dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

64
Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” MINISTERSTWO EDUKACJI NARODOWEJ Ryszard Zankowski Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów 724[05].E1.09 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy Radom 2006

Upload: mick-gol

Post on 28-Jul-2015

678 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego”

MINISTERSTWO EDUKACJI NARODOWEJ

Ryszard Zankowski

Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów 724[05].E1.09

Poradnik dla ucznia

Wydawca Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy Radom 2006

Page 2: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 1

Recenzenci: dr inż. Zdzisław Kobierski mgr Joachim Strzałka Opracowanie redakcyjne: mgr inż. Barbara Kapruziak Konsultacja: dr inż. Bożena Zając Korekta:

Poradnik stanowi obudowę dydaktyczną programu jednostki modułowej 724[05].E1.09 „Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów” zawartego w modułowym programie nauczania dla zawodu elektromechanik 724[05].

Wydawca Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy, Radom 2006

Page 3: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 2

SPIS TREŚCI 1. Wprowadzenie 3 2. Wymagania wstępne 5 3. Cele kształcenia 6 4. Materiał nauczania 7 4.1. Rezystancyjne elementy bierne 7

4.1.1. Materiał nauczania 7 4.1.2. Pytania sprawdzające 12 4.1.3. Ćwiczenia 12 4.1.4. Sprawdzian postępów 12

4.2. Pojemnościowe i indukcyjne elementy bierne 13 4.2.1. Materiał nauczania 13 4.2.2. Pytania sprawdzające 17 4.2.3. Ćwiczenia 18 4.2.4. Sprawdzian postępów 18

4.3. Diody prostownicze i stabilizacyjne 19 4.3.1. Materiał nauczania 19 4.3.2. Pytania sprawdzające 24 4.3.3. Ćwiczenia 25 4.3.4. Sprawdzian postępów 25

4.4. Tranzystory i tyrystory 26 4.4.1. Materiał nauczania 26 4.4.2. Pytania sprawdzające 33 4.4.3. Ćwiczenia 33 4.4.4. Sprawdzian postępów 34

4.5. Elementy optoelektroniczne i wskaźniki LED 35 4.5.1. Materiał nauczania 35 4.5.2. Pytania sprawdzające 37 4.5.3. Ćwiczenia 38 4.5.4. Sprawdzian postępów 38

4.6. Układy prostownicze i sterowniki prądu przemiennego 39 4.6.1 Materiał nauczania 39 4.6.2 Pytania sprawdzające 44 4.6.3 Ćwiczenia 44 4.6.4 Sprawdzian postępów 46

4.7. Wzmacniacze elektroniczne 48 4.7.1. Materiał nauczania 48 4.7.2. Pytania sprawdzające 54 4.7.3. Ćwiczenia 54 4.7.4. Sprawdzian postępów 55 4.8. Montaż i naprawa układów elektronicznych 57 4.8.1. Materiał nauczania 57 4.8.2. Pytania sprawdzające 59 4.8.3. Ćwiczenia 59 4.8.4. Sprawdzian postępów 60 5. Sprawdzian osiągnięć 61 6. Literatura 65

Page 4: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 3

1. WPROWADZENIE

Poradnik, który Ci przekazujemy, będzie pomocny w przyswajaniu wiedzy dotyczącej podstawowych elementów i układów elektronicznych najczęściej stosowanych w różnych urządzeniach technicznych, a także w kształtowaniu umiejętności rozpoznawania poszczególnych elementów i układów elektronicznych, określania ich parametrów oraz montażu i oceny stanu technicznego na podstawie wyników pomiarów.

W Poradniku będziesz mógł znaleźć następujące informacje ogólne: – wymagania wstępne określające umiejętności, jakie powinieneś posiadać, abyś mógł bez

problemów rozpocząć pracę z poradnikiem, – cele kształcenia czyli wykaz umiejętności, jakie opanujesz w wyniku kształcenia

w ramach tej jednostki modułowej, – materiał nauczania, czyli wiadomości teoretyczne konieczne do opanowania treści

jednostki modułowej, – zestaw pytań sprawdzających, czy opanowałeś już podane treści, – ćwiczenia, zawierające polecenia, sposób wykonania oraz wyposażenie stanowiska pracy,

które pozwolą Ci ukształtować określone umiejętności praktyczne, – sprawdzian postępów pozwalający sprawdzić Twój poziom wiedzy po wykonaniu

ćwiczeń, – sprawdzian osiągnięć opracowany w postaci testu, który umożliwi Ci sprawdzenie

Twoich wiadomości i umiejętności opanowanych podczas realizacji programu jednostki modułowej,

– literaturę związaną z programem jednostki modułowej umożliwiającą pogłębienie Twej wiedzy z zakresu programu tej jednostki. W poradniku został zamieszczony wybrany materiał nauczania, ćwiczenia z zakresu

badania i dobierania elementów i podzespołów elektronicznych, pytania sprawdzające. Szczególną uwagę zwróć na przepisy dotyczące bezpieczeństwa wykonywania

pomiarów.

