distribution functions introduction section 0 lecture 1 slide 1 lecture 3 slide 1 introduction to...

68
DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870 Fall 2013 Intermediate Lab PHYS 3870 Lecture 3 Distribution Functions References: Taylor Ch. 5 (and Chs. 10 and 11 for Reference) Taylor Ch. 6 and 7 Also refer to “Glossary of Important Terms in Error Analysis” “Probability Cheat Sheet”

Upload: liliana-bond

Post on 21-Jan-2016

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 1

Lecture 3 Slide 1

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Lecture 3

Distribution Functions

References Taylor Ch 5 (and Chs 10 and 11 for Reference) Taylor Ch 6 and 7

Also refer to ldquoGlossary of Important Terms in Error Analysisrdquo ldquoProbability Cheat Sheetrdquo

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 2

Lecture 3 Slide 2

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Distribution Functions

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 3

Lecture 3 Slide 3

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Practical Methods to Calculate Mean and St Deviation

We need to develop a good way to tally display and think about a collection of repeated measurements of the same quantity

Here is where we are headedbull Develop the notion of a probability distribution function a distribution to

describe the probable outcomes of a measurementbull Define what a distribution function is and its propertiesbull Look at the properties of the most common distribution function the Gaussian

distribution for purely random eventsbull Introduce other probability distribution functions

We will develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random measurements)bull Schwartz inequality (ie the uncertainty principle) (next lecture)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorem

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 4

Lecture 3 Slide 4

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

Flip Penny 50 times and record the resultsFlip a penny 50 times and record the results

Grab a partner and a set of instructions and complete the exercise

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 5

Lecture 3 Slide 5

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Flip a penny 50 times and record the results

Two Practical Exercises in Probabilities

What is the asymmetry of the results

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 6

Lecture 3 Slide 6

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Flip a penny 50 times and record the results

What is the asymmetry of the results

4 asymmetry asymmetry

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 7

Lecture 3 Slide 7

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

What is the mean value The standard deviation

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 8

Lecture 3 Slide 8

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities Roll a pair of dice 50 times and record the results

What is the mean value

The standard deviation

What is the asymmetry (kurtosis)

What is the probability of rolling a 4

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 9

Lecture 3 Slide 9

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Discrete Distribution Functions

A data set to play with Written in terms of ldquooccurrencerdquo F

The mean value In terms of fractional expectations

Fractional expectations

Normalization condition

Mean value

(This is just a weighted sum)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 10

Lecture 3 Slide 10

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limit of Discrete Distribution Functions

ldquoNormalizingrdquo data sets

Binned data sets

fk equiv fractional occurrence

∆k equiv bin width

Mean value

Normalization

Expected value 119875119903119900119887ሺ4ሻ= 1198654119873= 1198914

119883= 119865119896119896 119909119896 = (119891119896119896 Δ119896)119909119896

1 = σ (119891119896119896 Δ119896)119909119896σ Δ119896119896

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 11

Lecture 3 Slide 11

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limits of Distribution FunctionsConsider the limiting distribution function as N ȸ and ∆k0

Larger data sets

Mathcad Games

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 12

Lecture 3 Slide 12

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Continuous Distribution Functions

Central (mean) Value Width of Distribution

Meaning of Distribution Interval

Normalization of Distribution

Thus

and by extension

= fraction of measurements that fall within altxltb

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 2: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 2

Lecture 3 Slide 2

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Distribution Functions

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 3

Lecture 3 Slide 3

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Practical Methods to Calculate Mean and St Deviation

We need to develop a good way to tally display and think about a collection of repeated measurements of the same quantity

Here is where we are headedbull Develop the notion of a probability distribution function a distribution to

describe the probable outcomes of a measurementbull Define what a distribution function is and its propertiesbull Look at the properties of the most common distribution function the Gaussian

distribution for purely random eventsbull Introduce other probability distribution functions

We will develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random measurements)bull Schwartz inequality (ie the uncertainty principle) (next lecture)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorem

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 4

Lecture 3 Slide 4

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

Flip Penny 50 times and record the resultsFlip a penny 50 times and record the results

Grab a partner and a set of instructions and complete the exercise

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 5

Lecture 3 Slide 5

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Flip a penny 50 times and record the results

Two Practical Exercises in Probabilities

What is the asymmetry of the results

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 6

Lecture 3 Slide 6

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Flip a penny 50 times and record the results

What is the asymmetry of the results

4 asymmetry asymmetry

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 7

Lecture 3 Slide 7

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

What is the mean value The standard deviation

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 8

Lecture 3 Slide 8

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities Roll a pair of dice 50 times and record the results

What is the mean value

The standard deviation

What is the asymmetry (kurtosis)

What is the probability of rolling a 4

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 9

Lecture 3 Slide 9

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Discrete Distribution Functions

A data set to play with Written in terms of ldquooccurrencerdquo F

The mean value In terms of fractional expectations

Fractional expectations

Normalization condition

Mean value

(This is just a weighted sum)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 10

