dirac delta function - binghamton university

24
1 Dirac Delta function Masatsugu Sei Suzuki Physics Department, SUNY at Binghamton (Date: October 30, 2011) Paul Adrien Maurice Dirac (8 August 1902 – 20 October 1984) was a British theoretical physicist. Dirac made fundamental contributions to the early development of both quantum mechanics and quantum electrodynamics. He held the Lucasian Chair of Mathematics at the University of Cambridge and spent the last fourteen years of his life at Florida State University. Among other discoveries, he formulated the Dirac equation, which describes the behavior of fermions. This led to a prediction of the existence of antimatter. Dirac shared the Nobel Prize in physics for 1933 with Erwin Schrödinger, "for the discovery of new productive forms of atomic theory." http://en.wikipedia.org/wiki/Paul_Dirac The Dirac delta function (x) is a useful function which was proposed by in 1930 by Paul Dirac in his mathematical formalism of quantum mechanics. The Dirac delta function is not a mathematical function according to the usual definition because it does not have a definite value when x is zero. Nevertheless, it has many applications in physics. 1 Dirac delta function When f(x) is a well-defined function at x = x 0 , ) ( ) ( ) ( ) ( ) ( 0 0 0 0 x f dx x x x f dx x f x x . The Dirac delta function ) ( 0 x x has a sharp peak at x = x 0 . 0 ) ( 0 x x if 0 x x and +∞ if 0 x x ,

Upload: others

Post on 07-Apr-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dirac delta function - Binghamton University

1

Dirac Delta function Masatsugu Sei Suzuki

Physics Department, SUNY at Binghamton (Date: October 30, 2011)

Paul Adrien Maurice Dirac (8 August 1902 – 20 October 1984) was a British theoretical physicist. Dirac made fundamental contributions to the early development of both quantum mechanics and quantum electrodynamics. He held the Lucasian Chair of Mathematics at the University of Cambridge and spent the last fourteen years of his life at Florida State University. Among other discoveries, he formulated the Dirac equation, which describes the behavior of fermions. This led to a prediction of the existence of antimatter. Dirac shared the Nobel Prize in physics for 1933 with Erwin Schrödinger, "for the discovery of new productive forms of atomic theory."

http://en.wikipedia.org/wiki/Paul_Dirac

The Dirac delta function (x) is a useful function which was proposed by in 1930 by Paul Dirac in his mathematical formalism of quantum mechanics. The Dirac delta function is not a mathematical function according to the usual definition because it does not have a definite value when x is zero. Nevertheless, it has many applications in physics. 1 Dirac delta function

When f(x) is a well-defined function at x = x0,

)()()()()( 0000 xfdxxxxfdxxfxx

. The Dirac delta function )( 0xx has a sharp peak at x = x0.

0)( 0 xx if 0xx and +∞ if 0xx ,

Page 2: Dirac delta function - Binghamton University

2

and

1)( 0 dxxx .

)( 0xx is a generalization of the Kronecker delta function.

2 Principle properties of the Dirac delta function 1. )()( xx .

2. )(1

)( xa

ax ( )0a .

3. n

nn

xxxg

xg )()('

1)]([ .

where 0)( nxg and 0)(' nxg . Note that ))(('))((')()( nnnnn xxxgxxxgxgxg

around nxx .

n n

n

nnn

nnn xg

xxxxxgxxxgxg

)('

)][(]))(('[]))(('[)]([

.

4. 0)( xx . 5. )()()()( axafaxxf .

6. )()()( axdyayyx .

7. dkex ikx

2

1)( . (Fourier transform)

((Note)) The formula (7) is extensively used in physics. 3 Derivation of (1) )()( xx

)0()()(1 fdxxfxI

.

By putting that y = -x, dxdy ,

Page 3: Dirac delta function - Binghamton University

3

12 )0()()())(()()()( IfdyyfydyyfydxxfxI

.

Thus we have

)()( xx .

