doa estimation slides

Upload: pedro-luis-carro

Post on 07-Jul-2018

235 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 DOA Estimation Slides

    1/92

    DIRECTION OF ARRIVAL 

    ESTIMATION

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation1

  • 8/18/2019 DOA Estimation Slides

    2/92

    Introduction•   Finding the direction of arrival of a wavefront is identical to the problem of 

    finding power concentration in the frequency domain. In consequence….

    •   DOA estimation is the root problem of spectral density estimation dBm/Hz

    or just dBm/degree of solid angle.

    •   Differences: 3D search, non uniform sampling, wave propagation effects,

    no rational models, robutsness to missmatched is the must of DOA

    estimation methods.

    •   The problem: Giving a set of N snapshots from an aperture of Q sensors,

    to estimate the number of sources and their angles of arrival. When N>

    10.Q the covariance is almost stabiliced.

    •   We will start with the narrowband problem for uncoherent point sources

    in the far field. The effect of coherent sources will be mentioned for each

    procedures and, finally, the wideband case will be presented.

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation2

  • 8/18/2019 DOA Estimation Slides

    3/92

    The narrowband snapshot and 

    covariance

    o

     H 

    r r 

     NS 

    r o

     H 

    sss

    nns

     NS 

    i

    nsin

     RS S r P RS PS  R

    waS wS na X 

    ..)(..

    .).(

    1

    1

    Our goal: To estimate the

    steering vector

    contained in the matrixof DOAs

    Waveform and power

    of the sopurces is not

    our priority concern

    Noise motivates the

    problem and converts

    a deterministic well

    defined problem in an

    estimation problem

    To families of procedures: SCANNING METHODS

    NULLING PROCEDURES (SUPERRESOLUTION)ML BASED METHODS (OPTIMUM)September 13

     Array Processing Miguel Angel

    Lagunas DOA Estimation3

  • 8/18/2019 DOA Estimation Slides

    4/92

    SCANNING Framework

      0.2

      0.4

      0.6

      0.8

      1

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    Scanning

    Elevation in degrees

       P  o   l  a  r  r  e  s  p  o  n  s  e

    Steering Vector S

    (Direcyion to scan)

    Beamformer Response (to be designed A)

    1.   S  A H 

    In order to steer the beam to the desireddirection a constraint is mandatory in the

    design

     H  H  H  f C  A   .Just in case others directions should be nulled or

    attenuated (those where known stations or RF

    equipment is located. In this case te constrainswould be NC

  • 8/18/2019 DOA Estimation Slides

    5/92

    Ince a beamformer A have been selected, we measure the power at the output

    of the beamformer as:

    ...)(   mW  A R AS P  H 

    The estimate is formed by the quotient of

    the power measured divided by the

    beamwidth of the beamformer.

    TWO alternatives to derive a close expression of the effective beamwidth:

    - From the equation that relates the output power with the beamformer directivity and the incoming power density.

    - From a calllibration problem.

             d s A R AS P d  H  2

    Viewof Field  ,A..)( Beamformer

    directivty, steered on

    the desired directionPower density, i.e. the value to be

    estimated by any DOA procedureSeptember 13

     Array Processing Miguel Angel

    Lagunas DOA Estimation5

  • 8/18/2019 DOA Estimation Slides

    6/92

     Assuming that the beam is narrow with beamwidth Bw around the steered

    angle……

             d  A R AS P d  H  2

    Viewof Field ,A..)(

    Estimate of s(θ), due to the

    approximation, of the power density

      A Ad    H d         2

    Viewof Field ,A

    In summary, given the beamformer A the power level estimate and the power

    density (local maxima will provide DOA estimates will be:

     A A

     A R AS 

     A R AS P

     H 

     H 

     H 

    ..)(

    ..)(

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation6

  • 8/18/2019 DOA Estimation Slides

    7/92

    The calliobration alternative consists on choosing the beamwidth Bw in such a

    way that with undirectional noise only present in the scenario , i.e. Covarianceequal to σ2.I, the estimat e will be equal to σ2

           I  R

    w B

     A R AS 

     H ..

    )(

    Clearly the callibration requires that   A A Bw  H 

    .

    This beamwidth can be defined as the bandwidth of an ideal

    “brick shape” beamformer such that both, the original and

    the ideal, produce the same output power when only non-

    directional noise is present in the scenario.

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation7

  • 8/18/2019 DOA Estimation Slides

    8/92

    SCANNING procedures differ on

    the way the scanning beamfomer

    is designed

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation8

  • 8/18/2019 DOA Estimation Slides

    9/92

    The Phased

     Array

     (PA)

     Method

    The easiest procedure for beamforming is the so-called phased array

    method. Imagine that we desire to steer the beam toward the broadside,

    in this case all the entries of the beam are one resulting in an almost no-operation processing. In fact, the mathematical ground for this design is

     just to select the beamfomer which produces the maximum dot product

    with the steering vector of the direction to scan.

    min

     H 

     H 

     A A

    S  A

    .

    1.   In summary, the

    beamformer is selected from

    a non-bias constraint in the

    scanning direction and

    minimum norm or responseto the leakage produced by

    the non-directional noiseThe solution is an

    only-phase

    beamformer known asthe phased array.

    S QS S 

    S  A

     H 

    .1

    .

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation9

  • 8/18/2019 DOA Estimation Slides

    10/92

    Using this beamformer on the power and

    the spectral density estimators we have:

    S  RS Q A A

     A R AS 

    S  RS Q

     A R AS PP

     H 

     H 

     H 

     H  H 

    ...1

    .

    ..)(),(

    ...1

    ..)(),(2

      

      

    Note that the power level and the density level

    differ only in a constant. The reason for that is that

    this procedure is a constant-bandwidth scan since   Q A A

     H  1.  

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation10

  • 8/18/2019 DOA Estimation Slides

    11/92

    -100 -80 -60 -40 -20 0 20 40 60 80 100-10

    -5

    0

    5

    10

    15

    Elevacion en rados

           d       B

    Estimacion de DOA: Phased array

    PA estimates for an ULA array of 15 elements and using

    3000 snapshots to compute the array covariance matrix R

    Resolution is limited by the

    aperture size (beamwidth of the

    scanning beam.

    The major drawback of PA is

    the large leakage suffered on

    DOAs close where a source ispresent

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation11

  • 8/18/2019 DOA Estimation Slides

    12/92

    For a planar aperture the performance is

    even worse since in somes directions the

    aperture is working down to 5 effective

    sensors instead of 15.

    -1 -0.5 0 0.5 1-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Sur 

       S   l  o  w  n  e  s  s   /

      a  z   i  m  u   t   h

    Metodo phased array

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation12

  • 8/18/2019 DOA Estimation Slides

    13/92

    Data dependent

     beamforming

    Since we desire to measure power impinging from the desired direction,

    power entering to the array from other directions will introduce a positive bias

    (leakage) on the power measured. In order to minimize leakage, theobjective should be:

     MIN 

     H 

     A R AS P ..)( 

    Knowing that the bias will be positive we

    have to minimize the output power.

    In addition the constraint of 0

    dB gain on the steering

    direction have to be added.

    1.   S  A H 

    Note that additional constrains can be added, i.e. null to

    engine noise source in towed arrays, known RF stations

    around, clutter, etc.September 13

     Array Processing Miguel Angel

    Lagunas DOA Estimation13

  • 8/18/2019 DOA Estimation Slides

    14/92

    The MLM

     beamformer

     from

     Capon

    The resulting beamformer is:

    S  RS 

    S  R A

     H ..

    .

    1

    1

    Note that this beamformer suffers from desired degradation when a

    coherent source is present on the scenario. The reason for coherent

    sources degrading the performance of MLM is that they promote negative

    bias on the power estimation, i.e. the beam steers the coherent source to

    minimize the output power when steered to the desired.

