divergence operator and its inverse

Upload: saptarshee-mitra

Post on 01-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Divergence Operator and Its Inverse

    1/76

    Inverting the Divergence Operator

    Mark HickmanDepartment of Mathematics & Statistics

    University of [email protected]

    53th Annual Meeting of the Australian Mathematical Society

    Adelaide28 September - 1 October 2009

    Divergence Operator

    http://find/http://goback/

  • 8/9/2019 Divergence Operator and Its Inverse

    2/76

    INTRODUCTION

    Algebraic computing packages such as MAPLE andMATHEMATICA are adept at computing the integral of an

    explicit expression in closed form (where possible). Neitherprogram has any trouble in, for example, 

      1

    x   log x dx = log (log x).

    Divergence Operator

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    3/76

    INTRODUCTION

    Algebraic computing packages such as MAPLE andMATHEMATICA are adept at computing the integral of an

    explicit expression in closed form (where possible). Neitherprogram has any trouble in, for example, 

      1

    x   log x dx = log (log x).

    MAPLE from release 9 onwards has a limited facility to handleexpressions such as

      u vx − v u x

    ( u  − v)2  dx =

      v

     u  − v

    (where  u  and  v  are understood to be functions of  x).

    Divergence Operator

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    4/76

    INTRODUCTION

    However neither program can compute the “antiderivative” of exact expressions in more than one independent variable. For

    example there are no inbuilt commands that would compute

     u x vy − u xx vy− u y vx + u xy vx

    =  ∂

    ∂x

     [ u vy − u x vy ] +  ∂

    ∂y

     [ u x vx − u vx ] .

    Divergence Operator

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    5/76

    INTRODUCTION

    However neither program can compute the “antiderivative” of exact expressions in more than one independent variable. For

    example there are no inbuilt commands that would compute

     u x vy − u xx vy− u y vx + u xy vx

    =  ∂

    ∂x

     [ u vy − u x vy ] +  ∂

    ∂y

     [ u x vx − u vx ] .

    In this last example, given a so-called  differential function  f,we wish to compute a vector field  F such that

    f = Div F.

    Divergence Operator

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    6/76

    INTRODUCTION

    However neither program can compute the “antiderivative” of exact expressions in more than one independent variable. For

    example there are no inbuilt commands that would compute

     u x vy − u xx vy− u y vx + u xy vx

    =  ∂

    ∂x

     [ u vy − u x vy ] +  ∂

    ∂y

     [ u x vx − u vx ] .

    In this last example, given a so-called  differential function  f,we wish to compute a vector field  F such that

    f = Div F.

    Of course, such a vector field  F  will not exist for an arbitraryf. The existence (or non existence) and the computation of  Foccurs in many situations.

    Divergence Operator

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    7/76

    INTRODUCTION

    The  existence  of  F  is resolved by the Euler operator.

    Divergence Operator

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    8/76

    INTRODUCTION

    The  existence  of  F  is resolved by the Euler operator.

    The  computation  of  F  is resolved (in a theoretical sense, atleast) by the homotopy operator.

    Divergence Operator

    http://find/http://goback/

  • 8/9/2019 Divergence Operator and Its Inverse

    9/76

    INTRODUCTION

    The  existence  of  F  is resolved by the Euler operator.

    The  computation  of  F  is resolved (in a theoretical sense, atleast) by the homotopy operator.

    However, as will be demonstrated in this paper, the practicalimplementation of the homotopy operator to compute  Finvolves a number of subtleties not readily apparent from its

    definition.

    Divergence Operator

    N

    http://find/http://goback/

  • 8/9/2019 Divergence Operator and Its Inverse

    10/76

    NOTATION

    The natural arena for our discussion is the jet bundle. Theindependent variables will be denoted generically by

    x = (x1,   x2,   x3, . . . ,   xd).

    Divergence Operator

    N

    http://find/http://goback/

  • 8/9/2019 Divergence Operator and Its Inverse

    11/76

    NOTATION

    The natural arena for our discussion is the jet bundle. Theindependent variables will be denoted generically by

    x = (x1,   x2,   x3, . . . ,   xd).

