dlr.de • chart 1

49
2 nd Workshop on Benchmark Problems for Airframe Noise Computations (BANC-II) 7-8 June 2012 Colorado Springs, Colorado, USA Category 1: Trailing-Edge Noise M. Herr , German Aerospace Center, DLR C. Bahr, NASA Langley Research Center M. Kamruzzaman, University of Stuttgart (IAG) www.DLR.de Chart 1 > M. Herr > BANC-II > 07.06.2012, Colorado Springs, Colorado, USA BANC-II-1: (TBL-)Trailing-Edge Noise

Upload: torie

Post on 23-Feb-2016

93 views

Category:

Documents


0 download

DESCRIPTION

2 nd Workshop on Benchmark Problems for Airframe Noise Computations (BANC-II) 7-8 June 2012 Colorado Springs, Colorado, USA Category 1: Trailing-Edge Noise M. Herr , German Aerospace Center, DLR C. Bahr, NASA Langley Research Center M. Kamruzzaman, University of Stuttgart (IAG). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: DLR.de  •  Chart  1

2nd Workshop on Benchmark Problems for Airframe Noise Computations (BANC-II) 7-8 June 2012 Colorado Springs, Colorado, USA

Category 1: Trailing-Edge Noise

M. Herr, German Aerospace Center, DLR C. Bahr, NASA Langley Research CenterM. Kamruzzaman, University of Stuttgart (IAG)

www.DLR.de • Chart 1 > M. Herr > BANC-II > 07.06.2012, Colorado Springs, Colorado, USA

BANC-II-1: (TBL-)Trailing-Edge Noise

Page 2: DLR.de  •  Chart  1

Introduction- Problem statement- Overview on contributions & participants- Overview of used codes

Participant’s presentations on computational approach & on selected results- Cristobal A. Albarracin et al., University of Adelaide, Australia (UoA)- Mohammad Kamruzzaman, University of Stuttgart, Germany (IAG)- Roland Ewert et al., German Aerospace Center (DLR)- Lawrence Cheung & Giridhar Jothiprasad, GE Global Research, NY (GE-GRC)- Damiano Casalino et al., EXA GmbH, Stuttgart, Germany (EXA)

Overall comparisons, summary, conclusions & outlook

Discussion

Agenda7 June 2012 – BANC-II-1: Trailing-Edge Noise

Page 3: DLR.de  •  Chart  1

Conclusions from BANC-I-1 During BANC-I we faced (low number of participants)

- the need for improvements of the problem statement (definition of tripping, wing span for far field noise data, definition of a single core case for those who can not afford working on the full matrix, …)

- the need to offer benchmark data together with the updated problem statement. This should allow the participants to elaborate deeper on their data and to give their view on linking flow features with noise.

For generating a benchmark data base it was agreed that we do not focus- on a single facility/measurement technique but take all available data from

different facilities/measurement techniques.- Obviously, there will be a few dB deviation among different datasets which

needs to be handled as a tolerance range.- Thus, gathering trailing edge noise data will be a big multidimensional puzzle.- Very probably, the first set of data will consider a NACA0012 configuration.- The updated problem statement should define input data which will be- particularly linked to this configuration, i.e. inflow turbulence, tripping details

BANC-II-1 Problem StatementIntroduction

Page 4: DLR.de  •  Chart  1

Preparation of BANC-II-1 Unfortunately: Definition of the final problem statement for BANC-II was late due

to the necessary collection and review of usable test data, clearance of GE proprietary DU-96 data (many thanks to GE!), data scaling, were necessary…

BANC-II-1 is understood as ‘warm-up’ (majority of participants apply faster prediction methods based on SNT) and will hopefully activate multiplied follow-on activity by anyone interested to join the community.

The finally provided comparison data is not “perfect” due to the non-existence of a fully consistent data set covering the full measurement chain from near field source quantities to farfield noise.

BANC-II-1 Problem StatementIntroduction

Page 5: DLR.de  •  Chart  1

BANC-II-1 Problem StatementSimulation Matrix

BANC-II-1 Test Cases Provide cp(x1), cf(x1), near-wake mean flow/ turbulence profiles, Gpp(f), Lp(fc) and

FF noise directivities for CASES#1-5

Case#1 56 m/s0°

Case#2 55 m/s4°

Case#3 53 m/s6°

Case#4 38 m/s0°

Case#5 60 m/s4°

Full problem statement with more specified definitions of

Profile coordinates (sharp TE!) Tripping devices (TBL-TE noise!) TBL transition locations Ambient conditions, etc. Data formatting instructions

including templates

is available at the BANC-II homepage:https://info.aiaa.org/tac/ASG/FDTC/ DGBECAN_files_/BANCII_category1

CASE#1: single core test case for those who can not afford the full matrix

Page 6: DLR.de  •  Chart  1

BANC-II-1 Problem StatementSimulation Matrix

BANC-II-1 Test Cases Coordinate System and Parameter Definition

u

x1/ lc

x 2/l c

0 0.2 0.4 0.6 0.8 1 1.2-0.3

-0.2

-0.1

0

0.1

0.2

0.3 midspan plane

= 90° orthogonalview direction fornoise prediction

x3

x1

x2

orientation of flow profiles

= 0°

Orientation of flow profilesPosition @ 100.38 % lc

WPF sensor position @ 99 % lcPSDs (measurement data normalized to Df = 1 Hz)

SS

PS

b = 1 mr = 1 min 1/3-octave bands

= 90° chord-normalview direction for noise prediction

Page 7: DLR.de  •  Chart  1

BANC-II-1 Problem StatementSimulation Matrix

BANC-II-1 Test Cases Available comparison data sets for CASES#1-5:

Case#1 56 m/s0° cp(x1), flow/turb. profiles, Gpp(f), Lp(1/3)(fc)

Case#2 55 m/s4° cp(x1), flow/turb. profiles, Gpp(f), Lp(1/3)(fc)

Case#3 53 m/s6° cp(x1), flow/turb. profiles, Gpp(f), Lp(1/3)(fc)

Case#4 38 m/s0° Flow/turb. profiles, Gpp(f), Lp(1/3)(fc)

Case#5 60 m/s4° Lp(1/3)(fc)

Page 8: DLR.de  •  Chart  1

Near-Wake Data CASES#1-4 IAG-LWT (Herrig et al.)