    On mathematical terms, coherent sources degrade the

    rank of the covariance matrix of the sources degrading

    severely the performance of the method.

    Regardless the method was denominated by Capon as maximum likelihood,

    this is not the case in general. ONLY when the beam is steered to one, and

    single, existing source in a non directional noise the power measured is MLM.

    Nevertheless, the optimum beamformer in this case coincides with a phasedarraySeptember 13

     Array Processing Miguel Angel

    Lagunas DOA Estimation14

  • 8/18/2019 DOA Estimation Slides

    15/92

    In order to do not produce any miss-understanding related with the original name

    of MLM, authors use to refer to this beamformer as minimum variancebeamformer in the sense that it minimizes the variance at the beamforer output.

     After using this beamformer for the

    power level and power densityestimates we obtain:   wattsS  RS S P

     H  ..

    1

    1

      S  RS 

    S  RS 

     A A

     A R A

     A AS PS S 

     H 

     H 

     H 

     H 

     H ..

    ....

    .2

    1

    Scanning, as in all the procedures described herein is done by changingthe steering angles within the steering vector S

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation15

  • 8/18/2019 DOA Estimation Slides

    16/92

    -100 -80 -60 -40 -20 0 20 40 60 80 100-15

    -10

    -5

    0

    5

    10

    15

    Elevacion en grados

       d   B

    DOA Estimation: MLM Capon

    Power level estimate MLM for an ULA array

    Better resolution than PA  Almost no leakage from

    existing sources

     Accurate power

    level estimation

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation16

  • 8/18/2019 DOA Estimation Slides

    17/92

    The improvement with respect PA is very evident for a planar aperture

    -1 -0.5 0 0.5 1-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Sur 

       S   l  o  w  n  e  s  s   /  a  z   i  m  u   t   h

    Metodo MLM

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation17

  • 8/18/2019 DOA Estimation Slides

    18/92

    For the power density estimate the resolution further improves The leakage

    level is also improved. Of course power level is lost on density plots.

    -1 -0.5 0 0.5 1-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Sur 

       S   l  o  w  n  e  s  s   /  a

      z   i  m  u   t   h

    Metodo Normalizado-MLM

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation18

  • 8/18/2019 DOA Estimation Slides

    19/92

    -100 -80 -60 -40 -20 0 20 40 60 80 100-15

    -10

    -5

    0

    5

    10

    15

    Elevacion en grados

              d

              B

    DOA Estimation: MLM Capon

    In order to show the performance of NMLM versus traditional MLM we need

     just to go to scenarios with closely spaced sources

    -8 -6 -4 -2 0 2 4 60

    5

    10

    15

    Elevacion en grados

              d

              B

    DOA estimacion: NML Lag

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation19

  • 8/18/2019 DOA Estimation Slides

    20/92

    The formal proof of the superiority of NMLM versus MLM and PA, in terms ofresolution we just need to use the fact that for density estimates we have:

    S  RS 

    Q

    S  RS 

    S  RS S  RS S  RS S S 

    vuvvuuS  RvS u

    and 

    Q

    S  RS 

    S  RS 

    QQS  RS S  RS 

    vuvvuuS  Rv RS u

     H  H 

     H 

     H  H  H 

     H  H  H 

     H 

     H 

     H  H 

     H  H  H 

    ....

    .......

    .

    ..

    ......

    ..

    12

    1212

    21

    1

    21

    22/12/1

    Some authors, in order to use

    traditional MLM for density proposed(wrong) to use a constant bandwith

    1/Q to produce a density estimate

    from the power estimate.

    eewatts/degr ..

    1S  RS 

    Q H   

    Thus, assuming allget the same level at

    the source location,

    NMLM falls down

    faster than the other

    two methods.

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation20

  • 8/18/2019 DOA Estimation Slides

    21/92

    Note the degradation of NMLM (and MLM) for coherent sources. It is

    worthwhile to remark that this effect is identical to the desired cancellation onSLC and GSLC beamformers.

    -15 -10 -5 0 5 10 15 20 25-5

    0

    5

    10

    Elevation in degrees

            d        B

    DOA estimation: NML Lag

    -15 -10 -5 0 5 10 15 20 25-10

    -5

    0

    5

    10

    15

    Elevacion en grados

       d   B

    DOA Estimation: MLM Capon

    COHERENT SOURCES UNCOHERENT SOURCES

    -15 -10 -5 0 5 10 15 20 25-10

    -5

    0

    5

    10

    15

    Elevation in degrees

       d   B

    DOA estimation: Phased (blue actual location)

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation21

  • 8/18/2019 DOA Estimation Slides

    22/92

    Nulling procedures (Super‐

    resolution methods)

    Remarks:

    - The size of the aperture bound the minimum beam-width of a beamformer response.

    - Size do not preclude close located zeros of the beamforer response.

    - The number of elements bounds the leakage suffered by a beamformer 

    - The number of elements (minus one) limits the number of zeros of the

    beamformer response.

    IDEA:

    Instead of looking for maximum power associate to the presence of

    sources, change the procedure such that minima (or zeros) are

    associated to the presence sources SUPER-RESOLUTION

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation22

  • 8/18/2019 DOA Estimation Slides

    23/92

    HOW TO DO IT:

    Design a beamformer A such that minimices the output power. To do so the

    objective is the same that in scanning methods.

    Set some constraint to prevent the trivial solution, i.e. the zero beamformer.

    Compute the response of the beamformer, since to do properly its job, it

    will present minima or zeros response to those DOA where a source is

    present in the scenario.

    GENERAL FORMULATION:

    Objective

    Constraint

    Source detector as the maxima of the inverse ofthe beamfomer spatial response.

     MIN 

     H  A R A ..

      c A f   

    2

    1

     AS 

    S s H 

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation23

  • 8/18/2019 DOA Estimation Slides

    24/92

    Difference of  beamformers for 

    scanning or

     super

    ‐resolution

     

    -80 -60 -40 -20 0 20 40 60 80

    -15

    -10

    -5

    0

    5

    10

       A  r  r  a  y   f  a  c   t  o  r   d   B .

    Elevation

    Quiescent

    -80 -60 -40 -20 0 20 40 60 80

    -35

    -30

    -25

    -20

    -15

    -10

       A  r  r  a  y   f  a  c   t  o  r   d   B .

    Elevation

    Optimum as rx-1*sdMLM 

    PA

    -80 -60 -40 -20 0 20 40 60 80

    -25

    -20

    -15

    -10

    -5

    0

       A  r  r  a  y   f  a  c   t  o  r   d   B .

    Elevation

    eigenvector # 1 eigenvalue...1.8376SUPER‐RESOLUTION

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation24

  • 8/18/2019 DOA Estimation Slides

    25/92

    The 

    spatial 

    linear 

    predictor

     MIN 

     H  A R A ..

    The constrain will be setting to one the

    beamformer weight of one element of the

    aperture.

    0..010..0111     with A H 

    1..11.1

    1

     R

     R A H 

    The solution for the beamformer is:

     And, the corresponding estimate is:

    21..1

    1)(

    S  R

    S  H   

     

    Error de

     prediccion

    Confor-mador deanulacion o predictorlineal

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation25

  • 8/18/2019 DOA Estimation Slides

    26/92

    Pisarenko

     MIN 

     H  A R A ..

    The constrain will be setting to one the

    norm of the beamformer which is the

    same that asking for minimum response

    to the un-directional noise

    1 A A H 

    ee Rof r eigenvecto A ..min    

    The solution for the beamformer is the

    Minimum eigenvector of this problem:

     And, the corresponding estimate is:

    2

    min.

