diversidad y funciÓn de hongos micorrÍzicos …

87
DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS ARBUSCULARES ASOCIADOS A CUATRO MAÍCES CRIOLLOS Y UN MEJORADO EN MILPAS POPOLUCAS TESIS QUE PRESENTA LA M. EN C. WENDY SANGABRIEL CONDE PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS Xalapa, Veracruz, México 2014

Upload: others

Post on 20-Jul-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS ARBUSCULARES ASOCIADOS A CUATRO MAÍCES CRIOLLOS Y UN MEJORADO EN MILPAS POPOLUCAS

TESIS QUE PRESENTA LA M. EN C. WENDY SANGABRIEL CONDE

PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS

Xalapa, Veracruz, México 2014

Page 2: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …
Page 3: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

4

Agradecimientos

Al Consejo Nacional de Ciencia y Tecnología (CONACYT), por la beca otorgada durante el

periodo Septiembre de 2008 - Julio de 2013, para realizar mis estudios de doctorado.

Al instituto de Ecología A.C. por admitirme dentro de su programa de Doctorado en Ciencias y

otorgar el apoyo económico para realizar estancias de investigación.

A los proyectos BioPop (FOMIX 94427, CONACYT-Veracruz) y ECOS-ANUIES M08A01 por

el soporte económico y logístico para realizar la investigación.

Al personal del Laboratorio de Organismos Benéficos de la Facultad de Ciencias Agrícolas,

Universidad Veracruzana, por las facilidades otorgadas para realizar el experimento.

Al personal del Laboratorio de Ecología Molecular de la Rizósfera del Instituto Politécnico

Nacional-CIIDIR-Sinaloa, por el apoyo y asesoría durante el proceso de análisis molecular.

Al Dra. Simoneta Negrete Yankelevich por la dirección y asesoría constante durante mi proceso

de formación doctoral, gracias por el apoyo y la paciencia, y a los miembros de mi comité tutorial

Dra. Luciana Porter Bolland y Dr. Eduardo E. Maldonado Mendoza, por su continua

participación, enseñanzas y consejos para llevar a buen término mi doctorado.

A la Dra. Dora Trejo Aguilar por apoyarme durante mi formación doctoral y a lo largo de mi

carrera, muchas gracias.

A la M. en C. Lourdes Cruz por su apoyo en el análisis de las muestras de suelo, y por estar

siempre pendiente de mi.

A mis compañeras Leonor, Beatriz e Isis, gracias por su amistad y por su apoyo incondicional.

Page 4: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

5

Dedicatoria

Con amor a mis padres Julián y Eloisa por creer en mi y apoyarme incondicionalmente.

Al solecito que ilumina mi vida, mi hijo, “Toto” te quiero mucho, pero mucho, mucho!.

A mi esposo Antonio, con amor, por estar a mi lado en todo momento y apoyarme siempre.

A mis hermanos Julian, Edith y Leticia.

A mis suegros Gaudencio y Miriam, por todas sus porras y cariño, gracias!

A toda mi extensa familia, con todo mi agradecimiento.

A Dios.

Page 5: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …
Page 6: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

6

ÍNDICE

LISTA DE TABLAS……………………………………………………………………… 8

LISTA DE FIGURAS…………………………………………………………………….. 9

Resumen …………………………………………………………………………………. 10

I. Introducción general……………………………………………………………………. 11

Introducción ……………………………………………………………............... 12

Milpa y agrodiversidad ………………………………………………………....... 12

Simbiosis micorrízica: función e identidad …………………………………......... 15

Dependencia micorrízica ……………………………………………………......... 16

Diversidad de hongos micorrízicos arbusculares (HMA)……………………........ 16

Antecedentes…………………………………………………………………........ 17

Objetivo, planteamiento de hipótesis y estructura del documento ……………….. 21

Literatura citada………………………………………………………………........ 23

II. Native maize landraces from Los Tuxtlas, Mexico show varying dependency on mycorrhiza for P uptake…………………………………………………………………... 29

Abstract…………………………………………………………………………… 30

Introduction……………………………………………………………………..… 30

Materials and methods…………………………………………………………….. 32

Study sites and soil collection………………………………………………... 32

Establishment of the greenhouse experiment………………………………… 32

Acquisition of P and percentage of mycorrhizal colonization……………….. 32

Increases in root volume and mycorrhizal dependency……………………… 32

Data analysis…………………………………………………………………. 33

Results…………………………………………………………………………….. 33

Acquisition of P and percentage of mycorrhizal colonization……………….. 33

Increases in root volume, dry biomass and mycorrhizal dependency………... 33

Discussion………………………………………………………………………… 33

Page 7: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

7

ÍNDICE

Acknowledgements…………………………………………………………….…. 37

References………………………………………………………………………… 37

III. Glomeromycota associated with Mexican native maize landraces in Los Tuxtlas, Mexico……………………………………………………………………………………

40

Abstract…………………………………………………………………………… 41

Introduction……………………………………………………………………...... 42

Materials and methods…………………………………………………………...... 45

Extraction of AMF spores from soil samples………………………………… 45

Greenhouse experiments……………………………………………………... 45

Root samples…………………………………………………………………. 46

Molecular diversity analysis………………………………………………….. 46

PCR cloning………………………………………………………………….. 48

Sequencing analysis and comparison of sequences………………………….. 48

Results…………………………………………………………………………….. 49

Discussion………………………………………………………………………... 51

Acknowledgements…………………………………………………………….…. 54

References………………………………………………………………………… 61

IV. Discusión General y Conclusiones…………………………………………………... 69

Simbiosis micorrízica: ¿alternativa para la agricultura de subsistencia en las milpas?......................................................................................................................

70

La milpa ¿Reservorio de comunidades de HMA funcionalmente diversas?.......... 71

Perspectivas para futuras investigaciones………………………………………... 73

Conclusiones…..………………………………………………………………….. 79

Literatura citada …………………………………………………………………... 80

Page 8: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

8

LISTA DE TABLAS

I. Introducción general

Cuadro 1. Características del manejo actual del sistema de milpa de Ocotal Chico y

Mazumiapan, Veracruz, México………………………………………..…..……..

19

II. Native maize landraces from Los Tuxtlas, Mexico show varying dependency on

mycorrhiza for P uptake

Table 1. ANOVA analysis of plants hoot P concentration, root P concentration, total

P content, mycorrhiza colonization in the root, increase in root volume, total dry

biomass and mycorrhizal dependency explained by the input level of P, type of

maize, inoculation with AMF and mycorrhizal colonization .................................. 34

Table 2. Increases in root volume in mycorrhizal plants (compared to non-

mycorrhizal plants), total dry biomass and total P content in mycorrhizal plants

and mycorrhizal dependency (in terms of total dry biomass) of the different

maize types............................................................................................................... 35

III. Glomeromycota associated with Mexican native maize landraces in Los Tuxtlas,

Mexico

Table 1. Abundance of AMF sequences recovered from maize roots. Classified

according to taxonomic affiliation, number assigned to OTU, maize type and

phosphate treatment. B = Black, Y = Yellow, R = Red, W = White, T = Texcoco

hybrid maize types. Numbers in subscript denote maize fertilization treatments at

5 and 65 mg kg-1 Pi…………………………………………………………........... 58

Table 2. Number of OTUs associated with the roots of different maize types and

under two phosphorus levels………………………………………………..…….. 60

Page 9: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

9

LISTA DE FIGURAS

II. Native maize landraces from Los Tuxtlas, Mexico show varying dependency on

mycorrhiza for P uptake

Figure 1. Relationship between root colonization percentage and P concentration in: a

shoot and b root in different maize landraces or Texcoco hybrid associated to

AMF. Empty symbols represent low P input of 5 mg kg−1 and filled symbols

represent medium P input of 65 mg kg−1. Lines represent the linear models of

the shoot and root P concentrations (for statistical details, see Table 1)………... 35

III. Glomeromycota associated with Mexican native maize landraces in Los Tuxtlas,

Mexico

Figure 1. Change in mycorrhizal OTU richness with the cumulative number of

sequences (sampling effort in all maize types), obtained through rarefaction

analysis where percentage indicates the homology level at which sequences

were compared………………………………………………………………..…. 55

Figure 2. Phylogenetic tree displaying the relationship of AMF sequences recovered

from maize roots in the present study (bold type) and 21 reference sequences.

Bootstrap values are shown on the lines. Reference sequences are labeled with

the name provided by the database entry and the corresponding accession

number. Phylogenetic group and subgroup assignments are shown on the right

side of the tree (the total number of sequences belonging to each specific OTU

is given in Table 1)…………………………………………………………......... 56

Figure 3. Percentage of AMF sequences pertaining to species in the different

experimental treatments. Total number of sequences is shown above each bar.

B = Black, Y = Yellow, R = Red, W = White, T = Texcoco hybrid maize types.

Numbers in subscript denote maize fertilization treatments at 5 and 65 mg kg-1

Pi............................................................................................................................ 57

Page 10: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

10

RESUMEN

En la naturaleza, la mayoría de las plantas captan los nutrientes por medio de interacciones

simbióticas establecidas con microorganismos del suelo que viven en la rizósfera. La simbiosis

micorrízica es la asociación más frecuente en los ecosistemas naturales y agrícolas. Para los

sistemas agrícolas, los hongos micorrízicos arbusculares (HMA) (Glomeromycota) son los más

importantes porque colonizan la mayoría de los cultivos y favorecen la captación de nutrientes

poco disponibles como el fósforo. Mediante un experimento en invernadero en esta tesis se

evaluó la respuesta de variedades de maíz (cuatro criollos popolucas y un híbrido) a la presencia

de HMA nativos en condiciones de fósforo bajo y medio (5 y 65 mg·kg-1) y se determinó la

diversidad genética de HMA asociada a las raíces de cada variedad de maíz. Los resultados

mostraron que los HMA nativos de policultivos tradicionales como la milpa son capaces de

establecer eficientemente la simbiosis micorrízica y promover un incremento en la incorporación

de fósforo a la planta. Sin embargo se observó que existe una respuesta distinta a la micorrización

entre maíces criollos y el híbrido, y que este último tiene una limitada capacidad para adquirir

fósforo aún en simbiosis con HMA. Además fue posible determinar que la identidad y la

abundancia de Unidades taxonómicas operacionales (OTUs) de HMA asociados con cada

variedad de maíz y nivel de fósforo no fueron los mismos y que la variedad más eficiente en

términos de adquisición de fósforo también fue colonizada por el mayor número de OTUs,

independientemente del tratamiento. Los resultados obtenidos mostraron una respuesta

diferencial a la micorrización entre las cuatro variedades criollas de maíz y con el híbrido,

indicando que el genotipo de maíz puede tener una fuerte influencia sobre la funcionalidad y la

estructura de la comunidad de HMA que coloniza sus raíces y que la reducción de la diversidad

de maíces criollos en las milpas popolucas podría disminuir la diversidad de las comunidades de

HMA nativos y los beneficios que dichos simbiontes proporcionan a los cultivos.

Page 11: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

11

CAPÍTULO I

INTRODUCCIÓN GENERAL

Page 12: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

12

Introducción

La presencia de microorganismos benéficos en el suelo juega un papel importante para la

sostenibilidad de los ecosistemas naturales y agrícolas (Altieri y Nicholls 2005). La gran mayoría

de las plantas captan los nutrientes por medio de interacciones establecidas con microorganismos

del suelo que viven en la rizósfera, especialmente con aquellos denominados simbiontes. Los

hongos micorrízicos arbusculares (HMA) son microorganismos simbiontes casi tan ubicuos en el

suelo como las raíces de las plantas con las que se asocian (Rosendahl 2008). Los HMA son

objeto de una creciente atención por considerarse componentes esenciales para potenciar la

sostenibilidad de los sistemas agrícolas (Jeffries et al. 2003; Van der Heijden et al. 2006).

Aunque están comprobados los efectos benéficos que dichos micosimbiontes les proporcionan,

las plantas pueden presentar diferencias en su respuesta a la micorrización en función de la

identidad de ambos simbiontes (Klironomos 2003; Zhu et al. 2003).

La intensificación agrícola que se ha producido a lo largo de las últimas décadas ha ocasionado

graves consecuencias para el medio ambiente, entre las que destaca, la pérdida de biodiversidad

(arriba y bajo el suelo) (Thrupp 2004). Los sistemas agrícolas que resultan de esta intensificación

se caracterizan por una disminución en el número de variedades locales cultivadas, uso de

variedades mejoradas y una elevada dependencia de insumos externos como fertilizantes y

herbicidas (Frow et al. 2009; von Braun 2009). Poco se ha explorado sobre qué consecuencias

tiene la reducción en la riqueza arriba del suelo y el simultáneo uso de fertilizantes fosfatados

para la integridad de la simbiosis de los cultivos con los hongos micorrízicos arbusculares

(Glomeromycota) (Verbruggen y Kiers 2010). Esta tesis se centra en evaluar la respuesta de

cuatro variedades de maíces criollos popolucas y un híbrido en cuanto a la micorrización con

HMA nativos y en condiciones distintas de disponibilidad de fósforo.

Milpa y agrodiversidad

Mesoamérica es uno de los principales centros de domesticación de plantas que condujo al

desarrollo de la agricultura. Al menos una séptima parte de las principales especies de plantas

utilizadas como alimento tuvieron origen en esta región (Harlan 1971). De acuerdo con Kirchhoff

(1943), Mesoamérica se extiende desde el sureste de México hasta la región del Valle central en

Page 13: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

13

Costa Rica, caracterizada por una multiculturalidad en donde sus habitantes coexistieron y

compartieron creencias religiosas, arte y tecnología durante miles de años (MacNeish 1964). En

esta región, especies como el maíz (Zea mays L.), frijol (Phaseolus spp.) y calabaza (Cucurbita

spp.) fueron domesticados e integrados en un sistema de policultivo conocido como milpa. La

milpa se convirtió en un sistema clave para la alimentación y el desarrollo de sociedades

altamente complejas como los pueblos mayas, olmecas, aztecas y zapotecas, entre otros (Gepts

2004).

En México, la milpa mesoamericana como sistema productivo sigue vigente, y está conformada

por una compleja combinación de asociaciones y rotación de cultivos, manejados bajo el sistema

denominado roza-tumba y quema (Emerson 1953; Parsons et al. 2009). Anualmente se cultivan

más de seis millones de hectáreas de milpa en México, en la mayoría de los casos para auto-

subsistencia, pues las familias dependen de la producción de la milpa para su alimentación (Nadal

2000). Uno de los principales productos que se obtienen de la milpa es el maíz, con el que se

hace la tortilla, la cual prevalece como alimento básico que acompaña diariamente las comidas de

los mexicanos (Perales et al. 2005). Particularmente las tortillas hechas con maíz criollo aportan

beneficios extras para la salud, pues comparadas con tortillas de variedades mejoradas presentan

mayor contenido de fenoles totales y antocianinas, antioxidantes relacionados con efectos anti-

carcinogénicos (Del Pozo-Insfran et al. 2006; Aguayo-Rojas et al. 2012).

Además de su importancia nacional, el sistema de milpa mexicano tiene un valor de importancia

mundial, ya que dicho sistema constituye un reservorio único de germoplasma para la humanidad

(Bellon y Berthaud 2004; Van Dusen y Taylor 2005). Es agrodiverso intra e interespecíficamente,

a la fecha se han documentado 59 variedades criollas de maíz (Vielle-Calzada y Padilla 2009) y

se han registrado 32 cultivos distribuidos en la milpa (Foster y Hallowell 1942; Terán y

Rasmussen 1994; Blanco 1999, 2006). La agrodiversidad es considerada esencial para la

estabilidad de cualquier agroecosistema (Altieri y Nicholls 2005; Gliessman et al. 2007). Algunos

estudios reportan que la agrodiversidad de milpa es importante alimenticia y ecológicamente,

pues las diversas especies cultivadas proporcionan una cubierta protectora que mantiene la

humedad, previene la erosión e incrementa la fertilidad y contenido de nutrientes en el suelo

(Makinde et al. 2006). Además, se sabe que las variedades criollas de maíz ofrecen una mayor

capacidad de regulación y control de plagas y enfermedades que los híbridos comerciales

Page 14: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

14

mediante complejos mecanismos de defensa basados en la producción de toxinas y compuestos

volátiles conocidos como HIPVs (herbivore-induced plant volatiles, en inglés;Tamiru et al.

2011). Por ello, el sistema de la milpa es uno de los más importantes patrimonios culturales,

agroecológicos y tecnológicos heredado de los pueblos mesoamericanos.

La milpa es particularmente importante en las regiones de México donde hay población indígena.

Este es el caso de la población Nahua y Popoluca que habita la Sierra de Santa Marta en

Veracruz. Esta zona del trópico mexicano, es una de las áreas más ricas en biodiversidad, y está

catalogada como área natural protegida (Guevara et al. 2004). Habitada en su mayoría por

población indígena, esta región es representativa de cómo el conocimiento tradicional empírico se

ha preservado a lo largo del tiempo en el complejo sistema de la milpa (Blanco 2006). En las

milpas popolucas aún es posible encontrar una gran diversidad intraespecífica (hasta 15

variedades criollas de maíz, 10 de frijol y tres de calabaza), resultado de muchos años de

selección, adaptación y domesticación a las condiciones de suelo, clima y ecología de la región

(Blanco 2006; Negrete-Yankelevich et al. 2013a). Sin embargo, en los últimos 15 años este

sistema ha sufrido cambios en la forma de manejo, trayendo como consecuencia una disminución

que podría ser de más del 60% de las especies y variedades cultivadas, entre ellas las variedades

de maíz criollo (Negrete-Yankelevich et al. 2013b). Investigaciones recientes indican que aunque

todavía existen en la región elementos de la milpa tradicional, ha habido una tendencia a la

reducción en las escalas espaciales, temporales y de diversidad con que se toman las decisiones

de manejo, y con ello se han reducido los tamaños de las unidades productivas, los periodos de

descanso de la milpa (uno a dos años en vez de cinco o siete) y la diversidad de cultivos, con una

clara tendencia al monocultivo (Negrete-Yankelevich et al. 2013b).

Numerosas investigaciones han sido desarrolladas en torno a las milpas popolucas, la mayoría de

ellas enfocados a diagnosticar los patrones culturales y las causas socio-políticas de la

trasformación del paisaje y uso de agrodiversidad. En dichas investigaciones se reporta la

importancia de la milpa para los agricultores (Blanco 1999; 2006), la dinámica de su economía

campesina de autosubsistencia (Paré et al. 1997), el apego a sus ritos y tecnología (Blanco 1999;

2006), las transformaciones que ha sufrido en relación a la reducción de tiempos de descanso y

variedades de maíces criollos (Durand y Lazos 2004; Blanco 2006; Zurita-Benavides et al. 2012)

y el efecto que tiene el uso del suelo sobre las comunidades microbianas (Varela et al. 2009). No

Page 15: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

15

obstante, poco se conoce sobre las consecuencias que han tenido la reducción de la

agrodiversidad (intra e interespecífica) y la incorporación de fertilizantes fosfatados sobre las

asociaciones simbióticas planta-microorganismo (Negrete-Yankelevich et al. 2013; Sangabriel-

Conde et al. 2014). Tomando en cuenta que la asociación micorrízica permite a los cultivos

desarrollarse exitosamente en suelos de baja fertilidad, como los de las milpas popolucas, es

necesario analizar cómo los cambios en el manejo han afectado el desarrollo de la simbiosis

micorrízica.

Simbiosis micorrízica: función e identidad

Dentro de las interacciones simbióticas benéficas planta-microorganismo, destacan por su gran

relevancia ecológica y su amplia distribución los hongos micorrízicos, que colonizan las raíces de

las plantas y establecen una simbiosis mutualista denominada micorriza (del griego mikos,

hongo, y rhiza, raiz). Aproximadamente el 90% de las especies vegetales forman simbiosis

micorrízica, las cuales se han diferenciado los siguientes siete tipos: ectomicorrizas,

endomicorrizas o micorrizas arbusculares, ectendomicorrizas, arbutoides, monotropoides,

ericoides y orquidioides (Brundrett 2004). Estos difieren en aspectos estructurales, funcionales y

taxonómicos. Con base en las estructuras formadas, tipo de colonización y cantidad de especies

fúngicas y vegetales implicadas, se puede decir que las micorrizas arbusculares son las más

extendidas y las que presentan mayor importancia desde el punto de vista de beneficios para la

planta (Smith y Read 2008). Los hongos que conforman este tipo de asociación pertenecen al

phylum Glomeromycota y se les conoce como hongos micorrízico-arbusculares (HMA)

(SchüBler et al. 2001).

Con el respaldo de evidencias fósiles y moleculares que datan su origen en hace más de 450

millones de años (Remy et al. 1994), la asociación planta-HMA constituye probablemente la

simbiosis más antigua y más ampliamente distribuida en la naturaleza (Smith y Smith 2011). Se

asume que esta asociación no presenta especificidad, sin embargo existe evidencia de diferencias

en la compatibilidad funcional dependiendo de la identidad de ambos simbiontes (van der

Heijden et al. 1998; Klironomos et al. 2000; Vandenkoornhuyse et al. 2002). Se sabe que géneros

de HMA asociados a una misma especie de hospedero presentan diferencias en relación al nivel y

Page 16: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

16

capacidad de esporulación (Bever 2002), habilidad para colonizar las raíces (Klironomos y Hart

2002) y para adquirir fósforo (Smith et al. 2000; Hao et al. 2008), y que a su vez las variedades

de una misma planta pueden presentar diferentes grados de respuesta en el porcentaje

colonización, adquisición de fósforo y dependencia micorrízica (Zhu et al. 2001; Zhu et al. 2003).

Dependencia micorrízica

La dependencia micorrízica se ha definido como el grado en el cual la planta es dependiente de la

condición micorrízica para alcanzar su máximo crecimiento para un nivel dado de fertilidad en el

suelo (Menge et al. 1978; Plenchette et al. 1983). La dependencia micorrízica puede estar

determinada por el genotipo de la planta y la variedad o híbrido a que pertenece (Zhu et al. 2001;

Hess et al. 2005).

En suelos con limitado contenido de fósforo las plantas pueden depender completamente de la

asociación micorrízica para adquirir dicho nutriente (Smith et al. 2003), pero cuando el contenido

de P disponible se incrementa, las diferencias en desarrollo entre plantas micorrizadas y aquellas

que no lo están son menores (Smith y Read 2008).