Lecture 3 Slide 10

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limit of Discrete Distribution Functions

ldquoNormalizingrdquo data sets

Binned data sets

fk equiv fractional occurrence

∆k equiv bin width

Mean value

Normalization

Expected value 119875119903119900119887ሺ4ሻ= 1198654119873= 1198914

119883= 119865119896119896 119909119896 = (119891119896119896 Δ119896)119909119896

1 = σ (119891119896119896 Δ119896)119909119896σ Δ119896119896

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 11

Lecture 3 Slide 11

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limits of Distribution FunctionsConsider the limiting distribution function as N ȸ and ∆k0

Larger data sets

Mathcad Games

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 12

Lecture 3 Slide 12

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Continuous Distribution Functions

Central (mean) Value Width of Distribution

Meaning of Distribution Interval

Normalization of Distribution

Thus

and by extension

= fraction of measurements that fall within altxltb

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 3: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 3

Lecture 3 Slide 3

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Practical Methods to Calculate Mean and St Deviation

We need to develop a good way to tally display and think about a collection of repeated measurements of the same quantity

Here is where we are headedbull Develop the notion of a probability distribution function a distribution to

describe the probable outcomes of a measurementbull Define what a distribution function is and its propertiesbull Look at the properties of the most common distribution function the Gaussian

distribution for purely random eventsbull Introduce other probability distribution functions

We will develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random measurements)bull Schwartz inequality (ie the uncertainty principle) (next lecture)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorem

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 4

Lecture 3 Slide 4

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

Flip Penny 50 times and record the resultsFlip a penny 50 times and record the results

Grab a partner and a set of instructions and complete the exercise

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 5

Lecture 3 Slide 5

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Flip a penny 50 times and record the results

Two Practical Exercises in Probabilities

What is the asymmetry of the results

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 6

Lecture 3 Slide 6

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Flip a penny 50 times and record the results

What is the asymmetry of the results

4 asymmetry asymmetry

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 7

Lecture 3 Slide 7

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

What is the mean value The standard deviation

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 8

Lecture 3 Slide 8

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities Roll a pair of dice 50 times and record the results

What is the mean value

The standard deviation

What is the asymmetry (kurtosis)

What is the probability of rolling a 4

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 9

Lecture 3 Slide 9

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Discrete Distribution Functions

A data set to play with Written in terms of ldquooccurrencerdquo F

The mean value In terms of fractional expectations

Fractional expectations

Normalization condition

Mean value

(This is just a weighted sum)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 10

Lecture 3 Slide 10

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limit of Discrete Distribution Functions

ldquoNormalizingrdquo data sets

Binned data sets

fk equiv fractional occurrence

∆k equiv bin width

Mean value

Normalization

Expected value 119875119903119900119887ሺ4ሻ= 1198654119873= 1198914

119883= 119865119896119896 119909119896 = (119891119896119896 Δ119896)119909119896

1 = σ (119891119896119896 Δ119896)119909119896σ Δ119896119896

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 11

Lecture 3 Slide 11

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limits of Distribution FunctionsConsider the limiting distribution function as N ȸ and ∆k0

Larger data sets

Mathcad Games

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 12

Lecture 3 Slide 12

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Continuous Distribution Functions

Central (mean) Value Width of Distribution

Meaning of Distribution Interval

Normalization of Distribution

Thus

and by extension

= fraction of measurements that fall within altxltb

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 4: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 4

Lecture 3 Slide 4

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

Flip Penny 50 times and record the resultsFlip a penny 50 times and record the results

Grab a partner and a set of instructions and complete the exercise

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 5

Lecture 3 Slide 5

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Flip a penny 50 times and record the results

Two Practical Exercises in Probabilities

What is the asymmetry of the results

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 6

Lecture 3 Slide 6

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Flip a penny 50 times and record the results

What is the asymmetry of the results

4 asymmetry asymmetry

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 7

Lecture 3 Slide 7

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

What is the mean value The standard deviation

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 8

Lecture 3 Slide 8

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities Roll a pair of dice 50 times and record the results

What is the mean value

The standard deviation

What is the asymmetry (kurtosis)

What is the probability of rolling a 4

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 9

Lecture 3 Slide 9

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Discrete Distribution Functions

A data set to play with Written in terms of ldquooccurrencerdquo F

The mean value In terms of fractional expectations

Fractional expectations

Normalization condition

Mean value

(This is just a weighted sum)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 10

Lecture 3 Slide 10

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limit of Discrete Distribution Functions

ldquoNormalizingrdquo data sets

Binned data sets

fk equiv fractional occurrence

∆k equiv bin width

Mean value

Normalization

Expected value 119875119903119900119887ሺ4ሻ= 1198654119873= 1198914

119883= 119865119896119896 119909119896 = (119891119896119896 Δ119896)119909119896

1 = σ (119891119896119896 Δ119896)119909119896σ Δ119896119896

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 11

Lecture 3 Slide 11

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limits of Distribution FunctionsConsider the limiting distribution function as N ȸ and ∆k0

Larger data sets

Mathcad Games

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 12

Lecture 3 Slide 12

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Continuous Distribution Functions

Central (mean) Value Width of Distribution

Meaning of Distribution Interval

Normalization of Distribution

Thus

and by extension

= fraction of measurements that fall within altxltb

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 5: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 5

Lecture 3 Slide 5

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Flip a penny 50 times and record the results