    For a unordered multi-indices (with non-negative components)I = (i1,   i2, . . . ,   id)  and  J = ( j1,   j2, . . . ,   jd)  define

    |I| = i1

     + i2

     + · · · + id

    I! = i1! i2!   · · · id!

    xI = xi11   xi22   · · ·  x

    idd

    ∂If

    ∂xI

      =  ∂|I|f

    ∂xi11   ∂x

    i22   · · ·  ∂x

    idd

    I + J  = (i1 + j1,  i2 + j2, . . . ,   id + jd)I

    J

     =

    i1

     j1

    i2

     j2

      · · ·

    id

     jd

     =

      I!

    (I − J)! J!.

    Divergence Operator

    NO O

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    12/76

    NOTATION

    We introduce a partial ordering on multi-indices.   I J   if  I − Jhas no negative entries.

    Divergence Operator

    NOTATION

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    13/76

    NOTATION

    We introduce a partial ordering on multi-indices.   I J   if  I − Jhas no negative entries.

    In order to reduce the number of subscripts, we genericallydenote dependent variables by  u  and use the convention that

    u

    indicates summation over all dependent variables

    Divergence Operator

    NOTATION

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    14/76

    NOTATION

    We introduce a partial ordering on multi-indices.   I J   if  I − Jhas no negative entries.

    In order to reduce the number of subscripts, we genericallydenote dependent variables by  u  and use the convention that

    u

    indicates summation over all dependent variables

    For each dependent variable  u , let  u I  be the jet variableassociated with

    ∂I u 

    ∂xI .

    Divergence Operator

    NOTATION

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    15/76

    NOTATION

    The total derivative with respect to  xi   is given by

    Di  =   ∂∂xi+

    I,  u

     u I+ei ∂∂u I

    where  ei  is the multi-index with  1  in the ith position, 0

    elsewhere.

    Divergence Operator

    NOTATION

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    16/76

    NOTATION

    The total derivative with respect to  xi   is given by

    Di  =   ∂∂xi+

    I,  u

     u I+ei ∂∂u I

    where  ei  is the multi-index with  1  in the ith position, 0

    elsewhere.

    The summation is over all non-negative multi-indices  I  and alldependent variables  u . However there will only be a finitenumber of non-zero terms in this summation.

    Divergence Operator

    NOTATION

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    17/76

    NOTATION

    The total derivative with respect to  xi   is given by

    Di  =   ∂∂xi+

    I,  u

     u I+ei ∂∂u I

    where  ei  is the multi-index with  1  in the ith position, 0

    elsewhere.

    The summation is over all non-negative multi-indices  I  and alldependent variables  u . However there will only be a finitenumber of non-zero terms in this summation.

    In the one variable case, we will drop the subscript on D.

    Divergence Operator

    NOTATION

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    18/76

    NOTATION

    The total derivative with respect to  xi   is given by

    Di  =   ∂∂xi+

    I,  u

     u I+ei ∂∂u I

    where  ei  is the multi-index with  1  in the ith position, 0

    elsewhere.

    The summation is over all non-negative multi-indices  I  and alldependent variables  u . However there will only be a finitenumber of non-zero terms in this summation.

    In the one variable case, we will drop the subscript on D.

    The divergence of a differential vector field  F  is given by

    Div F =d

    i=1

    Di Fi.

    Divergence Operator

    NOTATION

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    19/76

    NOTATION

    Finally, letDI = Di11   D

    i22   · · ·  D

    idd

    where superscripts indicate composition.

    Divergence Operator

    EXISTENCE – THE EULER OPERATOR

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    20/76

    EXISTENCE     THE  EULER OPERATOR

    DEFINITION

    A scalar differential function  f   is exact or a divergence if and only if there exists a differential function  F  such that 

    f = Div F =d

    i=1

    Di Fi.

    Divergence Operator

    EXISTENCE – THE EULER OPERATOR

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    21/76

    EXISTENCE     THE  EULER OPERATOR

    DEFINITION

    A scalar differential function  f   is exact or a divergence if and only if there exists a differential function  F  such that 

    f = Div F =d

    i=1

    Di Fi.