4 Derivation of (2) )(1

)( xa

ax

(i) For a>0, we put y = ax.

dxxfxa

fa

a

dy

a

yfydxxfaxI

)()(1

)0(1

)()()()(1

Thus we have )(1

)( xa

ax .

(ii) For a<0, we put y = ax.

dxxfxa

faa

dy

a

yfy

a

dy

a

yfydxxfaxI

)()(1

)0(1

)()(

)()()()(2

Thus we have )(1

)( xa

ax . Combining (i) and (ii), we get the final result:

)(1

)( xa

ax .

5 Derivation of (4). 0)( xx .

0)0(0)()(

fdxxfxxI .

6 Example of n

nn

xxxg

xg )()('

1)]([

Page 4: Dirac delta function - Binghamton University

4

(i) )]()([1

)])([( bxaxba

bxax

.

where 0ba . ((Proof))

))(()( bxaxxg ,

baxxg 2)(' , then

)]()([1

)])([( bxaxba

bxax

.

Another method to derive this equation is as follows.

)]()([1

)]])([()])([([)])([(

bxaxba

abbxaxbabxax

.

(ii) axaax 2)( . ((Proof))

axaa

ax

ax

axax

22

)( .

(iii) 0)( ax . ((Proof))

axxg )( , ax

xg

2

1)(' ,

0)(|2)()('

1))(( axaxax

agxg ax .

(iv) 0)( 22 ax .

Page 5: Dirac delta function - Binghamton University

5

((Proof)) 22)( axxg ,

22)('

ax

xxg

,

0)(|)(|

)()('

1)(

)('

1)(

2222

22

axa

axax

a

ax

axag

axag

ax

axax

.

7 Derivative of the Dirac function

1. )0()1()()( )()( mmm fdxxfx

.

2. )()1()( )()( xx mmm .

3. )()()( )()()( axdyayyx nmmm

.

4. 0)()(1 xx mm .

5. )0(')(')()()(' fdxxfxdxxfx

.

6. )(')(' xx .

7. )(')()(' axdyayyx

.

8. )()(' xxx . 9. 0)('2 xx .

10.

dkkei

x ikx

2)(' .

8 Derivation of (1) )0()1()()( )()( mmm fdxxfx

Page 6: Dirac delta function - Binghamton University

6

)0()1()()( )()( mmm fdxxfx

.

((Proof))

)0()1()()()1()()( )()()( mmmmm fdxxfxdxxfx

.

((Note)): in quantum mechanics, we use in general,

dxxgxfdxxgxf mmm )()()1()()( )()( ,

since 0)()()()( )()()()( nnnn ggff for n = 0, 1, 2, ….. 9 Derivation of (8) )()(' xxx

)()(' xxx .

((Proof))

dxxfx

dxxfdx

dxxfx

dxxxfdx

dxxxxfdxxfxx

)()(

)]()()[(

)]([)()()()()('

10 Properties of Dirac delta function (Mathematica)

Page 7: Dirac delta function - Binghamton University

7

Clear"Global`"

DiracDeltax x

1

fx DiracDeltax a x Simplify, a 0 &

fa

fx DiracDeltax x

f0

fx DiracDeltax

a x Simplify, a 0 &

a f0

fx DiracDeltax

a x Simplify, a 0 &

Absa f0

x DiracDelta'x x

1

fx DiracDelta'x x

f0

fx x DiracDelta'x x

f0

Page 8: Dirac delta function - Binghamton University

8

11 Representative of Delta function Representative as the limit of a kernel of an integral operator

fx DiracDelta''x x

f0

Tablen,

fx DDiracDeltax, x, n x, n, 1, 10 TableForm

1 f02 f03 f304 f405 f506 f607 f708 f809 f9010 f100

fx DiracDeltax a x b x

fa fbAbsa b

fx DiracDeltax3 1 x

f13

fx DiracDeltax2 4 x 3 x

1

2f1 f3

fx DiracDelta x a x Simplify, a 0 &

2 a fa

Page 9: Dirac delta function - Binghamton University

1.

2.

3.

4.

5.

wher

6.

7.

8.

9.