    1)(

    S e

    S  H 

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation26

  • 8/18/2019 DOA Estimation Slides

    27/92

    COMMENTS:

    •   The estimates

     produce

     false

     peaks.

    •   The number of  elements is greater than the 

    number 

    of  

    existing 

    sources.•   For Q  elements the response may have up to 

    Q ‐1 zeros, being NS the number of  sources, it 

    will be

     Q 

    ‐1‐NS

     false

     sources.

    •   Pisarenko and Prony solved the problem of  

    labeling 

    actual 

    sources.•   S,R,K solved in an elegant manner this 

    problem of  resolution methods with the so‐

    called MUSICSeptember 13  Array Processing Miguel AngelLagunas DOA Estimation 27

  • 8/18/2019 DOA Estimation Slides

    28/92

    MUSIC 

    (Goniometre)Super-resolution is valid for point sources and, in general for un-directional

    front-end noise. For this reason, people use to refer these procedures as

    point source detectors (far-field scenarios).

    Under the above hypothesis, the

    array covariance matrix has asolid structure that can be used to

    improve the point source location

    performance.

     NS 

    s H  H sss   I S PS  I S S P R

    122 ......     

    SIGNAL SUB-SPACE- Dimenssion NS, or rank

    NS, is formed from NS

    independent steering

    vectors

    NOISE SUB-SPACE- Full rank Q and formed

    by Q vectors orthogonal

    and equal to the

    columns of the identity

    matrix.September 13  Array Processing Miguel AngelLagunas DOA Estimation

    28

  • 8/18/2019 DOA Estimation Slides

    29/92

    - The dimension of the array covariance is Q, thus the covariance matrix can

    be described from an orthonormal base of dimension Q.

    - Within this space of dimension Q there is a subspace of lower dimension NS

    where the steering vectors we are interested for, form a non orthogonal base of it.

    - Let us assume that vector eq (q=1,Q) is one of the Q vectors describing the full

    space of the aperture, the power associated with this vector will be:

    qq

     H 

    q   e Re    .

    - It is obvious that those vectors that take part of the signal subspace will have

    more power associated than those which only, and just only, describe the noise-subspace.

    - We assume that vectors form an orthogonal base, the noise vectors will be

    orthogonal to the vectors describing the signal subspace and in consequence THEY

    WILL BE ORTHOGONAL TO THE STEERING VECTORS OF THE SOURCESSeptember 13  Array Processing Miguel AngelLagunas DOA Estimation

    29

  • 8/18/2019 DOA Estimation Slides

    30/92

    The eigenvectors of the covariance matrix is the proper base to choose for our

    analysis.

    qqq

    Q NS  NS 

    Q

    q

     H  H 

    qqq

    ee R

    that satisfyrseigenvectothe

    eeee E 

    being

     E  D E ee R

    ..

    ..

    ....

    11

    1

     

     

    Note that the eigenvalue

    is just the power

    associated with thecorresponding

    eigenvector when we

    look at it as a

    beamformer 

     As the largest eigenvalues are associated with the point sources we may saythat the corresponding NS eigenvectors fully describe the signal sub-space.

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation30

    NR 1

  • 8/18/2019 DOA Estimation Slides

    31/92

    31

    Signal sub-space

    (Since Ns=2 it is a

    plane)

    The signal sub-

    space is described

    by the two largesteigenvectors which

    are orthogonal

    The steering vectors of

    the sources, not

    orthogonal, have to be

    in the plane.

     Ns

    q

     H 

    qsqsqs

     Ns

    q

     H 

    qqqs

    sqsqsqss

    eeS S  R

    or 

     N qee R

    1

    ,,,

    1

    2

    ,,, ,...,1

      

     Note that the eigenvectors of the signal

    subspace are also the eigenvector of the

    array covariance and the eigenvalue isincreased in the noise level

    THE NOISE EIGENVECTORS, ALL OF THEM WITH

    EIGENALUE EQUAL TO σ2, WILL BE

    ORTHOGONAL TO THE SOURCE STEERING

    VECTORSSeptember 13  Array Processing Miguel AngelLagunas DOA Estimation

  • 8/18/2019 DOA Estimation Slides

    32/92

    MUSIC

    - Compute eigenvectors and eigenvalues

    - Decide the dimension of the signal sub-space

    - Form and find the maxima of the MUSIC estimate

    2

    1

    .

    1)(

    Q

     NS qq

     H eS 

    Note that every beamformer or eigenvector have Q-1 minima but only at

    the NS source location they will coincide. In this manner MUSIC

    removes the problem of false peaks. Note also that Pisarenko reduces to

    MUSIC when the dimension of the noise subspace is one, i.e. is identicalwhen number of actual sources is Q-1.September 13

     Array Processing Miguel Angel

    Lagunas DOA Estimation32

  • 8/18/2019 DOA Estimation Slides

    33/92

    The major problem of MUSIC, general for any subspace-based method, is

    to decide the length of the signal/noise subspace.

    - When Sn (dimenssion)NS the estimate

    shows false peaks.

    0 200 400 600 800 1000 1200-15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    frequency

       S   (  w   )   i  n   d   B

    Music.-Sinusoides en ruido

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation33

    SELECTING THE DIMENSSION OF THE SUBSPACES

  • 8/18/2019 DOA Estimation Slides

    34/92

    SELECTING THE DIMENSSION OF THE SUBSPACES

    - A single source with low signal to noise ratio

    - When sources are closely located the first eigenvalue increases and

    the second decreases

    Example: NS=2 (Two actual sources)

    Note that eigenvectors are beams (Eigenbeams).

    The maximum takes maximum energy from all sources present.

    The minimum does the same but with the constraint of

    being orthogonal to the previous one.

    Max eigenbeam

    Min. Eigenbeam

    Eigenvalue 1

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation34

  • 8/18/2019 DOA Estimation Slides

    35/92

    Difficult to decide the signal subspace dimenssion !!!

    1 2 3 4 5 6 7 8 9 10 11 120

    2

    4

    6

    8

    10

    Order 

       E   i  g  e  n

      v  a   l  u  e

    Ordered eigenvalues for MUSIC

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation35

  • 8/18/2019 DOA Estimation Slides

    36/92

    Music 

    Performance

    -8 -6 -4 -2 0 2 4 60

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    Elevacion en grados

       d   B

    Metodo de estimacion de DOA: Music

    0 5 10 15

    0

    50

    100

    150

    200

    250

    300

    Numero

     Autovalores

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation36

  • 8/18/2019 DOA Estimation Slides

    37/92

    -1 -0.5 0 0.5 1

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    Sur 

        S    l   o   w   n   e   s   s    /   a   z    i   m   u    t    h

    Metodo Music

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation37

    O h d h d f

  • 8/18/2019 DOA Estimation Slides

    38/92

    DOA Enhanced Methods from 

    noise subspace

     versions.

    Pisarenko predicted MUSIC by further generalizing MUSIC (Almost 50 years

    before MUSIC was reported) by the so-called potential density estimators.

    First, note that any positive or negative

    power of a covariance matrix is reflected in

    its eigenvalues

      Q

    q

     H 

    qqmq

    mee R

    1

    .. 

     As a consequence taking the Capon’s power density estimate,

    S  RS S P

     H 

     MLM 

    ..

    1)(

    1 Can be written as: 2

    1

    1 ..

    1)(

    Q

    qq

     H 

    q

     MLM 

    eS 

    S P

     

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation38

  • 8/18/2019 DOA Estimation Slides

    39/92

    Knowing that noise eigenvalues are orthogonal to the steering vectors of the

    sources, artificial resolution can be added by just using only the noise

    subspace. This is refereed as the noise subspace version of Capon’s methodand was reported by Jhonson.