Two Practical Exercises in Probabilities

What is the asymmetry of the results

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 6

Lecture 3 Slide 6

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Flip a penny 50 times and record the results

What is the asymmetry of the results

4 asymmetry asymmetry

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 7

Lecture 3 Slide 7

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

What is the mean value The standard deviation

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 8

Lecture 3 Slide 8

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities Roll a pair of dice 50 times and record the results

What is the mean value

The standard deviation

What is the asymmetry (kurtosis)

What is the probability of rolling a 4

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 9

Lecture 3 Slide 9

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Discrete Distribution Functions

A data set to play with Written in terms of ldquooccurrencerdquo F

The mean value In terms of fractional expectations

Fractional expectations

Normalization condition

Mean value

(This is just a weighted sum)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 10

Lecture 3 Slide 10

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limit of Discrete Distribution Functions

ldquoNormalizingrdquo data sets

Binned data sets

fk equiv fractional occurrence

∆k equiv bin width

Mean value

Normalization

Expected value 119875119903119900119887ሺ4ሻ= 1198654119873= 1198914

119883= 119865119896119896 119909119896 = (119891119896119896 Δ119896)119909119896

1 = σ (119891119896119896 Δ119896)119909119896σ Δ119896119896

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 11

Lecture 3 Slide 11

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limits of Distribution FunctionsConsider the limiting distribution function as N ȸ and ∆k0

Larger data sets

Mathcad Games

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 12

Lecture 3 Slide 12

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Continuous Distribution Functions

Central (mean) Value Width of Distribution

Meaning of Distribution Interval

Normalization of Distribution

Thus

and by extension

= fraction of measurements that fall within altxltb

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 6: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 6

Lecture 3 Slide 6

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Flip a penny 50 times and record the results

What is the asymmetry of the results

4 asymmetry asymmetry

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 7

Lecture 3 Slide 7

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

What is the mean value The standard deviation

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 8

Lecture 3 Slide 8

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities Roll a pair of dice 50 times and record the results

What is the mean value

The standard deviation

What is the asymmetry (kurtosis)

What is the probability of rolling a 4

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 9

Lecture 3 Slide 9

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Discrete Distribution Functions

A data set to play with Written in terms of ldquooccurrencerdquo F

The mean value In terms of fractional expectations

Fractional expectations

Normalization condition

Mean value

(This is just a weighted sum)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 10

Lecture 3 Slide 10

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limit of Discrete Distribution Functions

ldquoNormalizingrdquo data sets

Binned data sets

fk equiv fractional occurrence

∆k equiv bin width

Mean value

Normalization

Expected value 119875119903119900119887ሺ4ሻ= 1198654119873= 1198914

119883= 119865119896119896 119909119896 = (119891119896119896 Δ119896)119909119896

1 = σ (119891119896119896 Δ119896)119909119896σ Δ119896119896

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 11

Lecture 3 Slide 11

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limits of Distribution FunctionsConsider the limiting distribution function as N ȸ and ∆k0

Larger data sets

Mathcad Games

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 12

Lecture 3 Slide 12

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Continuous Distribution Functions

Central (mean) Value Width of Distribution

Meaning of Distribution Interval

Normalization of Distribution

Thus

and by extension

= fraction of measurements that fall within altxltb

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 7: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 7

Lecture 3 Slide 7

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities

Roll a pair of dice 50 times and record the results

What is the mean value The standard deviation

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 8

Lecture 3 Slide 8

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities Roll a pair of dice 50 times and record the results

What is the mean value

The standard deviation

What is the asymmetry (kurtosis)

What is the probability of rolling a 4

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 9

Lecture 3 Slide 9

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Discrete Distribution Functions

A data set to play with Written in terms of ldquooccurrencerdquo F

The mean value In terms of fractional expectations

Fractional expectations

Normalization condition

Mean value

(This is just a weighted sum)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 10

Lecture 3 Slide 10

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limit of Discrete Distribution Functions

ldquoNormalizingrdquo data sets

Binned data sets

fk equiv fractional occurrence

∆k equiv bin width

Mean value

Normalization

Expected value 119875119903119900119887ሺ4ሻ= 1198654119873= 1198914

119883= 119865119896119896 119909119896 = (119891119896119896 Δ119896)119909119896

1 = σ (119891119896119896 Δ119896)119909119896σ Δ119896119896

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 11

Lecture 3 Slide 11

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limits of Distribution FunctionsConsider the limiting distribution function as N ȸ and ∆k0

Larger data sets

Mathcad Games

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 12

Lecture 3 Slide 12

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Continuous Distribution Functions

Central (mean) Value Width of Distribution

Meaning of Distribution Interval

Normalization of Distribution

Thus

and by extension

= fraction of measurements that fall within altxltb

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 8: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 8

Lecture 3 Slide 8

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Practical Exercises in Probabilities Roll a pair of dice 50 times and record the results

What is the mean value

The standard deviation

What is the asymmetry (kurtosis)

What is the probability of rolling a 4

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 9

Lecture 3 Slide 9

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Discrete Distribution Functions