BANC-II-1 Problem StatementOverview of Comparison Data

<u3u3>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30CASE#1, x/lc = 1.0038, SSCASE#2, x/lc = 1.0038, SSCASE#3, x/lc = 1.0038, SSCASE#4, x/lc = 1.0038, SS

U1/U, -

x 2,m

m

0 0.5 1 1.50

5

10

15

20

25

30

35CASE#1, x/lc = 1.0038, SSCASE#2, x/lc = 1.0038, SSCASE#3, x/lc = 1.0038, SSCASE#4, x/lc = 1.0038, SS

kT/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30CASE#1, x/lc = 1.0038, SSCASE#2, x/lc = 1.0038, SSCASE#3, x/lc = 1.0038, SSCASE#4, x/lc = 1.0038, SS

<u1u1>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30CASE#1, x/lc = 1.0038, SSCASE#2, x/lc = 1.0038, SSCASE#3, x/lc = 1.0038, SSCASE#4, x/lc = 1.0038, SS

(model), m2/s3

x 2,m

m

101 102 103 1040

5

10

15

20

25

30CASE#1, x/lc = 1.0038, SSCASE#2, x/lc = 1.0038, SSCASE#3, x/lc = 1.0038, SSCASE#4, x/lc = 1.0038, SS

<u2u2>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30CASE#1, x/lc = 1.0038, SSCASE#2, x/lc = 1.0038, SSCASE#3, x/lc = 1.0038, SSCASE#4, x/lc = 1.0038, SS

f (model), mm

x 2,m

m

0 2 4 6 8 100

5

10

15

20

25

30CASE#1, x/lc = 1.0038, SSCASE#2, x/lc = 1.0038, SSCASE#3, x/lc = 1.0038, SSCASE#4, x/lc = 1.0038, SS IAG-LWT 2-

point correlation measurements

Page 9: DLR.de  •  Chart  1

Acoustical Data Sets CASES#1 and #2 (IAG, DLR, UFL, BPM) Scaling to problem statement conditions required for both Gpp(f) and Lp(1/3)(fc)!

BANC-II-1 Problem StatementOverview of Comparison Data

fc(original), kHz

L p(1/

3)(o

rigin

al),

dB

5 10 15 2030

40

50

60

70

CASE#1, IAG LWT+SL (50m/s, 0deg)CASE#1, IAG LWT+SL (60m/s, 0deg)CASE#1, IAG LWT (60m/s, 0deg)CASE#1, DLR AWB (50.2m/s, 0deg)CASE#1, DLR AWB (60m/s, 0deg)CASE#1, UFL UFAFF (52.4m/s, 0deg, 0.3m)CASE#1, UFL UFAFF (59.4m/s, 0deg, 0.3m)

fc(scaled), kHz

L p(1/

3)(s

cale

d),d

B

5 10 15 2030

40

50

60

70

CASE#1, IAG LWT+SL (50m/s, 0deg)CASE#1, IAG LWT+SL (60m/s, 0deg)CASE#1, IAG LWT (60m/s, 0deg)CASE#1, DLR AWB (50.2m/s, 0deg)CASE#1, DLR AWB (60m/s, 0deg)CASE#1, UFL UFAFF (52.4m/s, 0deg, 0.3m)CASE#1, UFL UFAFF (59.4m/s, 0deg, 0.3m)CASE#1, BPM (NAFNOISE) prediction

fc(original), kHz

L p(1/

3)(o

rigin

al),

dB

5 10 15 2030

40

50

60

70

CASE#2, IAG LWT (60m/s, 4deg)CASE#2, DLR AWB (50.2m/s, 5deg)CASE#2, DLR AWB (60m/s, 5deg)CASE#2, UFL UFAFF (52.6m/s, 2.1deg, 0.3m)CASE#2, UFL UFAFF (59.6m/s, 2.1deg, 0.3m)

fc(scaled), kHz

L p(1/

3)(s

cale

d),d

B

5 10 15 2030

40

50

60

70

CASE#2, IAG LWT (60m/s, 4deg)CASE#2, DLR AWB (50.2m/s, 5deg)CASE#2, DLR AWB (60m/s, 5deg)CASE#2, UFL UFAFF (52.6m/s, 2.1deg, 0.3m)CASE#2, UFL UFAFF (59.6m/s, 2.1deg, 0.3m)CASE#2, BPM (NAFNOISE) prediction

+/3 dB scatter among all available data sets

Page 10: DLR.de  •  Chart  1

Acoustical Data Sets CASES#3 and #5 (CASE#4 not shown) Scaling to problem statement conditions required!

BANC-II-1 Problem StatementOverview of Comparison Data

fc(original), kHz

L p(1/

3)(o

rigin

al),

dB

5 10 15 2030

40

50

60

70

CASE#3, IAG LWT (60m/s, 6deg)CASE#3, DLR AWB (50.2m/s, 5deg)CASE#3, DLR AWB (60m/s, 5deg)CASE#3, DLR AWB (50m/s, 7.6deg)CASE#3, DLR AWB (59.9m/s, 7.6deg)

fc(original), kHz

L p(1/

3)(o

rigin

al),

dB

5 10 15 2030

40

50

60

70

CASE#5, DLR AWB (60 m/s, 4deg, 0.3m)

fc(scaled), kHz

L p(1/

3)(s

cale

d),d

B

5 10 15 2030

40

50

60

70

CASE#3, IAG LWT (60m/s, 6deg)CASE#3, DLR AWB (50.2m/s, 5deg)CASE#3, DLR AWB (60m/s, 5deg)CASE#3, DLR AWB (50m/s, 7.6deg)CASE#3, DLR AWB (59.9m/s, 7.6deg)CASE#3, BPM (NAFNOISE) prediction

Page 11: DLR.de  •  Chart  1

BANC-II-1 Contributions & ParticipantsOverview

Configuration/ Participant UoA IAG DLR GE-GRC EXA

Case#1 56 m/s0° - -

Case#2 55 m/s4° - -

Case#3 53 m/s6° - -

Case#4 38 m/s0° - -

Case#5 60 m/s4° Different case!

