dire design me tw slab prof dr bayan salim chapter 3

14
3 Dire Cha Intr For p a uni supp mad D E In e A ty Col cent Mid l 1 = l 2 = ect Design Me apter 3: roduction purposes o ified way a ported by b e to two al Direct Des Equivalent either case, ypical pane lumn strip terline equ ddle strip: span in th span in th ethod TW Slab : Direct n of analysis all the two beams, and lternative a sign Metho t Frame M , the slab is el is divide p: a strip of ual to (1/4) : a strip bo he direction he lateral di bs Design and design -way slab d two-way j approaches od (DDM) Method (EFM s treated as ed into colu f slab havin the smalle unded by t n of momen irection of Prof Dr Ba Method n, ACI Cod systems: fl joist (ribbe s: ; a semi em M) based o s follows: umn strips ng width o er of the pa two colum nt analysis l 1 . (c.c. of ayan Salim d of T-W de (318-11 lat plates, ed) slabs. mpirical m on approxi s and midd on each sid anel dimen mn strips. s. (c.c. of s f supports) W Slab S 1) chapter 1 flat slabs, Specific re method, and imate elast dle strips. de of the co nsions l 1 an upports) ) Systems 13 deals in slabs eference is d tic analysis olumn nd l 2 . 1 n s.

Upload: others

Post on 16-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

3 Dire

Cha

Intr

For pa unisuppmad D E

In e

A tyColcentMidl1 =l2 =

ect Design Me

apter 3:

roduction

purposes oified way a

ported by be to two alDirect DesEquivalent

either case,

ypical panelumn stripterline equddle strip: span in thspan in th

ethod TW Slab

: Direct

n

of analysis all the twobeams, andlternative asign Methot Frame M

, the slab is

el is dividep: a strip ofual to (1/4) : a strip bohe directionhe lateral di

bs                    

Design

and design-way slab

d two-way japproachesod (DDM)

Method (EFM

s treated as

ed into coluf slab havinthe smalleunded by t

n of momenirection of

     Prof Dr Ba

Method

n, ACI Codsystems: fljoist (ribbes: ; a semi emM) based o

s follows:

umn stripsng width oer of the patwo columnt analysis

f l1. (c.c. of

ayan Salim 

d of T-W

de (318-11flat plates, ed) slabs.

mpirical mon approxi

s and middon each sidanel dimen

mn strips. s. (c.c. of sf supports)

W Slab S

1) chapter 1flat slabs, Specific re

method, andimate elast

dle strips. de of the consions l1 an

upports) )

Systems

13 deals inslabs eference is

d tic analysis

olumn nd l2.

n

s.

Page 2: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

3 Dire

Beaof bbeloslab

ect Design Me

ams are debeam extenow the slabb thickness

ethod TW Slab

fined (as bnding a distb hw (whichs.

bs                    

before) to intance equahever is gr

     Prof Dr Ba

nclude thaal to the proreater) but

ayan Salim 

at part of thojection ofnot greater

he slab on ef the beam r than 4 tim

each side above and

mes the

d

Page 3: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

3 3 Direct Design Method TW Slabs                         Prof Dr Bayan Salim 

Direct Design Method

Limitations of the DDM: 1. There must be a minimum of three continuous spans in each direction.

Thus, a nine panel structure (3 by 3) is the smallest that can be considered.

2. Rectangular panels must have a long-span/short-span ratio that is not greater than 2.

3. Successive span lengths in each direction shall not differ by more than one-third of the longer span.

4. Columns may be offset from the basic rectangular grid of the building by up to 10% of the span parallel to the offset.

5. All loads must be due to gravity only and uniformly distributed over an entire panel. The service live load shall not exceed two times the service dead load.