Bezpieczeństwo i higiena pracy

W czasie pobytu w pracowni musisz przestrzegać regulaminów, przepisów bhp oraz instrukcji przeciwpożarowych, wynikających z rodzaju wykonywanych prac. Przepisy te poznasz podczas trwania nauki.

Page 5: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 4

Schemat układu jednostek modułowych

724[05].E1.05 Wykonywanie prac z zakresu

obróbki ręcznej metali i tworzyw sztucznych

724[05].E1.06 Wykonywanie prac z zakresu obróbki mechanicznej metali

724[05].E1.04 Rozpoznawanie podzespołów

stosowanych w maszynach i urządzeniach elektrycznych

724[05].E1.09 Dobieranie elementów

i podzespołów elektronicznych oraz sprawdzanie ich

parametrów

724[05].E1.01 Przestrzeganie przepisów

bezpieczeństwa i higieny pracy, ochrony przeciwpożarowej oraz

ochrony środowiska

Moduł 724[05].E1 Podstawy elektromechaniki

724[05].E1.02 Rozpoznawanie materiałów stosowanych w maszynach

i urządzeniach elektrycznych

724[05].E1.07 Obliczanie i pomiary parametrów

obwodów prądu stałego

724[05].E1.03 Posługiwanie się dokumentacją

techniczną

724[05].E1.08 Obliczanie i pomiary parametrów

obwodów prądu przemiennego

Page 6: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 5

2. WYMAGANIA WSTĘPNE

Przystępując do realizacji programu jednostki modułowej powinieneś umieć:

– rozróżniać elementy obwodów elektrycznych, – czytać i rysować schematy obwodów elektrycznych, – wyjaśniać podstawowe pojęcia dotyczące obwodów elektrycznych, – interpretować podstawowe prawa i zależności wykorzystywane w obwodach

elektrycznych, – obliczać i szacować wielkości elektryczne w prostych obwodach prądu stałego

i przemiennego, – weryfikować doświadczalnie poprawność obliczeń, – rozpoznawać elementy bierne obwodów elektrycznych na podstawie wyglądu, oznaczeń

i symboli graficznych, – posługiwać się miernikami elektrycznymi, – obsługiwać oscyloskop zgodnie z instrukcją, – obserwować na oscyloskopie przebiegi sygnałów i je interpretować, – dobierać do wykonywanych pomiarów metody pomiarowe oraz rodzaj i zakres

mierników, – mierzyć podstawowe wielkości elektryczne w obwodach prądu stałego i przemiennego, – określać niepewność pomiaru, – interpretować wyniki pomiarów, – wykonywać połączenia elementów i urządzeń elektrycznych, – stosować podstawowe prawa i zależności dotyczące obwodów prądu stałego i zmiennego, – analizować pracę prostych urządzeń elektrycznych na podstawie ich schematów

ideowych oraz uzyskanych wyników pomiarów, – lokalizować i usuwać proste usterki w urządzeniach elektrycznych, – korzystać z Internetu w zakresie poszukiwań informacji technicznej, – korzystać z innych źródeł informacji technicznej dotyczącej sprzętu elektrycznego, – stosować zasady bhp i ochrony ppoż. obowiązujące na stanowisku pracy.

Page 7: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 6

3. CELE KSZTAŁCENIA

W wyniku realizacji programu jednostki modułowej powinieneś umieć: – rozpoznać elementy i układy elektroniczne na podstawie wyglądu zewnętrznego

i oznaczeń na nich stosowanych, – rozpoznać elementy i układy elektroniczne na schematach, – rozróżnić funkcje różnych elementów w układach elektronicznych, – scharakteryzować podstawowe parametry elementów elektronicznych biernych

i czynnych, – połączyć elementy i układy elektroniczne na podstawie schematów ideowych

i montażowych, – określić parametry elementów elektronicznych na podstawie oznaczeń na nich

podawanych, – zmierzyć parametry podstawowych elementów i układów elektronicznych na podstawie

