direct detection of composite dark matter...wimps, hidden sector, asymmetric, etc high number...

51
D.M. Grabowska BSM Circa 2020 03/01/2019 Direct Detection of Composite Dark Matter Dorota M Grabowska UC Berkeley and LBL Work with: - A. Coskuner, S. Knapen, & K. Zurek arXiv: 1812.07573 -T. Melia and S. Rajendran arXiv: 1807.03788

Upload: others

Post on 21-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Direct Detection of Composite Dark Matter

Dorota M Grabowska

UC Berkeley and LBL

Work with: - A. Coskuner, S. Knapen, & K. Zurek arXiv: 1812.07573

- T. Melia and S. RajendranarXiv: 1807.03788

Page 2: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Dark Matter Mass LandscapeAllowable mass range covers ~ 90 orders of magnitude

Ultra Light DM

Axions, ALPS, etc

Classically coherent fields compensate for weak

coupling

Particle DM

WIMPs, Hidden Sector, Asymmetric,

etc

High number density compensates for small

cross sections

Macroscopic DM

Primordial Black Holes, MACHOS,

etc

High mass compensates for

weakness of gravity

zeV keV PeV 1050 GeV 1060 GeV

2

Page 3: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Dark Matter Mass LandscapeAllowable mass range covers ~ 90 orders of magnitude

Ultra Light DM

Axions, ALPS, etc

Classically coherent fields compensate for weak

coupling

Particle DM

WIMPs, Hidden Sector, Asymmetric,

etc

High number density compensates for small

cross sections

Macroscopic DM

Primordial Black Holes, MACHOS,

etc

High mass compensates for

weakness of gravity

zeV keV PeV 1050 GeV 1060 GeV

2

(103 M☉)(10 -21 eV)

Page 4: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Dark Matter Mass LandscapeAllowable mass range covers ~ 90 orders of magnitude

Ultra Light DM

Axions, ALPS, etc

Classically coherent fields compensate for weak

coupling

Particle DM

WIMPs, Hidden Sector, Asymmetric,

etc

High number density compensates for small

cross sections

Macroscopic DM

Primordial Black Holes, MACHOS,

etc

High mass compensates for

weakness of gravity

zeV keV PeV 1050 GeV 1060 GeV

2

(103 M☉)(10 -21 eV)

Page 5: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Dark Matter Mass LandscapeAllowable mass range covers ~ 90 orders of magnitude

Ultra Light DM

Axions, ALPS, etc

Classically coherent fields compensate for weak

coupling

Particle DM

WIMPs, Hidden Sector, Asymmetric,

etc

High number density compensates for small

cross sections

Macroscopic DM

Primordial Black Holes, MACHOS,

etc

High mass compensates for

weakness of gravity

zeV keV PeV 1050 GeV 1060 GeV

2

(103 M☉)(10 -21 eV)

Page 6: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Dark Matter Mass LandscapeAllowable mass range covers ~ 90 orders of magnitude

Ultra Light DM

Axions, ALPS, etc

Classically coherent fields compensate for weak

coupling

Particle DM

WIMPs, Hidden Sector, Asymmetric,

etc

High number density compensates for small

cross sections

Macroscopic DM

Primordial Black Holes, MACHOS,

etc

High mass compensates for

weakness of gravity

zeV keV PeV 1050 GeV 1060 GeV

2

(103 M☉)(10 -21 eV)

Page 7: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Dark Matter Mass LandscapeAllowable mass range covers ~ 90 orders of magnitude

3

zeV keV PeV 1050 GeV 1060 GeV

DM flux at least one per year

Earth

Xenon OneTon

Olympic Swimming Pool

(Distance from Earth to Sun)3

1010 GeV 1042 GeV1033 GeV1019 GeV 1022 GeV

Page 8: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Dark Matter Mass LandscapeAllowable mass range covers ~ 90 orders of magnitude

3

zeV keV PeV 1050 GeV 1060 GeV

DM flux at least one per year

Earth

Xenon OneTon

Olympic Swimming Pool

(Distance from Earth to Sun)3

1010 GeV 1042 GeV1033 GeV1019 GeV 1022 GeV

Page 9: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

1. Dark Matter candidates in this mass regime

1. Take Away: Bound states of strongly interacting dark sectors can span full regime

2. Possible Detection Strategies

1. Take Away: Need multi-prong experimental and observational approach

4

Plan

Page 10: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

1. Dark Matter candidates in this mass regime

1. Take Away: Bound states of strongly interacting dark sectors can span full regime

2. Possible Detection Strategies

1. Take Away: Need multi-prong experimental and observational approach

4

Plan

Take Away: Need multi-prog experimental and observational approach

Take Away: Bound states in strongly interacting dark sectors have masses that span ~40 orders of magnitude