    Q

     NS q q

     H 

    q

     JH 

    eS 

    1

    21 .

    1)(

     

    The noise subspace version of NMLM, also improving resolution is:

    Q

    qq

     H 

    q

    Q

    qq

     H 

    q NMLM 

    eS 

    eS S 

    1

    22

    1

    21

    ..

    ..)(

     

     

    In fact, Pisarenko proved the following statement:

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    39

    For any function f(x) such that the inverse exist and is continuous g(f(x))=x the

  • 8/18/2019 DOA Estimation Slides

    40/92

    For any function f(x) such that the inverse exist and is continuous g(f(x))=x the

    family of estimates

    Converges to the actual density when the size of the aperture goes to infinity

    yet preserving average inter-element spacing. (Steering vectors become

    eigenvectors of signal and the eigenvalues the actual density)

    In consequence, the following estimates converge asymptotically to the actual

    power distribution:

    )()(lim   S S  R f S gS    ACTUAL H  ESTIMATE Q  

       

     

     

     

    Q

    q

    q

     H 

    q

     H  LOG

    mQ

    qq

     H mq

    mm H 

    POT 

    Q

    qq

     H mq

    Q

    q q

     H m

    q

    m H 

    m H 

    POT 

    eS  LnS  RS  LnS 

    eS S  RS S 

    eS 

    eS 

    S  RS 

    S  RS S 

    1

    21

    1

    2

    2

    1

    2

    1

    21

    1

    1

    .).exp(..exp)(

    ....

    1

    )(

    ..

    ..

    ..

    ..)(

     

     

     

     NOTE that MUSIC does

    not have this property

    since function f(x) is not

    invertible. So Music is a

    source detector but no anestimate of the power

    distribution versus angle

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    40

  • 8/18/2019 DOA Estimation Slides

    41/92

    MUSIC 

    for 

    colored 

    noise 

    backgroundWhen the noise back-ground covariance is still full range and known a priori,

    still MUSIC can be used with the following modification:

     Assuming that the model for the measured

    covariance is:

     NS 

    s

     H 

    ss

    o

     H 

     RS S sP

     RS PS  R

    1 0

    )(

    ..

    Then---

    ss

     NS 

    s

     H 

    ss

    S  Rb

    being

     I bbsP R R R

    2/1

    0

    1

    2/1

    0

    2/1

    0).(..

    In consequence, the noise eigenvectors of matrix orgeneraliced noise eigenvectors of the matrix pencil

    R and R0 are orthogonal to the new vector bs

    qq   e Rqe R R R R 02/1

    0

    2/1

    0 )(..    

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    41

  • 8/18/2019 DOA Estimation Slides

    42/92

    In summary the new estimate, will be constructed over the noise generalized

    eigenvectors of the pencil matrix R, R0 and the sources will be located at thelocal maxima, among S, of …..

    2

    1

    2/1

    0

    2

    1

    ..

    1

    .)(

    1)(

    Q

     NS q

    q

     H Q

     NS q

    q

     H u RS uS b

    Note that the selection of the dimension stays on the generalized

    problem as well as the difficulties on its estimation from data

    covariance matrixes.

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    42

    l

  • 8/18/2019 DOA Estimation Slides

    43/92

    Scanning complexity on DOA 

    estimation

    For resolution close to 0.1º, the scanning, trough vector S, in all the estimates

    reported, implies the computation of a QxQ quadratic form(360*10).(180*10)=6.480.000 times (!!!!!!).

    This represents a hard limitation for implementing these procedures

    on limited resource array stations.- Limited field of view

    - Selective scanning

    - ESPRIT using moving platform or twin apertures.

    The basic idea is to perform spatial linear prediction and solving it as an

    exact problem using singular value decomposition SVD.

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    43

  • 8/18/2019 DOA Estimation Slides

    44/92

    ESPRIT

    n X    nY 

     After target illumination, two set of snapshots, X

    and Y are collected from two virtual apertures

    separated a vector d, motivated by the constant

    velocity movement of the platform.

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    44

  • 8/18/2019 DOA Estimation Slides

    45/92

    n

    n

    n Y 

     X 

     Z  Is the 2Q size global snapshot

    Our target is to design a spatial linear predictor T such that the second

    snapshot is predicted from the first minimizing the prediction error 

      nnnn

    n

    n

    nn   X T Y Y 

     X  I T  Z  I T         

    Regardless the procedure is coined as ESPRIT, the idea was original from J.

    Munier (Grenoble) and it was named as “Propagateur”. The Propagateur was

    used, not just for DOA estimation but also for callibration of towed sonar arrays.

    Before solving the LP problem we will reduce

    noise using the svd of the covariance of the

    global snapshot.September 13  Array Processing Miguel Angel

    Lagunas DOA Estimation45

  • 8/18/2019 DOA Estimation Slides

    46/92

    Using the svd of covariance Rz

    nnn

     N 

    qsss

     H 

    nn z E  E  E  E  Z  Z 

     N  R    

    1

    1

    Signal sub-space of

    dimension NS (equal to the

    actual number of sources

    It is clear that the signal subspace

    eigenvector can be decomposed

    on the two apertures contributions

     y

     x

    s  E 

     E  E 

    These two contributions are

    QxNS size

    In addition, we know that the signal

    eigenvectors of each aperture are

    related to the corresponding DOAs by a

    rotation matrix.

    GS  E 

    GS  E 

     y

     x

    where

     

     

     

     

     

     

     

        d k 

    c

     f  j NS sdiag

      H 

    unitarysc

    )(

    2exp,1   

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    46

  • 8/18/2019 DOA Estimation Slides

    47/92

    THE PROBLEM NOW IS TO DESIGN THE LINEAR PREDICTION

    BETWEEN THE TWO SUBSPACES. This can be formulated as finding F1and F2 in this problem:

       

    2

    1.F 

    F  E  E 

     y x

    To solve the problem let us take a look of svd of the composition of the two subspaces

     H 

     y xV  DU  E  E  ..

     H V 

    11

     H V 

    12

     H V 21

     H V 22

    Only the diagonal of the red

    square contain the NS

    eigenvalues different from zero

    Q 2NS

    NSSeptember 13 Array Processing Miguel Angel

    Lagunas DOA Estimation47

  • 8/18/2019 DOA Estimation Slides

    48/92

     H V 11

     H V 12

     H V 

    21

     H V 

    22

    Multiplying by this matrix….

    22

    21

     I 0

    This product produces zero or minimum residual. In

    consequence:

    0.22

    12

    V  E  E 

     y x

     y x

     y x

     y x

     E T  E 

     E V V  E 

    or V  E V  E 

    1

    2212

    2212

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    48

    ETENow having T after 2 svd we resort the relationship

  • 8/18/2019 DOA Estimation Slides

    49/92

     y x E T  E    Now, having T after 2 svd, we resort the relationshipbetween eigenvectors and steering vectors

    GS  E 

    GS  E 

     y

     x

    …. And we obtainGS T GS      GT G  

    GGT      1

     And, finally….

     After 3 svd we get the NS DOAs from the eigenvalues

    of matrix T. This completes the ESPRIT procedure

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    49

    MAXIMUM LIKELIHOOD

  • 8/18/2019 DOA Estimation Slides

    50/92

    MAXIMUM LIKELIHOODPoint

     Source

     DOA

     estimation

    First at all, let us solve the problem of a single source in white noise.