zadanego schematu układu pomiarowego, – ocenić stan techniczny elementów elektronicznych na podstawie oględzin i pomiarów, – zanalizować pracę prostych układów elektronicznych na podstawie ich schematów

ideowych oraz uzyskanych wyników pomiarów, – zlokalizować i usunąć proste usterki w układach elektronicznych, – skorzystać z literatury i kart katalogowych elementów elektronicznych, – skorzystać z Internetu w zakresie poszukiwań danych technicznych elementów i układów

elektronicznych, – dobrać zamienniki elementów elektronicznych z katalogów, – opracować wyniki pomiarów wykorzystując technikę komputerową, – zastosować zasady bhp, ochrony ppoż. obowiązujące na stanowisku pracy.

Page 8: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 7

4. MATERIAŁ NAUCZANIA 4.1. Rezystancyjne elementy bierne

4.1.1. Materiał nauczania

Rezystory Rezystory możemy podzielić w zależności od:

− cech funkcjonalnych na: rezystory, potencjometry, termistory i warystory, − charakterystyki prądowo - napięciowej, na: liniowe i nieliniowe, − stosowanego materiału oporowego na: drutowe, warstwowe i objętościowe.

Rezystory liniowe w normalnych warunkach pracy charakteryzują się proporcjonalną

zależnością napięcia od prądu, tzn. spełniają prawo Ohma w postaci IRU ⋅= , przy czym R = const.

Symbol graficzny stałego rezystora liniowego jest podany na rys.1.

Rys. 1. Symbol graficzny rezystora

Rezystory drutowe (symbol: RDL) są wykonane z drutu stopowego nawiniętego na ceramiczny wałek.

W rezystorach warstwowych (symbol: MŁT, AF, ML, RMG, AT, OWZ) materiał rezystywny jest umieszczany na podłożu w postaci węgla lub metalu. Rezystory węglowe OWZ stosuje się w układach w.cz. (do 1GHz) o niewielkiej mocy (do 1W).

W rezystorach objętościowych prąd płynie całą objętością rezystora. Do ich budowy stosuje się organiczne lub nieorganiczne materiały oporowe. Są one głównie stosowane w sprzęcie profesjonalnym, gdzie wytrzymują duże obciążenia prądowe.

Parametry użytkowe rezystorów stałych Do podstawowych parametrów rezystorów należą:

− rezystancja znamionowa Rn, czyli wartość rezystancji podawana na obudowie, − tolerancja wyrażona w %, czyli dokładność z jaką wykonywane są rezystory o danej

wartości rezystancji znamionowej, − moc znamionowa Pn, czyli największa dopuszczalna moc wydzielana w rezystorze, − temperaturowy współczynnik rezystancji TWR, określający w % zmiany rezystancji

opornika pod wpływem zmian temperatury, − napięcie graniczne Ugr, powyżej którego opornik może ulec uszkodzeniu.

Zakresy rezystancji znamionowych zależą od rodzaju rezystora i są przedstawione

w tabeli 1. Tabela 1. Rezystancje znamionowe rezystorów [5] Rezystory drutowe 0,51 Ω ÷ 10 kΩ Rezystory warstwowe 10 Ω ÷ 1 MΩ Rezystory objętościowe 24 Ω ÷ 1 MΩ

Rezystory są produkowane w następujących grupach tolerancji: ±20%, ±10%, ±5%, ±2%,

±1%, ±0,5%. Trzy ostatnie grupy rezystorów charakteryzują się dużą stałością rezystancji i są

Page 9: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 8

nazywane rezystorami dokładnymi. Klasom dokładności odpowiadają następujące szeregi wartości rezystancji znamionowych: E6 (±20%), E12 (±10%), E24 (±5%), E48 (±2%), E96 (±1%), E192 (±0,5%).

Przykładowe szeregi rezystancji znamionowych: E6 (10, 15, 22, 33, 47, 68) E12 (10, 12, 15,18, 22, 27, 33, 39, 47, 56, 68, 82) E24 (10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47,51,56,62,68,75,82,91) Moc znamionowa rezystora zależy od jego konstrukcji, zastosowanego materiału, a także

od sposobu chłodzenia rezystora. Dla małych wartości moce rezystorów są uszeregowane następująco: 0,125 W; 0,25 W; 0,5 W; 1 W; 2 W i 5 W.