    THEOREM   (Olver, 1993, p. 248)

    A necessary and sufficient condition for a function  f  to be exact is that 

    Eu f ≡I

    (−1)I DI  ∂f

    ∂u I = 0   (1 )

    for each dependent variable  u .   Eu  is called the Euler operator (or variational derivative) associated with the dependent variable  u .

    Divergence Operator

    EXISTENCE – THE EULER OPERATOR

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    22/76

    EXISTENCE     THE  EULER OPERATOR

    EXAMPLE

    Let f = u x vy − u xx vy − u y vx + u xy vx

    then

    Divergence Operator

    EXISTENCE – THE EULER OPERATOR

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    23/76

    EXISTENCE     THE  EULER OPERATOR

    EXAMPLE

    Let f = u x vy − u xx vy − u y vx + u xy vx

    then

    Eu f = − Dx∂f

    ∂u x+ D2x

    ∂f

    ∂u xx− Dy

    ∂f

    ∂u y+ Dx Dy

    ∂f

    ∂u xy

    = − Dx vy − D2x vy + Dy vx + Dx Dy vx

    = − vxy − vxxy + vxy + vxxy

    = 0

    Divergence Operator

    EXISTENCE  –   THE  EULER OPERATOR

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    24/76

    S

    EXAMPLE

    and

    Ev f = − Dx∂f

    ∂vx− Dy

    ∂f

    ∂vy

    = − Dx ( u xy − u y) − Dy ( u x − u xx)

    = 0.

    Thus  f   is exact.

    Divergence Operator

    COMPUTING THE INVERSE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    25/76

    The question we wish to address is that given a differentialfunction  f  that is exact, compute  F  such that

    f = Div F.

    Of course  F  will not be unique.

    Divergence Operator

    COMPUTING THE INVERSE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    26/76

    The question we wish to address is that given a differentialfunction  f  that is exact, compute  F  such that

    f = Div F.

    Of course  F  will not be unique.

    DEFINITIONThe higher Euler operators are given by 

    EJu  =IJ

    (−1)I−J

    I

    J

    DI−J

      ∂

    ∂u I(2 )

    for each non-negative multi-index  J and each dependent variable  u .

    Divergence Operator

    COMPUTING THE INVERSE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    27/76

    These operators can be easily implemented in both MAPLE andMATHEMATICA. Their importance lies in the following result.

    Divergence Operator

    COMPUTING THE INVERSE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    28/76

    These operators can be easily implemented in both MAPLE andMATHEMATICA. Their importance lies in the following result.

    THEOREM

    Let  f  be a differential function. Then

    J DJ  u EJu f = I  u I

    ∂f

    ∂u I≡ Mu f   (3 )

    say.

    Divergence Operator

    COMPUTING THE INVERSE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    29/76

    These operators can be easily implemented in both MAPLE andMATHEMATICA. Their importance lies in the following result.

    THEOREM

    Let  f  be a differential function. Then

    J DJ  u EJu f = I  u I

    ∂f

    ∂u I≡ Mu f   (3 )

    say.

    If  f  is exact then the left hand side of (3) is a divergence (the

    J = 0  term is zero).

    Divergence Operator

    COMPUTING THE INVERSE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    30/76

    LEMMA

    The operators  Mu  and  Di

     commute.

    Divergence Operator

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    31/76

    COMPUTING THE INVERSE

  • 8/9/2019 Divergence Operator and Its Inverse

    32/76

    LEMMA

    The operators  Mu  and  Di

     commute.

    For the sake of clarity, let us return briefly to the case of oneindependent variable. If  f  is exact then (3) reads

    D ∞j=0

    Dj 

     u Ej+1u   f

     = Mu f. (4)

    Formally we wish to define

    F = M−1u∞j=0

    Dj 

     u Ej+1u   f

    to obtainf = D F.

    Divergence Operator

    COMPUTING THE INVERSE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    33/76

    For this strategy to be successful, we must be able to solvethe equation  Mu F = g. This equation is a first order linear

    partial differential equation for  F.