Se cree que los beneficios de la simbiosis micorrízica son mayores cuando tanto la planta, como

el hongo han evolucionado y se seleccionaron en conjunto y en las mismas condiciones locales

(Johnson et al. 2010). En el caso del maíz, la mayoría de los híbridos se han desarrollado para

obtener máximos rendimientos en sistemas con elevado uso de agroquímicos y sin la presencia de

microorganismos locales del suelo, mientras que los maíces criollos son producto de un largo

proceso de domesticación local (Sanchez et al. 2000), motivo por el cual se esperaría que los

maíces criollos hayan desarrollado mayor dependencia micorrízica en comparación con

variedades introducidas (Johnson et al. 2010; Martinez y Johnson 2010).

Diversidad de hongos micorrízicos arbusculares (HMA)

Más de 200 especies de hongos micorrízicos arbusculares han sido descritas por la morfología de

sus esporas (INVAM 2014), sin embargo, es muy probable que existan mucho mas especies dado

Page 17: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

17

que es bien sabido que una alta proporción de los HMA solo pueden reproducirse

vegetativamente, sin producción de esporas. Además, existe una gran variación en la morfología

de esporas incluso dentro de la misma especie de HMA, y algunos linajes recientemente

caracterizados no se distinguen con procedimientos estándar como el aislamiento en cultivos o la

identificación mediante caracteres morfológicos (Lee et al. 2008). En las últimas décadas, esta

limitante se ha reducido en gran medida mediante el uso de las técnicas moleculares como es el

caso de la reacción en cadena de la polimerasa (PCR) (Redecker et al. 2000; Lee et al. 2008).

Desde principios de la década pasada, los HMA se han investigado utilizando el DNA a través de

PCR, inicialmente para determinar su filogenia y taxonomía, pero recientemente son de gran

utilidad para identificar y monitorear la presencia de dichas especies asociadas a las raíces de las

plantas y en el suelo (Vandenkoornhuyse et al. 2003; Wright et al. 2005).

Antecedentes

Manejo actual de las milpas popolucas. Como primer paso para el desarrollo de esta tesis, se hizo

un diagnóstico del manejo actual que los productores popolucas hacen en sus milpas. En este

análisis se realizó una entrevista semi-estructurada a 76 productores que habitan los ejidos de

Ocotal Chico y Mazumiapan. Las entrevistas se aplicaron directamente en la comunidad, en las

casas o bien en las parcelas de trabajo. Además, como se reporta en Negrete-Yankelevich et al.

(2013a) se realizó un muestreo de suelo para determinar el contenido de nutrientes y obtener el

inóculo de HMA nativos.

Los resultados de las entrevistas arrojaron que el sistema productivo de la milpa sigue presente en

la mayor parte de la superficie destinada a la agricultura de los ejidos de Ocotal Chico y

Mazumiapan de la Sierra de Santa Marta, es una práctica generalizada y juega un papel muy

importante en la economía familiar al aportar los ingresos de especies comestibles para

autoconsumo (Cuadro 1). Un aspecto importante y que da pie al desarrollo de esta tesis es la

percepción generalizada que tienen los productores popolucas (98 % de los entrevistados) de que

la fertilidad del suelo y los rendimientos de las milpas, principalmente del maíz, decrecen

conforme avanzan los años seguidos de cultivo.

Se sabe que la simbiosis micorrízica permite a los cultivos desarrollarse exitosamente en suelos

de baja fertilidad, como los de las milpas popolucas y que en el caso del maíz, puede aportar

Page 18: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

18

hasta el 60% del total del P requerido (en función del manejo agrícola), favoreciendo el

crecimiento y el incremento en la producción de biomasa (Nurlaeny et al. 1996). Partiendo de la

importancia del maíz como elemento principal en torno al cual se toman las decisiones del

establecimiento y manejo de la milpa y considerando los beneficios que los HMA pueden aportar

en la productividad de los sistemas agrícolas, se hace necesario determinar el efecto que puede

tener la reducción de la agrodiversidad intraespecífica del maíz criollo y el uso de variedades

mejoradas sobre la funcionalidad y diversidad de los HMA, y el concomitante efecto en la

productividad de dicho cultivo.

Page 19: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

19

Cuadro 1. Características del manejo actual del sistema de milpa de Ocotal Chico y Mazumiapan, Veracruz, México.

Factor o actividad de manejo Productores que realizan la actividad (%) Observaciones

Persona que toma las decisiones del manejo de la milpa

86% hombres

14% mujeres

Las mujeres que toman decisiones son viudas, madres solteras o aquellas que son miembros de familias donde el padre está trabajando fuera de la comunidad en otra actividad que no es la agricultura.

Mano de obra empleada en la preparación del terreno

100% familiar En algunos casos también se utiliza mano de obra externa mediante pago de jornales, mismos que se pagan en efectivo o con trabajo recíproco.

Sistema utilizado en la preparación del terreno

100% Roza-tumba y media quema

La roza consiste en limpiar el terreno de arbustos y plantas no leñosas, y la tumba consiste en derribar los árboles que los productores destinan, por lo general, a la construcción de casas, corrales, cercos y leña. La quema se ha modificado y actualmente realizan lo que ellos llaman media quema, que ha sido recomendada por las autoridades con el fin de evitar la propagación de incendios, y que consiste en reducir el tiempo de quema y no dejar quemar en su totalidad los residuos vegetales.

Aplicación de herbicidas 86.8% si aplica

13.2 % no aplica

Aunque se realizan deshierbes con instrumentos manuales como machete y azadón, la aplicación de herbicidas se realiza generalmente 20 días antes de la siembra. Los productos aplicados son Glifosato, Paraquat y/o Picloram (Methyl parathion / Cypermethrina), con dosis que van de 1 a 2.5 l/ha

Diversidad de cultivos en la milpa

63% siembra menos de 3 cultivos

29% siembra entre 4 y 6 cultivos

8% siembra entre 7 y 8 cultivos

La reducción de la agrodiversidad en la milpa es notoria, pues tan sólo se registraron siete variedades de maíz criollo, siete de frijol y tres de calabaza, además de algunos cultivos como mango, plátano, caña de azúcar, chayote, rábano, cebollín y yuca. En contraste con lo encontrado por Blanco (1999; 2006) en la misma región, donde reportó 15 variedades de maíz, siete de frijol, cuatro de calabaza, y 15 cultivos sembrados simultáneamente

Page 20: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

20

Variedades de maíz 65% siembran maíz criollo

35% siembran variedades mejoradas

El número máximo de variedades criollas de maíz simultáneamente sembradas en las milpas fue de hasta cuatro (17% de los productores), 29% de los productores siembra tres variedades, 32% siembra dos y 21% siembra únicamente una variedad

Variedades de frijol 86 % si siembran

13 % no siembra

Entre los productores que siembran frijol, el 8 % siembra cinco variedades en una milpa, el 4 % siembra cuatro variedades, un 2% siembra tres variedades, el 35% cultiva dos variedades y el 24% cultiva una variedad

Variedades de calabaza 71% si siembran

29% no siembra

De los productores que siembran, el 61% siembra una variedad, el 32% siembra dos variedades y el 7% una variedad

Page 21: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

21

Objetivo, planteamiento de hipótesis y estructura del documento

En esta tesis se evaluó en invernadero la respuesta de distintas variedades de maíz (cuatro criollos

popolucas y un híbrido) a la presencia de HMA nativos en niveles bajos de fósforo (5 mg.kg-1)

como los encontrados naturalmente en la región y medios (65 mg.kg-1) como los obtenidos con

una fertilización moderada como la que es practicada recientemente por los agricultores locales,

además se determinó la diversidad de HMA asociados a las raíces de cada variedad de maíz.

Las hipótesis planteadas se abordan en dos trabajos de investigación incluidos en los capítulos II

y III; en el capitulo dos se analizan las siguientes hipótesis: (1) el porcentaje de colonización

micorrízica, el contenido de fósforo en raíz y parte aérea, la biomasa seca total y la dependencia

micorrízica serían similares entre maíces criollos popolucas y mayores que en la variedad híbrida;

(2) en condiciones de bajas concentraciones de fósforo, la simbiosis micorrízica se desarrollaría

mejor en los maíces criollos que en la variedad híbrida y (3) en condiciones de concentraciones

de fósforo medio, la colonización y dependencia micorrízicas disminuirían y el contenido de

nutrientes en biomasa aérea y de raíz se incrementaría en todas las variedades de maíz respecto a

lo encontrado en condiciones de bajo fósforo, sin embargo, esta diferencia sería mayor en los

maíces criollos que en la variedad híbrida.

En el tercer capítulo mediante técnicas moleculares se analiza la composición taxonómica de las

comunidades de HMA asociadas a los distintos tipos de maíz y se plantean las siguientes

hipótesis: (1) los diferentes tipos de maíz serán colonizados en sus raíces por comunidades de

HMA distintas, (2) las raíces de las variedades criollas serán colonizadas por la mayor riqueza de

HMA y el híbrido de Texcoco por la más baja, y (3) la fertilización moderada de P reducirá la

riqueza de HMA en todos los tipos de maíz, en respuesta a que la planta tiene una mayor

posibilidad para obtener P por la vía no micorrízica.

Finalmente, en el cuarto capítulo se discute cómo la integración de los hallazgos del segundo y

tercer capítulos sustentan la importancia del papel que juega la diversidad de cultivos para

sostener la integridad de la simbiosis micorrízica y el funcionamiento de estos agroecosistemas

ancestrales. En este capítulo, también se analizan las perspectivas, desde el punto de vista de la

simbiosis micorrízica, para el manejo exitoso de las milpas ante las presiones de productividad y

de transición de sistemas de autoconsumo a sistemas comerciales.

Page 22: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

22

Literatura citada

Aguayo-Rojas J, Mora-Rochín S, Cuevas-Rodriguez EO, Serna-Saldivar SO, Gutierrez- Uribe

JA, Reyes-Moreno C, Milán-Carrillo J (2012) Phytochemicals and antioxidant capacity of

tortillas obtained after lime-cooking extrusion process of whole pigmented mexican

maize. Plant Foods for Human Nutrition 67, 178-185.

Altieri MA, Nicholls CI (2005) Agroecology and the search for a truly sustainable agriculture.

United Nations Environment Programme, Mexico.

Bellon MR, Berthaud J (2004) Transgenic maize and the evolution of landrace diversity in

Mexico. The importance of framers’ behavior. Plant physiology 134, 883- 888.

Bever DJ (2002) Host-specificity of AM fungal population growth rates can generate feedback on

plant growth. Plant and Soil 244, 281-290.

Blanco RJL (1999) La integración de los popolucas de Soteapan a la Sociedad Nacional:

Desarrollo, Democracia y Ecología. Universidad Iberoamericana, México.

Blanco RJL (2006) Erosión de la agrodiversidad en la milpa de los zoque popoluca de Soteapan:

Xutuchincon y Aktevet. Universidad Iberoamericana, p. 378.

Brundrett MC (2004) Diversity and classification of mycorrhizal associations. Biological

Reviews 79, 473-495.

Del Pozo-Insfran D, Brenes CH, Serna-Saldivar SO, Talcott ST (2006) Polyphenolic and

antioxidant content of white and blue corn (Zea mays L.) products. Food Research

International 39, 696-703.

Durand L, Lazos E (2004) Colonization and tropical deforestation in The Sierra Santa Marta,

Southern Mexico. Environmental Conservation 31, 11-12.

Emerson RA (1953) A preliminary survey of the milpa system of maize culture as practiced by

the Maya Indians of the northern part of the Yucatan Peninsula. Annals of the Missouri

Botanical Garden 40, 51-62.

Page 23: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

23

Foster MG, Hallowell IA (1942) A primitive mexican economy. Ney Cork: Monographs of the

American Ethnological Society, No. 5. Augustin, J.J., New York

Frow E, Ingram D, Powell W, Steer D, Vogel J, Yearley S (2009) The politics of plants. Food

Security 1, 17-23.

Gepts P (2004) Crop domestication as a long term selection experiment. Plant Breeding Reviews

24, 1-44.

Gliessman SR, Rosado-May FJ, Guadarrama-Zugasti C, Jedlicka J, Cohn AM, V.E., Cohen R,

Trujillo L, Bacon C, Jaffe R (2007) Agroecología: promoviendo una transición hacia la

sostenibilidad. Ecosistemas 16, 13-23.

Guevara S, Laborde J, Sanchez-Ríos G (2004) Los Tuxtlas, El paisaje de la sierra. Instituto de

Ecología, A. C. y Unión Europea, Xalapa, Ver.

Hao L, Zhang J, Christie P, Li X (2008) Response of two maize inbred lines with contrasting

phosphorus efficiency and root morphology to mycorrhizal colonization at different soil

phosphorus supply levels. Journal of Plant Nutrition 31, 1059-1073.

Harlan JR (1971) Agricultural origins: centers and noncenters. Science 174, 468-474.

Hess JL, Shiffler AK, Jolley VW (2005) Survey of mycorrhizal colonization in native, open-

pollinated, and introduced hybrid maize in villages of Chiquimula, Guatemala. Journal of

Plant Nutrition 28, 1843-1852.

INVAM International Culture Collection of VA Mycorrhizal Fungi. (2014).

http://invam.wvu.edu/

Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular

mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology

Fertility of Soils 37, 1-16.

Johnson N, Wilson GWT, Bowker MA, Wilson JA, Miller M (2010) Resource limitation is a

driver of local adaptation in mycorrhizal symbioses. Proceedings of the National

Academy of Sciences of the USA 107, 2093-2098.

Page 24: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

24

Kirchoff P (1943) Mesoamérica: sus Límites Geográficas, Composición Étnica y Carácteres

Culturales. Acta Americana 1, 92-107.

Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal

fungi. Ecology 84, 2292-2301.

Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using

different sources of inoculum. Mycorrhiza 12, 181-184.

Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on

the relationship between plant diversity and productivity. Ecology Letters 3, 137-141.

Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of

arbuscular mycorrhizal fungi. FEMS Microbiol Ecology 65, 339-349.

MacNeish RS (1964) Ancient Mesoamerica civilization. Science 143, 531-537.

Makinde EA, F.I. O, Ayoola OT (2006) Intercropping and Crop Residue Incorporation: Effects

on Soil Nutrient Status. Journal of Plant Nutrition 29, 235-244.

Martinez N, Johnson N (2010) Agricultural management influences propagule densities and

functioning of arbuscular mycorrhizas in low and high input agroecosystems in arid

environments. Applied Soil Ecology 46, 300-306.

Menge JH, Davis M, Johnson ELV, Zentmyer GA (1978) Mycorrhizal fungi increase growth and

reduce transplant injury in avocado. California Agriculture 32, 6-7.

Nadal A (2000) The Environmental and social impacts of economic liberalization on corn

production in Mexico: A study commissioned by Oxfam GB and WWF International.

WWF & Oxfam GB, Gland, Switzerland.

Negrete-Yankelevich S, Maldonado-Mendoza IE, Lázaro Castellanos JO, Sangabriel-Conde W,

Martínez-Álvarez JC (2013a) Arbuscular mycorrhizal root colonization and soil P

availability are positively related to agrodiversity in Mexican maize polycultures. Biology

and Fertility of Soils 49, 201-212.

Page 25: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

25

Negrete-Yankelevich S, Porter-Bolland L, Blanco-Rosas JL, Barois I (2013b) Historical roots of

the spatial, temporal, and diversity scales of agricultural decision-making in Sierra de

Santa Marta, Los Tuxtlas. Environmental Management 52, 45-60.

Nurlaeny N, Marschner H, George E (1996) Effects of liming and mycorrhizal colonization on

soil phosphate depletion and phosphate uptake by maize (Zea mays L.) and soybean

(Glycine max L.) grown in two tropical acid soils. Plant and Soil 181, 275-285.

Paré OL, Velázquez H, Gutierrez MR, Ramírez RF, Álvaro HD, Losada PM, Perales RH, Blanco

RJL (1997) La reserva especial de la Biosfera Sierra de Santa Marta, Veracruz:

diagnóstico y perspectiva. SEMARNAP-IISUNAM, México D.F.

Parsons D, Ramierez-Aviles L, Cherney JH, Ketterings QM, Blake RW, Nicholson CF (2009)

Managing maize production in shifting cultivation milpa systems in Yucatàn, through

weed control and manure application. Agriculture, Ecosystems & Environment 133, 123-

134.

Perales H, Benz B, Brush SB (2005) Maize diversity and ethno-linguistic diversity in Chiapas,

Mexico. Proceedings of the National Academy of Sciences of the USA 102, 949-954.

Plenchette C, Fortin A, Furlan V (1983) Growth response of several plant species to mycorrhiza

in a soil of moderate P-fertility: I. Mycorrhizae dependency under field conditions. Plant

and Soil 70, 199-209.

Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289,

1920-1921.

Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred million year old vesicular arbuscular

mycorrhizae. The Proceedings of the National Academy of Sciences USA 91, 11841-

11843.

Rice E, Smale M, Blanco JL (1997) Farmers’ Use of Improved Seed Selection Practices in

Mexican Maize: Evidence and Issues from the Sierra de Santa Marta. CIMMYT

Economics Working Paper 97-03, Mexico, D.F: CIMMYT.

Page 26: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

26

Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi.

New Phytologist 178, 253-266.

Sanchez JJ, Goodman MM, Stuber CW (2000) Isozymatic and morphological diversity in the

races of maize of Mexico. Economic Botany 54, 43-59.

Sangabriel-Conde W, Negrete-Yankelevich S, Maldonado-Mendoza IE, Trejo-Aguilar D (2014)

Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency

for P uptake. Biology and Fertility of Soils 50, 405-414.

SchüBler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota:

phylogeny and evolution. Mycological Research 105, 1413-1421.

Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate

between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New

Phytologist 147, 357-366.

Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, New York.

Smith SE, Smith FA (2011) Roles of abuscular mycorrhizas in plant nutrition and growth: New

paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62, 227-

250.

Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to

plants irrespective of growth responses. Plant Physiology 133, 16-20.

Tamiru A, Bruce TJA, Woodcock CM, Caulfield JC, Midega CAO, Ogol CKPO, Mayon P,

Birkett MA, Pickett JA, Khan ZR (2011) Maize landraces recruit egg and larval

parasitoids in response to egg deposition by a herbivore. Ecology Letters 14, 1075-1083.

Terán S, Rasmussen C (1994) La agricultura de los mayas pre-hispánicos y actuales en el noreste

de Yucatán. Gobierno del Estado de Yucatán. Mérida.

Thrupp LA (2004) The importance of biodiversity in agroecosystems. Journal of Crop

Improvement 12, 315-337.

Page 27: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

27

van der Heijden M, Klironomos JN, Ursic M, Moutoglis P, Streitwolfengel R, Boller T,

Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant

biodiversity, ecosystem variability and productivity. Nature 396, 69-72.

van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller

T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity,

plant nutrition and soil structure in exper- imental grassland. New Phytologist 172, 739–

752. New Phytologist 172, 739-752.

van Dusen ME, Taylor JE (2005) Missing markets and crop diversity: Evidence from Mexico.

Environment and Development Economics 10, 513-531.

Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW

(2002) Arbuscular mycorrhizal community composition associated with two plant species

in a grassland ecosystem. Molecular Ecology 11, 1555–1564.

Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass

species have distinctive arbuscular mycorrhizal communities. Molecular Ecology 12,

3085-3095.

Varela L, Trejo D , Álvarez-Sánchez FJ , Barois I , Amora-Lazcano E , Guadarrama P , Lara L ,

Olivera D, Sánchez-Gallén I, Sangabriel W, Zulueta R (2009) Land use and diversity of

arbuscular mycorrhizal fungi in Mexican tropical ecosystems: preliminary results. In:

Barois, I., Huising, E.J., Okoth, P., Trejo, D., De Los Santos , M. (Eds.), Below-Ground

Biodiversity in Sierra Santa Marta , Los Tuxtlas, Veracruz, México. Instituto de Ecología,

A.C., Xalapa, Ver., México, p. 99.

Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in

agricultural systems. Evolutionary Applications 3, 547-560.

Vielle-Calzada JP, Padilla J (2009) The Mexican landraces: Description classification and

diversity. In: Bennetzen, J.L., Hake, S.C. (Eds.), Handbook of Maize: Its Biology, New

York, New York, pp. 453-561.

Page 28: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

28

von Braun J (2009) Addressing the food crisis: governance, market functioning, and investment

in public goods. Food Security 1, 9-15.

Wright DP, Scholes JD, Read DJ, Stephen AR (2005) European and African maize cultivars

differ in their physiological and molecular responses to mycorrhizal infection. New

Phytologist 167, 881-896.

Zhu Y-G, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal

responsiveness of old and modern wheat cultivars. Plant and Soil 249, 249-255.

Zhu YG, Smith FA, Smith SE (2003) Phosphorus efficiencies and responses of barley (Hordeum

vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza

13, 93-100.

Zurita-Benavides MG , Léonard E , Carriere SM (2012) Integración mercantil de la milpa

campesina y transformación de los conocimientos locales agrícolas . Revista

Iberoamericana de Economía Ecológica 18, 37-51.

Page 29: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

29

CAPÍTULO II

NATIVE MAIZE LANDRACES FROM LOS TUXTLAS, MEXICO SHOW

VARYING DEPENDENCY ON MYCORRHIZA FOR P UPTAKE

Publicado en:

Biology and Fertility of Soils (2014) 50:405–414

Page 30: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

SHORT COMMUNICATION

Native maize landraces from Los Tuxtlas, Mexico showvarying mycorrhizal dependency for P uptake

Wendy Sangabriel-Conde & Simoneta Negrete-Yankelevich &

Ignacio Eduardo Maldonado-Mendoza & Dora Trejo-Aguilar

Received: 7 May 2013 /Revised: 25 July 2013 /Accepted: 5 August 2013 /Published online: 22 August 2013# Springer-Verlag Berlin Heidelberg 2013

Abstract Different degrees of dependency on the activity ofarbuscular mycorrhizal fungi (AMF) exist between nativemaize landraces and hybrids. In Los Tuxtlas, Mexico, thePopoluca people maintain a traditional polycultural land man-agement with more than 15 native landraces of maize; how-ever, it is not known whether the recent substitution of localmaize for improved hybrids and fertilization has affected theintegrity of the mycorrhizal symbiosis in these naturallyphosphorus-poor systems. A greenhouse experiment wasconducted to evaluate the response of four Popoluca maizelandraces and the hybrid Texcoco to the presence of nativeAMF in conditions of low and medium P input (5 and65 mg kg−1, respectively). After 120 days in both P treat-ments, the native landraces Black and Yellow presented highercolonization and had acquired more P in their shoot biomassthan the hybrid. The moderate fertilization did not appear tohave affected the integrity of the mycorrhizal symbiosis, sinceall of the maize types presented a positive mycorrhizal depen-dency (2–14 %). Under low P conditions, the Texcoco hybridmaize presented one of the highest mycorrhizal dependencies;however, unlike the local landraces, this was not reflected in ahigher tissue P concentration. The results obtained indicatethat the nativemaize Blackwas the best at capturing symbioticand direct P, which makes this landrace an important geneticand cultural heritage for the Popoluca and for the world.