Page 11: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

• Relic abundance set by dark baryon asymmetry

Strongly Interacting Dark Sector

5

Example: Dark Nuclear Matter

“Dark Nucleon”

“Dark Nucleus”

General Properties

• Theory confines at energy scale ΛΧ• Spectrum contains massive particle with mx ~ Λx

• Massive particles form bound states with Mx ~ Nx Λx

Page 12: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

• Relic abundance set by dark baryon asymmetry

Strongly Interacting Dark Sector

5

Example: Dark Nuclear Matter

“Dark Nucleon”

“Dark Nucleus”

General Properties

• Theory confines at energy scale ΛΧ• Spectrum contains massive particle with mx ~ Λx

• Massive particles form bound states with Mx ~ Nx Λx

Page 13: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Treat dark nucleus as drop of liquid to determine how binding energy depends on number of constituents

Maximum Size of Dark Nucleus

6

Semi-empirical mass formula

• Assume no long range force to destabilize dark nuclei

Binding energy unbounded from above!

Page 14: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Treat dark nucleus as drop of liquid to determine how binding energy depends on number of constituents

Maximum Size of Dark Nucleus

6

Semi-empirical mass formula

Short Range Strong Interaction

Surface Correction

Long Range Weak Interaction

• Assume no long range force to destabilize dark nuclei

Binding energy unbounded from above!

Page 15: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Treat dark nucleus as drop of liquid to determine how binding energy depends on number of constituents

Maximum Size of Dark Nucleus

6

Semi-empirical mass formula

Short Range Strong Interaction

Surface Correction

Long Range Weak Interaction

• Assume no long range force to destabilize dark nuclei

Binding energy unbounded from above!

Page 16: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 7

Early Universe FormationBig Bang Dark Nucleosynthesis

Dark nuclei form via fusion processes in the Early Universe

“Nuclear Physics”

* Krnjaic & Sigurdson, ’14, Hardy et al, ’14, Gresham, Lou & Zurek, ’17

Page 17: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Dark nuclei size is limited by how long fusion lasts during early Universe

• Compare Fusion rate to Hubble rate for rough estimate

• Generically find exponentially large states

Dark BBN

8

Fusion in Early Universe

Page 18: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Dark nuclei size is limited by how long fusion lasts during early Universe

• Compare Fusion rate to Hubble rate for rough estimate

• Generically find exponentially large states

Dark BBN

8

Fusion in Early Universe

Page 19: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 9

Dark Nuclear Matter“Dark Nuggets”

*Gresham, Lou and Zurek, 1707.02316

Page 20: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 10

Detection

Page 21: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 11

Dark Matter Direct DetectionDM Scattering

General Idea: DM passes through detector, resulting in either nuclei/electron recoil or collective mode excitation

DM

SM Detector

pi pf

Differential Scattering Rate per Unit Target Mass

Page 22: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 11

Dark Matter Direct DetectionDM Scattering

General Idea: DM passes through detector, resulting in either nuclei/electron recoil or collective mode excitation

DM

SM Detector

pi pf

Differential Scattering Rate per Unit Target Mass

Target and DM Dependent!

Page 23: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 12

Dynamic Structure FunctionParameterizes Target Response

General Idea: Structure Function S(q, ω) quantifies response of target to injection of momentum, q, and energy, ω

Page 24: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 12

Dynamic Structure FunctionParameterizes Target Response

General Idea: Structure Function S(q, ω) quantifies response of target to injection of momentum, q, and energy, ω

DM Velocity Dist.

Target ResponseDM Form Factor

Mediator “Form Factor”

DM Number Density

Page 25: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 13

Standard Model CouplingsNucleon Coupling

General Idea: Dark Matter couples to Standard Model nucleons via mediator of mass mφ

Results in spin-independent four fermion interaction with specific mediator “form factor”

Page 26: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 14

DM Form FactorFinite Size effects

10-2 10-1 100 101 102

10-6

10-3

100

q (1/RX)

|FX(q)2

Coherent Incoherent

General Idea: Form factors “encode” the deviation of scattering amplitudes from the point particle limit

Page 27: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 15

Short Range Mediator

Page 28: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 16

Nuclear RecoilTraditional WIMP Search

General Idea: Dark Matter scatters of single nucleus, which then recoils

Effect of DM’s finite radius on detectability depends on how much of scattering phase space is suppressed by form factor