12

)(n x

x lim)(

lim)(x

lim)(

x

lim)(x

e E(x) is the

1)( xE

)(2 x

x)(2

x )(2

x

)(

Gaussian

22 xnen

x

x)sin(1m

2

cos(11m

x

220

1m

x

)(

m0

xE

unit step fun

if x>0 and 0

1

cos(21n

n

inxe .

dkeikx

.

dkkx

)cos( .

n

)( n .

. (Sin

)x. (Sin

2. (Lo

)(xE.

nction

0 if x<0.

)(nx .

.

9

(Gaussia

nc sequence)

nc squared)

orentzian, or

an)

)

resonance)

Page 10: Dirac delta function - Binghamton University

10

22

)( xnn e

nx

, )( n

((Mathematica))

Fig. n is changed as a parameter; n = 200, 400, 600, 800, and 1000.

Clear"Global`"

fx_, n_ :n

Expn2 x2

Integratefx, n, x, , , Assumptions n 01

f1 PlotEvaluateTablefx, n, n, 200, 1000, 200,

x, 0.005, 0.005,

PlotStyle TableHue0.2 i, Thick, i, 0, 5,

PlotPoints 100,

PlotRange 0.005, 0.005, 0, 700,

AxesLabel "x", "nx";

f2

GraphicsTextStyle"n 200", Red, 10, 0.0001, 110,

TextStyle" 400", Yellow, 10, 0, 220,

TextStyle" 600", Green, 10, 0, 330,

TextStyle" 800", Blue, 10, 0, 450,

TextStyle" 1000", Purple, 10, 0, 560;

Showf1, f2, PlotRange All

n = 200

400

600

800

1000

-0.004 -0.002 0.002 0.004x

100

200

300

400

500

dnx

Page 11: Dirac delta function - Binghamton University

11

13 Sine sequence function

x

xx

)sin(1lim)(

.

The sine sequence function at an finite value of , has a peak (/) at x = 0, and becomes zero at x = /.

Fig. is changed as a parameter; = 500, 700, 900, 1100, 1300, and 1500. 14 Lorentzian

221

1)(

xn

nxn

, )( n

h = 500

700

900

1100

1300

1500

-0.010 -0.005 0.005 0.010x

-100

100

200

300

400

500

dx

Page 12: Dirac delta function - Binghamton University

Fig. 15

A

16

H

using ((Pro

U

n is chang

-sequenA step functio

Proof

Here we show

g the knowle

oof)) Using the form

-

ged as a para

ce function on with the h

w that x)(

dge of the F

mula derived

-0.004

ameter; n = 2

height n and

x

sin(1lim

Fourier transf

d from the F

n

-0.002

12

200, 400, 60

d the width (1

x).

formation.

Fourier trans

= 200

400

600

800

1000

1200

1400

1600

0.000

100

200

300

400

500

dnx

0, 800, 1000

1/2n) centere

form, we ha

0.002

0, 1200, 140

ed at x = 0.

ave

0.004x

0, and 1600

x

.

Page 13: Dirac delta function - Binghamton University

13

)sin(2

lim)cos(2limlim)(20

xx

dkkxdkedkex ikxikx

,

or

x

xx

)sin(lim)(

.

((Note))

)()sin(

lim xx

x

.

This implies that

dxxdxx

xI )(

)sin(. )(

We put y = x. Then we have

y

ydy

yydy

x

xdxI

sin)sin()sin(,

which is independent of and is equal to . Note that

y

edy

iiy

yiydy

y

ydy

iy1sincossin.

Using the Cauchy theorem, we calculate

x

edx

ix

,

Page 14: Dirac delta function - Binghamton University

Cons

The c

The c

or

or

17

F

ider the path

dxx

eP

ix

contour integ

2

Ciz

dzz

e

contour integ

dzz

eC

iz

1

dxx

eP

ix

x

xdx

sin

Fourier tourier transf

h integral

dzz

ex

C

iz

1

gral around t

Re

Re

0

i

i

eid

gral around t

eide

ei

i

0

dxiix

x.

transformatformation an

dzz

eC

iz

2

the path C2:

0

)(Re

i ide

i

the path C1:

ide ei i

0

)(

x

xx

sin,

tion-I nd inverse Fo

14

zsi (Re2

)Re( iz

sincos( iRRie

)( iez ,

ed ii sincos(

ourier transf

i2)0 .