A data set to play with Written in terms of ldquooccurrencerdquo F

The mean value In terms of fractional expectations

Fractional expectations

Normalization condition

Mean value

(This is just a weighted sum)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 10

Lecture 3 Slide 10

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limit of Discrete Distribution Functions

ldquoNormalizingrdquo data sets

Binned data sets

fk equiv fractional occurrence

∆k equiv bin width

Mean value

Normalization

Expected value 119875119903119900119887ሺ4ሻ= 1198654119873= 1198914

119883= 119865119896119896 119909119896 = (119891119896119896 Δ119896)119909119896

1 = σ (119891119896119896 Δ119896)119909119896σ Δ119896119896

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 11

Lecture 3 Slide 11

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limits of Distribution FunctionsConsider the limiting distribution function as N ȸ and ∆k0

Larger data sets

Mathcad Games

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 12

Lecture 3 Slide 12

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Continuous Distribution Functions

Central (mean) Value Width of Distribution

Meaning of Distribution Interval

Normalization of Distribution

Thus

and by extension

= fraction of measurements that fall within altxltb

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 9: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 9

Lecture 3 Slide 9

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Discrete Distribution Functions

A data set to play with Written in terms of ldquooccurrencerdquo F

The mean value In terms of fractional expectations

Fractional expectations

Normalization condition

Mean value

(This is just a weighted sum)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 10

Lecture 3 Slide 10

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limit of Discrete Distribution Functions

ldquoNormalizingrdquo data sets

Binned data sets

fk equiv fractional occurrence

∆k equiv bin width

Mean value

Normalization

Expected value 119875119903119900119887ሺ4ሻ= 1198654119873= 1198914

119883= 119865119896119896 119909119896 = (119891119896119896 Δ119896)119909119896

1 = σ (119891119896119896 Δ119896)119909119896σ Δ119896119896

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 11

Lecture 3 Slide 11

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limits of Distribution FunctionsConsider the limiting distribution function as N ȸ and ∆k0

Larger data sets

Mathcad Games

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 12

Lecture 3 Slide 12

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Continuous Distribution Functions

Central (mean) Value Width of Distribution

Meaning of Distribution Interval

Normalization of Distribution

Thus

and by extension

= fraction of measurements that fall within altxltb

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 10: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 10

Lecture 3 Slide 10

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limit of Discrete Distribution Functions

ldquoNormalizingrdquo data sets

Binned data sets

fk equiv fractional occurrence

∆k equiv bin width

Mean value

Normalization

Expected value 119875119903119900119887ሺ4ሻ= 1198654119873= 1198914

119883= 119865119896119896 119909119896 = (119891119896119896 Δ119896)119909119896

1 = σ (119891119896119896 Δ119896)119909119896σ Δ119896119896

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 11

Lecture 3 Slide 11

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limits of Distribution FunctionsConsider the limiting distribution function as N ȸ and ∆k0

Larger data sets

Mathcad Games

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 12

Lecture 3 Slide 12

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Continuous Distribution Functions

Central (mean) Value Width of Distribution

Meaning of Distribution Interval

Normalization of Distribution

Thus

and by extension

= fraction of measurements that fall within altxltb

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 11: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 11

Lecture 3 Slide 11

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Limits of Distribution FunctionsConsider the limiting distribution function as N ȸ and ∆k0

Larger data sets

Mathcad Games

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 12

Lecture 3 Slide 12

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Continuous Distribution Functions

Central (mean) Value Width of Distribution

Meaning of Distribution Interval

Normalization of Distribution

Thus

and by extension

= fraction of measurements that fall within altxltb

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 12: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 12

Lecture 3 Slide 12

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Continuous Distribution Functions

Central (mean) Value Width of Distribution

Meaning of Distribution Interval

Normalization of Distribution

Thus

and by extension

= fraction of measurements that fall within altxltb

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 13: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 13

Lecture 3 Slide 13

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

The first moment for a probability distribution function is

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119891(119909)+infinminusinfin 119889119909

For a general distribution function

119909ҧequiv 119909ۃ =ۄ 119891119894119903119904119905 119898119900119898119890119899119905 = 119909 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis

0 (for a centered distribution)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 14: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 14

Lecture 3 Slide 14

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Moments of Distribution Functions

Generalizing the nth moment is

119909119899 equiv 119909119899ۃ =ۄ 119899119905ℎ 119898119900119898119890119899119905 = 119909119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = 119909119899 119891(119909)+infinminusinfin 119889119909

Oth moment equiv N 2nd moment equiv ۃሺ119909minus 119909ҧሻ2 rarrۄ 1199092ۃ ۄ1st moment equiv 119909ҧ 3rd moment equiv kurtosis The nth moment about the mean is 120583119899 equiv minusሺ119909ۃ 119909ҧሻ119899 =ۄ 119899119905ℎ 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ119899 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ119899 119891(119909)+infinminusinfin 119889119909

The standard deviation (or second moment about the mean) is

1205901199092 equiv 1205832 equiv minusሺ119909ۃ 119909ҧሻ2 =ۄ 2119899119889 119898119900119898119890119899119905 119886119887119900119906119905 119905ℎ119890 119898119890119886119899

