectifier.sqproj

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 107: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

RC

iRiC

DiD

VD

Vs Vo

(b) Peak diode current: analytic expression

Vm cos(−ωTc ) = Vm − VR → cosωTc = 1−VR

Vm≡ 1− x

sinωTc =√

1− cos2 ωTc =√

1− (1− x)2

=√

1− (1− 2x + x2) ≈√

2x =

√2VR

Vm

ipeakD = iR + C

d

dt(Vm cosωt)

∣∣∣∣t=−Tc

= iR + ωC Vm sinωTc

= iR + ωC Vm

√2VR

Vm

(c) Maximum reverse bias≈ 2Vm = 32 V.

SEQUEL file: ee101 half rectifier.sqproj

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 108: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

RC

iRiC

DiD

VD

Vs Vo

(b) Peak diode current: analytic expression

Vm cos(−ωTc ) = Vm − VR → cosωTc = 1−VR

Vm≡ 1− x

sinωTc =√

1− cos2 ωTc =√

1− (1− x)2

=√

1− (1− 2x + x2) ≈√

2x =

√2VR

Vm

ipeakD = iR + C

d

dt(Vm cosωt)

∣∣∣∣t=−Tc

= iR + ωC Vm sinωTc

= iR + ωC Vm

√2VR

Vm

(c) Maximum reverse bias≈ 2Vm = 32 V.

SEQUEL file: ee101 half rectifier.sqproj

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 109: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

RC

iRiC

DiD

VD

Vs Vo

(b) Peak diode current: analytic expression

Vm cos(−ωTc ) = Vm − VR → cosωTc = 1−VR

Vm≡ 1− x

sinωTc =√

1− cos2 ωTc =√

1− (1− x)2

=√

1− (1− 2x + x2) ≈√

2x =

√2VR

Vm

ipeakD = iR + C

d

dt(Vm cosωt)

∣∣∣∣t=−Tc

= iR + ωC Vm sinωTc

= iR + ωC Vm

√2VR

Vm

(c) Maximum reverse bias≈ 2Vm = 32 V.

SEQUEL file: ee101 half rectifier.sqproj

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 110: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

RC

iRiC

DiD

VD

Vs Vo

(b) Peak diode current: analytic expression

Vm cos(−ωTc ) = Vm − VR → cosωTc = 1−VR

Vm≡ 1− x

sinωTc =√

1− cos2 ωTc =√

1− (1− x)2

=√

1− (1− 2x + x2) ≈√

2x =

√2VR

Vm

ipeakD = iR + C

d

dt(Vm cosωt)

∣∣∣∣t=−Tc

= iR + ωC Vm sinωTc

= iR + ωC Vm

√2VR

Vm

(c) Maximum reverse bias≈ 2Vm = 32 V.

SEQUEL file: ee101 half rectifier.sqproj

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 111: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

RC

iRiC

DiD

VD

Vs Vo

(b) Peak diode current: analytic expression

Vm cos(−ωTc ) = Vm − VR → cosωTc = 1−VR

Vm≡ 1− x

sinωTc =√

1− cos2 ωTc =√

1− (1− x)2

=√

1− (1− 2x + x2) ≈√

2x =

√2VR

Vm

ipeakD = iR + C

d

dt(Vm cosωt)

∣∣∣∣t=−Tc

= iR + ωC Vm sinωTc

= iR + ωC Vm

√2VR

Vm

(c) Maximum reverse bias≈ 2Vm = 32 V.

SEQUEL file: ee101 half rectifier.sqproj

t= 0 t=T

iD

−Vm

−2Vm

0

VD

Vo

Vs

VRVm

0

0

TcT

T2 t

iC

M. B. Patil, IIT Bombay

Page 112: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave (bridge) rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

* As in the half-wave rectifier case, we have charging and dischargingintervals, and Vo ≈Vm is maintained.

* Charging through D1, D2 takes place when Vo(t) falls below Vs(t).

* Charging through D3, D4 takes place when Vo(t) falls below −Vs(t).

* The discharging interval is typically much longer than the chargingintervals (TC1 and TC2).

* The maximum reverse bias across any of the diodes is Vm.

M. B. Patil, IIT Bombay

Page 113: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave (bridge) rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

* As in the half-wave rectifier case, we have charging and dischargingintervals, and Vo ≈Vm is maintained.

* Charging through D1, D2 takes place when Vo(t) falls below Vs(t).

* Charging through D3, D4 takes place when Vo(t) falls below −Vs(t).

* The discharging interval is typically much longer than the chargingintervals (TC1 and TC2).

* The maximum reverse bias across any of the diodes is Vm.

M. B. Patil, IIT Bombay

Page 114: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave (bridge) rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

* As in the half-wave rectifier case, we have charging and dischargingintervals, and Vo ≈Vm is maintained.

* Charging through D1, D2 takes place when Vo(t) falls below Vs(t).

* Charging through D3, D4 takes place when Vo(t) falls below −Vs(t).