0

c)

iRedi

di

0

)n

formation (d

sincos Re

i ,

definition)

0 ,

Page 15: Dirac delta function - Binghamton University

15

dxexfkF ikx)(2

1)(

,

dkekFxf ikx)(2

1)(

.

From these definitions, we have

)()(2

1

2

1xfdefdke ikikx

,

or

)(2)(2

1)(

2

1)( )( xfddkefdxf xik

,

or

dkex xik

)(

2

1)(

.

18 Fourier transformation II

We consider the Fourier transform of )( x .

ikikx edxexkF

2

1)(

2

1)(

.

The inverse Fourier transform is

dkedkeedkekFx xikikxikikx )(

2

1

2

1

2

1)(

2

1)(

.

19 Fourier transform III

We consider the Fourier transformation of f(x) = 1.

)(2)(22

1

2

1)( kkdxekF ikx

,

or

Page 16: Dirac delta function - Binghamton University

16

)(2 kdxeikx

,

or

)(2 xdkeikx

,

20 Definition of the Dirac delta function ((Mathematica))

21 Shape of the step function

The derivative of the step function H(x) with respect to x, yields the Dirac delta function.

)()(' xxH , where H(x) = 1 for x>0 and 0 for x<0.

In other words,

x

dttxH )()( .

We choose the Gaussian delta function.

Clear"Global`"FourierTransform1, k, x Simplify

2 DiracDeltax

-1 1 2 3x

0.2

0.4

0.6

0.8

1.0

Hx

Page 17: Dirac delta function - Binghamton University

17

22

)( xnn e

nx

. (n→∞)

Then we have

)](1[2

1)( nxerfxHn

where erf(x) is the error function.

Fig. n is changed as a parameter; n = 250, 500, and 750. 22 Shape of '(x)

We consider the shape of '(x) using the Gaissian delta function

22

)( xnn e

nx

. (n→∞)

The derivative of )(xn with respect to x is given by

)2()(' 222

xnen

x xnn

. (n→∞)

This function has a odd function with respect to x and has a local maximum (= e

n22 )

at n

x2

1 .

n = 250

500

750

-0.02 -0.01 0.01 0.02x

0.2

0.4

0.6

0.8

1.0

Hx

Page 18: Dirac delta function - Binghamton University

18

Fig. n is changed as a parameter; n = 100, 200, 300, 400, and 500. APPENDIX Mathematrica

n = 100200

300

400

500

-0.004 -0.002 0.002 0.004x

-1.0

-0.5

0.5

1.0

dn'x105

Properties of the Dirac functionfrom Michael Trott's book

rule1

f_x_ Derivative_DiracDeltax_ 1 Derivative fx DiracDeltax,

DiracDeltax_ c_ f_x_ fc DiracDeltax c, xn_. DiracDeltac_ x_ cn,

x_^n_. Derivative_DiracDeltax_

1^n n Derivative nDiracDeltax

f_x_ DiracDelta_x_ 1 fx DiracDeltax,

DiracDeltac_ x_ f_x_ fc DiracDeltax c, xn_. DiracDeltac_ x_ cn,

x_n_. DiracDelta_x_ 1n DiracDeltanx

n

eq1 fx DiracDelta'x . rule1

DiracDeltax fx

eq2 fx DiracDelta''x . rule1

DiracDeltax fx

eq3 fx DiracDelta'''x . rule1

DiracDeltax f3x

Page 19: Dirac delta function - Binghamton University

19

Technique of pure function

F Functionx, CosxFunctionx, Cosx

FxCosx

G Functionx, x4 x2 1Functionx, x4 x2 1

Gx1 x2 x4

G'x2 x 4 x3

G''x2 12 x2

eq11 eq1 . f G

2 x 4 x3 DiracDeltax

eq12 eq1 . f F

DiracDeltax Sinx

Page 20: Dirac delta function - Binghamton University

20

23 Delta function in the spherical and cylindrical coordiunates

How is the delta function represented in curvilinear coordinates? First we refer to the basic integration property