= ሺ119909minus119909ҧሻ2 119892(119909)+infinminusinfin 119889119909 119892(119909)+infinminusinfin 119889119909 = ሺ119909minus 119909ҧሻ2 119891(119909)+infinminusinfin 119889119909

0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 15: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 15

Lecture 3 Slide 15

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesHarmonic Oscillator Example from Mechanics

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 16: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 16

Lecture 3 Slide 16

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesBoltzmann Distribution Example from Kinetic Theory

Expected Values

The expectation value of a function Ɍ(x) is

Ɍሺxሻۃ equivۄ Ɍሺxሻ119892ሺ119909ሻ+infinminusinfin 119889119909 119892ሺ119909ሻ+infinminusinfin 119889119909

= Ɍ(x) 119891(119909)+infinminusinfin 119889119909

The Boltzmann distribution function for velocities of particles as a function of temperature T is

119875ሺ119907119879ሻ= 4120587 ൬ 1198722120587 119896119861119879൰3 2Τ 1199072119890119909119901ۏێێێ121198721199072ۍ 12119896119861119879൙

ےۑۑۑې

Then

vۃ =ۄ 119907 119875(119907)+infinminusinfin 119889119907 = ቂ8 119896119861119879 120587 119872ൗ ቃ1 2Τ

v2ۃ =ۄ v2 119875(119907)+infinminusinfin 119889119907 = ቂ3 119896119861119879 119872ൗቃ1 2Τ

implies ۃKE =ۄ 12119872 v2ۃ =ۄ 32119896119861119879

vpeak=ඨ2 119896119861119879 119872ൗ ൨1 2Τ = 2 3ൗ൩1 2Τ

v2ۃ ۄ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 17: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 17

Lecture 3 Slide 17

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFermi-Dirac Distribution Example from Kinetic Theory

For a system of identical fermions the average number of fermions in a single-particle state is given by the FermindashDirac (FndashD) distribution

where kB is Boltzmanns constant T is the absolute temperature is the energy of the single-particle state and μ is the total chemical potential

Since the FndashD distribution was derived using the Pauli exclusion principle which allows at most one electron to occupy each possible state a result is that

When a quasi-continuum of energies has an associated density of states (ie the number of states per unit energy range per unit volume) the average number of fermions per unit energy range per unit volume is

where is called the Fermi function

so that

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 18: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 18

Lecture 3 Slide 18

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Example of Continuous Distribution Functions and Expectation ValuesFinite Square Well Example from Quantum Mechanics

Expectation Values The expectation value of a QM operator O(x) is ۃOሺxሻ equivۄ Ψlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψሺxሻ119889119909 ΨlowastሺxሻΨሺxሻ+infinminusinfin 119889119909

For a finite square well of width L Ψnሺxሻ= ට2 Lൗ sinቂn π xL ቃ

Ψnlowastሺxሻ|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119874ሺ119909ሻ+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1

119909ۃ =ۄ Ψnlowastሺxሻ|x|Ψnሺxሻۃ equivۄ Ψnlowastሺxሻ119909+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 1198712

119901ۃ =ۄ |Ψnlowastሺxሻۃ ℏi partpartx|Ψnሺxሻ equivۄ Ψnlowastሺxሻℏi partpartx+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 0

119864119899ۃ =ۄ |Ψnlowastሺxሻۃ iℏ partpartt|Ψnሺxሻ equivۄ Ψnlowastሺxሻiℏ partpartt+infinminusinfin Ψnሺxሻ119889119909 ΨnlowastሺxሻΨnሺxሻ+infinminusinfin 119889119909 = 11989921205872ℏ22 119898 1198712

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 19: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 19

Lecture 3 Slide 19

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Distribution Functions

Available on web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 20: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 20

Lecture 3 Slide 20

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function

References Taylor Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 21: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 21

Lecture 3 Slide 21

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Integrals

Factorial Approximations 119899 asympሺ2120587119899ሻ1 2Τ 119899119899 119890119909119901ቂminus119899+ 112 119899 + 119874ቀ

11198992ቁቃ 119897119900119892ሺ119899ሻasymp 12 119897119900119892ሺ2120587ሻ+ቀ119899+ 12ቁlogሺ119899ሻminus 119899+ 112 119899 + 119874ቀ

11198992ቁ

119897119900119892ሺ119899ሻasymp 119899logሺ119899ሻminus 119899 (for all terms decreasing faster than linearly with n)

Gaussian Integrals 119868119898 = 2 119909119898 exp (minus1199092)infin0 119889119909 mgt-1 119868119898 = 2 119910119899 exp (minus119910)infin0 119889119910equiv Γ(119899+ 1) 1199092 equiv 119910 2 119889119909= 1199101 2Τ 119889119910 119899 equiv 12 (119898minus 1) 1198680 = Γቀ119899 = 12ቁ= ξ120587 m=0 119899 = minus12 1198682 119896 = Γቀ119896+ 12ቁ=൫119896minus 1 2ൗ൯൫119896minus 3 2ൗ൯൫3 2ൗ൯൫1 2ൗ൯ ξ120587 even m m=2 kgt0 119899 = 119896minus 12 1198682 119896+1 = Γሺ119896+ 1ሻ= 119896 odd m m=2 k+1gt0 119899 = 119896 ge 0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 22: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 22