6. For a panel with beams between supports on all sides, the relative stiffness of the beams in the two perpendicular directions shall not be less than 0.2 or greater than 5:

0.2 ≤ {αf1 l22 / αf2 l1

2} ≤ 5

Subscription 1 refers to direction 1

Subscription 2 refers to direction 2 (┴ dir 1)

DDM:

1. Determine Mo, the total static bending moment in a panel 2. Moments assigned to critical sections 3. Lateral distribution of moments (to cs, ms, and beams if any) 4. Moments assigned to columns 5. Shear in slab systems with beams

1. Determine Mo in panels

The total static BM in a span, for a strip bounded laterally by the centerline of the panel on each side of the centerline of supports, is

Mo= wu l2 ln2 / 8 (ACI 13.1)

Page 4: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

3 Dire

Whe

wu = l2 = tspanedge ln =

ect Design Me

ere;

= 1.2 D + 1

the span (cn adjacent ae of slab to

clear span ≥ 0.65 l1

This fig.defines t

ethod TW Slab

.6 L (kN/

centerline-tand paralle panel cen

in the dire1 , see fig.

shows crithe face of

bs                    

/m2)

to-centerlinel to an edgterline is u

ection of anbelow:

tical sectiof support.

     Prof Dr Ba

ne) transvege is beingused for l2 i

nalysis (dir

ons for des

ayan Salim 

erse to ln; hg considerein calculati

r 1) face to

sign negati

however, wed, the distaion of Mo

o face of su

ive momen

when the ance from

upports.

ts, and

Page 5: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

3 Dire

2. M

ect Design Me

Moments aa. For i

b. For e

Mom

ethod TW Slab

assigned tointerior sp

end spans ments are as

bs                    

o critical spans

M−

M+

ssigned acc

M

     Prof Dr Ba

sections

− = 0.65 M+ = 0.35 M

cording to

M = (facto

ayan Salim 

Mo

Mo

ACI Tabl

or from T

(A

(A

le 13.6.3.3

Table)× M

ACI 13.2)ACI 13.3)

3:

Mo

) )

Page 6: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

3 Dire

3. La

b

c

ect Design Me

a) Ext eb) Slab c) Slab d) Flat pe) Exter

Lateral Disa. Interior

Column

b. ExteriorColumn

. PositiveColumn

Linear int

ethod TW Slab

edge unrestrawith beams w/o beams, plate with edrior edge ful

stributionr M− :

strip shall

r M− : strip shall

e M+: strip shall

terpolation s

bs                    

ained; e.g., abetween all i.e., flat plat

dge beams lly restrained

of Momen

l resist the

l resist the

l resist the

hall be made

     Prof Dr Ba

a masonry wsupports

te

d; e.g., a mon

nts (to cs,

following

following

following

e between va

ayan Salim 

wall

nolithic RC

ms, and b

in percent

in percent

in percent

alues shown

wall.

beams)

t of interio

t of exterio

t of positiv

n.

or M−:

or M−:

ve M+:

Page 7: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

3 Direect Design Me

Parameresistancparamet

x = smalSlab moConstanas the la1. A po

brack2. The p

below3. The t

βt = 0wall.

βt = 2

ethod TW Slab

eter βt: Thece of the efer βt , defin

ller dimens

oment of innt C = torsiargest of thrtion of the

ket, or capiportion in w the slab transverse

0 for flat p

2.5 for RC

bs                    

e relative rffective traned as

sion, y = lnertia, Is = lonal rigidie followine slab haviital in the d1 plus that

beam as sh

plate w/o e

C wall.

     Prof Dr Ba

restraint pransverse ed

arger dimel2 h

3 /12 ity of beamg: ing a widthdirection inpart of any

hown in pa

edge beams

ayan Salim 

ovided by dge beam i

ension.

m effective

h equal to tn which moy transvers

age 2.

s , and if su

the torsionis reflected

cross sect

that of the oments arese beam ab

upport is a

nal d by the

tion, taken

column, e taken bove and

a masonry

Page 8: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

8 3 Direct Design Method TW Slabs                         Prof Dr Bayan Salim 

Two-half Middle strip shall take the moments not assigned to column strip. An exception to this is a middle strip adjacent to and parallel with an edge supported by a wall, where the moment to be resisted is twice the factored moment assigned to the half middle strip corresponding to the first row of interior supports (ACI 13.6.6.3). Mms (ext strip supp by wall) = 2 Mms (neighbor int strip)

Moments to beams: (ACI 13.6.5) When (αf1l2 / l1) ≥1.0, Mbeam = 85 % Mcs When 0 ≤ (αf1l2 / l1) ≤ 1.0, 0 ≤ Mbeam ≤ 85 % Mcs ; Mbeam is found by linear interpolation In addition, the beam section must resist the effects of loads applied directly to the beam, including weight of beam stem projecting above or below the slab. Moments to columns and walls: (ACI 13.6.9) Columns and walls built integrally with a slab system shall resist moments caused by factored loads on the slab system. At interior supports, Mcol = 0.07[(1.2 D + 0.5×1.6 L)l2ln