      S a X  RS a X  R RS a X  nn H 

    nnnn     1

    0

    0

    0 expdet

    1,,Pr 

    The ML estimate of the complex

    envelope is:

    Q

     X S 

    S  RS 

     X  RS a   n

     H 

     H 

    n

     H 

    n  

    1

    0

    1

    Note that to recover the envelope estimate we need the location or steering of the

    source. Now using the previous estimate in the likelihood we have:

     

     

      

     

     

      

     

    Q

     X S S  X 

    Q

     X S S  X S  X    n

     H 

    n

     H 

    n

     H 

    nQn 22

    2 1exp1

    ,Pr   

     

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    50

    1 t H 

     H 

    t

     H  X S 

    SX X S 

    SX  

     

     

     

     After some manipulations on

    the exponent

  • 8/18/2019 DOA Estimation Slides

    51/92

    22

    2

    11

      

     

     H  H 

    t t 

     H  H  H 

    t t 

    t t 

     X Q

    S S  I  X  X 

    Q

    S S  I 

    Q

    S S  I  X 

    QS  X 

    QS  X 

     

      

       

      

       

      

     

     

     

     

     

    the exponent….

    P is a projection operator .   H  H  S S S S  I P 1

    This operator provides the projection on

    the orthogonal subspace to the space

    defined by matrix S

     H S P  

    v

    vP

    This P generates a projection ofthe received snapshot on the

    orthogonal subspace of S, i.e.

    removes the content from

    direction S from the data

    snapshot.

     H 

     X Q

    S S  I 

     

      

     

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    51

    Si th t f l i th l d th t i i l th

  • 8/18/2019 DOA Estimation Slides

    52/92

    To continue the estimation we need additional snapshots N. These snapshots are

    independent ( since the noise is white on the time domain), and, in consequencethe probability will be the product of the N single probabilities.

    Since the trace of a scalar is the same scalar and the trace is circular then….

     

     

     

      

      

     

     

     

     

      

      

        H 

    t t 

     H 

     H  H 

    t    X  X Q

    S S  I tr  X 

    Q

    S S  I  X tr 

    22

    11

      

     H  H  H  abtr bascalar batr  A Btr  B Atr 

     

     

      

       

        M 

     H 

    t t 

     H QM 

     M 

    t    X  X Q

    S S  I  RS  X 

    1

    2

    10

    exp,Pr     

       

     

      

     

     N  H 

    nn

     H 

     N 

    n

     X  X  M  R yQ

    S S 

     I Pbeing

     RP N tr QNLn RS  X  Ln

    1

    2

    2

    10

    1

    1,Pr 

      

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    52

    Now we can go for the estimate of the noise level just taking derivative of log-

  • 8/18/2019 DOA Estimation Slides

    53/92

    likelihood function

      011 222     RP M tr QM   

    The resulting estimate is…………

      Q RPtr  ML /2

     

    Using the noise estimate at the log-likelihood

        QQMLnS  X  Ln  ML M 

    n    

      

     

    2

    1Pr     

    Since the maximum among S, this implies that the proper S has to minimice

    the noise power estimate.

     

     

     

     

     

     

     

     

     M 

    n

     H 

     H 

     H 

     H 

    S S  MLS 

     X S QM  MAX Q

    S  RS 

     MAX Q

     RS S 

    tr  MAX 

    Q

     RS S  Rtr Q

     MIN Q RPtr  MIN  MIN 

    1

    2

    2

    1

    1/ 

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    53

    When the number of  sources is greater than one 

  • 8/18/2019 DOA Estimation Slides

    54/92

    complexity grows making almost unpractical the ML 

    estimate

    nnn   waS  X    .     n H  H 

    n   X S S S a ...ˆ1

     

     

     

    1

    0

    2

    2/...exp.

    .

    1),/Pr(

     N 

    n

    n

     H 

    n N Q X PP X QS  X     

      

    The ML estimate

    of the sources’

    waveforms is:

     And the new

    likelihood…….

      H  H  S S S S  I P .... 1

      where

    21

    02

    2

    0

    ..1

    ..),(

     

     

     N 

    nn

     X P LnQ N k S  L 

      

     And the log-likelihood

     

    1

    0

    22 ..

    .

     N 

    n

    n X P

    Q N 

     The ML estimate of

    the noise level is….September 13  Array Processing Miguel AngelLagunas DOA Estimation 54

     At the end the function to be minimized is

  • 8/18/2019 DOA Estimation Slides

    55/92

    quite similar to the case of a single source.

    Nevertheless it implies a double search overthe to angles simultaneously. For NS sources

    this implies a simultaneous search over NS

    angles or 2NS angles for planar apertures

       RPTrazaS  L

     X PS  L N 

    n n

    ˆ.

    .1

    0

    2

     

     

    In addition, L(S) function is smooth which almost precludes anyaccelerated search of local maxima. An example can be viewed

    for two sources in an ULA array located at -21 and 10 degrees.

    -80 -60 -40 -20 0 20 40 60 80-80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    55

    THE EM Al i h

  • 8/18/2019 DOA Estimation Slides

    56/92

    THE EM AlgorithmPRELIMINAR: The MAP Estimate, the problem is given the statistics

    (mean and covariance) of vectors Y and X, we like to have a MAP estimate

    of Y given X.

     H Y 

    w

     X 

    The estimate is:

       xy xx yx yy y y

     H  x y yx y

     x xx yx y

    C C C C 

    m X mY  E C and Y  E mbeing

    m X C C mY 

    1

    ˆˆ

    1

    Ccovariancewith

    :

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    56

    HY X

  • 8/18/2019 DOA Estimation Slides

    57/92

     H Y 

    w

     X 

     y xx

     H 

     yy y

     x H 

     yy xx

     H 

     yy yx y x

    m H  X C  H C mY 

     I  H C  H C  H C C m H m

    1

    2

    ˆ

    ..    

    Using the model, we

    have……..

    When

    Q H  x

     xx NS Q y yy y y   I  H  H  NS C  I C wmY  2

    2

    .2  

        

     

     

     

     

     y xx H 

     y  m H  X C  H mY      1ˆ

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    57

    Th E ti t d M i i

  • 8/18/2019 DOA Estimation Slides

    58/92

    The Estimate and MaximiceObserved Data Snapshot n X 

    UN-COMPLETE DATA

    Desired Data Single source snapshotnY 

    COMPLETE DATA

    Modeling un-complete and complete data ……………….

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    58

    nn wS naY  1111 )(

  • 8/18/2019 DOA Estimation Slides

    59/92

     I C 

    S nam

    wS na X 

     xx

     NS 

    s

    ns x

    n

     NS 

    s

    nsn

    2

    1

    1

     

     NS Q yy

     NS s

    ss y

     NSn NS s

    snss

     NSn

    snn

     I 

     NS 

    S na

    S na

    S na

    m

    wS na

    wS na

    Y Y 

    .

    2

    11

    )(

    ..

    )(

    ..

    )(

    )(

    ..

    )(

    ..

    ..

    ..

     

     

     

     

     

    nQQnn   Y  I  I Y  H  X  ....

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    59

    G i b k t th ML ti t

  • 8/18/2019 DOA Estimation Slides

    60/92

    Going back to the ML estimate

    Let us group on vector  ϴ all the parameters we like to estimate, i.e. the source

    waveforms and the corresponding steering vectors, the likelihood we would like to

    maximize is:

      

      

     n X Pr 

    In order to connect this with the complete data

    we use Bayes theorem.