Keywords Arbuscular mycorrhizae . Phosphorusavailability .Traditionalpolyculturemanagement .Zeamays .

milpas

Introduction

Traditional polycultures around the world are being replacedby less diverse systems (with one or two crop plants ofagronomically or genetically improved varieties) that requireexternal agrochemical inputs (Thrupp 2004). Little is knownregarding the consequences of this reduction in above-groundrichness and concomitant use of phosphate fertilizers for theintegrity of the symbiosis between crops and arbuscular my-corrhizal fungi (AMF) (Glomeromycota) (SchüBler et al.2001; Martinez and Johnson 2010).

AMF have existed for more than 450 million years (Remyet al. 1994) and have been studied closely over the last decadelargely because of the benefits they provide in terms of plantnutrition (Smith and Smith 2011, 2012). The presence of AMFin agricultural systems where mycorrhizal dependency existsaugments crop productivity (Nwaga et al. 2004; Poomipan et al.2011), tolerance to drought (Boomsma and Vyn 2008) and todisease (Liu et al. 2007) and the capture and transfer of low-mobility nutrients, particularly P, to the plant (Yao et al. 2001).

A wide genetic and functional diversity of AMF speciesexists (Bever et al. 2001; Helgason and Fitter 2009), andarbuscular mycorrhizal fungal genera associated with thesame host species can present differences relating to leveland capacity of sporulation (Bever 2002), root colonizingability (Klironomos and Hart 2002) and P acquisition (Haoet al. 2008; Smith et al. 2000). Moreover, different varieties ofthe same plant can present differences in their response toAMF colonization. In wheat, colonization by Glomusintraradices varies between 16 % and 37 % among cultivars(Zhu et al. 2001) and in barley, two varieties inoculated withG. intraradices differed by more than 100 % in their acquisi-tion of Pi (Zhu et al. 2003).

W. Sangabriel-Conde : S. Negrete-Yankelevich (*)Red de Ecología Funcional, Instituto de Ecología A.C. (INECOL),Carretera Antigua a Coatepec 351, El Haya,91070 Xalapa, VER, Mexicoe-mail: [email protected]

I. E. Maldonado-MendozaDepartamento de Biotecnología Agrícola. CIIDIR-Unidad Sinaloa,Instituto Politécnico Nacional, Guasave, Veracruz, Méxicoe-mail: [email protected]

D. Trejo-AguilarLaboratorio de organismos benéficos. Facultad de CienciasAgrícolas, Universidad Veracruzana, Xalapa, Veracruz, México

Biol Fertil Soils (2014) 50:405–414DOI 10.1007/s00374-013-0847-x

Page 31: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

Mexico is considered the center of origin for maize(Matsuoka et al. 2002) with a great diversity of native land-races (Sanchez et al. 2000). At present, the diversity of nativecultivated maize landraces is in decline due to the creation andintroduction of hybrids or improved varieties that displace thelocal landraces (Dyer and Taylor 2008). In the BiosphereReserve of Los Tuxtlas, the Popoluca farmers maintain tradi-tional polycultural land management (known as the milpasystem) that includes more than 15 local landraces of maize,associated mainly with crops such as common bean(Phaseolus vulgaris ) and pumpkin (Cucurbita pepo )(Negrete-Yankelevich et al. 2013). Little is known regardingthe consequences of this reduced agrodiversity (intra andinterspecific) and the incorporation of phosphate fertilizerson the plant–microorganism symbiotic associations in thesenaturally P-poor systems. In a previous study, we found thatmycorrhizal colonization levels and soil P concentration bothdecline with the loss of species cultivated in the milpa(Negrete-Yankelevich et al. 2013). In this study, we assessthe differences between four local maize landraces and theTexcoco hybrid (the most commonly planted hybrid in theregion) in terms of colonization, mycorrhizal dependency andthe incorporation of P in the root and shoot biomass. This wasconducted in conditions of low P input (5 mg kg−1), such asthose found naturally in the region, as well as medium P input(65 mg kg−1), such as that provided by the moderate fertiliza-tion recently practiced by the local farmers.

Phosphorus is one of the most important nutrients for crops(Raghothama 1999); but the majority requires P in concentra-tions (in maize >0.25 mg l−1) higher than those that exist in thesoil (0.02 to 0.1 mg l−1) for optimal development (Chesworth2008; Hue and Fox 2010). Plants can acquire P by (1) directabsorption , which occurs via transporters in the root epider-mis and (2) mycorrhizal absorption , which translocates Pfrom the extraradical hyphae to the root interior (Smith et al.2004). In the first case, P transport is regulated mainly by plantgenes of the Pht1 family (Chen et al. 2007; Gordon-Weekset al. 2003; Harrison and Van Buuren 1995); the transcriptionlevels of these genes frequently decrease with increased soil P.In certain plants, expression of these genes is inhibited bymycorrhizal symbiosis (reviewed in Javot et al. 2007). In thecase of mycorrhizal absorption, expression of the transportergenes of the fungus decreases when phosphate concentrationincreases around the extraradical hyphae and in the interior ofthe mycorrhiza (Maldonado-Mendoza et al. 2001).

In maize, mycorrhizal symbiosis provides up to 60% of thetotal requirement of P (Nurlaeny et al. 1996). However, land-races and hybrids differ in terms of colonization percentage(An et al. 2010) and P absorption capacity (Ortas and Akpinar2011; Tchameni et al. 2009). Mycorrhizal dependency hasbeen defined as the degree to which a plant is dependent uponthe mycorrhizal condition to reach its maximum growth for agiven level of soil fertility (Menge et al. 1978; Plenchette et al.

1983). In P-limited soils, plants may depend entirely upon themycorrhizal association to acquire this nutrient (Smith et al.2003) but when available P concentration increases in the soil,developmental differences between mycorrhizal and non-mycorrhizal plants tend to disappear (Smith and Read 2008).Mycorrhizal dependency can be determined by plant genotypeand the landrace or hybrid to which it belongs (Hess et al.2005; Zhu et al. 2001). In the case ofmaize, most hybrids havebeen developed to produce maximum yields in systems fea-turing an elevated use of agrochemicals (Evans 1980), whilelocal landraces are generally selected under conditions of lowor zero chemical inputs (Hess et al. 2005). It is thereforeexpected that local landraces have developed greater mycor-rhizal dependency, although this remains to be explored(Martinez and Johnson 2010). To date, most studies haveaddressed the response to AMF colonization in improvedvarieties and hybrids of maize, using individual strains ofAMF (Hao et al. 2008; Nurlaeny et al. 1996; Ortas andAkpinar 2011; Pitakdantham et al. 2007; Wright et al. 2005)and few studies have reported the effects of AMF colonizationon native landraces (Gavito and Varela 1995; Hess et al. 2005;Martinez and Johnson 2010) or of mixed inocula originatingfrom the same agroecosystems where these landraces weredeveloped (Pitakdantham et al. 2007). Moreover, little isknown regarding the difference in response of local maizelandraces and hybrids to mixed inoculation with native AMF(Martinez and Johnson 2010).

It is thought that the benefits of mycorrhizal symbiosis aregreater when both members (AMF and plants) evolved andwere selected under the local conditions (Johnson et al. 2010).Due to the fact that native maize landraces are the product of along process of local domestication (Sanchez et al. 2000) andthat the AMF have subsisted and evolved in concert with theplants in this process (Brundrett 2002), it is possible thatnative maize landraces could benefit more from the mycorrhi-zal association than introduced varieties that have been devel-oped under controlled conditions and without the presence oflocal soil microorganisms (Wissuwa et al. 2009). We thereforepose the following hypotheses: When growing maize in soilsfeaturing the native inocula of milpas , (1) the percentage ofmycorrhizal colonization (PMC), P concentration (root andshoot biomass) and total content per plant, total dry biomassand mycorrhizal dependency will be similar between nativePopoluca maize landraces and greater than in the Texcocohybrid; (2) in low P conditions, mycorrhizal colonization willdevelop to a greater extent in the native maize landraces thanin the hybrid, and (3) under medium P input conditions,colonization and mycorrhizal dependency will decline andthe nutrient concentration (root and shoot biomass) and totalcontent will increase in all the maize landraces and hybrid,compared to that found in low P conditions, with the differ-ence being greater in the native maize landraces than in thehybrid.

406 Biol Fertil Soils (2014) 50:405–414

Page 32: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

Materials and methods

Study sites and soil collection

Soil was collected from nine Popolucamilpas in the ejidos ofOcotal Chico andMazumiapan of the Sierra de Santa Marta inLos Tuxtlas in Veracruz, Mexico. The selected milpas featuresimilar fallow periods of 1–2 years and have had at least 5consecutive years under cultivation and receiving an applica-tion of the herbicides glyphosate 45 % and Paraquat 25 % (1–2.5 l/ha) and N–P–K fertilization (18–12–06) or with urea(100–200 kg/ha) (see Negrete-Yankelevich, et al. 2013 formore detail). The milpa commonly features five maize types:the local maize landraces Yellow Pu´uch mok , White Poopmok , Black Luk mok , and Red Tsabats mok and the intro-duced hybrid Texcoco (S-8929, CIMMYT), the product of across between Tuxpeño, Cuban flints and ETO (Rice et al.1997). Although other hybrids are found in the region,Texcoco has been the most generally adopted by thePopoluca farmers. In each milpa , 49 soil samples were taken(distributed uniformly throughout the plot) with a soil corer ofdiameter 5 cm and depth 15 cm. All samples collected in thenine milpas were mixed to create a compound sample fromwhich to obtain the experimental inoculum. The soil was aLuvisol, with a clay–sand texture, strong to moderate acidity(pH 4.3 to 5.6) and a P concentration of 1 to 5 mg kg−1,estimated following the method of Bray and Kurtz (1945).

Establishment of the greenhouse experiment

AMF spores were extracted from the compound soil sampleusing the wet sieving and decanting technique (Sieverding1991). Material collected in a 53-μm mesh was dried onplastic trays in the greenhouse for 3 days at a temperature of28–30 °C and then used as an inoculum in the experiment(spore content was 365 per 50 g of inoculum).

A factorial design was used; featuring two P levels (5 and65 mg kg−1) with five replicates each, two mycorrhizal treat-ments (inoculated vs. non-inoculated) and five maize types(four Popoluca landraces: Yellow, White, Black and Red, andthe hybrid Texcoco). Seeds from each type of maize, belong-ing to the same plots from which the inoculum was extracted,were disinfected with a 10 % NaOCl solution for 15 min,rinsed with distilled water and germinated for 3 days in Petridishes with moist filter paper at 28 °C in a natural convectionoven.

Germinated seeds of each maize type with a radicle length1–2 cm were sown in 20 litre plastic containers, with washedand sterilized silica sand as a substrate. Two maize seeds weresown in each container and 150 g of inoculum (approx. 1,100spores) was applied. The containers were randomly organizedon the greenhouse tables. One week afterwards, thinning wascarried out leaving one plant per container. One hundred and

fifty ml of the corresponding dose of P (orthophosphate assoluble NaH2PO4·H2O) were applied weekly to each contain-er. Since the pH in the fertilized containers was close to 6.0,orthophosphate availability was favored. In addition, basenutrients were added each week by applying 200 ml of LongAshton solution, with pH adjusted to 6.0 and without P(Hewitt 1966). Irrigation was carried out using potable water.To sustain environmental conditions as similar as possible tothose in the sampling sites, the greenhouse experiment wasestablished in May and maintained with natural daylight, at25–35 °C and with 60–80 % relative humidity.

Acquisition of P and percentage of mycorrhizal colonization

After 120 days the plants were harvested and root volumemeasured (by water displacement), as well as total dry bio-mass, colonization percentage and P concentration in theshoot and root biomass. At this time all maize types were invegetative state and at a very similar stage of development.Plant shoot and root material was washed with distilled waterand rinsed with deionized water before drying for 72 h at70 °C. Plant P concentration was determined using the wetdigestion method (Thomas et al. 1967) and colorimetry withvanadate–molybdate (Murphy and Riley 1962). Plant P con-tent was calculated by multiplying the total P concentration ofthe plant and total plant biomass. All measurements werecarried out in duplicate.

Fresh root samples (from the thinnest root of each system)were washed and cut into fragments of length 2 cm. Onehundred root fragments for each sample were analyzed forthe presence of AMF structures. Prior to dyeing, roots werecleared with a 10 % KOH solution for 10 min at 120 °C,followed by acidification with 1 % HCl for 1 min at ambienttemperature. Roots were dyed with a 0.05 % trypan bluesolution for 5 min at 120 °C. Roots were then placed inlactoglycerol and examined under an optical microscope(100× magnification, Nikon PFX Optiphot-2) to verify thepresence of AMF structures, then under a stereoscopic micro-scope (60× magnification, Nikon SMZ645) to determine thePMC using the intersect method (Giovannetti and Mosse1980) and applying the formula: PMC=(total mycorrhizalroot intercepts/total root intercepts)×100. The presence ofany fungal structure (arbuscules, vesicles or hyphae) in theinterior of the root was considered to constitute colonization.

Increases in root volume and mycorrhizal dependency

Percentage increase in root volume (IRV) and mycorrhizaldependency were calculated; for root volume, the followingformula was used: IRV=[(RVM−RVN)/RVN]×100, whereRVM is the root volume in the mycorrhizal treatment andRVN is the root volume in the non-mycorrhizal treatment. Formycorrhizal dependency in total dry biomass (MD), the

Biol Fertil Soils (2014) 50:405–414 407

Page 33: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

following formula was used: MD=[(BM−BNM)/BM]×100,where BM is the total dry biomass in the mycorrhizal treat-ment and BNM is the total dry biomass in the non-mycorrhizal treatment (Plenchette et al. 1983).

Data analysis

A linear model was used to evaluate the effect of P input level,maize type and mycorrhizal inoculation (and their second-order interactions) on the P concentration of the shoots androots, total P content per plant and the total dry biomass. Astepwise modeling procedure was conducted, featuring bothinclusion and elimination of variables in order to ensure theselection of the most explicative variables and avoid redun-dancy in the final model. A partial analysis of variance(ANOVA) was conducted to determine the significance ofthe contribution of each explicative variable, while thestrength of the evidence for the best model was estimated withthe R2 and the overall significance of the model with anomnibus ANOVA test. For the post-hoc comparisons, orthog-onal contrasts were conducted that enabled the reduction oftype I error (Crawley 2005). A similar modeling process wasused to evaluate the effect of P input level and maize type onmycorrhizal dependency, in terms of biomass and increases inroot volume. To fulfill the assumptions of homogeneity ofvariance and normality of residuals, P concentration valueswere transformed following the equation: y =(x (0.7)−1)/0.7;PMC and mycorrhizal dependency values were transformedby the arcsine of the square root. All analyses were conductedwith the statistical package R 2.1.1 (http://R-project.org/).

Results

Acquisition of P and percentage of mycorrhizal colonization

The native AMF colonized the roots of all the maize types butno colonization was found in the non-inoculated treatments.Non-inoculated plants acquired, on average, 30 % less P intheir shoots and 40% less P in the roots, than was found in theinoculated treatments (data not shown). The P concentrationsin the maize shoots and roots were significantly explained bythe two-way interactions of P input level with type of maize,inoculation and mycorrhizal colonization (Table 1). All maizetypes associated with AMF presented higher total P contentvalues than the non-inoculated plants (Table 1). Total P con-tents in all maize types were higher when P input was medium(Table 2). The Black landrace accumulated more total Pcontent in mycorrhizal plants (ca. 3.7–4.3 mg) than the othermaize types at both P input levels (Table 2).

In both the medium and low P input levels, the maizelandraces with the highest colonization percentages werethose that acquired more P in their shoots (Fig. 1a). At both

input levels of P, the native landraces Black and Yellow werecolonized to a higher extent (ca. 60–80 %) and acquired moreP in their shoots (ca. 4.5–6 mg kg−1) than the hybrid Texcoco(ca. 45 % colonization and ca. 4–4.5 mg kg−1 of P) (Fig. 1a).The Black landrace presented the highest percentages of col-onization (greater than 75 % at both P input levels). Only theWhite landrace presented a greater colonization percentagewhen P input was low (Fig. 1a). For the other landraces andhybrid, there were no differences in colonization percentagebetween P input levels. All of the maize types, except forYellow, presented higher P concentrations in the roots in themedium dose of P (Fig. 1b).

Increases in root volume, dry biomass and mycorrhizaldependency

The variance in root volume was significantly explained bythe interaction between P input level and maize type (Table 1).Only the Yellow and Black landraces showed a greater per-centage IRV when the P input level was low (Table 2). TheBlack landrace presented the highest IRVat both P input levels(Table 2).

All maize types associated with AMF presented highertotal dry biomass values than the non-inoculated plants(Table 1). No differences were observed between the non-inoculated treatments. Only the Black landrace accumulatedmore total dry biomass (ca. 440–460 g) in mycorrhizal plantsthan the other maize types at both P input levels (Table 2).

All maize types presented a positive AMF dependency,with means of between 2 % and 14 % (Table 2). Underconditions of low P, all of the landraces increased their depen-dency, except Red (Table 2). The hybrid Texcoco presentedthe greatest difference in dependency between the two P inputlevels. Its dependency was among the highest in the low Pdose and among the lowest in the medium P dose (Table 2).

Discussion

In this study, we expected that the parameters evaluated in themaize plants (PMC, P in the roots and shoots, total P content,total dry biomass and mycorrhizal dependency) would besimilar between the native maize landraces and greater in thehybrid. In contrast, we found that the native maize landracesvaried widely and, compared to the hybrid Texcoco, no nativelandrace presented greater mycorrhizal dependency (at least inthe low P input treatment). Only one of the native landraces(Black) presented a higher total dry biomass and total Pcontent, two (Yellow and Black) presented higher coloniza-tion percentages, and three incorporated more P in their rootand shoot biomass. These results are consistent with thedifferences in compatibility reported between AMF and hostplant, attributed to the genetic variation and ecological

408 Biol Fertil Soils (2014) 50:405–414

Page 34: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

Tab

le1

ANOVAanalysisof

plantshootPconcentration,rootPconcentration,totalP

content,mycorrhizalcolonizatio

nintheroot,increaseinrootvolume,totaldry

biom

assandmycorrhizaldependency

explainedby

theinputlevelof

P,type

ofmaize,inoculatio

nwith

AMFandmycorrhizalcolonizatio

n

PHOS

TYPE

INO

COL

PHOSxC

OL

PHOS×TYPE

PHOS×IN

OTYPE

×IN

OOmnibustest

SS

FSS

FSS

FSS

FSS

FSS

FSS

FSS

FR2

F

Pconcentrationin

shootb

iomass

(mgkg

−1)

34.65

306.20***

39.60

87.48***

135.24

1,194.89***

8.38

74.06***

1.86

16.49***

3.57

7.89***

7.07

62.54***

3.49

7.72***

0.96

121.60***

Pconcentrationin

root

biom

ass

(mgkg

−1)

22.03

936.49***

2.07

22.05***

75.31

3,200.60***

0.00

0.01

(ns)

1.09

46.53***

0.73

7.80***

7.01

297.84***

1.66

17.68***

0.98

274.80***

TotalP

content(mg

plant−1)

10.70

354.66***

20.47

169.63***

27.05

896.50***

1.51

50.19***

0.20

0.94

(ns)

0.63

5.24***

1.63

54.29***

0.16

1.37

(ns)

0.96

121.3***

Mycorrhizal

colonizatio

nin

the

root

(%)

0.01

6.42*

0.69

141.89***

––

––

––

0.01

3.72*

––

––

0.93

65.43***

Increase

inroot

volume(%

)879.80

5.19*

24,547.10

36.26***

––

––

––

3,543.30

5.23**

––

––

0.81

19.02***

Totaldry

biom

ass(g)

20,598

45.36**

192,434

105.95**

16,121

35.50***

541

1.19

(ns)

2.00

0.01

(ns)

5,757

3.16*

789

1.73

(ns)

811

0.44

(ns)

0.86

30.71***

AMFdependency

(%)

203.07

34.12***

246.29

10.34***

––

––

––

139.08

5.84***

––

––

0.71

10.99***

PHOSPinputlevel,TYPEtype

ofmaize,INO

inoculationwith

AMF,

COLmycorrhizalcolonizatio

n,SS

sum

ofsquares,FANOVA

F-value,R

2coefficientof

determ

inationof

themodel,n

snon-

significant,–notincludedin

themodel

*P<0.05;*

*P<0.01;*

**P<0.001

Biol Fertil Soils (2014) 50:405–414 409

Page 35: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

specificity of both symbionts (An et al. 2010; Liu et al. 2000).The variation in response to AMF colonization found in thisstudy could be due to the fact that the different maize types donot associate with the same consortium of AMF species(Maldonado-Mendoza et al., personal communication) or per-haps that they respond differentially when associated to AMF(Oliveira et al. 2009).

It is possible that the observed differences in root volume, Pconcentration and total P content are related to the inherentgenotypic characteristics of each maize type (Gaume et al.2001; Zhu et al. 2005); when are in a mycorrhizal symbiosis,some maize varieties produce more roots (Zhu et al. 2005),while others increase nutrient absorption levels (Ortas andAkpinar 2011). In our study, mycorrhizal inoculation signifi-cantly increased P concentrations and total P content, howev-er, it is known that AMF species differ widely in their Pacquisition strategies (Jansa et al. 2005; Munkvold et al.2004; Thonar et al. 2011) and that the maize genotypes canassociate with different mycobiont species (Oliveira et al.2009). For this reason, it is feasible that the landraces thataccumulated most P in shoot tissues (Black and Yellow) areassociated with more efficient AMF, in terms of the assimila-tion and translocation of the nutrient to the plant (Thonar et al.2011), and those that accumulated less P (White, Red and

Texcoco) are associated with more carbon-demandingmycobionts (Jakobsen et al. 2002) that provide the plant withlittle phosphate (Lendenmann et al. 2011). In this study, themaize landrace that presented the highest colonization per-centages also accumulated more P in their shoot tissues andtotal P content, suggesting that the degree of symbiosisestablished was proportional to the benefit for the plant. It ispossible that the phosphate transporter genes in these landracemay be regulated by the mycorrhizal colonization (Nagy et al.2006); however, given that no molecular studies were carriedout to determine the phosphate transporter genes expressed ineachmaize type, further research would be required in order tofully understand the mechanisms involved in the response toAMF colonization and the availability of P in native maizelandraces.