Page 29: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 16

Nuclear RecoilTraditional WIMP Search

General Idea: Dark Matter scatters of single nucleus, which then recoils

On-Shell recoilForm Factor of Nucleus

Effect of DM’s finite radius on detectability depends on how much of scattering phase space is suppressed by form factor

Page 30: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Form Factor Effects

General Idea: Effect of form factor depends on how DM radius compares to qmax and qmin

• ss: : Cross section for point-like DM scattering off nucleon

Massive Mediator

Maximizing target’s atomic number is key

17

Page 31: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Form Factor Effects

General Idea: Effect of form factor depends on how DM radius compares to qmax and qmin

• ss: : Cross section for point-like DM scattering off nucleon

Massive Mediator

Maximizing target’s atomic number is key

17

Page 32: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 18

Short Range Mediator10 GeV

103 106 109 1012 1015 101810-48

10-45

10-42

10-39

10-36

10-33

10-30

10-27

10-24

10-21

10-18

10-48

10-45

10-42

10-39

10-36

10-33

10-30

10-27

10-24

10-21

10-18

MX (GeV)

σ Xn(cm2 )

mχ=10 GeV, Fmed = 1

LiquidXe, 1.5*104 kg

year, E

thres=5keV

XENON1T,

98 kgyear,

Ethres=5 ke

V

He (Nuclea

r Recoil), k

g year, Ethre

s=1meV

Geometric Cro

ss Section

Overburden

*Coskuner, DMG, Knapen & Zurek ‘18

Page 33: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 19

Short Range Mediator10 GeV

Collider Constraints

103 106 109 1012 1015 101810-48

10-45

10-42

10-39

10-36

10-33

10-30

10-27

10-24

10-21

10-18

MX (GeV)

σ Xn(cm2 )

mχ=10 GeV, Fmed = 1LiquidXe, 1.5*104 kg

year, E

thres=5keV

XENON1T,

98 kgyear,

Ethres=5 ke

V

Semicond

uctor(Ge),

100 kg yea

r, Ethres=50

eV

CDMSLite

, 0.2kg ye

ar, Ethres=0

.5 keV

Semicondu

ctor (Si), kg

year,Ethres

=10 meV

He (Nuclea

r Recoil), k

g year, Ethre

s=1 meV

Geometric Cros

s Section

Overburden

10-9

10-6

0.001

1

1000

106

gXgnMXμ XN/(M

Nm

ϕ2 )

(1/GeV

)

*Coskuner, DMG, Knapen & Zurek ‘18

Page 34: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 20

Short Range Mediator10 MeV

100 103 106 109 1012 101510-42

10-39

10-36

10-33

10-30

10-27

10-24

10-21

10-18

10-15

10-12

10-42

10-39

10-36

10-33

10-30

10-27

10-24

10-21

10-18

10-15

10-12

MX (GeV)

σ Xn(cm2 )

mχ=10 MeV, Fmed = 1, 1% subcomp. DM

LiquidXe, 1.5*104kgyear, E

thres=5keV

XENON1T,98kgyear, E

thres=5keV

He(NuclearRecoil),kgyear, E

thres=1meV

Geometric Cro

ss Section

*Coskuner, DMG, Knapen & Zurek ‘18

Page 35: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 21

Short Range Mediator10 MeV

Collider Constraints

100 103 106 109 1012 101510-42

10-39

10-36

10-33

10-30

10-27

10-24

10-21

10-18

10-15

10-12

MX (GeV)

σ Xn(cm2 )

mχ=10 MeV, Fmed = 1, 1% subcomp. DM

LiquidXe, 1.5*104kgyear, E

thres=5keV

XENON1T,98kgyear, E

thres=5keV

Semiconductor(Ge

), 100kgyear, E

thres=50

eV

CDMSLite, 0.2 kg year, E t

hres=0.5keV

Semicon

ductor

(Si), kg

year, E t

hres=10 meV

He(NuclearRecoil), kg year, E t

hres=1 meV

Geometric Cros

s Section

10-9

10-6

0.001

1

1000

106

gXgnMXμ XN/(M

Nm

ϕ2 )

(1/GeV

)

*Coskuner, DMG, Knapen & Zurek ‘18

Page 36: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 22

Long Range Mediator

Page 37: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 23

Collective ExcitationsPolar Crystals

General Idea: Low momentum transfer excites phonon modes in crystal lattice

*Griffin et al, 1807.1029

Page 38: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 24

Nuclear Recoil Long RangeEnhancement at Low Momentum

Recall: Scattering due to light mediator is enhanced at low momentum by 1/q4

Page 39: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 24

Nuclear Recoil Long RangeEnhancement at Low Momentum

Recall: Scattering due to light mediator is enhanced at low momentum by 1/q4

Minimizing detector’s energy threshold is key

Page 40: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 25

Long Range Mediator10 GeV

103 106 109 1012 101510-45

10-42

10-39

10-36

10-33

10-30

10-27

10-24

10-45

10-42

10-39

10-36

10-33

10-30

10-27

10-24

MX (GeV)