AIAA-2012-2055 -

Overview on Contributions

Page 12: DLR.de  •  Chart  1

Fast TE noise prediction method, based on a statistical model of the turbulent velocity cross-spectrum.

Overview of MethodsContribution Albarracin et al.: UoA’s RSNM code

RSNM: RANS-based Statistical Noise Model

RANSCFD

Turbulent velocity cross-spectrum

model

+Half-Plane Green

´s function

• OpenFOAM package

• k-omegaSST model

Uk , ,

k

U

CFD Mesh

RSNM

Acoustic spectrum in the far field

Example results: 30.48 cm chord NACA 0012 airfoil at AoA=0 and flow velocities of 31.7 m/s, 39.6 m/s, 55.5 m/s and 71.3 m/s

cf. AIAA-2012-2181

Page 13: DLR.de  •  Chart  1

Simplified theoretical airfoil trailing-edge far-field noise prediction model based on steady RANS: highly accurate and very fast

Overview of MethodsContribution Kamruzzaman et al.: IAG‘s simplified theoretical prediction code Rnoise

Rnoise: RANS Based Trailing-edge Noise Prediction Model

Governing Eqns.

Source Modeling RANS Simulation

Noise SpectraWPFBL &

Correlations

Wind Tunnel Exp. & Validation

Page 14: DLR.de  •  Chart  1

000 ,, pu

CAAAPE

mean flow; here:DLR code TAU with RSM

,kturbulence

Sound Fieldp

p

source L

Overview of MethodsContribution Ewert et al.: DLR‘s CAA-Code PIANO with stochastic source model FRPM

PIANO: Perturbation Investigation of Aeroacoustic Noise “Low-cost“ steady RANS-based CAA with stochastic

source models: 2-4 orders faster than LES

kSpectral analysis

CFD RANS

4D-Stochastic Sound Sources FRPM

00 uuL tt

vortex sound sources

Page 15: DLR.de  •  Chart  1

High-fidelity incompressible LES calculation combined with Amiet’s theory for far-field noise

Overview of MethodsContribution GE GRC: LES with Amiet’s Theory (CharLES code, Cascade Technologies)

CharLES: LES-based trailing edge noise prediction

 

 

 

Unstructured

mesh

LES

simulation

Amiet’s

Theory

Far-field

Sound

High-fidelity grid near TE and airfoil surface

Capture boundary layer, wall-pressure spectra, and correlation data near TE

Project TE information to far-field observer locations

cf. AIAA-2012-2055

Page 16: DLR.de  •  Chart  1

1. Unsteady-flow simulations performed with Lattice Boltzmann based solver PowerFLOW 4.3– D3Q19 LBM

Cubical Lattices (Voxels) Surface elements (Surfels)

– Explicit solver – Fully transient– Turbulence model

Modified RNG k-ε model Swirl model

– Anisotropic “large” eddies resolved– Statistically universal eddies modeled

Extended wall model– Taking pressure gradient effect into account

– Acoustic fluctuations directly simulated with low-dispersion and low dissipation2. Far-field noise computed using a FW-H acoustic analogy

(PowerACOUSTICS 2.0)– Solid/permeable formulation– Forward-time formulation based on the retarded-time formulation 1A by Farassat– Mean flow convective effects (wind-tunnel modality) taken into account

3. Spectral analyses carried out using PowerACOUSTICS 2.0

Overview of MethodsContribution Damiano Casalino et al.: EXA’s PowerFlow / PowerAcoustics code

PowerFLOW / PowerACOUSTICS

1 2 3

cf. AIAA-2012-2235

Page 17: DLR.de  •  Chart  1

Thank you for your attention!

Page 18: DLR.de  •  Chart  1

Agenda7 June 2012 – BANC-II-1: Trailing-Edge Noise

Introduction- Problem statement- Overview on contributions & participants- Overview of used codes

Participant’s presentations on computational approach & on selected results- Cristobal A. Albarracin et al., University of Adelaide, Australia (UoA)- Mohammad Kamruzzaman, University of Stuttgart, Germany (IAG)- Roland Ewert et al., German Aerospace Center (DLR)- Lawrence Cheung & Giridhar Jothiprasad, GE Global Research, NY (GE-GRC)- Damiano Casalino et al., EXA GmbH, Stuttgart, Germany (EXA)

Overall comparisons, summary, conclusions & outlook

Discussion

Page 19: DLR.de  •  Chart  1

Code-to-code comparisons for the following parameters: 4 slides: cp, cf for CASES#1, #2, #3, #5 5 slides (1 per case): Near-wake profiles

of mean velocity and turb. characteristics

1 survey slide on integral TBL properties 2 slides: Surf. pressure (WPF) PSD for

CASES#1, #2, #3, #5 2 slides: FF TBL-TE noise spectra for

CASES#1, #2, #3, #5 1 slide: Selected FF noise directivities

Changed representation format to extractprinciple relative effects on noise and on WPF spectra (are those well-predicted?)- Effect of test velocity CASES#1, #4- Effect of a-o-a CASES#1, #2, #3- Effect of profile shape CASES #2, #5

Overall ComparisonsIntroduction

Case#1 56 m/s

Case#2 55 m/s

Case#3 53 m/s

Case#4 38 m/s

Case#5 60 m/s

Scope

Page 20: DLR.de  •  Chart  1

Aerodynamical data

Cp-Distributions CASES#1 & #2

Overall Comparisons

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#1, IAG LWTCASE#1, XFOIL

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#2, IAG LWTCASE#2, XFOIL

Format: comparison data in black!