1)'( 3 V

d rrr

eq31 eq3 . f G

24 x DiracDeltax

x DiracDelta'x . rule1

DiracDeltax

fx DiracDeltax b . rule1

DiracDeltab x fb

hx DiracDelta'x . rule1

DiracDeltax hx

x4 DDiracDeltax, x, 4 . rule1

24 DiracDeltax

x2 DDiracDeltax, x, 2 . rule1

2 DiracDeltax

h Functionx, x4 3 x3 2 xFunctionx, x4 3 x3 2 x

fx DDiracDeltax, x, 3 . rule1 . f h

18 24 x DiracDeltax

Comment

x4 3 x3 2 x DDiracDeltax, x, 3 . rule1

2 x 3 x3 x4 DiracDelta3x

x3 DDiracDeltax, x, 3 . rule1

6 DiracDeltax

Page 21: Dirac delta function - Binghamton University

21

when r' is in the volume V. We also recall that

321321321321321

3 )(),,(

),,(dqdqdqqhdqdqdqhhhdqdqdq

qqq

zyxd

r

where Jacobian determinant is defined as;

321

321

321

321 ),,(

),,()(

q

z

q

z

q

zq

y

q

y

q

yq

x

q

x

q

x

qqq

zyxqh

Accordingly, we must have

)'()'()'()(

1)'( 332211 qqqqqq

qh rr

(a) Spherical coordinate

)'()'()'(1

)'()'cos(cos)'(1

)'()'()'(sin

1)'(

2

2

2

rrr

rrr

rrr

rr

where cos , since

)'(sin

1

)'('sin

1

)]'sin)('[()'cos(cos

(b) Cylindrical co-ordinate

)'()'()'(1

)'( zz

rr

Page 22: Dirac delta function - Binghamton University

22

REFERENCE: J. Schwinger et al, Classical Electrodynamics (Perseus Books, Reading, MA, 1998). ______________________________________________________________________ APPENDIX Derivation of Green’s function

)(412 rr

,

where

),,( zyxr , 222 zyxr .

We consider a sphere with radius ( )0

)1

(111

rda

rd

rd

rd narr

where

222 zyxr , ),,(r

z

r

y

r

x

r r er

n , dad na

and

3

1

rr

r ,

23

1)(ˆ

1

rrr

r

rn

0)1

( r

except at the origin.

We now consider the volume integral over the whole volume (V - V') between the surface A and the surface of sphere A' (volume V', radius )0 . We note that the outer surface and the inner surface are connected to an appropriate cylinder.

Page 23: Dirac delta function - Binghamton University

Since

Using

or

wher

Using

e )1

( r

g the Gauss's

'

VV

dr

(A

da n

e ' nn

(ndaA

g the Gauss's

0 over the w

s law, we ge

(

1

'

A

VV

da

dr

n

r

'

(')1

A

dar

r̂ and dr is

()1

dar

s law, we ha

whole volum

et

)1

1

'

2

A

dar

r

n

r

'

)1

'(A

dr

n

over the vol

4)1 2

2

r

ave

23

me V - V' we h

0)1

'(' r

a n

)1

('r

da n

lume integra

41

22

have

0

al. Then we h

(4 rr d

have

)r

Page 24: Dirac delta function - Binghamton University

24

VVA

dr

dr

da )(4)1

()1

( rrrn

or

)(41

rr

.

or

)()4

1( r

r

.

((Mathematica))

Clear"Gobal`";

Needs"VectorAnalysis`"SetCoordinatesCartesianx, y, zCartesianx, y, z

r1 x, y, z; r r1.r1

x2 y2 z2

Grad1

r Simplify

x

x2 y2 z232,

y

x2 y2 z232,

z

x2 y2 z232

Laplacian1

r Simplify

0