Maize is considered to be a plant with high mycorrhizaldependency, especially in low P conditions (Ortas 2012).Several studies show differences in the AMF dependencybetween maize genotypes (Hao et al. 2008; Kaeppler et al.2000; Ortas and Akpinar 2011; Tawaraya 2003; Wright et al.2005), but we also found differences between native maizelandraces and also between these and the hybrid Texcoco. Thelocal landraces (Yellow and Black) presented the greatestdevelopment in low P conditions (in biomass and/or root

Fig. 1 Relationship between rootcolonization percentage and Pconcentration in: a shoot and broot in different maize landracesor Texcoco hybrid associated toAMF. Empty symbols representlow P input of 5 mg kg−1 andfilled symbols represent mediumP input of 65 mg kg−1. Linesrepresent the linear models of theshoot and root P concentrations(for statistical details, see Table 1)

Table 2 Increases in root volume in mycorrhizal plants (compared to non-mycorrhizal plants), total dry biomass and total P content in mycorrhizalplants and mycorrhizal dependency (in terms of total dry biomass) of the different maize types

Maize type Increases in root volume (%) Total dry biomass ofmycorrhizal plants (g)

Total P content of mycorrhizalplants (mg plant−1)

Mycorrhizaldependency (%)

Low P Medium P Low P Medium P Low P Medium P Low P Medium P

Yellow landrace 29.8 (3.2) bA 14.8 (3.4) eB 339.2 (6.9) bA 354.2 (12.1) bA 2.6 (0.2) bB 2.9 (0.3) bA 12.5 (1.7) aA 7.8 (0.5) aB

White landrace 28.2 (6.2) cA 25.9 (4.3) cA 362.2 (6.5) bA 373.9 (8.2) bA 2.5 (0.1) bB 2.8 (0.2) bA 13.3 (0.6) aA 8.7 (1.9) aB

Black landrace 95.5 (11.7) aA 57.8 (6.5) aB 445.6 (12.4) aA 462.9 (8.5) aA 3.7 (0.3) aB 4.3 (0.2) aA 7.2 (1.5) bA 3.0 (0.8) cB

Red landrace 14.3 (4.5) eA 16.5 (2.8) dA 298.8 (24.8) bB 354.7 (13.2) bA 2.2 (0.4) dB 2.7 (0.2) bA 5.5 (1.4) cA 7.4 (0.8) aA

Hybrid Texcoco 18.1 (1.6) dA 28.8 (6.8) bA 337.5 (10.8) bA 354.7 (8.1) bA 2.4 (0.2) cB 2.7 (0.1) bA 12.8 (0.9) dA 4.3 (0.7) bB

Means presented with standard errors in parenthesis (n =5). Lowercase letters indicate significant differences between maize types and capital lettersbetween P levels

410 Biol Fertil Soils (2014) 50:405–414

Page 36: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

volume), possibly as a result of the long selection process towhich they have been subjected over time. These landracesare the most common in the region and, although their selec-tion has been directed largely by cultural factors, it is probablethat they were selected in order to maximize their develop-ment and productivity under local conditions with nativeAMF species and low nutrient availability (Smith et al.2004; Tchameni et al. 2009; Yao et al. 2001).

The landrace Black in particular presented increases in rootvolume and mycorrhizal colonization percentages that werefar superior to the other maize types, suggesting the develop-ment of a strong adaptation to the local mycosymbionts andthe benefits of AMF colonization (Smith and Smith 2012).The colonization percentages presented by this landrace (75–80 %) are among the highest reported to date for native maize(Hess et al. 2005; Martinez and Johnson 2010). It is notablethat, although this landrace had elevated mycorrhizal coloni-zation, its AMF dependency was among the lowest because itis capable of acquiring P even in the absence of symbionts. Itis therefore possible that the landrace Black utilizes variousadaptation strategies (exudation of organic acids, phospha-tases, nucleases and modification of its root structure)(Bayuelo-Jiménez et al. 2011; Javot et al. 2007; Machadoand Furlani 2004; Zhu et al. 2005) that make it highly efficientin both the symbiotic and direct capture of P, depending on theprevailing conditions (Bucher 2007; Smith and Smith 2012;Smith et al. 2004). This characteristic makes this landracegenetically and culturally important to the Popoluca peopleand to the world.

Our second hypothesis suggested that, in low P conditions,mycorrhizal symbiosis would develop better in native maizelandraces than in the hybrid. However, instead we found thatthe hybrid presented greater AMF dependency than some ofthe native landraces and the attained colonization percentagesindicate that the improvement process did not affect the ca-pacity of the hybrid to respond to the AMF colonization (Anet al. 2010; Sawers et al. 2010). It was observed that AMFcolonization is very important for the hybrid when there islittle P, since under these conditions its dependency wasamong the highest. However, this was not reflected in itsdevelopment and its tissue P concentrations and total P con-tent were among the lowest. Possibly the AMF species thatcolonized the hybrid were inefficient in terms of providing Pto the plant (Lendenmann et al. 2011), but they stimulated agreater AMF dependency. Certain maize hybrids behave in-efficiently in terms of absorption of nutrients when associatedwith AMF (Ortas and Akpinar 2011). For example, G .etunicatum can extensively colonize maize roots but causesa negative response to mycorrhizal association, while G .mosseae , colonizes at a lower percentage but elicits a positiveresponse to AMF colonization (Hao et al. 2008; Ortas 2012).

Some studies report that increased P reduces the develop-ment of mycorrhizal symbiosis; nevertheless, the levels at

which this reduction occurs are variable and are a functionof both the identity of the AMF species and the genotype ofthe maize. For example, the percentage of root colonizationvaried among 12 maize inbred lines grown at low(17 mg kg−1) or high (87 mg kg−1) P, but was consistentlylower when the dose was higher (Kaeppler et al. 2000). In ourcase, P concentration in root and total P content in all maizetypes increased when the dose of P was 65 mg kg−1,suggesting that when P concentration was 5 mg kg−1 maizeplants were P limited. Contrary to that suggested in our thirdhypothesis, only one native landrace (White) presented areduced colonization percentage with increased P concentra-tion, indicating that the medium P levels obtained with amoderate fertilization, such as that practiced recently by thePopoluca farmers, do not affect the integrity of the mycorrhi-zal symbiosis. Fries et al. (1998) report that concentrationsabove 200 mg kg−1 of P are required for inhibition of mycor-rhizal symbiosis in maize. Notwithstanding, it is possible thatthe White maize landrace is associated with AMF species thatare sensitive to P availability, as has been reported forGigaspora rosea (Nogueira and Nogueira-Cardoso 2007). Itis known that AMF species present different sensitivities tothe concentration of available P.

In contrast to colonization, increased P soil concentrationreduced the AMF dependency in three native maize landrace(with the maize landrace Red being the exception) and thehybrid Texcoco. The hybrid showed a very notable decrease,which suggests that in conditions of greater P availability,mycorrhizal symbiosis does not foment increased biomass,but rather that the plant is capable of obtaining the nutrientsthrough its roots (Ortas 2012; Smith et al. 2004). The fact thatthe landraces accumulated more P in the medium input level isprobably due to greater activation of the phosphate transportergenes (Nagy et al. 2006) and, having accumulated more P inthe shoot biomass and not in the roots, is possibly due toeffective translocation to the aerial part of the plant (Daramet al. 1999).

It is important to highlight that our results represent a pointin time and that we do not know the variation in the responseof these maize types to inocula from different cultivationcycles or under different field conditions. Also, we onlyevaluated one maize hybrid and therefore it is not possible toextrapolate the differences with local landraces to other hy-brids. However, this study does show for the first time differ-ences in response to AMF colonization among local maizelandraces and with the most widespread hybrid in milpapolycultures, a traditional system at serious risk of disappear-ance. It is possible that these differences are caused by differ-ences in the AMF consortia that colonize each maize type, oreven, by the presence of other soil microorganisms associatedto AMF spores, on their surface (Hetrick et al. 1988) or livingas intracellular endosymbionts (Alonso et al. 2008; Minerdiet al. 2002). Currently, our research group is conducting a

Biol Fertil Soils (2014) 50:405–414 411

Page 37: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

ribosomal DNA survey of the AMF communities in order todetermine which AMF species interact with each native maizelandrace and the hybrid. One of the most important results ofthis study is that, despite showing a high mycorrhizal depen-dency in low P conditions, the capacity of the improvedhybrid Texcoco to acquire this nutrient under these conditionsis very low. In contrast, the Black landrace appears to haveadaptive mechanisms to efficiently obtain P either directly orthrough mycorrhizal symbiosis. For this reason, we concludethat the substitution of local maize landraces for the Texcocoimproved hybrid constitutes a risk of losing a genetic heritageof great importance both above and below the soil, and onethat has been developed over thousands of years of selection.

Acknowledgments We thank Claude Plassard for invaluable sugges-tions during the development of this research; to Isis de la Rosa and OmarLázaro for their invaluable help in the field; to the farmers and authoritiesof Ocotal Chico and Mazumiapan for their active participation in thisstudy; to Liliana Lara and the staff of Laboratorio de OrganismosBenéficos of the Faculty of Agronomy of the Universidad Veracruzanafor provision of experimental facilities. This study was financed by theBioPop project (FOMIX 94427, CONACYT-Veracruz) and by the pro-ject ECOS-ANUIES M08A01. We dedicate this study to the memory ofJosé Luis Blanco Rosas, close friend and enthusiastic collaborator in thisproject.

References

Alonso LM,Kleiner D, Ortega E (2008) Spores of themycorrhizal fungusGlomus mosseae host yeasts that solubilize phosphate and accumu-late polyphosphates. Mycorrhiza 18:197–204

An GH, Kobayashi S, Enoki H, Sonobe K, Muraki M, Karasawa T,Ezawa T (2010) How does arbuscular mycorrhizal colonization varywith host plant genotype? An example based on maize (Zea mays)germplasms. Plant Soil 327:441–453

Bayuelo-Jiménez JS, Gallardo-Valdéz M, Pérez-Decelisa VA,Magdaleno-Armasa L, Ochoac I, Lynch JP (2011) Genotypic vari-ation for root traits of maize (Zea mays L.) from the PurhepechaPlateau under contrasting phosphorus availability. Field Crop Res121:350–362

Bever DJ (2002) Host-specificity of AM fungal population growth ratescan generate feedback on plant growth. Plant Soil 244:281–290

Bever JD, Schultz PA, Pringle A, Morton JB (2001) Arbuscular mycor-rhizal fungi: more diverse than meets the eye, and the ecological taleof why. Bioscience 51:923–931

Boomsma CR, Vyn JT (2008) Maize drought tolerance: Potential im-provements through arbuscular mycorrhizal symbiosis? Field CropRes 108:14–31

Bray RH, Kurtz LT (1945) Determination of total, organic and availableforms of phosphorus in soil. Soil Sci 59:39–45

Brundrett M (2002) Coevolution of roots and mycorrhizas of land plants.New Phytol 154:275–304

Bucher M (2007) Functional biology of plant phosphate uptake at rootand mycorrhiza interfaces. New Phytol 173:11–26

Chen A, Hu J, Sun S, Xu G (2007) Conservation and divergence of bothphosphate- and mycorrhiza-regulated physiological responses andexpression patterns of phosphate transporters in Solanaceous spe-cies. New Phytol 173:817–831

ChesworthW (2008) Encyclopedia of soil science. Encyclopedia of earthsciences series. Springer, Netherlands. doi:10.1007/978-1-4020-3995-9

Crawley MJ (2005) Statistics: an introduction using R. John Wiley &Sons, West Sussex

Daram P, Brunner S, Rausch C, Steiner C, Amrhein N, Bucher M (1999)Pht2;1 encodes a low-affinity phosphate transporter fromArabidopsis. Plant Cell 11:2153–2166

Dyer AG, Taylor JE (2008) A crop population perspective on maize seedsystems in Mexico. Proc Natl Acad Sci U S A 105:470–475

Evans LT (1980) The natural history of crop yield: a combination ofimproved varieties of crop plants and technological innovationscontinues to increase productivity, but the highest yields are ap-proaching limits set by biological constraints. Am Sci 68:388–397

Fries LM, Pacovsky RS, Safir GR, Kaminski J (1998) Phosphorus effecton phosphatase activity in endomycorrhizal maize. Physiol Plant103:162–171

Gaume A, Machler F, Leon CD, Narro L, Frossard E (2001) Low Ptolerance by maize genotypes: significance of root growth, andorganic acids and acid phosphatase root exudation. Plant Soil228:253–264

Gavito ME, Varela L (1995) Response of criollo maize to single andmixed-species inocula of arbuscular mycorrhizal fungi. Plant Soil176:101–105

Giovannetti M, Mosse B (1980) An evaluation of techniques for measur-ing vesicular–arbuscular mycorrhizal infection in roots. New Phytol84:489–499

Gordon-Weeks R, Tong YP, Davies TGE, Leggewie G (2003) Restrictedspatial expression of a high-affinity phosphate transporter in potatoroots. J Cell Sci 116:3135–3144

Hao L, Zhang J, Christie P, Li X (2008) Response of two maize inbredlines with contrasting phosphorus efficiency and root morphology tomycorrhizal colonization at different soil phosphorus supply levels.J Plant Nutr 31:1059–1073

Harrison MJ, Van Buuren ML (1995) A phosphate transporter from themycorrhizal fungus Glomus versiforme . Nature 378:626–629

Helgason T, Fitter A (2009) Natural selection and the evolutionaryecology of the arbuscular mycorrhizal fungi (PhylumGlomeromycota). J Exp Bot 60:2465–2480

Hess JL, Shiffler AK, Jolley VW (2005) Survey of mycorrhizalcolonization in native, open-pollinated, and introduced hybridmaize in villages of Chiquimula, Guatemala. J Plant Nutr28:1843–1852

Hetrick BAD, Wilson GT, Kitt DG, Schwab AP (1988) Effects of soilmicroorganisms on mycorrhizal contributions to growth of bigbluestem grass in non-sterile soil. Soil Biol Biochem 20:512–507

Hewitt EJ (1966) Sand and water culture methods used in the study ofplant nutrition. Agricultural Bureau of Horticulture TechnicalCommunication, 22

Hue NV, Fox RL (2010) Predicting plant phosphorus requirements forHawaii soils using a combination of phosphorus sorption isothermsand chemical extraction methods. Commun Soil Sci Plant Anal41:133–143

Jakobsen I, Smith SE, Smith FA (2002) Function and diversity ofarbuscular mycorrhizae in carbon and mineral nutrition. In: vander Heijden MGA, Sanders IR (eds) Mycorrhizal ecology.Springer Ecological Studies, Heidelberg, Germany, pp 75–92

Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategieswithin arbuscular mycorrhizal fungal community of a single fieldsite. Plant Soil 276:163–176

Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscularmycorrhizal symbiosis: transport properties and regulatory roles.Plant Cell Environ 30:310–322

Johnson N, Wilson GWT, Bowker MA, Wilson JA, Miller M (2010)Resource limitation is a driver of local adaptation in mycorrhizalsymbioses. Proc Natl Acad Sci U S A 107:2093–2098

412 Biol Fertil Soils (2014) 50:405–414

Page 38: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracy WF(2000) Variation among maize inbred lines and detection of quanti-tative trait loci for growth at low phosphorus and responsiveness toarbuscular mycorrhizal fungi. Crop Sci 40:358–364

Klironomos JN, Hart MM (2002) Colonization of roots by arbuscularmycorrhizal fungi using different sources of inoculum. Mycorrhiza12:181–184

LendenmannM, Thonar C, Barnard RL, Salmon Y,Werner RA, FrossardE, Jansa J (2011) Symbiont identity matters: carbon and phosphorusfluxes between Medicago truncatula and different arbuscular my-corrhizal fungi. Mycorrhiza 21:689–702

Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition ofCu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown insoil at different P and micronutrient levels. Mycorrhiza 9:331–336

Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD,Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompa-nied by local and systemic alterations in gene expression and anincrease in disease resistance in the shoots. Plant J 50:529–544

Machado CT, Furlani AMC (2004) Kinetics of phosphorus uptake androot morphology of local and improved varieties of maize. Sci Agric61:69–76

Maldonado-Mendoza I, Dewbre GR, Harrison MJ (2001) A phosphatetransporter gene from the extra-radical mycelium of an arbuscularmycorrhizal fungus Glomus intraradices is regulated in response tophosphate in the environment. Mol Plant Microbe Interact 14:1140–1148

Martinez N, Johnson N (2010) Agricultural management influencespropagule densities and functioning of arbuscular mycorrhizas inlow- and high-input agroecosystems in arid environments. Appl SoilEcol 46:300–306

Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler GE,Doebley J (2002) A single domestication for maize shown bymultilocus microsatellite genotyping. Proc Natl Acad Sci U S A99:6080–6084

Menge JH, Davis M, Johnson ELV, Zentmyer GA (1978) Mycorrhizalfungi increase growth and reduce transplant injury in avocado. CalifAgric 32:6–7

Minerdi D, Bianciotto V, Bonfante P (2002) Endosymbiotic bacteria inmycorrhizal fungi: from their morphology to genomic sequences.Plant Soil 244:211–219

Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I (2004)High functional diversity within species of arbuscular mycorrhizalfungi. New Phytol 164:357–364

Murphy J, Riley JP (1962) A modified single solution method fordetermination of phosphate in natural waters. Anal Chim Acta27:31–36

Nagy R, Vasconcelos MJV, Zhao S, McElver J, Bruce W, Amrhein N,Raghothama KG, Bucher M (2006) Differential regulation of fivePht1 phosphate transporters from maize (Zea mays L.). Plant Biol8:186–197

Negrete-Yankelevich S, Maldonado-Mendoza I, Lázaro-Castellanos O,Sangabriel-Conde W, Martínez-Álvarez JC (2013) Arbuscular my-corrhizal root colonization and soil P availability are positivelyrelated to agrodiversity in Mexican maize polycultures. Biol FertSoils 49:201–212

Nogueira MA, Nogueira-Cardoso EJ (2007) Phosphorus availabilitychanges the internal and external endomycorrhizal colonizationand affects symbiotic effectiveness. Sci Agric 64:295–300

Nurlaeny N, Marschner H, George E (1996) Effects of liming andmycorrhizal colonization on soil phosphate depletion and phosphateuptake by maize (Zea mays L.) and soybean (Glycine max L.)grown in two tropical acid soils. Plant Soil 181:275–285

Nwaga D, Ambassa-Kiki R, Ngonkeu-Mangaptché EL, Tchiegang-Megueni C (2004) Selection of arbuscular mycorrhizal fungi forinoculatingmaize and sorghum grown in Oxisol/Ultisol and Vertisolin Cameroon. In: Bationo A (ed)Managing nutrient cycles to sustain

soil fertility in sub-Saharan Africa. Academy Science Publishers(ASP)/Tropical Soil Biology and Fertility Institute of CIAT, Nairobi

Oliveira CA, Sá NM, Gomes EA, Marriel IE, Scotti MR, Guimarães CT,Schaffert RE, Alves MC (2009) Assessment of the mycorrhizalcommunity in the rhizosphere of maize (Zea mays L.) genotypescontrasting for phosphorus efficiency in the acid savannas of Brazilusing denaturing gradient gel electrophoresis (DGGE). Appl SoilEcol 41:249–258

Ortas I (2012) Do maize and pepper plants depend on mycorrhizae interms of phosphorus and zinc uptake? J Plant Nutr 35:1639–1656

Ortas I, Akpinar C (2011) Response of maize genotypes to severalmycorrhizal inoculums in terms of plant growth, nutrient uptakeand spore production. J Plant Nutr 34:970–987

Pitakdantham R, Suwanarit A, Nopamornbodi O, Sarobol E (2007)Comparative responses to arbuscular mycorrhizal fungi of maizecultivars different in downy mildew resistance and fertilizer require-ment. Sci Asia 33:329–337

Plenchette C, Fortin A, Furlan V (1983) Growth response of several plantspecies to mycorrhiza in a soil of moderate P-fertility: I.Mycorrhizae dependency under field conditions. Plant Soil70:199–209

Poomipan P, Suwanarit A, Suwanarit P, Nopamornbodi O, Dell B (2011)Reintroduction of a native Glomus to a tropical Ultisol promotedgrain yield in maize after fallow and restored the density ofarbuscular mycorrhizal fungal spores. J Plant Nutr 174:257–268

Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol50:665–693

Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred million yearold vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A91:11841–11843

Rice E, Smale M, Blanco JL (1997) Farmers use of improved seedselection practices in Mexican maize: evidence and issues from theSierra de SantaMarta. CIMMYT EconomicsWorking Paper 97–03.Mexico, D.F.