Oznaczenia wartości znamionowej rezystancji Istnieją dwa sposoby oznaczania wartości znamionowej rezystorów: kod barwny i kod

literowo-cyfrowy. Stosując kod barwny, wartość znamionową oznacza się za pomocą barwnych pasków, kropek lub ich kombinacji (rys. 2). Pierwszy pasek (kropka), umieszczony bliżej czoła rezystora, określa pierwszą cyfrę, drugi pasek (kropka) – drugą cyfrę, trzeci pasek (kropka) – współczynnik krotności (mnożnik). Natomiast ostatni pasek oznacza tolerancję i jest zwykle podwójnej szerokości. Kod barwny rezystorów przedstawiono w tab. 2.

Rys. 2. Kod paskowy rezystorów [9]

Tabela 2. Kod barwny rezystorów

Kolor znaku

Pierwszy pasek pierwsza cyfra

Drugi pasek druga cyfra

Trzeci pasek współczynnik

krotności

Czwarty pasek tolerancja

rezystancji % Srebrny Złoty Czarny Brązowy Czerwony Pomarańczowy Żółty Zielony Niebieski Fioletowy Szary Biały

- - - 1 2 3 4 5 6 7 8 9

- - 0 1 2 3 4 5 6 7 8 9

10-2 10-1

1 10 102 103 104 105 106 - - -

10 5 - 1 2 - - - - - - -

Jeżeli, np.: na rezystorze będą paski: żółty, fioletowy, czerwony, złoty, to oznacza, że ma

on wartość znamionową 4,7 kΩ i tolerancję ± 5%. W kodzie literowo-cyfrowym wartość rezystancji określa się zwykle trzema lub czterema

znakami, np. wartość 81Ω – znakiem 81 lub 81R, wartość 8100 Ω – znakiem 8100 lub 8k1, wartość 7 200 000 Ω – znakiem 7M2.

Page 10: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 9

Rezystory zmienne – potencjometry W układach elektronicznych oprócz rezystorów stałych stosuje się rezystory zmienne

zwane potencjometrami, w których wartość rezystancji zależy od położenia pokrętła (ruchomego ślizgacza).

W zależności od zastosowania potencjometry dzieli się na: − regulacyjne, służące do regulacji parametrów urządzenia w czasie jego pracy, − dostrojcze (zwane montażowymi lub nastawczymi), służące do ustalania warunków pracy

układu w czasie jego uruchamiania, strojenia lub naprawy. a) b)

Rys. 3. Symbole graficzne potencjometrów: a) regulacyjnych, b) dostrojczych [5] Ze względu na sposób regulowania potencjometry dzieli się na:

− obrotowe: regulowane wałkiem lub wkrętakiem , − suwakowe: regulowane przesuwem suwaka w linii prostej.

a) b)

Rys. 4. Potencjometr: a) suwakowe, b) obrotowe [11] Zasadę działania potencjometru obrazuje rys. 4.

1313

1212 U

RRU ⋅=

Rys. 4. Potencjometr jako regulator napięcia Ruch ślizgacza powoduje zmianę rezystancji, która może mieć charakter:

− liniowy (oznaczenie A) – potencjometry stosowane do regulacji napięcia (dzielniki napięciowe),

− wykładniczy (oznaczenie B) – najczęściej stosowane do regulacji barwy tonu i między kolejnymi stopniami wzmacniacza,

− logarytmiczny (oznaczenie C) – najczęściej stosowane do regulacji siły głosu we wzmacniaczach akustycznych. Tabela 3. Rodzaje potencjometrów i ich zastosowanie [5]

Rodzaj potencjometru Zastosowanie potencjometr potencjometr nastawny

w układach do częstej regulacji w układach niewymagających częstej regulacji

2

1

U13

1

3

U12

Page 11: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 10

potencjometr pojedynczy potencjometr podwójny potencjometr sprzężony

reguluje jeden obwód dwa potencjometry regulują dwa obwody jeden potencjometr reguluje dwa obwody

Rezystancja znamionowa potencjometrów mieści się w granicach od 100 Ω do 2 MΩ i przybiera wartości zgodnie z szeregiem E3: 10; 22; 47.

Pomiary rezystancji i dobieranie parametrów rezystorów i potencjometrów Podstawową metodą pomiaru rezystancji jest pomiar za pomocą omomierza ustawionego

na odpowiedni zakres. Jeżeli rezystor jest połączony z innymi elementami obwodu, to należy jedną z jego końcówek odłączyć przed pomiarem rezystancji.

Rezystancja może być mierzona również za pomocą woltomierza i amperomierza tzw. metodą techniczną, która ma dwie wersje dla małych i dużych rezystancji.