    Divergence Operator

    COMPUTING THE INVERSE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    34/76

    For this strategy to be successful, we must be able to solvethe equation  Mu F = g. This equation is a first order linear

    partial differential equation for  F.

    PROPOSITION

    Suppose 

    Mu F = g   (5 )for some (given) differential function  g. Then

    F =

     u g ◦ φuλ

      dλ + χ   (6 )

    where 

    φu   :   u I   →  λ u I

     u   (7 )

    and  χ ∈ ker Mu.

    Divergence Operator

    COMPUTING THE INVERSE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    35/76

    EXAMPLE

    Let

    g =   v u x ( v − u )

    ( u  + v)3  .

    Then

    F =  u g ◦ φu

    λ   dλ =  u  v u x ( v − λ)

     u (λ + v)3   dλ =

      v u x

    ( u  + v)2

    withMu F = g

    as expected.

    Divergence Operator

    THE  “STANDARD”   HOMOTOPY OPERATOR

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    36/76

    Note that this approach differs from the standard approach tohomotopy operators.

    Divergence Operator

    THE  “STANDARD”   HOMOTOPY OPERATOR

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    37/76

    Note that this approach differs from the standard approach tohomotopy operators.

    There the homotopy

    φ   :   u I   → λ u I

    is used and the integral becomes

     10

    g ◦ φ

    λ  dλ. (8)

    Divergence Operator

    THE  “STANDARD”   HOMOTOPY OPERATOR

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    38/76

    Note that this approach differs from the standard approach tohomotopy operators.

    There the homotopy

    φ   :   u I   → λ u I

    is used and the integral becomes

     10

    g ◦ φ

    λ  dλ. (8)

    However, in many situations this integral is singular.

    Divergence Operator

    THE  “STANDARD”   HOMOTOPY OPERATOR

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    39/76

    Consider the almost trivial case

    Mu F = 1.

    Divergence Operator

    THE  “STANDARD”   HOMOTOPY OPERATOR

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    40/76

    Consider the almost trivial case

    Mu F = 1.

    In the standard approach we find

    F =  1

    0

    1

    λ

     dλ

    which is, of course, singular.

    Divergence Operator

    THE  “STANDARD”   HOMOTOPY OPERATOR

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    41/76

    Consider the almost trivial case

    Mu F = 1.

    In the standard approach we find

    F =  1

    0

    1

    λ

     dλ

    which is, of course, singular.

    However, with the approach advocated here, we obtain

    F =  u 1

    λ dλ  = log u .

    Divergence Operator

    THE  “STANDARD”   HOMOTOPY OPERATOR

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    42/76

    Consider the almost trivial case

    Mu F = 1.

    In the standard approach we find

    F =

     10

    1

    λ

     dλ

    which is, of course, singular.

    However, with the approach advocated here, we obtain

    F =  u 1

    λ dλ  = log u .

    This frequent singular nature of the integral (8) is one of thesubtleties mentioned above.

    Divergence Operator

    THE ONE INDEPENDENT VARIABLE CASE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    43/76

    Returning to the one independent variable case, let

    Iu f = ∞j=0

    Dj 

     u Ej+

    1u   f

      (9)

    Divergence Operator

    THE ONE INDEPENDENT VARIABLE CASE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    44/76

    Returning to the one independent variable case, let

    Iu f = ∞j=0

    Dj 

     u Ej+

    1u   f

      (9)

    and

    F = Hu f =

     u (Iu f) ◦ φuλ

      dλ. (10)

    Divergence Operator

    THE ONE INDEPENDENT VARIABLE CASE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    45/76

    Returning to the one independent variable case, let

    Iu f = ∞j=0

    Dj 

     u Ej+

    1u   f

      (9)

    and

    F = Hu f =

     u (Iu f) ◦ φuλ

      dλ. (10)

    Equation (4) isD Iu f = Mu f.

    Divergence Operator

    THE ONE INDEPENDENT VARIABLE CASE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    46/76

    Returning to the one independent variable case, let

    Iu f = ∞j=0

    Dj 

     u Ej+

    1u   f

      (9)

    and

    F = Hu f =

     u (Iu f) ◦ φuλ

      dλ. (10)

    Equation (4) isD Iu f = Mu f.