2 – 1.2 D′l′2(l′n)2] ACI (13-7) Where ( ′ ) refers to shorter span. At exterior column or wall supports, the total exterior negative factored moment from the slab system (Table 13.6.3.3) is transferred directly to the supporting members. Columns above and below slab shall resist moments in direct proportion of their stiffnesses; Mcol above = [Kcol above / (Kcol above + Kcol below)] Mcol , where Kcol = 4 EIcol / lcol

Page 9: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

3 Dire

SheaBeamtribufrompara

In addirec

Rein

ect Design Me

ar in Slab ms with (αutary areas,m the corne

llel to the l

ddition, bectly on bea

nforcemen Reinforc

parallel have an dinner steel

For TW For beam

Straight bent up wsteel.

Max bar Min cov As,min (fo

0. 0. 0.

Bars cut

ethod TW Slab

systems wαf1l2 / l1) ≥ 1, (shown sh

ers of the plong sides.

ams shall rams.

nt for TW cement in Tto the sideeffective d= douter steel

slabs withmless TW bars are gewhere no l

r spacing =ver = 20 mmor shrinkag002 bh 0018 bh 0018 (420toff, see fig

bs                    

with Beam1.0, shall haded in fianels and .

resist shear

Slabs: (ACTW slabs is of the pa

depth 1 db l− db

h beams, shslabs, longenerally uslonger need

= 2 h (to enm ge and temp ….. ….. / fy) bh …gure below

     Prof Dr Ba

ms (ACI 13resist shea

ig.), which the center

rs caused b

CI 13.3) is placed inanels. This less than th

hort dir barg dir bars hsed, althouded, to pro

nsure crack

mperature c for fy

for fy

… for fy

w for beaml

ayan Salim 

3.6.8) ar caused b

h are boundrlines of the

by factored

n an orthogwill cause

he outer ste

rs have thehave the larugh in somovide for p

k control).

crack contry = 280 andy = 420 MP

fy > 420 MPless slabs:

by factoredded by45o le adjacent

d loads app

gonal grid,e the inner eel.

e larger d. rger d. e cases +vart or all th

rol) d 350 MPaPa Pa

d loads on lines drawnpanels

plied

, with bars steel will

veM steel ishe –veM

a

n

s

Page 10: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

3 Dire

ExamUse NS dGiveEdgeInterColuSlabc.c. sc.c. sf′c = Serv Solu Checin cha

ect Design Me

mple: Dirthe DDM

direction (sen; e beam dimrior beam dumn dims: b thickness spans in Nspans in E-28 MPa, f

vice live loa

ution:

ck slab thiapter 2.

ethod TW Slab

ect Designto determishaded des

ms: 350 × 6dims: 350 450 × 450 h = 150 m

N-S directio-W directiofy = 420 Mad L = 5 kN

ickness h =

bs                    

n Method;ne the desisign strip)

650 mm × 500 mm

0 mm mm on are 5.50on are 6.50

MPa N/m2

= 150 mm is

     Prof Dr Ba

Slab withign momenin an iterm

m 0 m

s satisfactory

ayan Salim 

h beams nts for the

mediate floo

y for deflecti

slab systemor.

ion control,

1

m in the

see example

10 

e

Page 11: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

3 Dire

ChecLimitChecCalcuCornExterExterInteriThereFactAverwt. oTotalFactoTotaln = 5Mo= MomInterInteri End Exter Interi