* The discharging interval is typically much longer than the chargingintervals (TC1 and TC2).

* The maximum reverse bias across any of the diodes is Vm.

M. B. Patil, IIT Bombay

Page 115: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave (bridge) rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

* As in the half-wave rectifier case, we have charging and dischargingintervals, and Vo ≈Vm is maintained.

* Charging through D1, D2 takes place when Vo(t) falls below Vs(t).

* Charging through D3, D4 takes place when Vo(t) falls below −Vs(t).

* The discharging interval is typically much longer than the chargingintervals (TC1 and TC2).

* The maximum reverse bias across any of the diodes is Vm.

M. B. Patil, IIT Bombay

Page 116: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave (bridge) rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

* As in the half-wave rectifier case, we have charging and dischargingintervals, and Vo ≈Vm is maintained.

* Charging through D1, D2 takes place when Vo(t) falls below Vs(t).

* Charging through D3, D4 takes place when Vo(t) falls below −Vs(t).

* The discharging interval is typically much longer than the chargingintervals (TC1 and TC2).

* The maximum reverse bias across any of the diodes is Vm.

M. B. Patil, IIT Bombay

Page 117: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave (bridge) rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

* As in the half-wave rectifier case, we have charging and dischargingintervals, and Vo ≈Vm is maintained.

* Charging through D1, D2 takes place when Vo(t) falls below Vs(t).

* Charging through D3, D4 takes place when Vo(t) falls below −Vs(t).

* The discharging interval is typically much longer than the chargingintervals (TC1 and TC2).

* The maximum reverse bias across any of the diodes is Vm.

M. B. Patil, IIT Bombay

Page 118: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

Vm = 16 V, f = 50 Hz, R = 100 Ω. For a ripple voltage VR = 2 V, find (a) thefilter capacitance C , (b) average and peak diode currents, (c) maximumreverse voltage across the diode. (Let Von = 0 V.)

(a) filter capacitance:

Assuming iC = iR =Vo

R≈

Vm

Rin the discharge phase, we get

iC =Vm

R= C

∆Vo

∆t≈ C

VR

T/2→ VR = Vm

T

2RC.

→ C =1

2

Vm

VR

T

R=

1

2

16 V

2 V

20 ms

100 Ω= 800µF.

M. B. Patil, IIT Bombay

Page 119: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

Vm = 16 V, f = 50 Hz, R = 100 Ω. For a ripple voltage VR = 2 V, find (a) thefilter capacitance C , (b) average and peak diode currents, (c) maximumreverse voltage across the diode. (Let Von = 0 V.)

(a) filter capacitance:

Assuming iC = iR =Vo

R≈

Vm

Rin the discharge phase, we get

iC =Vm

R= C

∆Vo

∆t≈ C

VR

T/2→ VR = Vm

T

2RC.

→ C =1

2

Vm

VR

T

R=

1

2

16 V

2 V

20 ms

100 Ω= 800µF.

M. B. Patil, IIT Bombay

Page 120: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

Vm = 16 V, f = 50 Hz, R = 100 Ω. For a ripple voltage VR = 2 V, find (a) thefilter capacitance C , (b) average and peak diode currents, (c) maximumreverse voltage across the diode. (Let Von = 0 V.)

(a) filter capacitance:

Assuming iC = iR =Vo

R≈

Vm

Rin the discharge phase, we get

iC =Vm

R= C

∆Vo

∆t≈ C

VR

T/2→ VR = Vm

T

2RC.

→ C =1

2

Vm

VR

T

R=

1

2

16 V

2 V

20 ms

100 Ω= 800µF.

M. B. Patil, IIT Bombay

Page 121: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

Vm = 16 V, f = 50 Hz, R = 100 Ω. For a ripple voltage VR = 2 V, find (a) thefilter capacitance C , (b) average and peak diode currents, (c) maximumreverse voltage across the diode. (Let Von = 0 V.)

(a) filter capacitance:

Assuming iC = iR =Vo

R≈

Vm

Rin the discharge phase, we get

iC =Vm

R= C

∆Vo

∆t≈ C

VR

T/2→ VR = Vm

T

2RC.

→ C =1

2

Vm

VR

T

R=

1

2

16 V

2 V

20 ms

100 Ω= 800µF.

M. B. Patil, IIT Bombay

Page 122: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

(b) Average diode current

Half of the charge lost by the capacitor is supplied by iD1 (= iD2), andthe other half by iD3 (= iD4).

iavD =

1

1

2× (Charge lost in one cycle)

≈1

1

2×(Vm

R× T

)=

Vm

2R=

16 V

2× 100 Ω= 80 mA.

M. B. Patil, IIT Bombay

Page 123: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

(b) Average diode current

Half of the charge lost by the capacitor is supplied by iD1 (= iD2), andthe other half by iD3 (= iD4).

iavD =

1

1

2× (Charge lost in one cycle)

≈1

1

2×(Vm

R× T

)=

Vm

2R=

16 V

2× 100 Ω= 80 mA.