Lecture 3 Slide 22

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Gaussian Distribution Function

Width of Distribution(standard deviation)

Center of Distribution(mean)Distribution

Function

Independent Variable

Gaussian Distribution Function

NormalizationConstant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 23: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 23

Lecture 3 Slide 23

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Effects of Increasing N on Gaussian Distribution Functions

Consider the limiting distribution function as N infin and dx0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 24: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 24

Lecture 3 Slide 24

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Defining the Gaussian distribution function in Mathcad

I suggest you ldquoinvestigaterdquo these with the Mathcad sheet on the web site

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 25: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 25

Lecture 3 Slide 25

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Using Mathcad to define other common distribution functions

Consider the limiting distribution function as N ȸ and ∆k0

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 26: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 26

Lecture 3 Slide 26

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 27: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 27

Lecture 3 Slide 27

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is not symmetric about X

Example Cauchy Distribution

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 28: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 28

Lecture 3 Slide 28

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 29: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 29

Lecture 3 Slide 29

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

When is mean x not Xbest

Answer When the distribution is has more than one peak

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 30: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 30

Lecture 3 Slide 30

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

The Gaussian Distribution Function and Its Relation to

Errors

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 31: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 31

Lecture 3 Slide 31

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

A Review of Probabilities in Combination

Probability of a data set of N like measurements (x1x2hellipxN)

P (x1x2hellipxN) = P(x)1P(x2)hellipP(xN)

1 head AND 1 Four P(H4) = P(H) P(4)

1 head OR 1 Four P(H4) = P(H) + P(4) - P(H and 4)(true for a ldquonon-mutually exclusiverdquo events)

NOT 1 SixP(NOT 6) = 1 - P(6)

1 Six OR 1 Four P(64) = P(6) + P(4)(true for a ldquomutually exclusiverdquo single role)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 32: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 32

Lecture 3 Slide 32

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The Gaussian Distribution Function and Its Relation to Errors

We will use the Gaussian distribution as applied to random variables to develop the mathematical basis forbull Meanbull Standard deviationbull Standard deviation of the mean (SDOM)bull Moments and expectation valuesbull Error propagation formulasbull Addition of errors in quadrature (for independent and random

measurements)bull Numerical values for confidence limits (t-test)bull Principle of maximal likelihoodbull Central limit theorembull Weighted distributions and Chi squaredbull Schwartz inequality (ie the uncertainty principle) (next lecture)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 33: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 33

Lecture 3 Slide 33

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider the Gaussian distribution function

Use the normalization condition to evaluate the normalization constant (see Taylor p 132)

The mean Ẋ is the first moment of the Gaussian distribution function (see Taylor p 134)

The standard deviation σx is the standard deviation of the mean of the Gaussian distribution function (see Taylor p 143)

Gaussian Distribution Moments

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 34: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 34

Lecture 3 Slide 34

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Standard Deviation of Gaussian Distribution

Area under curve (probability that ndashσltxlt+σ) is 68

5 or ~2σ ldquoSignificantrdquo

1 or ~3σ ldquoHighly Significantrdquo

1σ ldquoWithin errorsrdquo

5 ppm or ~5σ ldquoValid for HEPrdquo

See Sec 106 Testing of Hypotheses

More complete Table in App A and B

Ah thatrsquos highly significant

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 35: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 35

Lecture 3 Slide 35

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

Complementary Error Function (probability that ndashxlt-tσ AND xgt+tσ )Prob(x outside tσ) = 1 - Prob(x within tσ)

More complete Table in App A and B

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 36: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 36

Lecture 3 Slide 36

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Useful Points on Gaussian Distribution

Full Width at Half MaximumFWHM

(See Prob 512)

Points of InflectionOccur at plusmnσ

(See Prob 513)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 37: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 37

Lecture 3 Slide 37

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Analysis and Gaussian Distribution

Adding a Constant Multiplying by a Constant

XX+A XBX and σB σ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 38: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 38

Lecture 3 Slide 38

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Sum of Two Variables

Consider the derived quantityZ=X + Y (with X=0 and Y=0)

Error Propagation Addition

Error in ZMultiple two probabilities

119875119903119900119887ሺ119909119910ሻ= 119875119903119900119887ሺ119909ሻ∙119875119903119900119887ሺ119909ሻprop 119890119909119901minus12ቆ11990921205901199092+ 11991021205901199102ቇ൨prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯minus1199112ቇ൨

prop 119890119909119901minus12ቆ (119909+119910)2൫1205901199092+1205901199102൯ቇ൨ 119890119909119901ቂminus11991122ቃ

ICBST (Eq 553)

X+YZ and σx2 + σy

2 σz2

(addition in quadrature for random independent variables)

Integrates to radic2π

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 39: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 39

Lecture 3 Slide 39

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for error propagation see [Taylor Secs 35 and 39]

Uncertainty as a function of one variable [Taylor Sec 35]

1 Consider a graphical method of estimating error a) Consider an arbitaray function q(x) b) Plot q(x) vs x c) On the graph label