Disrl2 / l1 Inter% to

ect Design Me

ck the limitations 1, 2,3k the ratio ulate αf for ber panel: (12rior panel NSrior panel EWior panel; (3efore, DDM tored loadsage wt. of bef slab = (0.1l D = 0.45 + ored load, wu

al static BM5.5 – 0.45 = 5wu l2 ln

2 / 8 =ments at crrior spans ior M− = 0.6 M+ = 0.3span rior M− = 0.1 M+ = 0.5

ior M− = 0.7

ribution to = 6.5 / 5.5 =

rior negativecol strip = 7

ethod TW Slab

itations of 3,4,5 are rea 0.2 ≤ {αf1

beams, see e2.46+3.98)6.S; (3.98+3.9W; (12.46+3.98+3.98)6.5is applicabl

s: eam stem = 5)(24 kN/m3

3.6 = 4.05 ku = 1.2(4.05)M, Mo: 5.05 m (fac= 12.86×6.5ritical secti

65 Mo = 0.655 Mo = 0.35

16 Mo = 0.1657 Mo = 0.5770 Mo = 0.70

col strip, m= 1.18, (αe moments 75 – [(1.18 –

bs                    

f the DDMdily satisfacl2

2 / αf2 l12} ≤

example in ch.52 / (14.48+

98)6.52 / (14.3.98)6.52 / (452 / (4.7+4.7le.

(0.35×0.35/63) = 3.6 kN/m

kN/m2 ) + 1.6(5) =

ce to face of ×5.052 / 8 = ions:

5×266.47 = 1×266.47 = 9

6×266.47 = 47×266.47 = 1×266.47 = 18

mid strip aαf1l2 / l1) = 3

– 1)/(2 – 1)] (

     Prof Dr Ba

| 6

M: (see page 3tory ≤ 5 for pahapter 2,

+4.7)5.52 = 1.48+4.7)5.52

4.7+4.7)5.52

7)5.52 = 1.18

6.5)(24 kN/mm2

12.86 kN/m2

f columns) 266.47 kNm

173.21 kNm93.26 kNm

42.64 kNm151.89 kNm86.53 kNm

and beams3.98×6.5/5.5

(75 – 45) = 6

ayan Salim 

6.5m |

3)

anels

.2, 0.2 < 2 = 0.58 OK= 2.44 OK

8 OK

m3) = 0.45 k

2

m

m

s = 4.7 ≥ 1.0

69.6%

6.5m |

1.2 < 5 OK

kN/m2

1

11 

Page 12: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

3 Dire

InteriEnd sPosit% to InteriEnd sExter

Edge150)

C1 = =C2 = = Is = l2

1st int3rd in2nd in End s Sum

End SExt. nPositInt. nInteriNegaPosit* Be

ect Design Me

ior spans Mc

span, Interiotive momentcol strip = 7ior spans Mc

span Mcs+ =

rior negative

Beam dims= 850 mm

(1 – 0.63×35

= 3.995×109 +(1 – 0.63×35

= 6.138×109 +

l2 h3 /12 = 65

terpolation nterpolation nterpolation

span, exterio

mmary, and

Span negative ive

negative ior Span

ative ive eams shall ta

ethod TW Slab

cs− = 69.6% (

or Mcs− = 69.

ts 75 – [(1.18 –cs

+ = 69.6% (69.6% (151e moments

: bw = 350, H

50/500)3503

+ 8.50×108 =50/650)3503

+ 4.56×108 =

500(150)3/ 1

= C / 2Is =

@βt =0 @βt =1.8 @βt =2.5

or Mcs− = 78%

d moments

Mu (kNm)

42.64 151.89 186.53 173.21 93.26

ake 85% of M

bs                    

(173.21) = 1.6% (186.53

– 1)/(2 – 1)] ((93.26) = 64.89) = 105.7

H = 650, h =

3×500/3 + (1= 4.845×109

3×650/3 + (1= 6.594×109

2 = 1.828×1

6.594 / (2×1

100% 78% ← 6969.6%

% (42.64) =

s to mid str

) % to

78 69.669.6 69.669.6

Mcs [ (αf1l2 /

     Prof Dr Ba

120.55 kNm) = 129.82 k

(75 – 45) = 64.91 kNm 72 kNm

=150, then fla

– 0.63×150

9 mm3

– 0.63×1509 mm3 Use (l

09 mm3

1.828) = 1.80

9.6 + (100 –

33.26 kNm

rip and bea

o cs

6 6

6 6 l1) > 1.0], an

ayan Salim 

kNm

69.6%

|← 850 →|

ange b = bw

0/850)1503×8

0/500)1503×5larger C)

0

– 69.6)(2.5 –

m

ams

Mcs (kNm

33.26 105.72 129.82 120.55 64.91

nd slab Mcs s

+ (H – h) =

850/3

500/3

1.8)/(2.5 – 0

m) * 2-h(kN 9.346.56. 52.28.

shall take 15

1

350 + (650 –

0) =78%

half ms Mms

Nm)

38 .17 .71

.66

.35 % of it.