Sanchez JJ, Goodman MM, Stuber CW (2000) Isozymatic andmorphological diversity in the races of maize of Mexico.Econ Bot 54:43–59

Sawers RJ, Gebreselassie MN, Janos DP, Paszkowski U (2010)Characterizing variation in mycorrhiza effect among diverse plantvarieties. Theor Appl Genet 120:1029–1039

SchüBler A, Schwarzott D, Walker C (2001) A new fungal phylum, theGlomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

Sieverding E (1991) Vesicular–arbuscular mycorrhiza management intropical agrosystems. Deutsche Gesellschaft für TechnischeZusammenarbeit (GTZ) GmbH, Eschborn

Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. AcademicPress, New York

Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plantnutrition and growth: new paradigms from cellular to ecosystemscales. Annu Rev Plant Biol 62:227–250

Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscularmycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13. doi:10.3852/11-229

Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisitionof soil phosphate between two arbuscular mycorrhizal fungi insymbiosis with Medicago truncatula . New Phytol 147:357–366

Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominatephosphate supply to plants irrespective of growth responses. PlantPhysiol 133:16–20

Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscularmycorrhizal (AM) symbioses: the contribution of the mycorrhizal Puptake pathway is not correlated with mycorrhizal responses ingrowth or total P uptake. New Phytol 162:511–524

Tawaraya K (2003) Arbuscular mycorrhizal dependency of different plantspecies and cultivars. Soil Sci Plant Nutr 49:655–668

Biol Fertil Soils (2014) 50:405–414 413

Page 39: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

Tchameni SN, Nana-Wakam L, Jemo M, Fokom R, Thé C, Nwaga D(2009) Variation in growth and P uptake of maize cultivars colo-nized by arbuscular mycorrhizas on acid soil of southern Cameroon.Res J Agric Biol Sci 5:480–488

Thomas RL, Sheard RW, Moyer R (1967) Comparison of conventionaland automated procedures for nitrogen, phosphorus, and potassiumanalysis of plant material using a single digestion. Agron J 59:240–243

Thonar C, Schnepf A, Frossard E, Roose T, Jansa J (2011) Traits relatedto differences in function among three arbuscular mycorrhizal fungi.Plant Soil 339:231–245

Thrupp LA (2004) The importance of biodiversity in agroecosystems. JCrop Improv 12:315–337

Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plantbreeding for rhizosphere-related traits. Plant Soil 321:409–430

Wright DP, Scholes JD, Read DJ, Stephen AR (2005) European andAfrican maize cultivars differ in their physiological and molecularresponses to mycorrhizal infection. New Phytol 167:881–896

Yao Q, Li X, Feng G, Christie P (2001) Mobilization of sparingly solubleinorganic phosphates by the external mycelium of an arbuscularmycorrhizal fungus. Plant Soil 230:279–285

Zhu Y-G, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P)efficiencies and mycorrhizal responsiveness of old and modernwheat cultivars. Plant Soil 249:249–255

Zhu Y-G, Smith FA, Smith SE (2003) Phosphorus efficiencies andresponses of barley (Hordeum vulgare L.) to arbuscular mycorrhizalfungi grown in highly calcareous soil. Mycorrhiza 13:93–100

Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTL controlling roothair length in maize (Zea mays L.) under phosphorus deficiency.Plant Soil 270:299–310

414 Biol Fertil Soils (2014) 50:405–414

Page 40: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

40

CAPÍTULO III

GLOMEROMYCOTA ASSOCIATED WITH MEXICAN NATIVE MAIZE

LANDRACES IN LOS TUXTLAS, MEXICO

Artículo enviado a

Applied Soil Ecology

Page 41: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

41

Glomeromycota associated with Mexican native maize landraces in Los Tuxtlas, Mexico

Wendy Sangabriel-Conde1*, Ignacio E. Maldonado-Mendoza2*, Maria Elena Mancera-López2, Jesús Damián Cordero-Ramírez2, Dora Trejo-Aguilar3, Simoneta Negrete-Yankelevich1** 1Red de Ecología Funcional. Instituto de Ecología A. C. Carretera Antigua a Coatepec No. 351, El Haya, Xalapa 91070 Veracruz, Mexico 2Instituto Politécnico Nacional (IPN). CIIDIR-Sinaloa. Departamento de Biotecnología Agrícola. Boulevard Juan de Dios Bátiz Paredes No. 250. CP 81101. AP280. Guasave, Sinaloa, México. 3Laboratorio de Organismos Benéficos. Facultad de Ciencias Agrícolas, Universidad Veracruzana, Xalapa, Veracruz, México. *Both are considered as first authors. **Correspondence author: S. Negrete-Yankelevich e-mail: [email protected]

Abstract

Many native maize landraces are still cultivated by different ethnic groups in Mexico as part of

traditional polyculture systems (milpas). However, these systems and landraces are being steadily

replaced by fertilized monocultures of genetically improved varieties or maize hybrids. Little is

known about how such changes may affect the belowground community of maize symbionts. A

greenhouse experiment was conducted to assess the composition of the indigenous arbuscular

mycorrhizal fungi (AMF) communities colonizing four Popoluca maize landraces and the hybrid

Texcoco, and to determine how these communities are influenced by the level of phosphorus

fertilization. Fragments of AMF ribosomal DNA (rDNA) were amplified using nested PCR,

producing 327 Glomeromycota sequences. Phylogenetic analysis assigned the Glomeromycota

sequences into 84 operational taxonomic units (OTUs). This number of OTUs was more than

double that reported for maize exposed to native inoculum. Exclusive and promiscuous

associations were rare. Most AMF species colonized 2 to 4 maize types. This suggests that the

high diversity of AMF in milpas is related to the presence of several native maize landraces and

that replacement of these landraces with a single hybrid may diminish AMF community richness.

All landraces were found to associated with more OTUs under moderate P fertilization,

suggesting that low inorganic phosphate (Pi) in milpas is limiting symbiotic interactions.

However, only 0-20 % of OTUs were conserved between different P conditions for each

landrace. The Black landrace, which presented the highest AMF colonization and Pi uptake, is

Page 42: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

42

associated with the highest number of AMF OTUs, supporting previous suggestions regarding

this functional relationship with AMF richness.

Key words: arbuscular mycorrhizal fungi, traditional polyculture management, Zea mays, milpas

Introduction

Maize (Zea mays L.) is grown worldwide as a staple food and to manufacture secondary products

such as sugar, oil, and protein (FAO, 2006). Mexico is considered the center of origin for maize

(Matsuoka et al., 2002) and many native landraces are still cultivated in that country by different

ethnic groups as part of traditional polycultures (milpas). These systems constitute important

genetic resources, not only in terms of different varieties of maize, but also of belowground

symbionts, which have co-evolved with plants in a variety of nutrient deficient and harsh

environmental conditions. However, these systems and landraces are being replaced by fertilized

monocultures of genetically improved varieties or maize hybrids (Turrent-Fernández et al., 2012)

and little is known about how such management changes may affect the belowground community

of mycorrhizal symbionts.

Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil organisms of the phylum

Glomeromycota that establish mutualistic symbiotic associations with most land plants (Smith

and Read, 2008). AMF are most influential for plants in nutrient deficient soils, in particular

where P is limiting (Antunes et al., 2011). They facilitate mineral nutrient uptake from the soil in

exchange for plant assimilated C (Smith and Read, 2008). In addition to improving plant

nutrition, AMF protect their hosts from pathogens (Pozo and Azcón-Aguilar, 2007) and

contribute to the maintenance of variability, stability, diversity and productivity of the plant cover

and soil structure (van der Heijden et al., 2006), as well as affecting plant growth traits

(Klironomos, 2003).

Despite the considerable role of AMF in terrestrial ecosystems, the relationship between their

taxonomic and functional diversity is little understood (Krüger et al., 2009). While AMF are not

strictly host-specific, it is known that they can exhibit a degree of host-preference (Helgason and

Fitter, 2009; Johnson et al., 2003; Scheublin et al., 2004). Plants, on the other hand, may favor

Page 43: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

43

specific subgroups of these mycosymbionts (McGonigle and Fitter, 1990; Oliveira et al., 2009).

In addition, it is known that the relative abundance of several Glomus species decreases

significantly in response to chemical fertilization, while other species, including Entrophospora

schenckii, Glomus mosseae, and Scutellospora fulgida, remain unaffected (Bhadalung et al.,

2005) and maintain their provision of ecosystem services and life history strategies (van der

Heijden et al., 1998b).

Around 240 AMF species have been described to date (Oehl et al., 2011), mainly on the basis of

spore morphology. However, it is impossible to correlate spore information with specific

colonization events in plant roots since spores are typically produced on external hyphae that can

easily become detached from the root, and the level of spore production does not reflect the

abundance of species in the roots (Clapp et al., 1995). Molecular techniques are currently the best

option for characterization of AMF diversity associated with the roots. The use of DNA

sequencing methods has improved our understanding of AMF communities, particularly because

they allow the direct detection of AMF from environmental samples (Öpik et al., 2009; Öpik et

al., 2013).

AMF fungi associated with maize grown under different management conditions have been

studied through morphological identification of spores (Daniell et al., 2001; Jansa et al., 2003)

and molecular sequencing (Oliveira et al., 2009; Sasvári et al., 2011). Most of the recent studies

based on molecular techniques have found that AMF diversity in maize roots is reduced by

agricultural practices such as tillage, fertilization and the introduction of phosphorous-inefficient

genotypes (Franke-Snyder et al., 2001; Jansa et al., 2002; Oehl et al., 2003; Oliveira et al., 2009;

Sasvári et al., 2011; Toljander et al., 2008), while positive correlations have been found with crop

rotation and maize productivity (Maherali and Klironomos, 2007; van der Heijden et al., 1998a;

Wagg et al., 2011). Maize varieties differ in terms of the diversity and composition of AMF

communities colonizing their roots (Oliveira et al., 2009).

Low P availability limits plant growth in many acid soils of the tropical mountains, such as those

where the Popoluca people manage their milpas in the Biosphere Reserve of Los Tuxtlas, Mexico

(Sangabriel-Conde et al., 2014). Despite this limitation, more than 18 local maize landraces have

been developed in this region and are still cultivated in very low input subsistence agricultural

systems (Negrete-Yankelevich et al., 2013b) Our research has previously demonstrated that the

Page 44: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

44

loss of cultivated plant species in Popoluca milpas may have a negative impact on the ability of

the mycorrhizal community to colonize maize roots, as well as reducing the availability of P

(Negrete-Yankelevich et al., 2013a).

In maize, mycorrhizal symbiosis provides up to 60% of the total P requirement (Nurlaeny et al.,

1996). However, AMF species that colonize the roots of maize or soybean exhibit strong host

specificity (Gosling et al., 2013). Landraces and hybrids differ in terms of colonization

percentage (An et al., 2010) and P absorption capacity (Ortas and Akpinar, 2011; Tchameni et al.,

2009), and different AMF species exhibit functional diversity in terms of colonization, maize

growth, Pi uptake as well as Pi transporter gene expression (Hao et al., 2008; Klironomos and

Hart, 2002; Smith et al., 2000; Tian et al., 2013); nevertheless, increasing the diversity of AMF in

maize roots through co-inoculation leads to higher Pi uptake in shoots (Tian et al., 2013). It has

been suggested that if a plant is colonized by several species of AMF that are complementary in

their functions (e.g. the uptake of nutrients from different soil pools), they may together prove to

be more beneficial to the plant than colonization by any of these species individually (Alkan et

al., 2004; Gustafson and Casper, 2006; Koide, 2000). These findings suggest that different maize

landraces or hybrids exposed to a diverse native AMF inoculum may associate with specific

assemblages of AMF, which could lead to differences in plant Pi uptake.

In a previous study we evaluated the response of four Popoluca native maize landraces, and the

recently introduced hybrid Texcoco, to the presence of native AMF in conditions of low and

moderate P input (5 and 65 mg kg-1) (Sangabriel-Conde et al., 2014). The native landrace Black

presented colonization percentages (75–80 %) that were among the highest reported to date for

native maize (Hess et al., 2005; Martinez and Johnson, 2010), as well as the highest shoot P

uptake compared with the hybrid Texcoco and the Yellow, White and Red landraces. The hybrid

Texcoco, despite showing a high mycorrhizal dependency, exhibited a very low capability to

acquire P in low conditions of this nutrient. In contrast, the Black landrace appears to have

adaptive mechanisms by which it efficiently obtains P, either directly or through mycorrhizal

symbiosis (Sangabriel-Conde et al., 2014). We postulated that these differences in response to

AMF colonization among local maize landraces and the hybrid from the Popoluca milpas are

related to differences in the AMF consortia that colonize each maize type. Since AMF species

exhibit functional diversity, maize landraces that are capable of higher Pi uptake may be

Page 45: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

45

interacting with a richer fungal community (Tian et al., 2013). In this study, we hypothesize that

(1) maize types will differ in terms of the AMF community colonizing their roots, (2) the roots of

the Black landrace will be colonized by the highest richness of AMF and the Texcoco hybrid by

the lowest, and (3) moderate P fertilization will reduce AMF richness in all the maize types,

given the higher possibility for the plant to obtain Pi through the non-mycorrhizal route. To the

best of our knowledge, no previous study has tested the effect of indigenous AMF communities

on several native maize landraces and under different conditions of P availability.

Materials and methods

Extraction of AMF spores from soil samples

Soil samples were taken from nine Popoluca milpas in the communities of Ocotal Chico and

Mazumiapan of the Sierra de Santa Marta in Los Tuxtlas, Veracruz, Mexico. AMF spores were

extracted from a compound soil sample using the wet sieving and decanting technique

(Sieverding, 1991). Briefly, material collected on a 53 µm sieve was dried on plastic trays in the

greenhouse for three days at 28-30ºC and subsequently used as an inoculum in a greenhouse

experiment (full sampling and extraction details described in Sangabriel-Conde et al. (2014).

Greenhouse experiments

A complete factorial experimental design was implemented with maize type, inoculation and P

fertilization as factors. The most common maize types in Popoluca milpas were used: the local

maize landraces Yellow (Pu´uch mok), White (Poop mok), Black (Luk mok), and Red (Tsabats

mok) and the introduced hybrid Texcoco (S-8929, CIMMYT). Two P levels were chosen based

on the current levels of P availability in the milpas with (moderate P: 65 mg kg-1) or without (low

P: 5 mg kg-1) fertilization regimes. Two mycorrhizal treatment levels were applied (inoculated vs.

non-inoculated). The experiment included five replicate plants per combination of treatment

levels. Three plants were randomly selected from each of the inoculated combinations for

molecular analysis of AMF diversity.

Page 46: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

46

To set up the experiment, seeds from each type of maize, belonging to the same plots from which

the inoculum was extracted, were disinfected with a 10% NaOCl solution for 15 min, rinsed with

distilled water and germinated for three days in Petri dishes with moist filter paper at 28ºC in a

natural convection oven. Germinated seeds of each maize type with a radicle of length 1-2 cm

were sown in 20 liter plastic containers, with washed and sterilized silica sand as a substrate. Two

maize seeds were sown in each container and 150 g of inoculum (approx. 1,100 spores) was

applied to the pots assigned for inoculation. The containers were randomly organized on the

greenhouse tables. One week afterwards, thinning was carried out, leaving one plant per

container. Each week, 150 ml of the corresponding dose of soluble NaH2PO4·H2O was applied to

each container. In addition, base nutrients were added weekly by applying 200 ml of Long

Ashton solution, without P (Hewitt, 1966). Irrigation was carried out using potable water.

Root samples

Three to five root pieces (0.5 to 1 cm in length) were taken from each of the 30 selected plants

(three plants × five maize types × two P levels) and prepared for use in the molecular analysis.

Roots from the three replicate plants were pooled and examined under the microscope. Segments

colonized by AMF were cut into pieces and collected in a single 1.5 mL tube where they were

crushed in DNAzol buffer with a pestle. Genomic DNA was extracted in DNAzol® following the

instructions of the manufacturer.

Molecular diversity analysis

Genomic DNA was used to conduct molecular identification using the polymerase chain reaction

(PCR) technique. Concentration of DNA in the samples was estimated by the Quant-it DNA

Quantitation kitTM (Cat. No. Q32854; Quant-it, Oregon, USA), following the manufacturer

instructions.

Oligonucleotides used for the nested PCR were previously described by Krüger et al., (2009). For

the first PCR reaction, the mixture contained 1 μL of eluted genomic DNA (100 ng), 1x reaction

buffer, 1.5 mM MgCl2, 0.2 μM of each primer mix SSU Af1-2 (SSU Af1: 5´ TGG GTA ATC

Page 47: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

47

TTT TGA AAC TTY A 3´; SSUAf2: 5´ TGG GTA ATC TTR TGA AAC TTC A 3´) and

LSUmAr1-4 (LSUmAr1: 5´ GCT CAC ACT CAA ATC TAT CAA A3´; LSUmAr2: 5´ GCT

CTA ACT CAA TTC TAT CGA T 3´; LSUmAr3: 5´ T GCT CTT ACT CAA ATC TAT CAA A

3´; LSUmAr4: 5´ GCT CTT ACT CAA ACC TAT CGA 3´), 0.2 mM each of deoxynucleotide

triphosphates (dNTPs), and 1.0 U Platinum® Taq DNA polymerase (Invitrogen/Life

Technologies, Cat. No. 10966-030, Eugene, OR, USA), in a total reaction volume of 50 μL. The

DNA templates were first subjected to an initial denaturation step at 94°C for 2 min, followed by

35 cycles of a 30 s denaturation step at 94°C, 30 s annealing step at 55°C, and a 2 min extension

step at 72°C. Finally, there was a 10 min extension at 72°C. The PCR was performed using a

MultiGene Thermal Cycler (Model TCP600-G, Edison, NJ, USA). The first PCR product was

1800 bp and was diluted 1:10 with ultrapure water. The dilutions were used as template DNA in a

second PCR reaction, performed using the primer mixtures SSUmCf1-3 (SSUmCf1: 5´ T CGC

TCT TCA ACG AGG AAT C 3´; SSUmCf2: 5´ TAT TGT TCT TCA ACG AGG AAT C 3´;

SSUmCf3 5´ TAT TGC TCT TNA ACG AGG AAT C 3´) and LSUmBr1-5 (LSUmBr1: 5´ DAA

CAC TCG CAT ATA TGT TAG A 3´; LSUmBr2: 5´ AA CAC TCG CAC ACA TGT TAG A

3´; LSUmBr3: 5´ AA CAC TCG CAT ACA TGT TAG A 3´; LSUmBr4: 5´ AAA CAC TCG

CAC ATA TGT TAG A 3´; LSUmBr5: 5´ AA CAC TCG CAT ATA TGC TAG A 3´) to obtain

a 1500 bp PCR product. The same PCR conditions were used, except that the annealing

temperature was reduced to 50ºC. Products were visualized by electrophoresis on a 1% agarose

gel in 0.5x Tris-acetate-EDTA (TAE) buffer and stained with ethidium bromide, using a

Chemidoc photodocumentation system (Biorad, Philadelphia, PA, USA) to verify the product

size.

Amplification bands of 1500 bp for SSUmCf/LSUmBr were cut from the gel and DNA was

extracted with the QIAquick Gel Extraction kit, following the instructions of the manufacturer

(Cat. 28704, Qiagen, Oregon, USA).

Page 48: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

48

PCR cloning

The purified 1500 bp PCR products were cloned in pGEM-T Easy Vector System II kit

(Promega, Cat No. A3600, Madison, WI, USA) as described by the manufacturer. Ligation

reactions (10 µl) were incubated at room temperature overnight. Transformation of circularized

plasmids into E. coli JM-109 competent cells was performed following the procedure described

by the supplier. Colonies were selected to take 96 clones per sample. Plasmid minipreps were

made following the manufacturer’s instructions (QIAprep® Spin Miniprep Kit, Cat. No. 27106).

The plasmid DNA was stored at -20°C for subsequent analysis. To verify clone insertion into the

vector, EcoRI restriction digests were performed (Cat. No. 15202013, NEB, Carlsbad, CA, USA)

for each sample. DNA from clones containing the correct length of inserts was quantified using

the Quant-it DNA Quantitation kitTM (Cat. No. Q32854, Qiagen, Oregon, USA) as described by

the manufacturer.

Sequencing analysis and comparison of sequences

The clones were sequenced with the help of an ABI Prism 3100 Automated Sequencer at the

National Laboratory of Genomics (Langebio, CINVESTAV-Irapuato, Mexico). Sequencing was

unidirectional and conducted using the T7 primer. To identify the DNA sequences obtained, the

software DNASTAR was first used to eliminate vector sequences. Sequences were screened for

chimeras using the CHIMERA_CHECK program, available from the Ribosomal Database

Project II (RDP II) website. All chimeric sequences were discarded. The sequences were then

compared with the existing sequences in Genbank from the National Center for Biotechnology

Information (NCBI) (http://www.ncbi.nlm.nih.gov/) using the BLAST-N program and the Mega

Blast algorithm. Sequences that did not belong to Glomeromycota were discarded. The partial

rDNA gene sequences of Glomeromycota produced by this study have been deposited in the

NCBI Genbank database under accession numbers KM041704 to KM042030.

The diversity of Glomeromycota associated with maize root samples was examined by

performing a rarefaction analysis. For this process, sequences were aligned using the Clustal-W

program (Thompson et al., 1994). The distance matrix was calculated with the Dnadist Phylip

Program (v. 3.69), using the Jukes-Cantor substitution model. The sequences were grouped into

operational taxonomic units (OTUs) with the Cluster program using the Average Neighbor

Page 49: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

49

algorithm from the Mothur program v. 1.20.1 (http://www.mothur.org) (Schloss et al., 2009). The

OTUs were defined as a group of sequences sharing at least 97% pairwise similarity.

Representative sequences of these OTUs and 21 reference sequences from public databases were

used to construct a phylogenetic tree. Phylogenetic analyses were performed by the neighbor-

joining algorithm (Saitou and Nei, 1987), with the Kimura 2-parameter substitution model

(Kimura, 1980) and bootstrapping of 1,000 replicates in the Molecular Evolutionary Genetics

Analysis MEGA 5 software (Tamura et al., 2011). Rhodotorula hordea (Basidiomycota) was

used as the outgroup (Krüger et al., 2012).

A generalized linear modelling procedure was used to determine whether P level and maize type

could explain the number of OTUs found. We included the number of sequences in the model as

a first explanatory variable, since the number of sequences extracted per combination of

treatments was variable. In this model, a Poisson error distribution and a log link function were

used. To determine the significance of the contribution of each explanatory variable to the model,

we used a deviance analysis based on the Chi-square (X2) statistic.

Results

The level of Glomeromycota diversity represented in this study was estimated to be 84 OTUs, 65

singletons (containing only one sequence per OTU) and 19 non-singleton OTUs (≥2 sequences

per OTU). Rarefaction analysis revealed that the species sampling effort curves calculated with

95 and 97% sequence identity had a positive slope, although almost reaching a plateau, showing

a tendency to approach saturation (Figure 1). While a larger sequencing effort may be needed to

cover the entire diversity, not many more OTUs would be expected.

All rhizospheres showed association to AMF regardless of maize type or P treatment, AMF

colonization ranged from 45 to 80% (see Sangabriel et al., 2014). Plants that were not inoculated

showed no colonization. Of the 327 Glomeromycota sequences analyzed, 95.1% belonged to the

order Glomerales, followed in abundance by Diversisporales (4.59%) and Archeosporales

(0.31%). All the identified Glomeromycota sequences shared a high similarity (92-100%) with

sequences previously deposited at Genbank. The order Glomerales included many sequences that

were not allocated to any species (33.94% uncultured Glomus; Glomus sp. 0.61%), as well as

Page 50: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

50

sequences that were identified as two Glomus species (G. versiforme [7.95%] and G. aggregatum

[0.31%]), two Rhizophagus species (R. intraradices [26.61%] and R. irregularis [24.46%]) and

Clareidoglomus claroideum (1.22%). Diversisporales, the second most abundant order, consisted

exclusively of Acaulospora mellea (4.59%). The order Archaeosporales consisted of the species

Archaeospora schenkii (0.31%).

A neighbor-joining tree was constructed using 22 sequences of representative OTUs of

Glomeromycota sequences obtained from the maize roots in this study and 21 reference

sequences downloaded from GenBank. The sequence groups covered four families of

Glomeromycota: Glomeraceae, Acaullosporaceae, Archaeosporaceae and Claroideoglomeraceae

(Figure 2). Rhizophagus intraradices, R. irregularis and uncultured Glomus were the groups that

were found in all the maize types (Table 1). OTU 1 (uncultured Glomus), represented by 43

sequences, was the most abundant and was present in all five types of maize and in eight out of

ten rhizosphere samples.

We found very few cases of fungal species exclusively associated to a maize type.