      

      

      

      

     

     

     

     

      

      

     

     

       ,

    Pr 

    ,Pr 

    Pr Pr 

    n

    n

    n

    n

    n

    n

    Y  X 

     X Y 

     X 

    Since, given the complete data the un-complete

    data can be found directly, without the need of the

    sources’ parameters, in consequence this term do

    not impacts on the maximization of the likelihoodSeptember 13  Array Processing Miguel AngelLagunas DOA Estimation 60

    In terms of the log-likelihood the function to be

  • 8/18/2019 DOA Estimation Slides

    61/92

    g

    maximized is:

      

      

      

      

      

      

          ,nnnn

     X 

    Y Y  X 

    Let us assume we have a prior of the parameters ϴ(m) at step m this allows usto have the mean of the un-complete data. Is to The objective is to obtain a

    better estimate ϴ(m+1)

    )1()()1()()1()()1()(

    ,,

    ,,,

     

      

     

     

      

     

    mmmm

    mm

    n

    nmm

    n

    V U 

     X 

    Y Y 

        

        

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    61

    )1()()1()(     mmmmVU

  • 8/18/2019 DOA Estimation Slides

    62/92

    ,, V U        

    Since U entails the NS single source likelihood problems, solving these NS

    problems-- MAXIMIZE we will find an improvement on U. In summary:

    )()()1()(,,

      mmmmU U          

    This is set in order to maximize U

    Since V entails the MAP estimate of Y given X and the prior of the parameters,

    whenever we use a different parameter vector from the prior the function will

    decrease ESTIMATE. In summary:

    )()()1()(,,

      mmmmV V          

    ITERATING OVER ESTIMATE and MAXIMIZE STEPS WE WILL IMPROVE THE

    MULTIPLE SOURCES LIKELIHOOD solving the problem.September 13  Array Processing Miguel Angel

    Lagunas DOA Estimation62

    The MAXIMIZE step

  • 8/18/2019 DOA Estimation Slides

    63/92

    The MAXIMIZE step

    This step reduces to solve the ML problem for a single source in white

    noise.

    - NOTE THAT the sources’ waveforms estimation implies to perform

    EM steps at the single snapshot level. At the same time, noise in the

    complex envelope may require several iterations in order to reduce

    the effects of the estimation noise on the following estimate step.

    - The need to estimate the source waveform is the major drawback of

    the EM procedure.

    - Convergence is fast for reduces number of sources

    - The procedure is robust to coherent sources

    - The weight 1/NS comes from assuming the noise on ion of the

    complete data a fraction of the global noise. When it is assumed that

    the noise on each complete data is equal to the global noise, the

    coefficient reduces to 1.September 13  Array Processing Miguel AngelLagunas DOA Estimation 63

    The ESTIMATE step

  • 8/18/2019 DOA Estimation Slides

    64/92

    The ESTIMATE stepGiven the source parameters from the prior, we compose the mean of the

    sources vector…..

     NS Q yy

    m

     NS 

    m

     NS 

    m

    s

    m

    s

    mm

    m

     y

     I  NS 

    S na

    S na

    S na

    m

    .

    2

    )()(

    )()(

    )(

    1

    )(

    1

    )(

    )(

    ..

    )(

    ..)(

     

      

     

     

     yn

    Q

    Qm

     y

     yn

     H m

     y

    m

    n

    m H  X 

     I 

     I 

     NS 

    m

    m H  X  H  NS 

    mY 

     

     

     

     

    ..1

    )(

    )()1(

    Then, we obtain the complete data as:

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    64

    I

  • 8/18/2019 DOA Estimation Slides

    65/92

     NS 

    sqq

    mq

    mqn

    msn

     yn

    Q

    Q

    m y

    mn

    S a X Y 

    m H  X 

     I 

     I 

    mY 

    1

    )()()1(

    )()1(

    ˆˆ

    ..ˆ

    The EM becomes very intuitive: To generate the data for a single source the

    rest of the sources contribution is subtracted (is removed) from the receivedsnapshot

    September 13  Array Processing Miguel AngelLagunas DOA Estimation

    65

    EM Architecture

  • 8/18/2019 DOA Estimation Slides

    66/92

    EM Architecture

    Without loss of generality we can draw the processing architecture of the EM

    algorithm for the case of two sources.

    Estimate s1

    Estimate s2

    )(

    1

    )(

    1 )(  mmS na

    )(

    2

    )(

    2

    )(  mmS na

    n X 

    a1(n), S1

    )(

    1

    m

    nY 

    )(

    2

    m

    nY  a2(n), S2September 13  Array Processing Miguel Angel

    Lagunas DOA Estimation66

    -

    -

    +

    +

    The Alternate Projection algorithm

  • 8/18/2019 DOA Estimation Slides

    67/92

    The Alternate Projection algorithm

    Some, less formal, versions of the EM has been used in practice in field like

    radar (CLEAN) as well as sub-optimal procedures which overpass the source

    waveform estimation like the AP. AP is a concept used on linear programing

    methods an it is well known in mathematics.

    The basic idea of the EM remains in the sense that passing from the original

    snapshot to the single source problem we need to remove the other source effects.

    Nevertheless, in order to remove the other sources we use blocking the spatial

    directions instead of subtracting waveforms.

    )(exp(1.00

    0)(exp(.00

    .....

    0.)(exp(10

    0.0)(exp(1

    1

    21

    23

    12

    sQsQ

    sQsQ

    ss

    ss

    uu j

    uu j

    uu j

    uu j

     As an example, this matrix may be used to source s from a

    snapshot

    September 13  Array Processing Miguel AngelLagunas DOA Estimation 67

    The AP architect re

     A Kalman tracker of the

    source trajectory can be

  • 8/18/2019 DOA Estimation Slides

    68/92

    Estimate

    DOA1

    EstimateDOA2

    n X 

    S1

    )(

    1

    m

    nY 

    )(

    2

    m

    nY  S2

    )(

    2

    m B

    )(1m B

    The AP architecture……………………. source trajectory can be

    added to further improvethe resulting performance

    September 13  Array Processing Miguel AngelLagunas DOA Estimation 68

    The processing in every branch reduces to a blocking of the rest of the

    sources followed by a phased array scanning as corresponds to the ML

  • 8/18/2019 DOA Estimation Slides

    69/92

    sources followed by a phased array scanning as corresponds to the ML

    estimate for a single source.

    These two steps can be done simultaneously by a single

    beamforming that steering the desired, nulls out the rest of the

    sources.

    0,..,0,1,..,,,..,,.)()(

    1

    )(

    1

    )(

    1   m

     NS 

    m

    s

    m

    s

    m H 

    S S S S S  A

    Thus, the beamformer scanning for source s has to hold the

    following constrain:

    In addition, it has to shown minimum response to the white

    noise, i.e. has to be minimum norm.

     MIN 

     H  A A

    The new estimate of the DOA for

    source S, results from the absolute

    maxima of 

     A R AS  x

     H 

    m

    s

    ..max)1(

    September 13  Array Processing Miguel AngelLagunas DOA Estimation 69

    In general: For s=1:NS

    )()()()( T

  • 8/18/2019 DOA Estimation Slides

    70/92

    1... 1s

     H 

    ssC C C  A

    ]0..01[1,..,,,..,,

    )()(

    1

    )(

    1

    )(

    1     T m

     NS 

    m

    s

    m

    s

    m

    s S S S S S C 

     

     

     

     

     

    1...1

    1........1

    .

    ..max

    1

    11

    )1(

    s

     H 

    s

     H 

    s

     H 

    ss x

     H 

    ss

     H 

    s

     H 

     H 

     x

     H 

    m

    s

    C C 

    C C C  RC C C 

     A A

     A R AS 

    end

    Note that we divide by the noise bandwidth of the scanning beamformer to

    form the DOA estimate

    September 13  Array Processing Miguel AngelLagunas DOA Estimation 70

    Example of  AP performance T ULA h lf l th

  • 8/18/2019 DOA Estimation Slides

    71/92

    Two sources. ULA array half wavelength.