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#1, IAG LWTCASE#1, XFOILCASE#1, UoA

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#1, IAG LWTCASE#1, XFOILCASE#1, UoACASE#1, IAG

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#1, IAG LWTCASE#1, XFOILCASE#1, UoACASE#1, IAGCASE#1, DLR

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#2, IAG LWTCASE#2, XFOILCASE#2, UoA

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#2, IAG LWTCASE#2, XFOILCASE#2, UoACASE#2, IAG

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#2, IAG LWTCASE#2, XFOILCASE#2, UoACASE#2, IAGCASE#2, DLR

UoA: OpenFOAM - SSTIAG: FLOWER (DLR) - SSTDLR: TAU (DLR) - RSM

Page 21: DLR.de  •  Chart  1

Aerodynamical data

Cp-Distributions CASES#3 & #5

Overall Comparisons

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#5, XFOIL

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#3, IAG LWTCASE#3, XFOIL

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#3, IAG LWTCASE#3, XFOILCASE#3, UoA

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#3, IAG LWTCASE#3, XFOILCASE#3, UoACASE#3, IAG

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#3, IAG LWTCASE#3, XFOILCASE#3, UoACASE#3, IAGCASE#3, DLR

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#5, XFOILCASE#5, UoA

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#5, XFOILCASE#5, UoACASE#5, IAG

x1/lc

c p

-0.2 0 0.2 0.4 0.6 0.8 1-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

CASE#5, XFOILCASE#5, UoACASE#5, IAGCASE#5, DLR

Format: comparison data in black!

UoA: OpenFOAM - SSTIAG: FLOWER (DLR) - SSTDLR: TAU (DLR) - RSM

Page 22: DLR.de  •  Chart  1

Overall ComparisonsAerodynamical data

Cf-Distributions CASES#1 & #2

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#1, XFOIL

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#1, XFOILCASE#1, UoA

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#1, XFOILCASE#1, UoACASE#1, IAG

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#1, XFOILCASE#1, UoACASE#1, IAGCASE#1, DLR

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#2, XFOIL

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#2, XFOILCASE#2, UoA

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#2, XFOILCASE#2, UoACASE#2, IAG

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#2, XFOILCASE#2, UoACASE#2, IAGCASE#2, DLR

UoA: OpenFOAM - SSTIAG: FLOWER (DLR) - SSTDLR: TAU (DLR) - RSM

UoA: fully turbulent, no transition!

Page 23: DLR.de  •  Chart  1

Overall Comparisons

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#5, XFOIL

Aerodynamical data

Cf-Distributions CASES#3 & #5

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#3, XFOIL

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#3, XFOILCASE#3, UoA

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#3, XFOILCASE#3, UoACASE#3, IAG

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#3, XFOILCASE#3, UoACASE#3, IAGCASE#3, DLR

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#5, XFOILCASE#5, UoA

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#5, XFOILCASE#5, UoACASE#5, IAG

x1/lc

c f

-0.2 0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

CASE#5, XFOILCASE#5, UoACASE#5, IAGCASE#5, DLR

UoA: OpenFOAM - SSTIAG: FLOWER (DLR) - SSTDLR: TAU (DLR) - RSM

UoA: fully turbulent, no transition!

Page 24: DLR.de  •  Chart  1

Aerodynamical data

Near-Wake Flow Characteristics

Overall Comparisons

u

x1/ lc

x 2/l c

0 0.2 0.4 0.6 0.8 1 1.2-0.3

-0.2

-0.1

0

0.1

0.2

0.3 midspan plane

x3

x1

x2

orientation of flow profilesposition @ 100.38 % lc

= 0°

Page 25: DLR.de  •  Chart  1

Near-Wake Flow Characteristics CASE#1 SSAerodynamical data

Overall Comparisons

U1/U, -

x 2,m

m

0 0.5 10

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, UoA

U1/U, -

x 2,m

m

0 0.5 10

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, UoACASE#1, IAG

U1/U, -

x 2,m

m

0 0.5 10

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, UoACASE#1, IAGCASE#1, DLR

U1/U, -

x 2,m

m

0 0.5 10

5

10

15

20

25

30

35CASE#1, IAG LWT

<u1u1>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWT

<u2u2>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWT

<u3u3>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWT

kT/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWT

<u1u1>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, IAG

<u2u2>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, IAG

<u3u3>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, IAG

kT/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, UoA

kT/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, UoACASE#1, IAG

kT/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, UoACASE#1, IAGCASE#1, DLR

<u1u1>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, IAGCASE#1, DLR

<u2u2>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, IAGCASE#1, DLR

<u3u3>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, IAGCASE#1, DLR

, m2/s3

x 2,m

m

100 101 102 103 104 1050

5

10

15

20

25

30

35CASE#1, IAG LWT

, m2/s3

x 2,m

m

100 101 102 103 104 1050

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, UoA

, m2/s3

x 2,m

m

100 101 102 103 104 1050

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, UoACASE#1, IAG

, m2/s3

x 2,m

m

100 101 102 103 104 1050

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, UoACASE#1, IAGCASE#1, DLR

f , mm

x 2,m

m

0 2 4 6 80

5

10

15

20

25

30

35CASE#1, IAG LWT

f , mm

x 2,m

m

0 2 4 6 80

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, UoA

f , mm

x 2,m

m

0 2 4 6 80

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, UoACASE#1, IAG

f , mm

x 2,m

m

0 2 4 6 80

5

10

15

20

25

30

35CASE#1, IAG LWTCASE#1, UoACASE#1, IAGCASE#1, DLR

UoA

IAG

DLR

Page 26: DLR.de  •  Chart  1

Near-Wake Flow Characteristics CASE#2 SSAerodynamical data

Overall Comparisons

U1/U, -

x 2,m

m

0 0.5 10

5

10

15

20

25

30

35CASE#2, IAG LWTCASE#2, UoACASE#2, IAGCASE#2, DLR

kT/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#2, IAG LWTCASE#2, UoACASE#2, IAGCASE#2, DLR