G. versiforme (26 sequences) and Glomus sp. (2 sequences) colonized Red maize only. A single

sequence each of A. schenkii and of Glomus aggregatum was found in Black and White maize,

respectively. However, different maize types were colonized by different AMF communities

(Figure 3). Four to 28 OTUs were associated with each combination of treatments and 10 to 38

OTUs were found per maize type (Tables 1 and 2). Some OTUs were present in four maize types

(OTUs 3 and 5, both identified as R. intraradices), three maize types (OTUs 2 [Rhizophagus

intraradices] and 7 [Uncultured Glomus]), or two maize types (OTUs 9 [Rhizophagus

irregularis], 10, [Acaulospora mellea], 11 [Uncultured Glomus] and 13 [Claroideoglomus

claroideum]). All other OTUs (75 out of 84) were present in a single rhizosphere sample at a

frequency of 1 to 23 sequences (Table 1). Singletons belonged to taxonomic groups already

represented in the most abundant OTUs (R. intraradices, R. irregularis, Glomus versiforme and

uncultured Glomus), except for the individual sequences identified as Archaeospora schenkii

(OTU 42) and Glomus aggregatum (OTU 59; Table 1).

Page 51: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

51

All five maize types presented a higher number of sequences (Table 1) and OTUs (Table 2) in

moderate P compared to the low P treatment. Black maize was colonized by the highest number

of OTUs. However, there was a strong positive correlation between the numbers of sequences

and OTUs extracted per sample (Pearson’s correlation of 0.5). For this reason, P treatment and

maize type had no explanatory power in the generalized linear model (X2(1,7)=5.23, P> 0.1;

X2(4,3)=2.35, P> 0.1, respectively) once the effect of the number of sequences was considered as a

covariate (X2(1,8)=5.23, P< 0.001). Nevertheless, we did find a different community composition

in each P treatment (Figure 3). Of the 46 OTUs that were identified to species, 34 were

singletons. Of these, 11 occurred in the low and 23 in the moderate P treatment. Glomus

aggregatum and G. versiforme only occurred under moderate P, while Archaeospora trappei was

only detected under low P. Uncultured Glomus and Acaulospora mellea were dominant under

low P, while their proportion was reduced under moderate P. In contrast, the proportion of R.

irregularis and G. versiforme increased under moderate P (Figure 3). Other taxa seemed

unaffected by P fertilization. The proportion of Rhizophagus intraradices was generally high in

both P treatments.

Discussion

Previous studies evaluating the diversity of indigenous AMF in maize rhizosphere have been

conducted using a single variety of maize (Sasvári et al., 2011) or hybrid genotypes (Oliveira et

al., 2009; Picard and Bosco, 2008). To our knowledge, this study shows for the first time the

differential composition of AMF communities colonizing local maize landraces and a hybrid

when exposed to a mixed inoculation of native AMF.

We found twice the number of AMF OTUs (84) than has been reported for maize in similar

studies [33 by Moebius-Clune et al. (2013) and 22 by Sasvári et al. (2011)]. Three of the four

orders that comprise the current AMF taxonomic classification were found in our maize

rhizospheres (Table 1). This is consistent with the reported rarity of Paraglomeraceae in

agricultural soils (Alguacil et al., 2008). In this study, as in many others performed in tropical

forests (Husband et al., 2002; Onguene and Kuyper, 2001; Wubet et al., 2003), agricultural sites

(Daniell et al., 2001; Hijri et al., 2006) and the maize rhizosphere (Daniell et al., 2001; Jansa et

Page 52: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

52

al., 2003; Sasvári et al., 2011), the order Glomerales was the most abundant and was present in

all five maize types. The dominance of Glomerales is thought to be due to their known

adaptations to survive under adverse soil conditions, such as the acid and nutrient deficient soils

found in the Popoluca milpas (Daniell et al., 2001; Oehl et al., 2003).

Although AMF have traditionally been thought to be non-specific, there is evidence suggesting

that some symbionts may exhibit preference (Hendrix et al., 1995). In our study, we consistently

found little evidence of either exclusive association or complete promiscuity. Only two identified

species (R. intraradices and R. irregularis) were found in all maize types. Rhizophagus

intraradices is the sequence type most commonly identified in field studies (Börstler et al., 2010;

Oehl et al., 2010). Two OTUs (identified as Glomus sp. and G. versiforme) were present only in

the Red landrace. Glomus aggregatum and Archaeospora schenkii each had a single sequence in

the roots of the Black and White maize, respectively. The occurrence of Archaeospora sp. in the

maize rhizosphere soil has been rarely reported (Oliveira et al., 2009; Sasvári et al., 2011) and

Archaeospora schenkii has never been previously reported in roots of maize inoculated with

native AMF inoculum. Of all the OTUs found for Acaullospora mellea, only one was found

associated with the White maize landrace but all were found to be associated with the hybrid

Texcoco. The Acaulosporaceae group is reported to be particularly well adapted to interaction

with the roots of hybrid maize (Hijri et al., 2006; Picard and Bosco, 2008).

In this study, diverse AMF groups simultaneously colonized all of the landraces and the hybrid

maize, as is often the case for most plants (Gollotte et al., 2004; Helgason et al., 2002; van

Tuinen et al., 1998). However, as expected, the identity and abundance of OTUs associated with

each maize type and level of P were not the same. As hypothesized, the most efficient maize type

in terms of P acquisition (Black) (Sangabriel-Conde et al., 2014) was also colonized by the

highest number of OTUs, regardless of P treatment. The hybrid Texcoco was consistently

colonized by the second lowest number of OTUs. However, the results for the Yellow landrace

were not consistent with this trend; while this landrace presented the second highest Pi uptake

and colonization (Sangabriel-Conde et al., 2014), its roots presented the lowest number of OTUs.

This may be due to differences in the strategies for establishment of mycorrhizal symbiosis that

have evolved in each maize genotype. It is known that the presence of AMF species may depend

upon the root exudations or signaling of each maize genotype under P stress (Oliveira et al.,

Page 53: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

53

2009). Plants grown in P-deficient soils can exudate functional substances, such as phosphatases,

nucleases, organic acids and phenolic compounds that can stimulate the development of

mycorrhizal associations with particular AMF species (Bayuelo-Jiménez et al., 2011; Javot et al.,

2007; Machado and Furlani, 2004; Zhu et al., 2005) and these root exudates are crucial

determinants of rhizosphere microorganism diversity (Barea et al., 2005; Marschner, 1998). For

the Black maize landrace, this strategy may involve increasing the diversity of AMF in its roots

to achieve higher Pi uptake (Tian et al., 2013), while for the Yellow landrace it may consist of the

selection of more efficient fungal genotypes (Thonar et al., 2011).

Contrary to expectation, more OTUs in general and more identified singletons were found in the

moderate than in the low P treatment, suggesting that low Pi in milpas is limiting symbiotic

interactions. However, for all native landraces (except Yellow), the uncultured Glomus was more

abundant under low P treatment than under moderate fertilization. For the Texcoco hybrid, the

pattern was inverse and similar to the Yellow landrace. It is worth noting that only between 0 and

20 % of OTUs were conserved between P treatments for each landrace. This result is consistent

with the observation that indigenous assemblages of AMF found in plant roots are specific to the

local soil environment, at community composition scale and even in terms of the type of

sequences within the OTUs (Jie et al., 2013). Our results therefore suggest that a high OTU

richness of AMF in milpas is related to the presence of several native maize landraces.

Substitution for a single hybrid may reduce, while moderate P fertilization may increase AMF

community richness at the root level. However, the very high turnover of OTUs found in our

experiment, together with the lack of replication at the level of treatment interactions, limit our

ability to infer the combined effect of P fertilization and maize type on AMF diversity.

Furthermore, there was a high correlation in our study between the number of sequences

extracted and the number of OTUs, and it is therefore not possible to entirely disregard the

contribution of this artefact to our OTU richness results. Nevertheless, our results with the Black

landrace are consistent with the work by Tian et al. (2013), who found that an experimental

increase in diversity of AM fungi in maize roots led to higher expression of the mycorrhizal

inducible gene ZEAma:Pht1;6 and increased Pi uptake in shoots. Moreover, the higher number of

OTUs under moderate P conditions is consistent with our previous observation that low P was

limiting. AMF symbiotic interactions under moderate P fertilization also increased colonization

in all maize types except the White landrace (Sangabriel-Conde et al., 2014).

Page 54: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

54

The present study confirms and extends previous findings that Glomerales fungi predominate in

the colonization of maize roots. Our results suggest that maize genotypes may have a strong

influence on the structure of the AMF community that colonizes the roots, since the identity and

abundance of OTUs associated with each maize type and P level differed greatly. Reduction of

the maize landrace diversity in the milpas may reduce native AMF community richness at root

level. In addition, a very low availability of P in soils may limit the genetic richness of the AMF

colonizing each root system. Findings for the Black maize landrace support the previous

observation that high P uptake ability may be correlated with AMF community richness in the

roots, which further demonstrates the genetic and cultural importance of this landrace for the

Popoluca and for the world.

Acknowledgements

We are grateful to Isis de la Rosa and Omar Lázaro for their invaluable help in the field; to the

staff of Laboratorio de Organismos Benéficos of the Faculty of Agronomy of the Universidad

Veracruzana for provision of experimental facilities; to the staff of Laboratorio de Ecología

Molecular de la Rizósfera of Instituto Politécnico Nacional-CIIDIR-Sinaloa for support in

molecular analysis. This study was financed by the BioPop project (FOMIX 94427, CONACYT-

Veracruz) and by the project ECOS-ANUIES M08A

Page 55: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

55

Figure 1. Change in mycorrhizal OTU richness with the cumulative number of sequences (sampling effort in all maize types), obtained through rarefaction analysis where percentage indicates the homology level at which sequences were compared.

Page 56: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

56

Figure 2. Phylogenetic tree displaying the relationship of AMF sequences recovered from maize roots in the present study (bold type) and 21 reference sequences. Bootstrap values are shown on the lines. Reference sequences are labeled with the name provided by the database entry and the corresponding accession number. Phylogenetic group and subgroup assignments are shown on the right side of the tree (the total number of sequences belonging to each specific OTU is given in Table 1).

Page 57: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

57

Figure 3. Percentage of AMF sequences pertaining to species in the different experimental treatments. Total number of sequences is shown above each bar. B = Black, Y = Yellow, R = Red, W = White, T = Texcoco hybrid maize types. Numbers in subscript denote maize fertilization treatments at 5 and 65 mg kg-1 Pi

46 77 13 25 19 48 19 53 13 14

Page 58: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

58

Table 1. Abundance of AMF sequences recovered from maize roots. Classified according to taxonomic affiliation, number assigned to OTU, maize type and phosphate treatment. B = Black, Y = Yellow, R = Red, W = White, T = Texcoco hybrid maize types. Numbers in subscript denote maize fertilization treatments at 5 and 65 mg kg-1 Pi.

Order Molecular ID and

OTU assigned number

B5 B65 Y5 Y65 R5 R65 W5 W6

5 T5 T65 Total No.

of sequence

s

Glomerales Uncultured Glomus (1, 7, 11, 12, 14, 22, 23, 25, 27, 29, 32-39, 43, 46, 48, 50, 51, 53, 54, 56-58, 60, 63, 64, 66, 68)

32 12 10 21 5 3 15 7 1 5 111

Glomerales Rhizophagus intraradices (2) - - - - - 7 - 32 3 - 42

Glomerales Rhizophagus intraradices (3) 10 - - 2 9 - - - - 4 25

Glomerales Glomus versiforme (4) - - - - - 23 - - - - 23

Glomerales Rhizophagus intraradices (5) 1 5 - - - 9 2 - - 1 18

Glomerales Rhizophagus irregularis (6) - 19 - - - - - - - - 19

Glomerales Rhizophagus irregularis (8) - 15 - - - - - - - - 15

Glomerales Rhizophagus irregularis (9) - 14 1 - - - - - - 15

Diversisporales Acaulospora mellea (10) - - - - - - - 6 7 - 13

Glomerales Claroideoglomus claroideum (13) 2 - - - - - - - - 1 3

Glomerales Rhizophagus intraradices (15) - - 3 - - - - - - - 3

Glomerales Rhizophagus irregularis (16) - 2 - - - - - - - - 2

Glomerales Glomus sp. (17) - - - - 1 1 - - - - 2

Glomerales Rhizophagus intraradices (18) - - - - - - - - - 2 2

Glomerales Rhizophagus irregularis (19) - 2 - - - - - - - - 2

Glomerales Rhizophagus intraradices (20) - - - - - - - 1 - - 1

Glomerales Rhizophagus irregularis (21) - 1 - - - - - - - - 1

Glomerales Rhizophagus intraradices (24) - - - - - - - 1 - - 1

Glomerales Rhizophagus irregularis (26) - 1 - - - - - - - - 1

Glomerales Rhizophagus intraradices (28) - 1 - - - - - - - - 1

Glomerales Glomus clarum (29) 1 - - - - - - - - - 1

Glomerales Rhizophagus irregularis (30) - 1 - - - - - - - - 1

Glomerales Rhizophagus intraradices (31) - - - - 1 - - - - - 1

Glomerales Rhizophagus intraradices (40) - - - - 1 - - - - - 1

Page 59: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

59

Glomerales Rhizophagus irregularis (41) - 1 - - - - - - - - 1

Archaeosporales Archaeospora schenkii (42) 1 - - - - - - - - - 1

Diversisporales Acaulospora mellea (44) - - - - - - - - 1 - 1

Diversisporales Acaulospora mellea (45) - - - - - - - - 1 - 1

Glomerales Rhizophagus intraradices (49) - - - - - - 1 - - - 1

Glomerales Rhizophagus intraradices (52) - - - - - - - 1 - - 1

Glomerales Rhizophagus intraradices (55) - - - - - - - 1 - - 1

Glomerales Glomus clarum (56) 1 - - - - - - - - - 1

Glomerales Glomus aggregatum (59) - - - - - - - 1 - - 1

Glomerales Rhizophagus intraradices (61) - 1 - - - - - - - - 1

Glomerales Rhizophagus irregularis (62) - 1 - - - - - - - - 1

Glomerales Claroideoglomus claroideum (65) - - - 1 - - - - - - 1

Glomerales Rhizophagus irregularis (67) - - - - - 1 - - - - 1

Glomerales Rhizophagus irregularis (69) - 1 - - - - - - - - 1

Glomerales Glomus versiforme (72) - - - - - 1 - - - - 1

Glomerales Rhizophagus intraradices (73) - - - - 1 - - - - - 1

Glomerales Rhizophagus intraradices (75) - - - - - - - 1 - - 1

Glomerales Rhizophagus irregularis (76) - - - - - - 1 - - - 1

Glomerales Rhizophagus irregularis (77) - - - - - 1 - - - - 1

Glomerales Glomus versiforme (78) - - - - - 1 - - - - 1

Glomerales Rhizophagus intraradices (79) - - - - - - - - - 1 1

Glomerales Rhizophagus intraradices (80) - - - - - - - 1 - - 1

Glomerales Rhizophagus intraradices (81) - - - - 1 - - - - - 1

Glomerales Rhizophagus intraradices (82) - - - - - - - 1 - - 1

Glomerales Glomus versiforme (83) - - - - - 1 - - - - 1

Total 46 77 13 25 19 48 19 53 13 14 327

Page 60: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

60

Table 2. Number of OTUs associated with the roots of different maize types and under two phosphorus levels.

Maize type Number of OTUs associated with maize roots

Low P

(5 mg kg-1)

Moderate P

(65 mg kg-1)

Pooled Present in both conditions (%)

Yellow 4 8 10 20.0

White 11 17 27 3.7

Black 11 28 38 2.6

Red 9 10 17 11.7

Hybrid Texcoco 5 7 12 0

Page 61: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

61

References

Alguacil, M.M., Lumini, E., Roldan, A., Salinas-Garcia, J.R., Bonfante, P., Bianciotto, V., 2008.

The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops.

Ecol Appl 18, 527-536.

Alkan, N., Gadkar, V., Coburn, J., Yarden, O., Kapulnik, Y., 2004. Quantification of the

arbuscular mycorrhizal fungus Glomus intraradices in host tissue usingreal time polymerase

chain reaction. New Phytol 61, 877-885.

An, G.H., Kobayashi, S., Enoki, H., Sonobe, K., Muraki, M., Karasawa, T., Ezawa, T., 2010.

How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based

on maize (Zea mays) germplasms. Plant Soil 327, 441-453.

Antunes, P.M., Koch, A.M., Morton, J.B., Rillig, M.C., Klironomos, J.N., 2011. Evidence for

functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New

Phytol 189, 507-514.

Barea, J.M., Pozo, M.J., Azcón, R., Azcón-Aguilar, C., 2005. Microbial co-operation in the

rhizosphere. J Exp Bot 417, 1761-1778.

Bayuelo-Jiménez, J.S., Gallardo-Valdéz, M., Pérez-Decelisa, V.A., Magdaleno-Armasa, L.,

Ochoac, I., Lynch, J.P., 2011. Genotypic variation for root traits of maize (Zea mays L.) from the

Purhepecha Plateau under contrasting phosphorus availability. Field Crop Res 121, 350-362.

Bhadalung, N.N., Suwanarit, A., Dell, B., Nopamornbodi, O., Thamchaipenet, A., Rungchuang,

J., 2005. Effects of long-term NP-fertilization on abundance and diversity of arbuscular

mycorrhizal fungi under a maize cropping system. Plant Soil 270, 371-382.

Börstler, B., Thiéry, O., Sykorová, Z., Berner, A., Redecker, D., 2010. Diversity of mitochondrial

large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and

two semi-natural grasslands. Mol Ecol 19, 1497-1511.

Clapp, J., Young, J., Merryweather, J., Fitter, A.H., 1995. Diversity of fungal symbionts in

arbuscular mycorrhizas from natural community. New Phytol 130, 259-265.

Page 62: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

62

Daniell, T.J., Husband, R., Fitter, A.H., Young, J.P.W., 2001. Molecular diversity of arbuscular

mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36, 203-209.

FAO, 2006. Conservation agriculture homepage (http://www.fao.org/ag/ca/).

Franke-Snyder, M., Douds, D.D., Galvez, L., Phillips, J.G., Wagoner, P., Drinkwater, L., Morton,

J.B., 2001. Diversity of communities of arbuscular mycorrhizal (AM) fungi present in

conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16,

35-48.

Gollotte, A., van Tuinen, D., Atkinson, D., 2004. Diversity of mycorrhizal fungi colonizing roots

of grass species Agrostis capillaries and Lolium perenne in a field experiment. Mycorrhiza 14,

111-117.

Gosling, P., Mead, A., Proctor, M., Hammond, J.P., Bending, G.D., 2013. Contrasting arbuscular

mycorrhizal communities colonizing different host plants show a similar response to a soil

phosphorus concentration gradient. New Phytol 198, 546-556.

Gustafson, D.J., Casper, B.B., 2006. Differential host plant performance as a function of soil

arbuscular mycorrhizal fungal communities: experimentally manipulating co-occurring Glomus

species. Plant Ecol 183, 257-263.

Hao, L., Zhang, J., Christie, P., Li, X., 2008. Response of two maize inbred lines with contrasting

phosphorus efficiency and root morphology to mycorrhizal colonization at different soil

phosphorus supply levels. J Plant Nutr 31, 1059-1073.

Helgason, T., Fitter, A., 2009. Natural selection and the evolutionary ecology of the arbuscular

mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60, 2465-2480.

Helgason, T., Merryweather, J.W., Denison, J., Wilson, P., Young, J.P.W., Fitter, A.H., 2002.

Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants

from a temperate deciduous woodland. J Ecol 90, 371-384.

Hendrix, W., GuoB, Z., An, Z.Q., 1995. Divergence of mycorrhizal fungal communities in crop

production systems. Plant Soil 170, 131-140.

Page 63: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

63

Hess, J.L., Shiffler, A.K., Jolley, V.W., 2005. Survey of mycorrhizal colonization in native,

open-pollinated, and introduced hybrid maize in villages of Chiquimula, Guatemala. J Plant Nutr

28, 1843-1852.

Hewitt, E.J., 1966. Sand and water culture methods used in the study of plant nutrition.

Agricultural Bureau of Horticulture Technical Communication, 22.

Hijri, I., Sýkorová, Z., Oehl, F., Ineichen, K., Mäder, P., Wiemken, A., Redecker, D., 2006.

Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity.

Mol Ecol 15, 277-289.

Husband, R., Herre, E.A., Young, P.W., 2002. Temporal variation in the arbuscular mycorrhizal

communities colonizing seedlings in a tropical forest. FEMS Microbiol Ecol 42, 131-136.

Jansa, J., Mozafar, A., Anken, T., Ruh, R., Sanders, I.R., Frossard, E., 2002. Diversity and

structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12, 225-234.

Jansa, J., Mozafar, A., Kuhn, G., Anken, T., Ruh, R., Sanders, I.R., Frossard, E., 2003. Soil

tillage affects the community structures of mycorrhizal fungi in maize roots. Ecol Appl 13, 1164-

1176.

Javot, H., Pumplin, N., Harrison, M.J., 2007. Phosphate in the arbuscular mycorrhizal symbiosis:

transport properties and regulatory roles. Plant Cell Environ 30, 310-322.

Jie, W., Liu, X., Cai, B., 2013. Diversity of rhizosphere soil arbuscular mycorrhizal fungi in

various soybean cultivars under different continuous cropping regimes. PLoS One 8, 872 -898.

Johnson, D., Vandenkoornhuyse, P., Leake, J.R., Gilbert, L., Booth, R.E., Grime, J.P., Young,

P.W., Read, D.J., 2003. Plant communities affect arbuscular mycorrhizal fungal diversity and

community composition in grassland microcosm. New Phytol 161, 503-515.

Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions

through comparative studies of nucleotide sequences. J Mol Evol 16, 111-120.

Klironomos, J.N., 2003. Variation in plant response to native and exotic arbuscular mycorrhizal

fungi. Ecology 84, 2292-2301.

Page 64: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

64

Klironomos, J.N., Hart, M.M., 2002. Colonization of roots by arbuscular mycorrhizal fungi using

different sources of inoculum. Mycorrhiza 12, 181-184.

Koide, R.T., 2000. Functional complementarity in the arbuscular mycorrhizal symbiosis. New

Phytol 147, 233-235.

Krüger, M., Krüger, C., Walker, C., Stockinger, H., Schüssler, A., 2012. Phylogenetic reference

data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species-

level. New Phytol 193, 970-984.

Krüger, M., Stockinger, H., Krüger, C., Schüssler, A., 2009. DNA-based species level detection

of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183,

212-223.

Machado, C.T., Furlani, A.M.C., 2004. Kinetics of phosphorus uptake and root morphology of

local and improved varieties of maize. Sci Agric 61, 69-76.

Maherali, H., Klironomos, J.N., 2007. Influence of phylogeny on fungal community assembly

and ecosystem functioning science. Science 316, 1746-1748.