M. B. Patil, IIT Bombay

Page 124: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

(b) Average diode current

Half of the charge lost by the capacitor is supplied by iD1 (= iD2), andthe other half by iD3 (= iD4).

iavD =

1

1

2× (Charge lost in one cycle)

≈1

1

2×(Vm

R× T

)=

Vm

2R=

16 V

2× 100 Ω= 80 mA.

M. B. Patil, IIT Bombay

Page 125: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

(b) Average diode current

Half of the charge lost by the capacitor is supplied by iD1 (= iD2), andthe other half by iD3 (= iD4).

iavD =

1

1

2× (Charge lost in one cycle)

≈1

1

2×(Vm

R× T

)=

Vm

2R=

16 V

2× 100 Ω= 80 mA.

M. B. Patil, IIT Bombay

Page 126: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

(b) Peak diode current

ipeakD1 = C

d

dt(Vm cosωt)

∣∣∣∣t=−TC1

+Vm

R

= −ωC Vm sin(−ωTC1) +16 V

100 Ω= ωC Vm sinωTC1 + 0.16

ωTC1 = cos−1

(1−

VR

Vm

)= cos−1

(1−

2

16

)= 29.

ipeakD1 = 2π × 50× 800× 10−6 × 16× sin 29 + 0.16

= 1.95 + 0.16 = 2.1 A.

M. B. Patil, IIT Bombay

Page 127: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

(b) Peak diode current

ipeakD1 = C

d

dt(Vm cosωt)

∣∣∣∣t=−TC1

+Vm

R

= −ωC Vm sin(−ωTC1) +16 V

100 Ω= ωC Vm sinωTC1 + 0.16

ωTC1 = cos−1

(1−

VR

Vm

)= cos−1

(1−

2

16

)= 29.

ipeakD1 = 2π × 50× 800× 10−6 × 16× sin 29 + 0.16

= 1.95 + 0.16 = 2.1 A.

M. B. Patil, IIT Bombay

Page 128: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

(b) Peak diode current

ipeakD1 = C

d

dt(Vm cosωt)

∣∣∣∣t=−TC1

+Vm

R

= −ωC Vm sin(−ωTC1) +16 V

100 Ω= ωC Vm sinωTC1 + 0.16

ωTC1 = cos−1

(1−

VR

Vm

)= cos−1

(1−

2

16

)= 29.

ipeakD1 = 2π × 50× 800× 10−6 × 16× sin 29 + 0.16

= 1.95 + 0.16 = 2.1 A.

M. B. Patil, IIT Bombay

Page 129: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

(b) Peak diode current

ipeakD1 = C

d

dt(Vm cosωt)

∣∣∣∣t=−TC1

+Vm

R

= −ωC Vm sin(−ωTC1) +16 V

100 Ω= ωC Vm sinωTC1 + 0.16

ωTC1 = cos−1

(1−

VR

Vm

)= cos−1

(1−

2

16

)= 29.

ipeakD1 = 2π × 50× 800× 10−6 × 16× sin 29 + 0.16

= 1.95 + 0.16 = 2.1 A.M. B. Patil, IIT Bombay

Page 130: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

(c) Maximum reverse bias = Vm = 16 V.

SEQUEL file: diode rectifier 4.sqproj

M. B. Patil, IIT Bombay

Page 131: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Full-wave rectifier with capacitor filter

C C

R RVsVs

D4 D4

D3 D3

D2 D2

D1 D1

T/2 T/2

Vo Vo

TC2TC1

0

0

0

t

iD3, iD4

iD1, iD2

−Vm

Vm

VD3VD1

−Vs

Vs

B B

VRVo

A A

Q Q

P P

t= 0

(c) Maximum reverse bias = Vm = 16 V.

SEQUEL file: diode rectifier 4.sqproj

M. B. Patil, IIT Bombay

Page 132: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Comparison of half-wave and full-wave (bridge) rectifiers with capacitive filter

For the same source voltage (Vm sinωt), load (R), and ripple voltage (VR),compare the half-wave and full-wave rectifiers.

Parameter Half-wave Full-wave

Number of diodes 1 4

Filter capacitance C C/2

Average diode current iavD iav

D /2

Peak diode current ipeakD ipeak

D /2

Maximum reverse voltage 2Vm Vm

M. B. Patil, IIT Bombay

Page 133: Diode Circuits: Part 2sequel/ee101/mc_diodes_2.pdfClamper circuits 0V Vi Clamper Vo 0V 0V Vi Clamper Vo 0V * A clamper circuit provides a \level shift." (The shape of the input signal

Comparison of half-wave and full-wave (bridge) rectifiers with capacitive filter

For the same source voltage (Vm sinωt), load (R), and ripple voltage (VR),compare the half-wave and full-wave rectifiers.

Parameter Half-wave Full-wave

Number of diodes 1 4

Filter capacitance C C/2

Average diode current iavD iav

D /2

Peak diode current ipeakD ipeak

D /2

Maximum reverse voltage 2Vm Vm

M. B. Patil, IIT Bombay