<u1u1>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#2, IAG LWTCASE#2, IAGCASE#2, DLR

<u2u2>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#2, IAG LWTCASE#2, IAGCASE#2, DLR

<u3u3>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#2, IAG LWTCASE#2, IAGCASE#2, DLR

UoA

IAG

DLR

f , mm

x 2,m

m

0 2 4 6 80

5

10

15

20

25

30

35CASE#2, IAG LWTCASE#2, UoACASE#2, IAGCASE#2, DLR

, m2/s3

x 2,m

m

100 101 102 103 104 1050

5

10

15

20

25

30

35CASE#2, IAG LWTCASE#2, UoACASE#2, IAGCASE#2, DLR

Page 27: DLR.de  •  Chart  1

Near-Wake Flow Characteristics CASE#3 SSAerodynamical data

Overall Comparisons

U1/U, -

x 2,m

m

0 0.5 10

5

10

15

20

25

30

35CASE#3, IAG LWTCASE#3, UoACASE#3, IAGCASE#3, DLR

<u1u1>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#3, IAG LWTCASE#3, IAGCASE#3, DLR

<u2u2>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#3, IAG LWTCASE#3, IAGCASE#3, DLR

<u3u3>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#3, IAG LWTCASE#3, IAGCASE#3, DLR

kT/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#3, IAG LWTCASE#3, UoACASE#3, IAGCASE#3, DLR

UoA

IAG

DLR

f , mm

x 2,m

m

0 2 4 6 80

5

10

15

20

25

30

35CASE#3, IAG LWTCASE#3, UoACASE#3, IAGCASE#3, DLR

, m2/s3

x 2,m

m

100 101 102 103 104 1050

5

10

15

20

25

30

35CASE#3, IAG LWTCASE#3, UoACASE#3, IAGCASE#3, DLR

Page 28: DLR.de  •  Chart  1

Near-Wake Flow Characteristics CASE#4 SSAerodynamical data

Overall Comparisons

U1/U, -

x 2,m

m

0 0.5 10

5

10

15

20

25

30

35CASE#4, IAG LWTCASE#4, UoACASE#4, IAGCASE#4, DLR

<u1u1>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#4, IAG LWTCASE#4, IAGCASE#4, DLR

<u2u2>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#4, IAG LWTCASE#4, IAGCASE#4, DLR

<u3u3>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#4, IAG LWTCASE#4, IAGCASE#4, DLR

kT/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#4, IAG LWTCASE#4, UoACASE#4, IAGCASE#4, DLR

UoA

IAG

DLR

f , mm

x 2,m

m

0 2 4 6 80

5

10

15

20

25

30

35CASE#4, IAG LWTCASE#4, UoACASE#4, IAGCASE#4, DLR

, m2/s3

x 2,m

m

100 101 102 103 104 1050

5

10

15

20

25

30

35CASE#4, IAG LWTCASE#4, UoACASE#4, IAGCASE#4, DLR

Page 29: DLR.de  •  Chart  1

Near-Wake Flow Characteristics CASE#5 SSAerodynamical data

Overall Comparisons

U1/U, -

x 2,m

m

0 0.5 10

5

10

15

20

25

30

35CASE#5, UoACASE#5, IAGCASE#5, UoA

UoA

IAG

DLR

kT/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#5, UoACASE#5, IAGCASE#5, UoA