Marschner, H., 1998. Role of root growth, arbuscular mycorrhizal, and root exudates for the

efficiency in nutrient acquisition. Field Crop Res 56, 203-207.

Martinez, N., Johnson, N., 2010. Agricultural management influences propagule densities and

functioning of arbuscular mycorrhizas in low and high input agroecosystems in arid

environments. Appl Soil Ecol 46, 300-306.

Matsuoka, Y., Vigouroux, Y., Goodman, M.M., Sanchez, J., Buckler, G.E., Doebley, J., 2002. A

single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad

Sci USA 99, 99:6080–6084.

McGonigle, T.T., Fitter, A.H., 1990. Ecological specificity of vesicular-arbuscular mycorrhizal

association. Mycol Res 94, 120-122.

Page 65: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

65

Moebius-Clune, D.J., Moebius-Clune, B.N., van Es, H.M., Pawlowska, T.E., 2013. Arbuscular

mycorrhizal fungi associated with a single agronomic plant host across the landscape:

Community differentiation along a soil textural gradient. Soil Biol Biochem 64, 191-199.

Negrete-Yankelevich, S., Maldonado-Mendoza, I.E., Lázaro Castellanos, J.O., Sangabriel-Conde,

W., Martínez-Álvarez, J.C., 2013a. Arbuscular mycorrhizal root colonization and soil P

availability are positively related to agrodiversity in Mexican maize polycultures. Biol Fert Soils

49, 201-212.

Negrete-Yankelevich, S., Porter-Bolland, L., Blanco-Rosas , J.L., Barois, I., 2013b. Historical

roots of the spatial, temporal, and diversity scales of agricultural decision-making in Sierra de

Santa Marta, Los Tuxtlas. Environ Manage 52, 45-60.

Nurlaeny, N., Marschner, H., George, E., 1996. Effects of liming and mycorrhizal colonization

on soil phosphate depletion and phosphate uptake by maize (Zea mays L.) and soybean (Glycine

max L.) grown in two tropical acid soils. Plant Soil 181, 275-285.

Oehl, F., Laczko, E., Bogenrieder, A., Stahr, K., Bösch, R., van der Heijden, M., Sieverding, E.,

2010. Soil type and land use intensity determine the composition of arbuscular mycorrhizal

fungal communities. Soil Biol Biochem 42, 724-738.

Oehl, F., Sieverding, E., Ineichen, K., Mäder, P., Boller, T., Wiemken, A., 2003. Impact of land

use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of

central europe. Appl Environ Microb 69, 2816-2824.

Oehl, F., Sieverding, E., Palenzuela, J., Ineichen, K., Alves da silva, G., 2011. Advances in

Glomeromycota taxonomy and classification. IMA Fungus 2, 191-199.

Oliveira, C.A., Sá, N.M., Gomes, E.A., Marriel, I.E., Scotti, M.R., Guimarães, C.T., Schaffert,

R.E., Alves, M.C., 2009. Assessment of the mycorrhizal community in the rhizosphere of maize

(Zea mays L. genotypes contrasting for phosphorus efficiency in the acid savannas of Brazil

using denaturing gradient gel electrophoresis (DGGE). Appl Soil Ecol 41, 249-258.

Onguene, N.A., T.W., K., 2001. Mycorrhizal association in the rain forest of south Cameroon.

Forest Ecol Manag 140, 277-287.

Page 66: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

66

Öpik, M., Metsis, M., Daniell, T.J., Zobel, M., Moora, M., 2009. Large scale parallel 454

sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a

boreonemoral forest. New Phytol 184, 424-437.

Öpik, M., Zobel, M., Cantero, J.J., Davison, J., Facelli, J.M., Hiiesalu, I., Jairus, T., Kalwij, J.,

Koorem, K., Leal, M., Liira, J., Metsis, M., Neshataeva, V., Paal, J., Phosri, C., Põlme, S., Reier,

Ü., Saks, Ü., Schimann, H., Thiéry, O., 2013. Global sampling of plant roots expands the

described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23, 411-430.

Ortas, I., Akpinar, C., 2011. Response of maize genotypes to several mycorrhizal inoculums in

terms of plant growth, nutrient uptake and spore production. J Plant Nutr 34, 970-987.

Picard, C., Bosco, M., 2008. Genotypic and phenotypic diversity in populations of plant-probiotic

Pseudomonas spp. colonizing roots. Naturwissenschaften 95, 1-16.

Pozo, M.J., Azcón-Aguilar, C., 2007. Unravelling mycorrhiza induced resistance. Curr Opin

Plant Biol 10, 393-398.

Saitou, N., Nei, M., 1987. The neighbor–joining method: a new method for reconstructing

phylogenetic trees. Mol Biol Evol 4, 406-425.

Sangabriel-Conde, W., Negrete-Yankelevich, S., Maldonado-Mendoza, I.E., Trejo-Aguilar, D.,

2014. Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency

for P uptake. Biol Fert Soils 50, 405-414.

Sasvári, Z., Hornok, L., Posta, K., 2011. The community structure of arbuscular mycorrhzal fungi

in roots of maize grown in a 50-year monoculture. Biol Fert Soils 47, 167-176.

Scheublin, T.R., Ridgway, K.P., Young, J.P.W., van der Heijden, M.G.A., 2004. Nonlegumes,

legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl

Environ Microb 70, 6240-6246.

Schloss, P.D., L., S., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B.,

Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger,

G.G., Van Horn, D.J., Weder, C.F., 2009. Introducing mothur: open–source, platform–

Page 67: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

67

independent, community–supported software for describing and comparing microbial

communities. Appl Environ Microb 75, 7537-7541.

Sieverding, E., 1991. Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems.

Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, Eschborn, Germany.

Smith, F.A., Jakobsen, I., Smith, S.E., 2000. Spatial differences in acquisition of soil phosphate

between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol

147, 357-366.

Smith, S.E., Read, D.J., 2008. Mycorrhizal symbiosis, 3rd ed, Academic Press, New York.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5:

Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance,

and Maximum Parsimony Methods. Mol Biol Evol 28, 2731-2739.

Tchameni, S.N., Nana-Wakam, L., Jemo, M., Fokom, R., Thé, C., Nwaga, D., 2009. Variation in

growth and P uptake of maize cultivars colonized by arbuscular mycorrhizas on acid soil of

southern Cameroon. Res J Agric Biol Sci 5, 480-488.

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of

progressive multiple sequence alignment through sequence weighting, position-specific gap

penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680.

Thonar, C., Schnepf, A., Frossard, E., Roose, T., Jansa, J., 2011. Traits related to differences in

function among three arbuscular mycorrhizal fungi. Plant Soil 339, 231-245.

Tian, H., Drijber, R.A., Li, X., Miller, D.N., Wienhold, B.J., 2013. Arbuscular mycorrhizal fungi

differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).

Mycorrhiza 23, 507-514.

Toljander, J.F., Santos-González, J.C., Tehler, A., Finlay, R.D., 2008. Community analysis of

arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term

fertilization trial. FEMS Microbiol Ecol 65, 323-338.

Page 68: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

68

Turrent-Fernández, A., Wise, T.A., Garvey, E., 2012. Achieving Mexico’s maíz potential, Global

Development and Environment Institute Working Paper No. 12-03.

van der Heijden, M., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolfengel, R., Boller, T.,

Wiemken, A., Sanders, I.R., 1998a. Mycorrhizal fungal diversity determines plant biodiversity,

ecosystem variability and productivity. Nature 396, 69-72.

van der Heijden, M.G.A., Boller, T., Wiemken, A., Sanders, I.R., 1998b. Different arbuscular

mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79,

2082-2091.

van der Heijden, M.G.A., Streitwolf-Engel, R., Riedl, R., Siegrist, S., Neudecker, A., Ineichen,

K., Boller, T., Wiemken, A., Sanders, I.R., 2006. The mycorrhizal contribution to plant

productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172, 739–

752.

van Tuinen, D., Jacquot, E., Zhao, B., Gollotte, A., Gianinazzi-Pearson, V., 1998.

Characterization of root colonization profiles by a microcosm community of arbuscular

mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7, 879-887.

Wagg, C., Jansa, J., Schmid, B., van der Heijden, M.G.A., 2011. Belowground biodiversity

effects of plant symbionts support aboveground productivity. Ecol Lett 14, 1001-1009.

Wubet, T., Kottke, I., Demel, T., Oberwinkler, F., 2003. Mycorrhizal status of indigenous trees in

dry Afromontane forests of Ethiopia. Forest Ecol Manag 179, 387-399.

Zhu, J., Kaeppler, S.M., Lynch, J.P., 2005. Mapping of QTL controlling root hair length in maize

(Zea mays L.) under phosphorus deficiency. Plant Soil 270, 299-310.

Page 69: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

69

CAPÍTULO IV

DISCUSIÓN GENERAL Y CONCLUSIONES

Page 70: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

70

Discusión General

Simbiosis micorrízica: ¿alternativa para la agricultura de subsistencia en las milpas?

Se estima que la demanda de alimentos en el nivel mundial se duplicará para el año 2050 (Tilman

et al. 2011), y algunos autores pronostican que el área para la agricultura intensiva se

incrementará aproximadamente a 1 billón de hectáreas en ese intervalo de tiempo y que los

impactos serán mayores en las zonas tropicales donde se desarrolla la agricultura de subsistencia,

la cual se caracteriza por preservar una amplia diversidad de variedades nativas (Balmford et al.

2005; Zimmerer 2010; Tilman et al. 2011). Esta situación traerá como consecuencia la inminente

pérdida de una importante cantidad de biodiversidad y de los servicios asociados a ella (Norris

2008). Ante tal escenario, el desarrollo de tecnologías que concilien la producción de alimentos

con la conservación de la biodiversidad arriba y bajo el suelo es un tema prioritario.

Se sabe que el fósforo es uno de los macronutrientes más influyentes en el crecimiento vegetal y

la productividad de los cultivos, incluido el maíz (Calderón-Vázquez et al. 2009). Dado que el

mayor beneficio que las plantas obtienen de la micorriza es un incremento en la absorción de P

cuando este elemento es limitante (Smith et al. 2011) y que la mayor parte de los suelos

tropicales donde se desarrolla la agricultura de subsistencia tienen poca disponibilidad de P, es

factible pensar que la integración de los hongos micorrízicos arbusculares (HMA) como parte del

manejo de estos sistemas puede ser una opción viable para incrementar el rendimiento de los

diversos cultivos ahí sembrados.

Usualmente la integración de los HMA en los sistemas agrícolas se hace por dos métodos; el

primero es mediante la introducción de HMA seleccionados previamente como promiscuos y con

una eficiencia alta tanto en condiciones de laboratorio como de invernadero (Koide y Mosse

2004), y el segundo es con hongos nativos con el fin de potenciar los beneficios co-evolutivos

entre los micosimbiontes y las plantas (Johnson et al. 2010). El primero es ampliamente utilizado,

a pesar de que la introducción de especies exóticas puede alterar la eficiencia y reducir la

diversidad de los HMA nativos, principalmente en condiciones de policultivo (Yao et al. 2008).

En consecuencia, en aras de conservar la biodiversidad, lo más apropiado es aplicar el segundo

método para lo cual se requiere seleccionar cepas nativas de HMA altamente eficientes.

Page 71: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

71

Los estudios de diversidad y funcionalidad de HMA asociados a raíces de variedades criollas de

maíz son escasos. En esta tesis se analizó a nivel de invernadero en cuatro variedades criollas y

un híbrido de maíz, la diversidad y funcionalidad de HMA nativos bajo distintas condiciones de

disponibilidad de fósforo.

Los resultados obtenidos en esta tesis ponen de manifiesto tres aspectos importantes (al menos en

el contexto de invernadero): (1) los HMA nativos de policultivos tradicionales como la milpa son

capaces de establecer eficientemente la simbiosis micorrízica y promover un incremento en la

incorporación de fósforo en variedades locales de maíz, (2) las variedades locales como el criollo

Negro, son capaces de albergar en sus raíces una elevada diversidad de HMA y (3) el híbrido

introducido Texcoco presenta una limitada capacidad para adquirir fósforo aún en simbiosis con

HMA (indicando su naturaleza de dependencia a la fertilización química). Estos resultados

apuntan a que la sustitución de variedades criollas de maíz por el híbrido Texcoco puede no ser

una opción viable para incrementar la productividad de los sistemas de milpa, y que dada: a) la

poca disponibilidad de P en los suelos, b) el constante incremento en los precios de los

fertilizantes fosfatados (Cordell et al. 2009) y c) la dificultad de reproducir masivamente

consorcios altamente eficientes de HMA en invernadero (Trejo-Aguilar et al. 2013), el manejo de

las poblaciones nativas de HMA in situ mediante arreglos espaciales de los cultivos, por ejemplo

crecer en vecindad cultivos poco eficientes con variedades micorrizadas altamente eficientes en

captar fósforo como la variedad criolla Negro, puede ser una alternativa para apoyar la

agricultura de subsistencia donde los productores no cuentan con recursos para acceder a

fertilizantes inorgánicos.

La milpa ¿Reservorio de comunidades de HMA funcionalmente diversas?

Un aspecto único de la simbiosis HMA-planta es que ambos simbiontes son capaces de

interactuar de forma simultánea con varios socios, aunque también pueden darse asociaciones

específicas (Smith y Smith 2011). Se sabe que en los sistemas de policultivos se incrementa la

producción de exudados radicales y la diversidad de especies de HMA, en comparación con los

monocultivos (Zarea et al. 2009; Bainard et al. 2011). El incremento en la diversidad de especies

de HMA maximiza la eficiencia de absorción de nutrientes en la planta, no solo a nivel

individual, sino entre plantas vecinas, gracias a la red de hifas que actúa como un sistema de

Page 72: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

72

canales donde se transfieren nutrientes entre plantas eficientes en captar nutrientes (por ej.

leguminosas) y otras que no lo son (Martins 1993; Cruz et al. 2000). En esta tesis se encontró que

las distintas variedades de maíz fueron colonizadas por diversos OTUs de HMA, formando

comunidades distintas y en algunos casos únicas en las diferentes variedades de maíz estudiadas.

Aunque sabemos que las milpas con una diversidad alta de especies cultivadas tienen una

disponibilidad mayor de P en sus suelos y mayor colonización micorrízica en el maíz (Negrete-

Yankelevich et al. 2013), y que distintos maíces tienen distintas capacidades de absorción de P y

de asociación micorrízica, aún no sabemos si la diversidad de asociaciones HMA-variedades de

maíz, conlleva a una diversidad funcional equivalente o a una maximización funcional (de

absorción de nutrientes) en el nivel de comunidad de plantas. Es posible que las asociaciones

específicas encontradas estén determinadas por los exudados radicales de cada variedad de maíz

(Giovannetti et al. 1994; Jones et al. 2004)). Dado que las variedades de maíz difieren en la

producción de flavonoides (Casati y Walbot 2003) y que los flavonoides generan especificidad de

asociación entre géneros de HMA e incluso entre especies de un mismo género (Vierheilig et al.

1998), posiblemente las variedades que desarrollaron simbiosis específica produzcan flavonoides

que favorezcan la asociación con ciertos micosimbiontes. Por ejemplo, se sabe que el flavonoide

rutin estimula el desarrollo de hifas y la colonización radical de Gigaspora margarita, pero no

tiene efecto alguno en Gigaspora rosea (Scervino et al. 2007). Flavonoides como chrysin,

luteolin y morin incrementan la ramificación y elongación hifal en Glomus mosseae y G.

intraradices, mientras que otros como isorhamnetin y rutin no generan ningún efecto (Scervino et

al. 2005). Esto permite pensar que dada la elevada agrodiversidad (intra e interespecífica)

manejada en la milpa, es posible que la producción de exudados radicales también sea elevada

(Zarea et al. 2009) y favorezca una mayor diversidad de HMA, convirtiendo a la milpa en un

reservorio natural de comunidades de HMA funcionalmente más diversas que las que podríamos

encontrar en agroecosistemas convencionales como los monocultivos.

Del total de secuencias de HMA identificadas en esta tesis, el 95.1% corresponde al orden

Glomerales, resultado que coincide con otras investigaciones donde se indica la ubicuidad de

dichos micosimbiontes como principales colonizadores del cultivo de maíz (Daniell et al. 2001;

Oehl et al. 2003; Borriello et al. 2012). No es sorprendente que Rhizophagus intraradices y R.

irregularis se encontraran asociadas a todas las variedades de maíz ya que se sabe que los hongos

del género Rhizophagus son considerados “generalistas” y colonizan a numerosos cultivos,

Page 73: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

73

incluido el maíz (Oehl et al. 2003; Öpik et al. 2006; Borriello et al. 2012), además de ser capaces

de adaptarse a suelos con muy bajo contenido de nutrientes particularmente de fósforo (Kahiluoto

et al. 2001), como los suelos de las milpas popolucas. De igual forma, el OTU asignado como

uncultured Glomus colonizó todas las variedades de maíz, pero la ausencia de secuencias

plenamente identificadas en bases de datos públicas, impidió asociar su identidad con la de

alguna especie conocida. Dado que este micosimbionte aportó el mayor porcentaje de secuencias

con relación a las demás especies (33.94%) y que desconocemos cuál puede ser su contribución

en el desarrollo de las variedades de maíz (absorción y asimilación de fósforo, producción de

biomasa, incrementos de volumen radical), futuras investigaciones podrían encaminarse a

determinar su identidad y eficiencia para promover la nutrición y el desarrollo de las plantas.

Para profundizar en el entendimiento de las milpas como reservorios de HMA, es imprescindible

que el conocimiento taxonómico a nivel molecular de estos hongos también avance.

Perspectivas para futuras investigaciones

Es claro que la simbiosis micorrízica juega un papel importante en el funcionamiento y

productividad de los sistemas agrícolas (Verbruggen y Kiers 2010; Smith et al. 2011), sin

embargo muy poco se conoce sobre las comunidades que se desarrollan en sistemas de

policultivos tradicionales como la milpa. De acuerdo con las hipótesis planteadas, en el capítulo

II de esta tesis se esperaba que: Al crecer maíces en suelos con inóculos nativos de milpas (1) el

porcentaje de colonización micorrízica, el contenido de fósforo en raíz y parte aérea, la biomasa

seca total y la dependencia micorrízica serían similares entre maíces criollos popolucas y

mayores que en la variedad híbrida. En contraste, se encontró que existen diferencias entre

variedades criollas y con el hibrido Texcoco en relación con los parámetros evaluados, y que

comparadas con el híbrido, ninguna variedad criolla registró mayor dependencia micorrízica (al

menos en dosis bajas de fósforo), solo una de ellas (Negro) registró mayor producción de

biomasa seca total, dos (Amarillo y Negro) presentaron mayores porcentajes de colonización, y

tres de ellas incorporaron más fósforo en biomasa aérea y en raíz, se piensa que las diferencias

observadas pueden ser resultado de la variación genética y especificidad ecológica de ambos

simbiontes; (2) en condiciones de bajas concentraciones de fósforo, la simbiosis micorrízica se

desarrollaría mejor en los maíces criollos que en la variedad híbrida. Contrario a lo esperado, el

Page 74: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

74

híbrido Texcoco registró mayor DM que algunos criollos, y se observó que para dicho híbrido la

micorrización es muy importante cuando hay poco P, pues bajo estas condiciones su DM fue de

las más altas, sin embargo, esto no se vio reflejado en su desarrollo y el contenido de P en sus

tejidos fue de los más bajos; y (3) en condiciones de concentraciones de fósforo medio, la

colonización y dependencia micorrízicas disminuirían y el contenido de nutrientes en biomasa

aérea y de raíz se incrementaría en todas las variedades de maíz respecto a lo encontrado en

condiciones de bajo fósforo, siendo mayor la diferencia en los maíces criollos que en la variedad

híbrida. Coincidiendo con la hipótesis, el incremento en la concentración de P sí disminuyó la

DM de tres variedades criollas (exceptuando la variedad Rojo) y del híbrido Texcoco,

particularmente este último mostró un decremento notorio, indicando que en condiciones de

mayor disponibilidad de fósforo, la simbiosis micorrízica ya no fomenta el incremento en

biomasa. Además, el contenido de nutrientes en biomasa aérea sí se incrementó en todas las

variedades de maíz (excepto en la Amarilla) al incrementar la dosis de fósforo. Sin embargo, los

resultados mostraron que solo una variedad criolla (Blanco) registró una disminución del

porcentaje de colonización cuando se incrementó la dosis de P, indicando que los niveles de

fósforo medio obtenidos con una fertilización moderada como la practicada recientemente por los

agricultores popolucas no afectan la integridad de la simbiosis micorrízica.

En el tercer capítulo de esta tesis se postularon tres hipótesis: (1) los diferentes tipos de maíz

serían colonizados en sus raíces por comunidades de HMA distintas. Los resultados concordaron

con lo planteado en la hipótesis, y mostraron que la identidad y la abundancia de OTUs asociados

con cada variedad de maíz y nivel de P no fueron los mismos y que la variedad más eficiente en

términos de adquisición de P (Criollo Negro) también fue colonizada por el mayor número de

OTUs, independientemente del tratamiento de fósforo; (2) las raíces de las variedades criollas

serían colonizadas por la mayor riqueza de HMA y el híbrido de Texcoco por la más baja. En

contraste, se encontró que la variedad criolla (Amarillo) presentó el número más bajo de OTUs

en sus raíces, mientras que el híbrido Texcoco fue colonizado por el segundo número más bajo de

OTUs; y (3) la fertilización moderada de P reduciría la riqueza de HMA en todos los tipos de

maíz, en respuesta a que la planta tiene una mayor posibilidad para obtener P por la vía no

micorrízica. Contrario a lo planteado, se identificaron más OTUs en la fertilización moderada

que en la dosis baja de P, lo que sugiere que el bajo contenido de P en las milpas podría estar

limitando las interacciones simbióticas.

Page 75: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

75

Los resultados obtenidos apuntan a que existen estrategias distintas de colonización entre las

especies de HMA y diferencias en la translocación de nutrientes entre las variedades de maíz

(Kaeppler et al. 2000; An et al. 2010). Las futuras investigaciones deberán avanzar

principalmente en 4 temas:

(1) Evaluar si en las milpas existen otros cultivos en los que la simbiosis micorrízica

proporcione grandes beneficios en términos de una mayor asimilación de nutrientes y de

incremento en el rendimiento. Se sabe que la respuesta diferencial a la micorrización no

es exclusiva de variedades de maíz, y que otras especies comúnmente sembradas en

policultivos como la milpa, difieren en su respuesta a inoculación micorrízica. Por

ejemplo, genotipos de frijol (Phaseolus vulgaris) difieren en la producción de biomasa y

reflectancia de la clorofila al inocularse con HMA (Hacisalihoglu et al. 2005). Variedades

de calabaza (Cucurbita pepo) acumulan contenidos distintos de nutrientes (P, K, Ca, Fe y

Zn) en función de la identidad de los micosimbiontes con los que se asocian (Sensoy et al.