(1) qbest = q(xbest) (2) qhi = q(xbest + δx) (3) qlow = q(xbest- δx)

d) Making a linear approximation

x

qqxslopeqq

x

qqxslopeqq

bestbestlow

bestbesthi

e) Therefore x

x

qq

Note the absolute value

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 40: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 40

Lecture 3 Slide 40

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Error Propagation

General formula for uncertainty of a function of one variable x

x

qq

[Taylor Eq 323]

Can you now derive for specific rules of error propagation 1 Addition and Subtraction [Taylor p 49] 2 Multiplication and Division [Taylor p 51] 3 Multiplication by a constant (exact number) [Taylor p 54] 4 Exponentiation (powers) [Taylor p 56]

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 41: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 41

Lecture 3 Slide 41

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

General Formula for Multiple VariablesUncertainty of a function of multiple variables [Taylor Sec 311]

1 It can easily (no really) be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

2 More correctly it can be shown that (see Taylor Sec 311) for a function of several variables

)(

zz

qy

y

qx

x

qzyxq [Taylor Eq 347]

where the equals sign represents an upper bound as discussed above 3 For a function of several independent and random variables

)(222

zz

qy

y

qx

x

qzyxq [Taylor Eq 348]

Again the proof is left for Ch 5

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 42: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 42

Lecture 3 Slide 42

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Product of Two Variables

Consider the arbitrary derived quantityq(xy) of two independent random variables x and y

Expand q(xy) in a Taylor series about the expected values of x and y (ie at points near X and Y)

Error Propagation General Case

119902ሺ119909119910ሻ= 119902ሺ119883119884ሻ+൬120597119902120597119909൰ฬ119883ሺ119909minus 119883ሻ+൬

120597119902120597119910൰ฬ119884(119910minus 119884)

Fixed shifts peak of distribution

Fixed Distribution centered at X with width σX

120575119902ሺ119909119910ሻ= 120590119902 = ඨ119902ሺ119883119884ሻ+ ൬120597119902120597119909൰ฬ119883120590119909൨2 +ቈ൬120597119902120597119910൰ฬ1198841205901199102

0

How do we determine the error of a derived quantity Z(XYhellip) from errors in XYhellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 43: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 43

Lecture 3 Slide 43

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

SDOM of Gaussian Distribution

Standard Deviation of the Mean

The SDOM decreases as the square root of the number of measurements

That is the relative width σẊ of the distribution gets narrower as more measurements are made

Each measurement has similar σXi= σẊ

and similar partial derivatives

Thushellip

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 44: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 44

Lecture 3 Slide 44

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Two Key Theorems from Probability

Central Limit Theorem

For random independent measurements (each with a well-define expectation value and well-defined variance) the arithmetic mean (average) will be approximately normally distributed

Principle of Maximum Likelihood

Given the N observed measurements x1 x2hellipxN the best estimates for Ẋ and σ are those values for which the observed x1 x2hellipxN are most likely

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 45: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 45

Lecture 3 Slide 45

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Mean of Gaussian Distribution as ldquoBest Estimaterdquo

Principle of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set

Each randomly distributed with

x1 x2 x3 hellipxN

To find the most likely value of the mean (the best estimate of ẋ) find X that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 46: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 46

Lecture 3 Slide 46

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Uncertainty of ldquoBest Estimatesrdquo of Gaussian DistributionPrinciple of Maximum Likelihood

Best Estimate of X is from maximum probability or minimum summation

Consider a data set x1 x2 x3 hellipxN

To find the most likely value of the standard deviation (the best estimate of the width of the x distribution) find σx that yields the highest probability for the data set

The combined probability for the full data set is the product

Minimize Sum

Solve for derivative wrst X set to 0

Best estimate of X

Best Estimate of σ is from maximum probability or minimum summation

Minimize Sum

Best estimate of σ

Solve for derivative wrst σ set to 0

See Prob 526

prop 1120590119890minus(1199091minus119883)2 2120590Τ times 1120590119890minus(1199092minus119883)2 2120590Τ times helliptimes 1120590119890minus(119909119873minus119883)2 2120590Τ = 1120590119873119890σminus(119909119894minus119883)2 2120590Τ

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 47: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 47

Lecture 3 Slide 47

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Combining Data Sets

Weighted Averages

References Taylor Ch 7

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 48: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 48

Lecture 3 Slide 48

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages

Question How can we properly combine two or more separate independent measurements of the same randomly distributed quantity to determine a best combined value with uncertainty

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 49: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 49

Lecture 3 Slide 49

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Consider two measurements of the same quantity described by a random Gaussian distribution ltx1gt x1 and ltx2gt x2 The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equiv ቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

Assume negligible systematic errors

Note χ2 or Chi squared is the sum of the squares of the deviations from the mean divided by the corresponding uncertainty

Such methods are called ldquoMethods of Least Squaresrdquo They follow directly from the Principle of Maximum Likelihood

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 50: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 50

Lecture 3 Slide 50

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

The probability of measuring two such measurements is 119875119903119900119887119909ሺ11990911199092ሻ= 119875119903119900119887119909ሺ1199091ሻ 119875119903119900119887119909ሺ1199092ሻ = 112059011205902 119890minus12059422 119908ℎ119890119903119890 1205942 equivቈ