σ Xn(cm2 )

mχ=10 GeV, Fmed = q02/q2

LiquidXe, 1.5*10

4 kgyear,E thres=5keV

XENON1

T, 98 kg

year, E th

res=5 k

eV

GaAs (A

coustic

Mode), k

g year, E

thres=1

meV

Perturbativity

*Coskuner, DMG, Knapen & Zurek ‘18

Page 41: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 26

Long Range Mediator10 GeV

SIDM constraint

Perturbativity

In-medium effects

103 106 109 1012 101510-45

10-42

10-39

10-36

10-33

10-30

10-27

10-24

MX (GeV)

σ Xn(cm2 )

mχ=10 GeV, Fmed = q02/q2

LiquidXe, 1.5*10

4 kgyear,E thres=5 keV

XENON1

T, 98 kg

year, E thr

es=5keV

Semicon

ductor (G

e), 100 k

g year, E

thres=50 eV

CDMSLit

e, 0.2 kg

year, E thr

es=0.5 ke

V

Semicon

ductor (S

i), kgyear

, E thres=10 me

V He (Nuc

learRec

oil),kg y

ear,E thre

s=1meV

GaAs (A

coustic M

ode), kg

year, E thr

es=1meV

He (Pho

nons), kg

year, E thr

es=1meV

Perturbativity

10-12

10-9

10-6

gXgnMXμ XN/M

N(GeV

)

*Coskuner, DMG, Knapen & Zurek ‘18

Page 42: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 27

Extremely Long Range Mediator

Page 43: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Mediator Coupling ConstraintsDark Sector Constraints

* Akin to gravitational collapse

Scalar Coupling gx Bound: Stability of Dark Nuclei

• Fermi degeneracy pressure must balance self-energy due to long range attractive interaction*

• Additional repulsive interactions does not help as blobs become unbound

28

Page 44: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

Mediator Coupling ConstraintsDark Sector Constraints

* Akin to gravitational collapse

Scalar Coupling gx Bound: Stability of Dark Nuclei

• Fermi degeneracy pressure must balance self-energy due to long range attractive interaction*

• Additional repulsive interactions does not help as blobs become unbound

28

Page 45: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 29

Λx = MeV, λ = 200 km

DMG, Melia and Rajendran ‘18

���� ���� ���� ���� ���� ���� ������-��

��-��

��-��

��-�

��-�

��-�

���

�� [���]

� χ

��������� �����

���� ������������

������������ ��������

Extremely Long Range Mediator

Page 46: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

General Idea: Passing DM induces motion in test mass

Acceleration

30

Free hanging test mass

DM

Test Mass

Page 47: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

General Idea: Passing DM induces motion in test mass

Acceleration

30

Free hanging test mass

DMTest Mass

b

θ

Page 48: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

General Idea: Passing DM induces motion in test mass

Acceleration

30

Free hanging test mass

DMTest Mass

b

θ

Page 49: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019

General Idea: Passing DM induces motion in test mass

Acceleration

30

Free hanging test mass

• Example: LIGO sensitive to Δx ~ 0.1 fm/Hz1/2

DMTest Mass

b

θ

Page 50: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 31

Tank: (500 m)3

Λx = MeV, λ = 200 km

���� ���� ���� ���� ���� ���� ������-��

��-��

��-��

��-�

��-�

��-�

���

�� [���]

� χ

�����

�����

����

����

���� ��������

��������� �����

���� ������������

������������ ��������

DMG, Melia and Rajendran ‘18

Extremely Long Range Mediator

Page 51: Direct Detection of Composite Dark Matter...WIMPs, Hidden Sector, Asymmetric, etc High number density compensates for small cross sections Macroscopic DM Primordial Black Holes, MACHOS,

D.M. Grabowska BSM Circa 2020 03/01/2019 32

ConclusionsFocus: Detecting composite dark matter

Take Away: Strongly interacting dark sector can give DM whose mass ranges over 40 orders of magnitude

• Dark Nuclear Matter

• Dark Quark Matter (Not discussed here)

Take Away: Need multi-prong approach to span the full parameter space of masses and confinement scales

• Both existing and near future direct detection experiments are important