<u1u1>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#5, IAGCASE#5, UoA

<u2u2>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#5, IAGCASE#5, UoA

<u3u3>/U2, -

x 2,m

m

0 0.005 0.01 0.0150

5

10

15

20

25

30

35CASE#5, IAGCASE#5, UoA

f , mm

x 2,m

m

0 2 4 6 80

5

10

15

20

25

30

35CASE#5, UoACASE#5, IAGCASE#5, UoA

, m2/s3

x 2,m

m

100 101 102 103 104 1050

5

10

15

20

25

30

35CASE#5, UoACASE#5, IAGCASE#5, UoA

Page 30: DLR.de  •  Chart  1

Integral “TBL” Properties CASES#1-5Aerodynamical data

Overall Comparisons

TRANSITIONSS / PS

Ue, m/sSS / PS

d, mmSS / PS

d1, mmSS / PS

d2, mmSS / PS

CASE#1, U∞ = 56 m/s, 0°

Fully turb.6.5% / 6.5 %6.5% / 6.5%

52.2 / 52.251.5 / 51.552.1 / 52.1

15.0 / 15.010.6 / 10.6 14.3 / 14.3

2.7 / 2.72.5 / 2.52.6 / 2.6

1.7 / 1.71.4 / 1.41.5 / 1.5

CASE#2, U∞ = 55 m/s, 4°

Fully turb.6.5% / 6.5 %6.5% / 6.5%

51.6 / 50.950.7 / 50.451.4 / 50.6

19.9 / 11.913.5 / 8.4018.9 / 13.1

4.0 / 2.13.6 / 1.7 3.7 / 1.8

2.3 / 1.31.8 / 1.02.0 / 1.2

CASE#3, U∞ = 53 m/s, 6°

Fully turb.6.0% / 7.0 %6.0% / 7.0%

50.3 / 49.249.1 / 48.749.9 / 48.8

23.5 / 10.715.5 / 7.5018.2 / 14.3

5.1 / 1.94.4 / 1.44.3 / 1.5

2.8 / 1.12.1 / 0.92.2 / 1.0

CASE#4, U∞ = 38 m/s, 0°

Fully turb.6.5% / 6.5 %6.5% / 6.5%

35.3 / 35.336.9 / 36.935.2 / 35.2

16.0 / 16.011.1 / 11.1 14.3 / 14.3

3.0 / 3.02.6 / 2.62.8 / 2.8

1.8 / 1.81.4 / 1.41.6 / 1.6

CASE#5, U∞ = 60 m/s, 4°

Fully turb.12.0% / 15.0%12.0% / 15.0%

55.6 / 54.254.9 / 54.155.9 / 54.0

13.1 / 6.714.2 / 6.117.1 / 9.7

5.2 / 1.55.1 / 1.05.0 / 1.1

2.2 / 0.91.9 / 0.72.1 / 0.8

UoA

IAG DLR

d1, mmSS / PS

d2, mmSS / PS

3.0 / - 1.7 / -

4.8 / - 2.3 / -

5.7 / - 2.5 / -

3.1 / - 1.8 / -

- / - - / -

as measured (IAG):

Page 31: DLR.de  •  Chart  1

x1/ lc

x 2/l c

0 0.2 0.4 0.6 0.8 1 1.2-0.3

-0.2

-0.1

0

0.1

0.2

0.3 midspan plane

x3

x1

x2

Surface Pressure Data

Overall Comparisons

Position @ 99 % lcPSDs (measurement data normalized to Df = 1 Hz)

SS

PS

Page 32: DLR.de  •  Chart  1

Surface Pressure Data

Unsteady Surface Pressure PSD Gpp(f) CASES#1 & #2

fm, kHz

Gpp

,dB

/Hz

5 10 1550

60

70

80

90

100

CASE#1-PS, IAG LWTCASE#1-SS, IAG LWT

fm, kHz

Gpp

,dB

/Hz

5 10 1550

60

70

80

90

100

CASE#1-PS, IAG LWTCASE#1-SS, IAG LWTCASE#1-PS, IAGCASE#1-SS, IAG

fm, kHz

Gpp

,dB

/Hz

5 10 1550

60

70

80

90

100

CASE#2-PS, IAG LWTCASE#2-SS, IAG LWT

fm, kHz

Gpp

,dB

/Hz

5 10 1550

60

70

80

90

100

CASE#2-PS, IAG LWTCASE#2-SS, IAG LWTCASE#2-PS, IAGCASE#2-SS, IAG

fm, kHz

Gpp

,dB

/Hz

5 10 1550

60

70

80

90

100

CASE#2-PS, IAG LWTCASE#2-SS, IAG LWTCASE#2-PS, IAGCASE#2-SS, IAGCASE#2-PS, DLRCASE#2-SS, DLR

fm, kHz

Gpp

,dB

/Hz

5 10 1550

60

70

80

90

100

CASE#1-PS, IAG LWTCASE#1-SS, IAG LWTCASE#1-PS, IAGCASE#1-SS, IAGCASE#1-PS, DLRCASE#1-SS, DLR

f, kHz f, kHz UoA: no surface pressure data provided

IAG: RnoiseDLR: PIANO-FRPM

Overall ComparisonsG

pp, d

B (D

f = 1

Hz)

Gpp

, dB

(Df =

1 H

z)

Page 33: DLR.de  •  Chart  1

Unsteady Surface Pressure PSD Gpp(f) CASES#3 & #5

f, kHz

Gpp

,dB

/Hz

5 10 1550

60

70

80

90

100

CASE#3-PS, IAG LWTCASE#3-SS, IAG LWT

f, kHz

Gpp

,dB

/Hz

5 10 1550

60

70

80

90

100

CASE#3-PS, IAG LWTCASE#3-SS, IAG LWTCASE#3-PS, IAGCASE#3-SS, IAG

f, kHz

Gpp

,dB

/Hz

5 10 1550

60

70

80

90

100

CASE#3-PS, IAG LWTCASE#3-SS, IAG LWTCASE#3-PS, IAGCASE#3-SS, IAGCASE#3-PS, DLRCASE#3-SS, DLR

f, kHz

Gpp

,dB

/Hz

5 10 1550

60

70

80

90

100

CASE#5-PS, IAGCASE#5-SS, IAG

f, kHz

Gpp

,dB

/Hz

5 10 1550

60

70

80

90

100

CASE#5-PS, IAGCASE#5-SS, IAGCASE#5-PS, DLRCASE#5-SS, DLR

Surface Pressure Data

no measured comparison data available!

Overall ComparisonsG

pp, d

B (D

f = 1

Hz)

Gpp

, dB

(Df =

1 H

z)

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#5-PS, DLRCASE#5-SS, DLRCASE#5-PS, IAGCASE#5-SS, IAGCASE#5-PS, GE-GRCCASE#5-SS, GE-GRC

IAG: Rnoise DLR: PIANO-FRPM

Data has been scaled from different case!