    By (6), we have

    Mu F = Iu f

    Divergence Operator

    THE ONE INDEPENDENT VARIABLE CASE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    47/76

    Returning to the one independent variable case, let

    Iu f = ∞j=0

    Dj 

     u Ej+

    1u   f

      (9)

    and

    F = Hu f =

     u (Iu f) ◦ φuλ

      dλ. (10)

    Equation (4) isD Iu f = Mu f.

    By (6), we have

    Mu F = Iu f

    and thereforeD Mu F = Mu f.

    Divergence Operator

    THE ONE INDEPENDENT VARIABLE CASE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    48/76

    Since  Mu  and D commute, we obtain

    Mu D F

     = Mu f.

    Divergence Operator

    THE ONE INDEPENDENT VARIABLE CASE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    49/76

    Since  Mu  and D commute, we obtain

    Mu

     D F = Mu

    f.

    However this only implies that

     χ = f − D F ∈ kerMu.

    Divergence Operator

    THE ONE INDEPENDENT VARIABLE CASE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    50/76

    Since  Mu  and D commute, we obtain

    Mu

     D F = Mu

    f.

    However this only implies that

     χ = f − D F ∈ kerMu.

    In the work of Hereman and his coworkers, this issue wascircumvented by requiring  f  to be polynomial with no explicitdependency on the independent variables. In this case thekernel of  Mu   is trivial.

    Divergence Operator

    THE ONE INDEPENDENT VARIABLE CASE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    51/76

    Since  Mu  and D commute, we obtain

    Mu

     D F = Mu

    f.

    However this only implies that

     χ = f − D F ∈ kerMu.

    In the work of Hereman and his coworkers, this issue wascircumvented by requiring  f  to be polynomial with no explicitdependency on the independent variables. In this case thekernel of  Mu   is trivial.

    When ker Mu  is non-trivial, there are a number of issues to behandled.

    Divergence Operator

    THE CHOICE OF THE HOMOTOPY  φ u 

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    52/76

    EXAMPLE

    Let

    f =   u xx u x

    .

    Now Iu f = 1  and so  F = Hu f = log u . However

     χ =

     f −

     D F =

      uu xx − u 2x

     uu x ∈ kerM

    u.

    We have, if anything, complicated matters.

    Divergence Operator

    THE CHOICE OF THE HOMOTOPY  φ u 

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    53/76

    The issue here is that  u  does not occur explicitly in  f. We canremedy this issue by choosing a different homotopy. In this

    case, letφux   :   u I   →

      λ u I

     u x

    Divergence Operator

    THE CHOICE OF THE HOMOTOPY  φ u 

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    54/76

    The issue here is that  u  does not occur explicitly in  f. We canremedy this issue by choosing a different homotopy. In this

    case, letφux   :   u I   →

      λ u I

     u x

    Now we obtain

    F = Hux f  ≡  ux (I

    uf) ◦ φ

    uxλ   dλ = log u 

    x.

    Divergence Operator

    THE KERNEL OF  M u 

    N d d l h h “ d ”

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    55/76

    Next we need to deal with the “remainder”  χ  .

    Divergence Operator

    THE KERNEL OF  M u 

    N d d l i h h “ i d ”

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    56/76

    Next we need to deal with the “remainder”  χ  .

    Divergence Operator

    THE KERNEL OF  M u 

    N t d t d l ith th “ i d ”

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    57/76

    Next we need to deal with the “remainder”  χ  .

    COROLLARY

     χ ∈ ker Mu   if and only if 

     χ ◦ φu  = χ;

    that is,  χ = χ(ξI)

    where ξI  =

      u I

     u 

    (treating the jet variables that do not depend on  u  as constants).

    Divergence Operator

    THE KERNEL OF  M u 

    N t d t d l ith th “ i d ”

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    58/76

    Next we need to deal with the “remainder”  χ  .

    COROLLARY

     χ ∈ ker Mu   if and only if 

     χ ◦ φu  = χ;

    that is,  χ = χ(ξI)

    where ξI  =

      u I

     u 

    (treating the jet variables that do not depend on  u  as constants).