2011). Otros cultivos como chile (Capsicum annuum), poro (Allium porrum), cilantro

(Coriandrum sativum) y camote (Ipomoea batata) también responden de manera

diferencial a la micorrización (Schroeder y Janos 2005; Farmer et al. 2007; Jansa et al.

2008). Debido a que en esta tesis se analizó la diversidad y función de HMA nativos en la

diversidad intraespecífica de maíz a nivel de invernadero, no es posible extrapolar los

resultados a todo el sistema de milpa y en condiciones de campo.

(2) Establecer experimentos en campo para determinar si la respuesta diferencial a la

micorrización encontrada en las variedades criollas de maíz y el híbrido Texcoco bajo

condiciones de invernadero, se mantiene en un ambiente no controlado y en escalas

temporales de varios ciclos de cultivo. La evaluación en campo de la simbiosis

micorrízica en sistemas agrícolas es crucial para encontrar estrategias que permitan

incrementar la productividad de dichos sistemas (Smith et al. 2011). En el caso del maíz,

la mayoría de las investigaciones se han desarrollado en condiciones de microcosmos o

invernadero (Nurlaeny et al. 1996; Ibrikci et al. 2004; Pitakdantham et al. 2007; Hao et al.

2008; Ortas y Akpinar 2011; Wright et al. 2005). Los resultados obtenidos bajo

condiciones controladas son difíciles de extrapolar a condiciones de campo (Johnson et al.

1997); en el caso del maíz existen avances en el conocimiento de su interacción con HMA

Page 76: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

76

en campo, sin embargo estos estudios se han centrado en medir parámetros como

porcentaje de colonización micorrízica o absorción de fósforo en periodos cortos de

tiempo (Gavito y Miller 1998; Hess et al. 2005; Ortas 2012). Futuras investigaciones

deberán enfocarse en diseñar experimentos en campo, haciendo uso de herramientas como

cámaras de observación de raíces in situ (Hertel y Leuschner 2006), divisiones de malla

(Schweiger y Jakobsen 1999) o marcadores isotópicos (Lerat et al. 2002), con el objetivo

de evaluar la funcionalidad de la simbiosis micorrízica no solo en maíz sino a nivel de

interacciones multiespecíficas durante varios ciclos de cultivo.

(3) Caracterizar los tipos de exudados radicales en variedades criollas e híbridos de maíz

y evaluar el efecto de dichos exudados en la composición de la comunidad microbiana

rizosférica y su función para proveer de nutrientes a las plantas de maíz. La rizósfera es la

zona biológicamente activa del suelo donde las raíces y los microorganismos interactúan

(Singh et al. 2004). Debido a la liberación de exudados radicales, la rizósfera se

caracteriza por una compleja densidad microbiana, donde algunos microorganismos

favorecen la captación y asimilación de nutrientes en las plantas (Paterson et al. 2007). Se

sabe que las variedades de maíz difieren en la producción de exudados radicales (Casati y

Walbot 2003) y que algunos exudados favorecen la selección de microorganismos

benéficos como cepas bacterianas del género Pseudomonas (Picard y Bosco 2005, 2006;

Roesch et al. 2006) y de especies de HMA como Gigaspora margarita Glomus mosseae y

Glomus intraradices (Scervino et al. 2005; 2007) que incrementan en la planta la

asimilación de nutrientes. A su vez, especies de HMA como Glomus mosseae interactuan

sinérgicamente con otros microorganismos como micromicetos saprobios que solubilizan

fosfatos (Khan et al. 2010; Posada et al. 2013) y que estimulan la nutrición de las plantas

(Fracchia et al. 2004; Aranda et al. 2007). Debido a que los exudados radicales son muy

diversos (Uren 2007) y a que están determinados por factores como la especie y el

genotipo de la planta (Appuhn y Joergensen 2006; Rengel y Marschner 2005), futuras

investigaciones se requieren para precisar el efecto que pueden tener los diversos tipos de

exudados radicales de variedades criollas e híbridos de maíz en la composición de los

microorganimos de la rizósfera y su función en la nutrición de las plantas.

Page 77: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

77

(4) Establecer los mecanismos que permiten al maíz negro ser más eficiente en la

adquisición de P, comparado con las otras variedades. Los hallazgos de esta tesis sobre el

maíz Negro abren paso a nuevas investigaciones que contribuirán a un mejor

entendimiento y aprovechamiento de la evolución conjunta de los HMA con el maíz en

suelos de extrema deficiencia de P. La variedad criolla Negro fue la más eficiente en

términos de adquisición de P y también fue colonizada por el mayor número de OTUs.

Estos resultados pueden estar relacionados con los siguientes factores: (1) es posible que

el criollo Negro cuente con diversos rasgos adaptativos (como exudación de ácidos

orgánicos, fosfatasas y modificación de su estructura radical) que le permitan una mayor

eficiencia en la captación directa de P (Zhu et al. 2005; Javot et al. 2007; Bayuelo-

Jiménez et al. 2011). Se sabe que este tipo de rasgos adaptativos son comunes en

germoplasmas criollos (Bayuelo-Jiménez et al. 2011); y (2) también es posible que la

eficiencia de dicha variedad esté en función de la identidad de los HMA asociados a sus

raíces. Por ejemplo, en condiciones de bajo fósforo las especies Glomus clarum y

Archaeospora schenkii se asociaron de manera exclusiva con el criollo Negro. Se sabe

que Glomus clarum es una especie que, particularmente en condiciones de bajas

concentraciones de fósforo, activa en la planta la secreción de fosfatasa, incrementa la

absorción de fósforo y maximiza el crecimiento vegetal (Balota et al. 2011), además de

ser altamente eficiente para promover el rendimiento en maíz cuando el fósforo es escaso

(Stephen et al. 2013).

Por otro lado, fue en condiciones de fósforo medio que se asoció con Rhizophagus

irregularis, se sabe que este micosimbionte optimiza su capacidad de captación de fósforo

en función de la disponibilidad externa de dicho nutriente, y transfiere más fósforo a la

planta cuando la disponibilidad se incrementa (Fiorilli et al. 2013), por lo que es factible

que las especies de HMA arriba mencionadas estén acopladas de manera muy eficiente

con esta variedad en comparación con las demás, sin embargo, dado que se realizó una

inoculación mixta y no se evaluaron especies de HMA individualmente, futuras

investigaciones podrían encaminarse a determinar si las especies que se asociaron de

forma exclusiva con la variedad criolla Negro contribuyen individualmente a una mayor

eficiencia de dicha variedad o si sus beneficios sólo se potencializan estando en presencia

de otras especies de HMA.

Page 78: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

78

Si bien los objetivos de esta tesis se centraron en evaluar algunos aspectos de la ecología

(diversidad y función) de los HMA asociados a variedades de maíz en invernadero, en la

investigación desarrollada subyace un aspecto orientado a la aplicación en campo, dadas las

diferencias en la respuesta a la micorrización entre variedades criollas de maíz y con el híbrido

Texcoco y la disparidad en las comunidades de HMA asociadas a sus raíces. Los resultados aquí

encontrados hacen referencia a la posibilidad de encontrar in situ combinaciones óptimas de

micorrizas (mediante el manejo de poblaciones nativas de HMA y arreglos espaciales de cultivos)

que contribuyan a mejorar la eficiencia de los diferentes cultivos que conforman la milpa y que

alberguen la mayor diversidad funcional de HMA con miras a incrementar la producción de estos

sistemas milenarios y conservar al mismo tiempo su biodiversidad.

Page 79: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

79

Conclusiones

1. Todas las variedades formaron asociación con los HMA nativos, sin embargo se observó

una respuesta diferencial a la micorrización entre variedades criollas popolucas y con el

híbrido Texcoco.

2. La variedad criolla Negro fue la que mostró incrementos en volumen radical, porcentaje

de colonización micorrízica y captación de fósforo superiores a las demás variedades, y

fue altamente eficiente en la captación de P por vía simbiótica y por vía directa lo que la

hace un acervo genético y cultural importante para los popolucas y el mundo.

3. El híbrido Texcoco registró una dependencia micorrízica alta, sin embargo esto no se vio

reflejado en su desarrollo y contenido de fósforo, pues fue de los más bajos, esto se

atribuye a su naturaleza de dependencia a la fertilización química.

4. Los niveles de fósforo medio (65 mg.kg-1) obtenidos con una fertilización moderada como

la practicada recientemente por los agricultores popolucas no afectan la integridad de la

simbiosis micorrízica, dado que solo una variedad criolla (Blanco) registró una

disminución del porcentaje de colonización cuando se incrementó la dosis de fósforo.

5. Las variedades de maíz se asociaron con ensambles micorrízicos distintos y se

identificaron 84 OTUs de HMA, entre los cuales el orden predominante fue Glomerales,

seguido por Diversisporales y Archeosporales, estos resultados concuerdan con los de

otras investigaciones donde se reporta la dominancia y ubicuidad de dicho orden.

6. Los resultados obtenidos en esta tesis apuntan a que el genotipo de maíz puede tener una

fuerte influencia sobre la estructura de la comunidad de HMA que coloniza sus raíces, ya

que la identidad y abundancia de OTUs asociados con cada tipo de maíz y nivel de

fósforo fueron diferentes, por lo que se concluye que la reducción de la diversidad de

maíces criollos en las milpas popolucas podría disminuir la diversidad de las comunidades

de HMA nativos y mermar los beneficios que dichos simbiontes proporcionan a los

cultivos.

Page 80: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

80

Literatura citada

An GH, Kobayashi S, Enoki H, Sonobe K, Muraki M, Karasawa T, Ezawa T (2010) How does

arbuscular mycorrhizal colonization vary with host plant genotype? An example based on

maize (Zea mays) germplasms. Plant and Soil 327, 441-453.

Appuhn A, Joergensen RG (2006). Microbial colonisation of roots as a function of plant species.

Soil Biology and Biochemistry 38, 1040-1051.

Aranda E, Sampedro E, Díaz R, García M, Ocampo JA, García-Romera I (2007) Xyloglucanases

in the interaction between saprobe fungi and the arbuscular mycorrhizal fungus Glomus

mosseae. Journal of Plant Physiology 164, 1019-1027.

Bainard LD, Klironomos JN, Gordon AM (2011) Arbuscular mycorrhizal fungi in tree-based

intercropping systems: A review of their abundance and diversity. Pedobiologia 54, 57-

61.

Balmford A, Green RE, Scharlemann JPW (2005) Sparing land for nature: exploring the potential

impact of changes in agricultural yield on the area needed for crop production. Global

Change Biology 11, 1594-1605.

Balota EL, Machineski O, Colauto-Stenzel NM (2011) Mycorrhizal efficiency in Acerola

seedlings with different levels of phosphorus. Brazilian Archives of Biology And

Technology 54, 457-464.

Bayuelo-Jiménez JS, Gallardo-Valdéz M, Pérez-Decelisa VA, Magdaleno-Armasa L, Ochoac I,

Lynch JP (2011) Genotypic variation for root traits of maize (Zea mays L.) from the

Purhepecha Plateau under contrasting phosphorus availability. Field Crops Research 121,

350-362.

Borriello R, Lumini E, Girlanda M, Bonfante P, Bianciotto V (2012) Effects of different

management practices on arbuscular mycorrhizal fungal diversity in maize fields by a

molecular approach. Biology and Fertility of Soils 48, 911-922.

Page 81: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

81

Calderón-Vázquez C, Alatorre-Cobos F, Simpson-Williamson J, Herrera-Estrella L (2009) Maize

under phosphate limitation. In: Bennetzen, J.F., Hake, S.C. (Eds.), Handbook of Maize:

Its Biology, pp. 381-404.

Casati P, Walbot V (2003) Gene expression profiling in response to ultraviolet radiation in maize

genotypes with varying flavonoid content. Plant Physiology 132, 1739-1754.

Cordell D, Drangerta JO, White S (2009) The story of phosphorus: global food security and food

for thought. Global Environmental Change 19, 292-305.

Cruz AF, Ishii T, Kadoya K (2000) Distribution of vesiculararbuscular mycorrhizal hyphae in the

rhizosphere of trifoliate orange and bahiagrass seedlings under an intercropping system.

Journal of the Japanese Society for Horticultural Science 69, 237-242.

Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular

mycorrhizal fungi colonising arable crops. FEMS Microbiology Ecology 36, 203-209.

Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van

Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in

sweet potato crops in China. Applied Soil Ecology 35, 599-609.

Fiorilli V, Lanfranco L, Bonfante P (2013) The expression of GintPT, the phosphate transporter

of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability.

Planta 237, 1267-1277.

Fracchia S, Sampedro I, Scervino JM, García-Romera I, Ocampo JA, Godeas A (2004) Influence

of saprobe fungi and their exudates on arbuscular mycorrhizal symbioses. Symbiosis

36:169-182.

Gavito ME, Miller MH (1998) Changes in mycorrhiza development in maize induced by crop

management practices. Plant and Soil 198, 185-192.

Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by

arbuscular mycorrhizal fungi. New Phytologist 127, 703-709.

Page 82: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

82

Hacisalihoglu G, Duke E, Longo L (2005) Differential response of common bean genotypes to

mycorrhizal colonization. Proceedings of the Florida State Horticultural Society 118, 150-

152.

Hao L, Zhang J, Christie P, Li X (2008) Response of two maize inbred lines with contrasting

phosphorus efficiency and root morphology to mycorrhizal colonization at different soil

phosphorus supply levels. Journal of Plant Nutrition 31, 1059-1073.

Hertel D, Leuschner C (2006) The in situ root chamber: A novel tool for the experimental

analysis of root competition in forest soils. Pedobiologia 50, 217-224.

Hess JL, Shiffler AK, Jolley VW (2005) Survey of mycorrhizal colonization in native, open-

pollinated, and introduced hybrid maize in villages of Chiquimula, Guatemala. Journal of

Plant Nutrition 28, 1843-1852.

Ibrikci H, Ryan J, Yildiran U, Guzel N, Ulger AC, Buyuk G, Karnez E, Korkmaz K (2004)

Phosphorous fertilizer eficiency and mycorrhizal infection in corn genotypes. Renewable

Agriculture and Food Systems 19, 92-99.

Jansa J, Smith FA, Smith SA (2008) Are there benefits of simultaneous root colonization by

different arbuscular mycorrhizal fungi? New Phytologist 177, 779-789.

Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis:

transport properties and regulatory roles. Plant, Cell & Environment 30, 310-322.

Johnson N, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the

mutualism-parasitism continuum. New Phytologist 135, 575-585.

Johnson N, Wilson GWT, Bowker MA, Wilson JA, Miller M (2010) Resource limitation is a

driver of local adaptation in mycorrhizal symbioses. Proceedings of the National

Academy of Sciences USA 107, 2093-2098.

Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition.

New Phytologist 163, 459-480.

Page 83: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

83

Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracy WF (2000) Variation among

maize inbred lines and detection of quantitative trait loci for growth at low phosphorus

and responsiveness to arbuscular mycorrhizal fungi. Crop Science 40, 358-364.

Kahiluoto H, Ketoja E, Vestberg M (2001) Promotion of utilization of arbuscular mycorrhiza

through reduced P fertilization 2. Field studies. Plant and Soil 231, 65-79.

Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate

solubilizing fungi-current perspective. Archives of Agronomy and Soil Science 56, 73-98.

Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14, 145-

163.

Lerat S, Gauci R, Jean G, Vierheilig CH, Piché Y, Lapointe L (2002) 14C transfer between the

spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular

mycorrhizal fungi in natural stands. Oecologia 132, 181-187.

Martins MA (1993) The role of the external mycelial network of arbuscular mycorrhizal fungi in

the carbon transfer process between plants. Mycological Research 97, 807-810.

Negrete-Yankelevich S, Maldonado-Mendoza IE, Lázaro Castellanos JO, Sangabriel-Conde W,

Martínez-Álvarez JC (2013a) Arbuscular mycorrhizal root colonization and soil P

availability are positively related to agrodiversity in Mexican maize polycultures. Biology

and Fertility of Soils 49, 201-212.

Norris K (2008) Agriculture and biodiversity conservation: opportunity knocks. Conservation

Letters 1, 2-11.

Nurlaeny N, Marschner H, George E (1996) Effects of liming and mycorrhizal colonization on

soil phosphate depletion and phosphate uptake by maize (Zea mays L.) and soybean

(Glycine max L.) grown in two tropical acid soils. Plant and Soil 181, 275-285.

Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use

intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of

central europe. Applied and Environmental Microbiology 69, 2816-2824.

Page 84: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

84

Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular

mycorrhizal fungal communities in different ecosystems around the globe. Journal of

Ecology 94, 778-790.

Ortas I (2012) The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and

inoculation effectiveness under long-term field conditions. Field Crops Research 125, 35-

48.

Ortas I, Akpinar C (2011) Response of maize genotypes to several mycorrhizal inoculums in

terms of plant growth, nutrient uptake and spore production. Journal of Plant Nutrition 34,

970-987.

Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere

microbial community structure in organic soil. New Phytologist 173, 600-610.

Picard C, Bosco M (2005) Maize heterosis affects the structure and dynamics of indigenous

rhizospheric auxins producing Pseudomonas populations. FEMS Microbiology Ecology

53, 349-357.

Picard C, Bosco M (2006) Heterozygosis drives maize hybrids to select elite 2,4-

diacethylphloroglucinol-producing Pseudomonas strains among resident soil populations.

FEMS Microbiology Ecology 58, 193-204.

Pitakdantham R, Suwanarit A, Nopamornbodi O, Sarobol E (2007) Comparative responses to

arbuscular mycorrhizal fungi of maize cultivars different in downy mildew resistance and

fertilizer requirement. ScienceAsia 33, 329-337.

Posada RH, Heredia G, Sieverding E, Sánchez de Prager M (2013) Solubilization of iron and

calcium phosphates by soil fungi isolated from coffee plantations. Archives of Agronomy

and Soil Science 59, 185-196.

Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere:

exploiting genotypic differences. New Phytologist 168, 305-312.

Roesch LFW, Olivares FL, Pereira-Passaglia LM, Selbach PA, Saccol de Sá EL, Oliveira de

Camargo FA (2006) Characterization of diazotrophic bacteria associated with maize:

Page 85: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

85

effect of plant genotype, ontogeny and nitrogen supply. World Journal of Microbiology

and Biotechnology 22, 967-974.

Scervino JM, Ponce MA, Erra-Bassells R, Bornpadre J, Vierheilig H, Ocampo JA, Godeas A

(2007) The effect of flavones and flavonols on colonization of tomato plants by

arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus. Canadian Journal of

Microbiology 53, 702-709.

Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005)

Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth

of Gigaspora and Glomus. Mycological Research 109, 789-794.

Schroeder MS, Janos DP (2005) Plant growth, phosphorus nutrition, and root morphological

responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density.

Mycorrhiza 15, 203-216.

Schweiger PF, Jakobsen I (1999) Direct measurement of arbuscular mycorrhizal phosphorus

uptake into field-grown winter wheat. Agronomy Journal 91, 998-1002.

Sensoy S, Demir S, Tufenkci S, Erdinc C, Demirer E, Ünsal H, Halifeoglu G, Ekincialp A (2011)

Response of four zucchini (Cucurbita pepo L.) hybrids to different arbuscular mycorrhizal

fungi. Journal of Animal and Plant Sciences 21, 751-757.

Shetty KG, Hetrick BA, Figge DA, Schwab AP (1994) Effects of mycorrhizae and other soil

microbes on revegetation of heavy-metal contaminated mine soil. Environmental

Pollution 86, 181-188.

Singh BK, Milard P, Whitely AS, Murrell JC (2004) Unravelling rhizosphere-microbial

interactions: opportunities and limitations. Trends in Microbiology 12, 386-393.

Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant

phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular

mycorrhizal roots have important implications for understanding and manipulating plant

phosphorus acquisition. Plant Physiology 156, 1050-1057.

Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, New York.

Page 86: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

86

Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonization

of many economically important crop plants?. Plant and Soil 348, 63-79.

Stephen DO, Fagbola O, Iyamu MI (2013) Assessment of the effects of arbuscular mycorrhizal

fungi (Glomus clarum) and pigeon pea hedgerow on the yield of maize and soil properties

in degraded ultisols. Journal of Biology, Agriculture and Healthcare 3, 55-63.

Tilman D, Balzer C, Hillc J, Beforta BL (2011) Global food demand and the sustainable

intensification of agriculture. Proceedings of the National Academy of Sciences USA,

108, 20260-20264.

Trejo-Aguilar D, Lara-Capistrán L, I.E. M-M, Zulueta-Rodríguez R, Sangabriel-Conde W,

Mancera-López MA, Negrete-Yankelevich S, Barois I (2013) Loss of arbuscular

mycorrhizal fungal diversity in trap cultures during long-term subculturing. IMA

Fungus 4, 161-167.

Uren NC (2007) Types, amounts, and possible functions of compounds released into the

rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (Eds.). The

Rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press,

Boca Ratón, Florida.

Verbruggen E, Kiers T (2010) Evolutionary ecology of mycorrhizal functional diversity in

agricultural systems. Evolutionary Applications 3, 547-560.

Vierheilig H, Bago B, Albrecht C, Poulin MP, Piché Y (1998) Flavonoids and arbuscular-

mycorrhizal fungi. In: Manthey, J.A., Buslig, B.S. (Eds.), Flavonoids in the living system,

Plenum, New York, pp. 9-33.

Wright DP, Scholes JD, Read DJ, Stephen AR (2005) European and African maize cultivars

differ in their physiological and molecular responses to mycorrhizal infection. New

Phytologist 167, 881–896

Yao Q, Zhu H-H, Hu YL, Li L-Q (2008) Differential influence of native and introduced

arbuscular mycorrhizal fungi on growth of dominant and subordinate plants. Plant

Ecology 196, 261-268

Page 87: DIVERSIDAD Y FUNCIÓN DE HONGOS MICORRÍZICOS …

87

Zarea MJ, Ghalavand A, Goltapeh EM, Rejali F, Zamaniyan M (2009) Effects of mixed

cropping, earthworms (Pheretima sp.), and arbuscular mycorrhizal fungi (Glomus

mosseae) on plant yield, mycorrhizal colonization rate, soil microbial biomass, and

nitrogenase activity of free-living rhizosphere bacteria. Pedobiologia 52, 223-235.

Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTL controlling root hair length in maize

(Zea mays L.) under phosphorus deficiency. Plant and Soil 270, 299-310.

Zimmerer KS (2010) Biological diversity in agriculture and global change. Annual Review of

Environment and Resources 35, 137-166.