GE-GRC: CHARLES

Page 34: DLR.de  •  Chart  1

u

x1/ lc

x 2/l c

0 0.2 0.4 0.6 0.8 1 1.2-0.3

-0.2

-0.1

0

0.1

0.2

0.3 midspan plane b = 1 mr = 1m

x3

x1

x2

= 0°

= 90° orthogonalview direction fornoise prediction

TBL-TE FF Noise Data

Overall Comparisons

b = 1 mr = 1 m1/3-octave band spectra

= 90° chord-normalview direction for noise prediction

Page 35: DLR.de  •  Chart  1

Farfield Noise Data

1/3-Octave Band FF Noise Spectra Lp(1/3)(fc) CASES#1 & #2

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#2, UoAblack: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#2, UoAblack: measurement data

Overall Comparisons

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, UoAblack: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, UoACASE#1, IAG

black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, UoACASE#1, IAGCASE#1, DLR

black: measurement dataUoA: RSNMIAG: RnoiseDLR: PIANO-FRPM

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#2, UoACASE#2, IAG

black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#2, UoACASE#2, IAG

black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#2, UoACASE#2, IAGCASE#2, DLR

black: measurement data

Page 36: DLR.de  •  Chart  1

1/3-Octave Band FF Noise Spectra Lp(1/3)(fc) CASES#3 & #5Farfield Noise Data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90black: measurement data

Overall Comparisons

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#3, UoAblack: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#3, UoAblack: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#3, UoACASE#3, IAG

black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#3, UoACASE#3, IAG

black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#3, UoACASE#3, IAGCASE#3, DLR

black: measurement dataUoA: RSNMIAG: RnoiseDLR: PIANO-FRPM

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#5, UoAblack: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#5, UoAblack: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#5, UoACASE#5, IAG

black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#5, UoACASE#5, IAGCASE#5, IAGCASE#5, IAG

black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#5, UoACASE#5, IAGCASE#5, DLR

black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#5, UoACASE#5, IAGCASE#5, DLRCASE#5, GE-GRC

black: measurement data

Data has been scaled from different case! GE-GRC: CHARLES

Page 37: DLR.de  •  Chart  1

Selected 1/3-Octave Band FF Noise Directivities: CASE#1Farfield Noise Data

Overall Comparisons

IAG DLR

, deg

p2rms(), Pa2

0

30

60

90

120

150

180

210

240

270

300

330

10-16 10-15 10-14 10-13

CASE#1, DLR, fc = 1 kHzCASE#1, DLR, fc = 2 kHzCASE#1, DLR, fc = 5 kHzCASE#1, DLR, fc = 8 kHzCASE#1, DLR, fc = 10 kHz

Page 38: DLR.de  •  Chart  1

Lp(1/3)(fc) and Gpp(f) data revisited to identify common trends;

are relative effects captured by the predictions?

Pressure Data

Overall Comparisons

Page 39: DLR.de  •  Chart  1

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100black: measurement data

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100CASE#1-SS, IAGCASE#4-SS, IAG

black: measurement data

Overall Comparisons

Effect of Flow Velocity on Lp(1/3)(fc) and Gpp(f): CASE#1 vs. #4Pressure Data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, UoACASE#4, UoA

black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, IAGCASE#4, IAG

black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, DLRCASE#4, DLR

black: measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, UoACASE#4, UoACASE#1, IAGCASE#4, IAGCASE#1, DLRCASE#4, DLR

black: measurement data

U∞ = 56 m/s

U∞ = 38 m/s

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100CASE#1-PS, DLRCASE#1-SS, DLRCASE#4-PS, DLRCASE#4-SS, DLR

black: measurement dataFormat: measured comparison data in black!

Page 40: DLR.de  •  Chart  1

Overall Comparisons

Effect of a-o-a on Lp(1/3)(fc): CASES#1 to #3Pressure Data

a-o-a

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, IAG LWT (scaled)CASE#1, DLR AWB (scaled)

measurement data:measurement data:

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, IAG LWT (scaled)CASE#1, DLR AWB (scaled)CASE#2, IAG LWT (scaled)CASE#2, DLR AWB (scaled)

measurement data:measurement data:

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, IAG LWT (scaled)CASE#1, DLR AWB (scaled)CASE#2, IAG LWT (scaled)CASE#2, DLR AWB (scaled)CASE#3, IAG LWT (scaled)CASE#3, DLR AWB (scaled)

measurement data:measurement data:

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, IAG LWT (scaled)CASE#1, DLR AWB (scaled)CASE#2, IAG LWT (scaled)CASE#2, DLR AWB (scaled)CASE#3, IAG LWT (scaled)CASE#3, DLR AWB (scaled)

measurement data:measurement data:Measurement data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, IAG LWT (scaled)CASE#2, IAG LWT (scaled)CASE#3, IAG LWT (scaled)

measurement data:measurement data:

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, DLR AWB (scaled)CASE#2, DLR AWB (scaled)CASE#3, DLR AWB (scaled)

measurement data:measurement data:

DLR AWB data IAG LWT data

Page 41: DLR.de  •  Chart  1

Overall Comparisons

Effect of a-o-a on Lp(1/3)(fc): CASES#1 to #3Pressure Data

a-o-a

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, IAG LWT (scaled)CASE#2, IAG LWT (scaled)CASE#3, IAG LWT (scaled)

measurement data:measurement data:

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, DLR AWB (scaled)CASE#2, DLR AWB (scaled)CASE#3, DLR AWB (scaled)

measurement data:measurement data:

DLR AWB data IAG LWT data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, IAG LWT (scaled)CASE#1, DLR AWB (scaled)CASE#2, IAG LWT (scaled)CASE#2, DLR AWB (scaled)CASE#3, IAG LWT (scaled)CASE#3, DLR AWB (scaled)CASE#1, UoACASE#2, UoACASE#3, UoA

measurement data:measurement data:

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, IAG LWT (scaled)CASE#1, DLR AWB (scaled)CASE#2, IAG LWT (scaled)CASE#2, DLR AWB (scaled)CASE#3, IAG LWT (scaled)CASE#3, DLR AWB (scaled)CASE#1, IAGCASE#2, IAGCASE#3, IAG

measurement data:measurement data:

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#1, IAG LWT (scaled)CASE#1, DLR AWB (scaled)CASE#2, IAG LWT (scaled)CASE#2, DLR AWB (scaled)CASE#3, IAG LWT (scaled)CASE#3, DLR AWB (scaled)CASE#1, DLRCASE#2, DLRCASE#3, DLR

measurement data:measurement data:

Symbols: Measurement dataLines: Simulation results

Page 42: DLR.de  •  Chart  1

SS

PS

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#1-SS, IAG LWTCASE#2-SS, IAG LWTCASE#3-SS, IAG LWT