    Thus  χ  must be a function of the homogeneous coordinatesξI.

    Divergence Operator

    THE KERNEL OF  M u 

    In this case we perform a change of coordinates

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    59/76

    In this case, we perform a change of coordinates

    µ  = log u .

    Divergence Operator

    THE KERNEL OF  M u 

    In this case we perform a change of coordinates

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    60/76

    In this case, we perform a change of coordinates

    µ  = log u .

    Now

    ξx  =  u x

     u   = µ x

    ξxx  =  u 

    xx u    = µ 

    xx + µ 2x

    ξxxx  =  u xxx

     u   = µ xxx + 3µ xx µ x + µ 

    3x

    ...

    and so  χ  is a function of derivatives  µ I  but  not  µ .

    Divergence Operator

    THE KERNEL OF  M u 

    In this case we perform a change of coordinates

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    61/76

    In this case, we perform a change of coordinates

    µ  = log u .

    Now

    ξx  =  u x

     u   = µ x

    ξxx  =  u 

    xx u    = µ 

    xx + µ 2x

    ξxxx  =  u xxx

     u   = µ xxx + 3µ xx µ x + µ 

    3x

    ...

    and so  χ  is a function of derivatives  µ I  but  not  µ .

    We now compute the homotopy based on the dependentvariable µ ,  Hµx χ. since  µ  does not occur in  χ.

    Divergence Operator

    THE KERNEL OF  M u 

    If a remainder still exist it will be homogeneous in

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    62/76

    If a remainder still exist, it will be homogeneous in

    µ I

    µ x.

    Divergence Operator

    THE KERNEL OF  M u 

    If a remainder still exist it will be homogeneous in

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    63/76

    If a remainder still exist, it will be homogeneous in

    µ I

    µ x.

    We repeat this process with the variable log µ x. At each stagewe reduce the number of variables that the remainder dependson. Thus the process will terminate with the remainder, if not

    zero, depending only on the independent variable.

    Divergence Operator

    THE KERNEL OF  M u 

    If a remainder still exist it will be homogeneous in

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    64/76

    If a remainder still exist, it will be homogeneous in

    µ I

    µ x.

    We repeat this process with the variable log µ x. At each stagewe reduce the number of variables that the remainder dependson. Thus the process will terminate with the remainder, if not

    zero, depending only on the independent variable.Note that, despite the notation, the  x  subscript on thehomogeneous variable  ξ  does not indicate differentiation. Forexample

    D ξx  = ξxx − ξ2

    x = ξxx.

    Divergence Operator

    THE KERNEL OF  M u 

    If a remainder still exist, it will be homogeneous in

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    65/76

    If a remainder still exist, it will be homogeneous in

    µ I

    µ x.

    We repeat this process with the variable log µ x. At each stagewe reduce the number of variables that the remainder dependson. Thus the process will terminate with the remainder, if not

    zero, depending only on the independent variable.Note that, despite the notation, the  x  subscript on thehomogeneous variable  ξ  does not indicate differentiation. Forexample

    D ξx  = ξxx − ξ2

    x

     = ξxx.

    Also note that if  f ∈ ker Iu  then, by (6),  f ∈ kerMu  and sowe perform the above change of variables.

    Divergence Operator

    THE KERNEL OF  M u 

    EXAMPLE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    66/76

    EXAMPLE

    Let

    f =  u u 

    xx u 2x

    .

    Note that  Iu f = 0. Rewriting  f, we have

    f =  ξxx

    ξ2x=

      µ xx + µ 2x

    µ 2x

    and so

    Iµ f =  1

    µ x,   F = Hµx f  = −

      1

    µ x.

    Now D F − f  = − 1  = − D x  and so

    D

    x −

      1

    µ x

     = D

    x −

      u 

     u x

     = f.

    Divergence Operator

    MORE THAN ONE DEPENDENT VARIABLE

    Repeat process for each dependent variable until reminder

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    67/76

    p p preduces to  0.

    EXAMPLELet

    f =  v( v vx u 

    2x + 2u v

    2x u x − u v u xx vx − u v u x vxx)

     u 2x v2x

    .