ሺ1199091 minus 119883ሻ1205901 2 +ቈሺ1199092 minus 119883ሻ1205902 2

To find the best value for χ find the maximum Prob or minimum χ2

Weighted Averages

This leads to 119909119882_119886119907119892 = 11990811199091+119908211990921199081+1199082 = σ119908119894 119909119894σ119908119894 119908ℎ119890119903119890 119908119894 = 1 ሺ120590119894ሻ2ൗ

Best Estimate of χ is from maximum probibility or minimum summation

Minimize Sum Solve for best estimate of χSolve for derivative wrst χ set to 0

Note If w1=w2 we recover the standard result Xwavg= (12) (x1+x2)

Finally the width of a weighted average distribution is 120590119908119894119890119892ℎ119905119890119889 119886119907119892 = 1σ 119908119894119894

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 51: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 51

Lecture 3 Slide 51

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Weighted Averages on SteroidsA very powerful method for combining data from different sources with different methods and uncertainties (or indeed data of related measured and calculated quantities) is Kalman filtering

The Kalman filter also known as linear quadratic estimation (LQE) is an algorithm that uses a series of measurements observed over time containing noise (random variations) and other inaccuracies and produces estimates of unknown variables that tend to be more precise than those based on a single measurement alone

The Kalman filter keeps track of the estimated state of the system and the variance or uncertainty of the estimate The estimate is updated using a state transition model and measurements xk|k-1 denotes the estimate of the systems state at time step k before the k th measurement yk has been taken into account Pk|k-1 is the corresponding uncertainty --Wikipedia 2013

Ludger Scherliess of USU Physics is a world expert at using Kalman filtering for the assimilation of satellite and ground-based data and the USU GAMES model to predict space weather

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 52: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 52

Lecture 3 Slide 52

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Rejecting Data

Chauvenetrsquos Criterion

References Taylor Ch 6

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 53: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 53

Lecture 3 Slide 53

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never bull Whenever it makes things look betterbull Chauvenetrsquos criterion provides a (quantitative) compromise

Rejecting Data

What is a good criteria for rejecting data

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 54: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 54

Lecture 3 Slide 54

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Never

Rejecting Data

Zallenrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 55: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 55

Lecture 3 Slide 55

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Question When is it ldquoreasonablerdquo to discard a seemingly ldquounreasonablerdquo data point from a set of randomly distributed measurements

bull Whenever it makes things look better

Rejecting Data

Disneyrsquos Criterion

Disneyrsquos First Law

Wishing will make it so

Disneyrsquos Second Law

Dreams are more colorful than reality

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 56: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 56

Lecture 3 Slide 56

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Data may be rejected if the expected number of measurements at least as deviant as the suspect measurement is less than 50

Consider a set of N measurements of a single quantity x1x2 helliphellipxN Calculate ltxgt and σx and then determine the fractional deviations from the mean of all the points

For the suspect point(s) xsuspect find the probability of such a point occurring in N measurements n = (expected number as deviant as xsuspect) = N Prob(outside xsuspectσx)

Rejecting Data

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 57: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 57

Lecture 3 Slide 57

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Error Function of Gaussian Distribution

Area under curve (probability that ndashtσltxlt+tσ) is given in Table at right

Probable Error (probability that ndash067σltxlt+067σ) is 50

Error Function (probability that ndashtσltxlt+tσ )

Error Function Tabulated values-see App A

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 58: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 58

Lecture 3 Slide 58

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Criterion

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 59: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 59

Lecture 3 Slide 59

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 1

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 60: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 60

Lecture 3 Slide 60

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos Details (1)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 61: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 61

Lecture 3 Slide 61

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (2)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 62: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 62

Lecture 3 Slide 62

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashDetails (3)

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 63: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 63

Lecture 3 Slide 63

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Chauvenetrsquos CriterionmdashExample 2

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 64: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 64

Lecture 3 Slide 64

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Intermediate Lab PHYS 3870

Summary of Probability Theory

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 65: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 65

Lecture 3 Slide 65

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-I

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 66: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 66

Lecture 3 Slide 66

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-II

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 67: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 67

Lecture 3 Slide 67

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-III

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68
Page 68: DISTRIBUTION FUNCTIONS Introduction Section 0 Lecture 1 Slide 1 Lecture 3 Slide 1 INTRODUCTION TO Modern Physics PHYX 2710 Fall 2004 Intermediate 3870

DISTRIBUTION FUNCTIONS

Introduction Section 0 Lecture 1 Slide 68

Lecture 3 Slide 68

INTRODUCTION TO Modern Physics PHYX 2710

Fall 2004

Intermediate 3870

Fall 2013

Summary of Probability Theory-IV

  • Intermediate Lab PHYS 3870
  • Intermediate Lab PHYS 3870 (2)
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Intermediate Lab PHYS 3870 (3)
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Intermediate Lab PHYS 3870 (4)
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • General Formula for Error Propagation
  • General Formula for Error Propagation (2)
  • General Formula for Multiple Variables
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Intermediate Lab PHYS 3870 (5)
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Intermediate Lab PHYS 3870 (6)
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Intermediate Lab PHYS 3870 (7)
  • Slide 65
  • Slide 66
  • Slide 67
  • Slide 68