12 

Page 13: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

13 3 Direct Design Method TW Slabs                         Prof Dr Bayan Salim 

Slab Reinforcement Column strip: SlabMcs (kNm)

15% of Mcs * R = Mu / φbd2

** ρ Table A.5 As mm2/m***

End Span Ext. negative 15%(33.26)= 4.99 0.129 0.0005 63 /use 270 Positive 15.86 0.410 0.0010 125 /use 270 Int. negative 19.47 0.503 0.0012 150 /use 270 Interior Span Negative 18.08 0.468 0.0011 138 /use 270 Positive 9.74 0.252 0.0006 75 /use 270 * Beams shall take 85% of Mcs [ (αf1l2 / l1) > 1.0], and slab Mcs shall take 15% of it. ** bcs = l1/2 = 2750 mm, d = 125 mm *** As = ρbd , As min = 0.0018bh =270 mm2/m, use No.13@300 (430 mm2/m)everywhere

max spacing = 2h = 2(150) = 300 mm OK Middle strip: 2-half ms Mms

(kNm) R = Mu / φbd2

* ρ Table A.5 As mm2/m**

End Span Ext. negative 9.38 0.178 0.0005 63 /use 270 Positive 46.17 0.875 0.0021 263 Int. negative 56.71 1.075 0.0026 325 Interior Span Negative 52.66 0.999 0.0024 300 Positive 28.35 0.538 0.0013 163 /use 270 * bms = l2 - bcs = 6500 - 2750 = 3750 mm, d = 125 mm

** As = ρbd , As min = 0.0018 bh =270 mm2/m, use No.13@300 (430 mm2/m)everywhere max spacing = 2h = 2(150) = 300 mm Moments to columns Interior columns Int. Mcol = 0.07[(1.2 D + 0.5×1.6 L)l2ln

2 – 1.2 D′l′2(l′n)2] ACI (13-7) = 0.07(0.5×1.6 L)l2ln

2 (adjacent spans are equal) = 0.07(0.5×1.6 ×5)6.5(5.05)2 = 46.41 kNm At exterior column, the total exterior negative factored moment from the slab system (Table 13.6.3.3) is transferred directly to the column: Ext. Mcol = 0.16 Mo = 0.16×266.47 = 42.64 kNm Columns above and below slab shall resist moments in proportion of their stiffnesses; Mcol above = [Kcol above / (Kcol above + Kcol below)] Mcol Mcol above = Mcol below = (1/2) Mcol (columns above and below are identical) = (1/2)(46.41) = 23.21 kNm for interior columns = (1/2)(42.64) = 21.32 kNm for exterior columns

Page 14: Dire Design Me TW Slab Prof Dr Bayan Salim Chapter 3

3 Dire

Sheaedge NS b EW b

HW:Use tdirectNo Ec.c. sc.c. sf′c = 2ServiPartitStory

ect Design Me

ar in Beambeams) eams (short

beams (long

W: DDM of the DDM to tion (shaded

Edge beams, pans in N-S pans in E-W28 MPa, fy =ice live load tion weight =y height = 3.5

ethod TW Slab

ms (only inte

dir.): Vu = w dir.): Vu = w = 1

f Flat Platedetermine th

d design stripcolumn dimdirection ar

W direction ar= 420 MPa L = 2 kN/m

= 1 kN/m2

5 m

bs                    

erior beams

wu [(1/2)l1l1/2

wu [(1/4)l12+

2.86[(1/4)5.

l1 = 5

e Floor he design mop) in an iterm

ms: 400 × 400re 5.50 m re 4.25 m

m2

E ↔

     Prof Dr Ba

are checked

2] = wu [(1/4 = 12.86[(1(1/2)l1(l2 – l52 + (1/2)5.5

5.5 m ↕

oments for thmediate floor0 mm

NW ↕ S

ayan Salim 

d because the

4)l12]

1/4)5.52] = 9l1)] 5(6.5 – 5.5)]

l2 = 6.5 m

the flat plate r. Given;

e carry high

7.3 kN

= 132.6 kN

m↔

slab system

1

er shear tha

N

m in the NS

14 

an