    (This example cannot be handled by MAPLE Release 13.) Notethat  Iu f = 0. In this case we can either introduce homogeneousvariables or

    Iv f =  u v2

     u x vxand  Hv f =

      u v2

     u x vx.

    Furthermore

    D

      u v2

     u x vx

     = f.

    Divergence Operator

    MORE THAN ONE INDEPENDENT VARIABLE

    If  f  is exact then (3) becomes

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    68/76

    ( )

    I∈J

    DI  u EIu

    f = Mu f

    with  0 ∈ J.

    Divergence Operator

    MORE THAN ONE INDEPENDENT VARIABLE

    If  f  is exact then (3) becomes

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    69/76

    ( )

    I∈J

    DI  u EIu

    f = Mu f

    with  0 ∈ J.

    Split the indexing set  J

    Jk  = {I ∈ J : ik  > 0  and  ik   = 0  for k  < k }

    for each  k  = 1,   2, . . . ,   d.

    Divergence Operator

    MORE THAN ONE INDEPENDENT VARIABLE

    If  f  is exact then (3) becomes

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    70/76

    I∈J

    DI  u EIu

    f = Mu f

    with  0 ∈ J.

    Split the indexing set  J

    Jk  = {I ∈ J : ik  > 0  and  ik   = 0  for k  < k }

    for each  k  = 1,   2, . . . ,   d.

    Clearly the  Jk  are disjoint whose union is  J  (there are many

    possible choices for this split).

    Divergence Operator

    MORE THAN ONE INDEPENDENT VARIABLE

    We now define

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    71/76

    Iku f = I∈JkDI−ek  u EIu f .

    Divergence Operator

    MORE THAN ONE INDEPENDENT VARIABLE

    We now define

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    72/76

    Iku f = I∈JkDI−ek  u EIu f .

    Let

    Fk = Hku f ≡

     u (Iku f) ◦ φuλ

      dλ.

    Divergence Operator

    MORE THAN ONE INDEPENDENT VARIABLE

    We now define

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    73/76

    Iku f = I∈JkDI−ek  u EIu f .

    Let

    Fk = Hku f ≡

     u (Iku f) ◦ φuλ

      dλ.

    As before, we have

    dk=1

    Dk Fk − f  ∈ kerMu.

    Divergence Operator

    MORE THAN ONE INDEPENDENT VARIABLE

    EXAMPLE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    74/76

    Let

    f = u 2x vx u y − v u 

    2x u xy + vx u y u xy − u x u 

    2y vxy

     u 2x u 2y

    .

    We have

    Fx = Hxu f = u u x u y vxy − 2u vx u y u xy − v u 3x + u x vx u 2y

     u 3x u y

    and

    F

    y = Hyu f

     =  u (2vx u xx − u x vxx)

     u 3x

    withDxF

    x + DyFy = f.

    Divergence Operator

    MORE THAN ONE INDEPENDENT VARIABLE

    EXAMPLE

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    75/76

    Note that if we use  v  we obtain

    Gx = Hxv f  =  v u 2x + v u y u xy − u x u y vy

     u 2x u y

    and

    G

    y

    = Hy

    v f =

      v u xx

     u 2x

    withDxG

    x + DyGy = f.

    Divergence Operator

    ALGORITHM

    procedure INVDIV(f)     Input exact function  f

    http://find/

  • 8/9/2019 Divergence Operator and Its Inverse

    76/76

    x := INDVAR(f)    List of independent variables

    seq (

    F

    k := 0, k  ∈ x

    )     Initialize  F

    k

     χ := f     Initialize  χfor u  ∈ DEPVAR(f) do    u  a dependent variable

    for k  ∈ x  dog = HOMOTOPY( u , χ, k )    Hku( χ)

    Fk

    := Fk

    + g    Update  Fk

     χ := χ − Dk g    Update  χif   χ = 0  then return  F    F = [seq (Fk, k  ∈ x)]end if 

    end for

    end forreturn F, INVDIV(CHANGECOORD( χ))    Use homogeneous

    coordinatesend procedure

    Divergence Operator

    http://find/