    -25 -20 -15 -10 -5 0 50

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    Elevation in degrees

       d   B

    The number of snapshots is ...4000

    WAR source 1 is coherent with source 2

    The number of sources is...2

    Source #1--> 10dB 0 º elevation 0 º

    azimuthThe velocity in elevation is -0.005 º/snap

    Source #2--> 10dB -20 º elevation 0 º

    azimuth

    The velocity in elevation is 0.005 º/snap

    The number of sensors is......8Elevation Field of view from -25 up to 5

    Scanning precission in elevation of 0.2

    degrees

    September 13  Array Processing Miguel AngelLagunas DOA Estimation 71

    Snapshot # 4000

    #1 d 20º di l l 0 0049529

  • 8/18/2019 DOA Estimation Slides

    72/92

    0 50 100 150 200 250 300 350 400-25

    -20

    -15

    -10

    -5

    0

    5

    scans

       D   O   A

       d  e   t  e  c   t  e   d   (  r  e   d   )

    Tracking plot (blue=actual)

    proc.#1 doa -20º radial vel. -0.0049529

    proc.#2 doa 0º radial vel. 0.0050821

    September 13  Array Processing Miguel AngelLagunas DOA Estimation 72

    The number of snapshots is...3000

    WAR source 1 is coherent with source 2

    The number of sources is...2

    S #1 20dB 60 º l ti 0 º i th

  • 8/18/2019 DOA Estimation Slides

    73/92

      0.2

      0.4

      0.6

      0.8

      1

    30

    210

    60

    240

    90

    270

    120

    300

    150

    330

    180 0

    slowness/azimuth plot, actual blue, estimated green

    Source #1--> 20dB 60 º elevation 0 º azimuth

    Elevation velocity -0.015 º/snapshot Azimuth velocity -0.02 º/snapshot

    Source #2--> 20dB 70 º elevation -130 º azimuth

    Elevation velocity -0.02 º/snapshot

     Azimuth velocity 0.03 º/snapshot

    The number of sensors is...13

    Elevation Field of view from 5 up to 75Scanning precission in elevation of 0.2 degrees

    September 13  Array Processing Miguel AngelLagunas DOA Estimation 73

    -20

    0 Azimuth tracking plot

  • 8/18/2019 DOA Estimation Slides

    74/92

    0 50 100 150 200 250 300-140

    -120

    -100

    -80

    -60

    -40

    snapshots

      a

      z   i  m  u   t   h   i  n   d  e  g  r  e  e  s

    0 50 100 150 200 250 300

    0

    10

    20

    30

    40

    50

    60

    70

    snapshots

      e   l  e  v  a   t   i  o  n   i  n   d  e  g  r  e  e  s

    Elevation tracking plot

    September 13  Array Processing Miguel AngelLagunas DOA Estimation 74

    AP for Beamforming

  • 8/18/2019 DOA Estimation Slides

    75/92

    gOur goal: A beamforming steeresd to some angle (0º)

    With perfect nulling of unknown coherent or uncoherent interferences

    Initial beamforming: Phased Array steered at the desired

    The number of snapshots is...5000

    WAR source 1 is coherent with source 4

    The number of sources is...4Source #1--> 10dB 0 º elevation

    Source #2--> 20dB 70 º elevation

    Source #3--> 20dB -20 º elevation

    Source #4--> 30dB 5 º elevation

    The number of sensors is...16Elevation scanning data

    Elevation of the desired 0º

    quiescent response

    September 13  Array Processing Miguel AngelLagunas DOA Estimation 75

  • 8/18/2019 DOA Estimation Slides

    76/92

    -80 -60 -40 -20 0 20 40 60 80

    -20

    -15

    -10

    -5

    0

    5

       A  r  r  a  y   f  a  c   t  o  r   d   B .

    Elevation

    Optimum as rx-1*sd

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation 76

    Beamformer steered to the desired blocking s1

  • 8/18/2019 DOA Estimation Slides

    77/92

    -80 -60 -40 -20 0 20 40 60 80-30

    -25

    -20

    -15

    -10

    -5

       A  r  r  a

      y   f  a  c   t  o  r   d   B .

    Elevation

     Beam response. Blocking..1 directions

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation 77

    Scan blocking desired and directions before-> Find absolute maxima

    The design beamformer steered to the desired, blocking interferers with

    20

    25

    30 Periodogram response. Blocking..4 directions

    The number of snapshots is...5000

    The number of sources is 4

  • 8/18/2019 DOA Estimation Slides

    78/92

    minimum norm.CONTINUE until flat scanning

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation 78-80 -60 -40 -20 0 20 40 60 80

    -15

    -10

    -5

    0

    5

    10

       A

      r  r  a  y   f  a  c   t  o  r   d   B .

    Elevation

    Quiescent

    -100 -80 -60 -40 -20 0 20 40 60 80 100-10

    0

    10

    20

    30

    40

    50

    Elevation degrees

    Periodogram after desired blocked

    -80 -60 -40 -20 0 20 40 60 80

    -25

    -20

    -15

    -10

    -5

    0

       A

      r  r  a  y   f  a  c   t  o  r   d   B .

    Elevation

     Beam response. Blocking..1 directions

    -100 -80 -60 -40 -20 0 20 40 60 80 100-10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    Elevation degrees

     Periodogram response. Blocking..1 directions

    -80 -60 -40 -20 0 20 40 60 80

    -25

    -20

    -15

    -10

    -5

    0

       A  r  r  a  y   f  a  c   t  o  r   d   B .

    Elevation

     Beam response. Blocking..2 directions

    -100 -80 -60 -40 -20 0 20 40 60 80 100-10

    -5

    0

    5

    10

    15

    20

    25

    30

    35

    Elevation degrees

     Periodogram response. Blocking..2 directions

    -80 -60 -40 -20 0 20 40 60 80

    -25

    -20

    -15

    -10

    -5

    0

       A  r  r  a  y   f  a  c   t  o  r   d   B .

    Elevation

     Beam response. Blocking..3 directions

    -100 -80 -60 -40 -20 0 20 40 60 80 100-15

    -10

    -5

    0

    5

    10

    15

    20

    25

    30

    Elevation degrees

     Periodogram response. Blocking..3 directions

    -80 -60 -40 -20 0 20 40 60 80

    -25

    -20

    -15

    -10

    -5

    0

     

     .

    Elevation

     Beam response. Blocking..4 directions

    -100 -80 -60 -40 -20 0 20 40 60 80 100-15

    -10

    -5

    0

    5

    10

    15

    Elevation degrees

    The number of sources is...4

    Source #1--> 10dB 0 º elevation

    Source #2--> 20dB 70 º elevation

    Source #3--> 20dB -20 º elevation

    Source #4--> 30dB 5 º elevation

    The number of sensors is...16

    Elevation scanning data

    Elevation of the desired 0º

    Remain 13 degrees of freedom

    Remain 12 degrees of freedom

    Remain 11 degrees of freedomRemain 10 degrees of freedom

    Desired level

    Estimate...10.0591 dB.

     Actual.....10 dB.

    WIDE‐BAND DOA ESTIMATION

  • 8/18/2019 DOA Estimation Slides

    79/92

    T T 

     N nT n

    T n

     H   X  X  X an y 11......)(  

    The estimate depending on DOAs and frequency is obtained by defining a

    steering vector for the wideband beamformer (Q sensor and NT tap delays).

      mfT  jd c f  jS 

    where

     fT  N  jS  fT  jS S S T T T T 

         

      

    2exp.cossin.2exp

    )1(2exp,...,2exp,

      

      

    The beamformer output is:

    Thus, replacing the steering and the new sanpshot, all the procedures

    previously can be extended to the wideband caseSeptember 13

     Array Processing Miguel Angel

    Lagunas DOA Estimation 79

    Focusing on Wideband estimation

  • 8/18/2019 DOA Estimation Slides

    80/92

     All the wideband estimates needs of focusing the source. The reason is that,

    given a source, on position (ϴ,φ), that impinges the aperture in a bandwidth B,

    in order to properly detecting the source we need to obtain the power that the

    source produces at the array output. This power is computed as the sum of 

    the powers measured on the bandwidt B.