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#1-PS, IAG LWTCASE#2-PS, IAG LWTCASE#3-PS, IAG LWT

Overall Comparisons

Effect of a-o-a on Gpp(f): CASES#1 to #3Pressure Data

f, kHz

Gpp

,dB

(Df=

1H

z)5 10 1550

60

70

80

90

100

CASE#1-SS, IAGCASE#2-SS, IAGCASE#3-SS, IAG

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#1-PS, IAGCASE#2-PS, IAGCASE#3-PS, IAG

IAG simulationMeasurement data

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#1-SS, DLRCASE#2-SS, DLRCASE#3-SS, DLR

DLR simulation

f, kHzG

pp,d

B(D

f=1

Hz)

5 10 1550

60

70

80

90

100

CASE#1-PS, DLRCASE#2-PS, DLRCASE#3-PS, DLR

Page 43: DLR.de  •  Chart  1

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#2-PS, IAG LWT

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#2-SS, IAG LWT

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#2, IAG LWT (scaled)CASE#2, DLR AWB (scaled)CASE#5, DLR AWB

measurement data:measurement data:

Overall Comparisons

Effect of Profile on Lp(1/3)(fc) and Gpp(f): CASES#2 vs. #5Farfield Noise Data

Measurement data SS

PS

Page 44: DLR.de  •  Chart  1

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#2-SS, IAG LWT

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#2-PS, IAG LWT

Overall Comparisons

Effect of Profile on Lp(1/3)(fc) and Gpp(f): CASES#2 vs. #5Farfield Noise Data

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#2, IAG LWT (scaled)CASE#2, DLR AWB (scaled)CASE#5, DLR AWBCASE#2, UoACASE#5, UoA

measurement data:measurement data:

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#2, IAG LWT (scaled)CASE#2, DLR AWB (scaled)CASE#5, DLR AWBCASE#2, IAGCASE#5, IAG

measurement data:measurement data:

fc, kHz

L p(1

/3),

dB

5 10 152030

40

50

60

70

80

90

CASE#2, IAG LWT (scaled)CASE#2, DLR AWB (scaled)CASE#5, DLR AWBCASE#2, DLRCASE#5, DLR

measurement data:measurement data:

Symbols: Measurement dataLines: Simulation results

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#2-SS, IAG LWTCASE#2-SS, IAGCASE#5-SS, IAG

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#2-SS, IAG LWTCASE#2-SS, DLRCASE#5-SS, DLR

SS

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#2-PS, IAG LWTCASE#2-PS, IAGCASE#5-PS, IAG

f, kHz

Gpp

,dB

(Df=

1H

z)

5 10 1550

60

70

80

90

100

CASE#2-PS, IAG LWTCASE#2-PS, DLRCASE#5-PS, DLR

PS

Page 45: DLR.de  •  Chart  1

Summary

Still comparatively low number of participants (however, increased w.r.t BANC-I!)

Mainly results of faster approaches using SNT have been shown (UoA, IAG, DLR); two “last minute” LES contributors joined us; however, overall comparisons were limited (GE-GRC: existent results for a different test case have been roughly scaled to correspond to CASE#5 in the statement; EXA: data provided for single core test CASE#1?).

We have seen very interesting results (with some room for improvement) with

many similarities but also significant differences within the delivered data:- In most of the cases TBL-TE FF noise predictions were within the provided

data scatter band (reproducing systematic error between test facilities)- General trends (shape effect, velocity scaling) are mostly covered - But: spectral shapes/ main spectral characteristics are not always perfectly

predicted (here: expected measurement data scatter is much smaller; IAG and DLR data collapse within +/- 1.5 dB!)

Page 46: DLR.de  •  Chart  1

Outlook 1/2

Extension of the existing data base by additional DU-96 data sets by Virginia Tech (cp-distributions and acoustical data):- Data measured under NREL funding (described in the report Devenport

W., Burdisso R.A., Camargo H., Crede E., Remillieux M., Rasnick M., van Seeters P., Aeroacoustic Testing of Wind Turbine Airfoils, Subcontract Report NREL/SR-500-43471, 2010 ). 63-microphone phased array data with conventional beamforming processing (test performed in 2007).

- New DU-96 data (currently being processed) at 4 speeds and 5 a-o-a; 0°, 4°, 8°, 12°, 16° 128 microphone phased array with advanced beamformer.

Others?- Data owners of additional suitable data sets are highly encouraged to

contribute to the BANC-II, III… data base; please contact [email protected]

Page 47: DLR.de  •  Chart  1

Outlook 2/2

BANC-III (if desired) will keep the existing CASES#1-5, the by now established BANC-II data base is open for use to anyone interested and will be maintained according to your feed-back

Need for additional test cases, add-ons (wind tunnel environment, additional mechanisms, etc.)?

BANC-II documentation (presentations, reports, workshop minutes) will be uploaded at the BANC-II website after the workshop:

https://info.aiaa.org/tac/ASG/FDTC/DGBECAN_files_/BANCII_category1

Page 48: DLR.de  •  Chart  1

Thank you for your attention!

Page 49: DLR.de  •  Chart  1

Agenda7 June 2012 – BANC-II-1: Trailing-Edge Noise

Introduction- Problem statement- Overview on contributions & participants- Overview of used codes

Participant’s presentations on computational approach & on selected results- Cristobal A. Albarracin et al., University of Adelaide, Australia (UoA)- Mohammad Kamruzzaman, University of Stuttgart, Germany (IAG)- Roland Ewert et al., German Aerospace Center (DLR)- Lawrence Cheung & Giridhar Jothiprasad, GE Global Research, NY (GE-GRC)- Damiano Casalino et al., EXA GmbH, Stuttgart, Germany (EXA)

Overall comparisons, summary, conclusions & outlook

Discussion