      B df  f ),,(     

    This averaging of all the map is also known as focusing (resume in a single

    plot) the power per angle solid

    frequency

    B

    ϴ

    Once power is focalized,

    super-resolution methods

    can be applied.September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation 80

    Focusing for ULA

  • 8/18/2019 DOA Estimation Slides

    81/92

      M 

    m

    Q

    q  n uq j fmT  j X n f u X  1 1 ).2exp().2exp(.),,(     

    For an ULA array of Q sensors and M delay lags, the output of a wideband

    phased array will be:

    Thus, in this case, the output is like a 2D-DFT one in the spatial domain with

    frequency u and the other in the time domain with frequency fT

    Let us imagine that we have in the scenario a single source located at elevation

    ϴs , located at f 0 with bandwidth almost zero.

    The 2D-DFT will show a delta function locates at spatial frequency equal to usand frequency f 0T. The next figure depicts the situation in the spatial time

    frequency plot.

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation 81

    fT=0.5

  • 8/18/2019 DOA Estimation Slides

    82/92

    fT=0

    u=0.5u=-0.5

    us

    f 0T

    But, THERE IS A BASIC DIFFERENCE between wideband DOA detection and

    traditional 2D spectral estimation namely THE TWO FREQUENCIES ARE

    COUPLED

    )sen(..

     c

    d  f u 

    c

    d  f u

    ud 

    cu

    send 

    c f 

    .

    .º90.)(.

        and

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation 82

    fT=0.5

  • 8/18/2019 DOA Estimation Slides

    83/92

    fT=0

    u=0.5u=-0.5

    us

    f 0T

    c

    d  f u

    .

    )sin(/    cT dfT u 

    When the source extents its bandwidth the u

    frequency moves along a line

    In consequence, the

    power have to be

    focused along lines

    with slop equal to:

     sinc

    DARKZONE DARK

    ZONE

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation 83

    fT=0.5

  • 8/18/2019 DOA Estimation Slides

    84/92

    fT=0

    u=0.5u=-0.5

    f 0T

    For a central frequency f c, the sampling frequency as T=1/2f max. Selecting

    the sensor separation d as d=λc/2, we have:

    )sin()sin(2

    2sin maxmax   

      

     

      

     

    c

    c

     f 

     f 

    c

     f 

    cT 

    ϴ=90º

    ϴ=-90º

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation 84

    Note that for a given response, the resolution is always lower at low

    frequencies than at high frequencies

  • 8/18/2019 DOA Estimation Slides

    85/92

    fT=0.5

    fT=0

    u=0.5u=-0.5

    f 0T

    ϴ=90º

    ϴ=-90º

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation 85

     f 

    1 / 2 T

  • 8/18/2019 DOA Estimation Slides

    86/92

    u- 0 . 5

    f = c / ( 2 d )

    1 / 2 T

    u- 0 . 5 0

    Top: Corect choice of separation d in order to have maximum field of view. Also

    for sources at the maximum vertical focussing is a good approsimation. Botton

    Wrong choice of the interelement separation (large d)

    September 13 Array Processing Miguel Angel

    Lagunas DOA Estimation 86

    Focusing for super‐resolution

  • 8/18/2019 DOA Estimation Slides

    87/92

      I  f  f S  f P f S  f  R   H  )()(.)( 2 

    Let us imagine that we have the array covariance matrix at a given frequency f as:

    Focusing this matrix at frequency f c implies to find out a transformation such that:

      I  f  f S  f P f S T  f  RT c

     H 

    c

     H )()(.)( 2 

    With this, summing up all the matrix the power (also the noise) is focused in a single

    matrix. Using Music NMLM or any other super-resolution method will provide

    accurate source location

      I  f  f S  f P f S T  f  RT  f 

    c

     H 

     f 

    c

     f 

     H 

     

      

     

      )()(.)( 2 

    September 13

     Array Processing Miguel Angel

    Lagunas DOA Estimation 87

    Back to the design of the proper transformation, we can see that there are two

    design conditions:

  • 8/18/2019 DOA Estimation Slides

    88/92

      I  f  f S  f P f S T  f  RT  c H 

    c

     H )()(.)( 2 

    c f  f 

     H c

    S S T or 

     I T T  f S  f S T 

    )(

    Clearly using the pseudo-inverse is not a valid solution

     I S S S S T T S S S S T 

      H 

     f  f 

     H 

     f  f 

     H  H 

     f  f 

     H 

     f  f  ccc

      11

    since

    We need to relax the first constrain which is better an more easy

    than to relax the white spatial noise one.September 13

     Array Processing Miguel Angel

    Lagunas DOA Estimation 88

    The design will be: I T T t sS S T 

      H 

    F  f  f  c

    ..2

  • 8/18/2019 DOA Estimation Slides

    89/92

     H 

     ff 

     H 

    l f U  DV U  D DU T 

    c

    Taking derivatives

    With the svd of the DOAs matrixes. Note

    That for matrix L this merely instrumental

    Since L is unknown.

     H 

    l

     H 

     ff 

     H 

     f  f 

     H 

     f 

     H 

     f  f 

    U  DU  L

    U  DV S S 

    U  DU S S 

    cc

    then

     H 

     f  f 

     H 

     f  f S S  LS S T 

    c

    Clearly, thesolution is:

    c ff  f l

     H 

     D D D

    U V T 

    September 13

     Array Processing Miguel Angel

    Lagunas DOA Estimation 89

    EJERCICIO

  • 8/18/2019 DOA Estimation Slides

    90/92

    September 13

     Array Processing Miguel Angel

    Lagunas DOA Estimation 90

    Una manera diferente para derivar metodos de

    estimacion de DOA consiste en metodos

    denominados de “covariance matching”, es decir, de

    ajuste de la matriz de covarianza observada.

    Sea la matriz obtenida a partir de un conjunto de Nsnapshots, siendo N suficiente como para estabilizar 

    el estimador.

     N 

    m

     H 

    mm X  X  N 

     R

    1

    1

    Es claro que el contenido de potencia ξ

    que proviene de una direccion dadaviene dado por

     H c S S  R . 

     Asi pues para saber que contenido de potencia

    tiene nuestra observacion R en una direccion

    dada, basta encontrar el valor de ξ que mas“asemeja” la observacion R con Rc. Es decir el

    que minimiza la “diferencia” entre las dos

    matrices

    c R R f S P ,min 

    PRIMER CASO: f(,) es la norma de Frobenius de la matriz diferencia.

    HSSRRR Encontrar el estimador de la

  • 8/18/2019 DOA Estimation Slides

    91/92

    September 13

     Array Processing Miguel Angel

    Lagunas DOA Estimation 91

     H 

    F cS S  R R R .  Encontrar el estimador de lapotencia, para cada direccion

    que minimiza esta distancia

    Nota:  A A A Atraza A Atraza A   H  H  H F 

    ..

    SEGUNDO CASO: Si a la observada le restamos la potencia que le llega de

    una direccion, la maxima potencia que podemos restar seria la que es aquella

    que no hace la matriz diferencia definida negativa. Esta matriz diferencia

    tendria al menos un autovalor cero, por lo que la nueva definicion de f(,) para

    encontrar  ξ seria:

    0maxmin

        H S S  RS P      

    Encontrar el estimador de la potencia, para cada direccion como el valor

    maximo que provica en la diferencia un autovalor cero.

  • 8/18/2019 DOA Estimation Slides

    92/92

    September 13

     Array Processing Miguel Angel

    Lagunas DOA Estimation 92