Rys. 5. Schematy układów do pomiaru metodą techniczną: a) małych rezystancji, b) dużych rezystancji [2]

Podczas szukania zamiennika należy starać się, aby rezystor zastępczy spełniał

następujące warunki: − miał identyczną rezystancję i nie mniejszą moc znamionową, − miał nie mniejsze napięcie graniczne, o ile rezystor pracuje blisko tego napięcia, − miał ten sam współczynnik temperaturowy, − miał nie większe gabaryty, − miał ten sam materiał oporowy (zwłaszcza dla obwodów w.cz.).

Jeżeli nie ma odpowiedniego rezystora, to można zastosować równoległe, szeregowe lub mieszane połączenie rezystorów pod warunkiem, że będzie na to miejsce oraz nie zwiększy się pojemność lub indukcyjność montażowa (zwłaszcza dla obwodów w.cz.).

W przypadku potencjometrów należy spełnić dodatkowe warunki podczas szukania zamiennika: − w przypadku urządzeń akustycznych potencjometr powinien posiadać tę samą

charakterystykę i napięcie trzasków, − potencjometr powinien mieć rozmiary umożliwiające wmontowanie go w układ, − jeżeli potencjometr pracuje jako dzielnik napięcia, to zamiennik powinien mieć

identyczną rezystancję znamionową. Rezystory nieliniowe Rezystory te charakteryzują się nieproporcjonalną zależnością napięcia od prądu, tzn.

spełniają prawo Ohma w postaci IRU ⋅= , ale ≠R const Rezystancja w układach nieliniowych zależy od czynników zewnętrznych. Najbardziej popularne to:

- termistory, w których zmienna rezystancja zależy od temperatury, - warystory, w których zmienna rezystancja zależy od przyłożonego napięcia.

Rys. 6. Symbole graficzne: a) warystor, b) termistor

U T

a) b)

Page 12: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 11

Obudowy termistorów i warystorów przypominają kształtem rezystory stałe. Termistory Termistory są stosowane w układach temperaturowej stabilizacji punktu pracy oraz

w układach regulacji i pomiaru temperatury. Występują 3 rodzaje termistorów różniących się charakterem zmian rezystancji w funkcji temperatury: − NTC o rezystancji malejącej ze wzrostem temperatury, − PTC o rezystancji rosnącej ze wzrostem temperatury, − CTR o rezystancji gwałtownie zmieniającej się w pewnym zakresie temperatury. Najważniejszymi parametrami termistora są: − rezystancja znamionowa, podawana dla temperatury 25°C (mieści się w granicach od

pojedynczych Ω do kilku MΩ), − tolerancja rezystancji znamionowej (±10% lub ±20%), − temperaturowy współczynnik rezystancji, − dopuszczalny zakres temperatur i dopuszczalna moc (od 4,5 do 1500 mW).

Warystory Warystory są stosowane do stabilizacji i ograniczania napięć, a ich charakterystyka

prądowo-napięciowa jest pokazana na poniższym rysunku.

Rys. 7. Charakterystyka napięciowo-prądowa warystora [5] Charakterystyka warystorów jest symetryczna i silnie nieliniowa. Można ją opisać

równaniem βICU ⋅= , gdzie β jest współczynnikiem nieliniowości i jednocześnie parametrem warystora mieszczącym się w granicach od 0,15 do 0,25. Drugi parametr charakterystyczny warystora, napięcie charakterystyczne Uch, określa spadek napięcia na warystorze w zakresie nasycenia charakterystyki (napięcie stabilizacji). Trzecim parametrem jest moc znamionowa warystora.

Warystory oznaczane są kodem literowo - cyfrowym. Litery oznaczają rodzaj obudowy (WW - walcowa, WD - dyskowa), a liczby kolejne parametry warystora. Pierwsza liczba oznacza napięcie charakterystyczne w V, przy określonym prądzie w mA. Druga liczba oznacza współczynnik β, a trzecia moc znamionową w W.

Na przykład warystor oznaczony WW-1200/10-0,18-0,8. jest warystorem walcowym o napięciu charakterystycznym 1200 V, przy prądzie 10 mA. Jego współczynnik nieliniowości wynosi β = 0,18, a moc znamionowa 0,8 W.

Page 13: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 12

4.1.2. Pytania sprawdzające

Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Jaka jest budowa i właściwości rezystorów drutowych, warstwowych i objętościowych? 2. Jakie są podstawowe parametry użytkowe rezystorów liniowych stałych? 3. Jakie są wartości znamionowe rezystorów z ciągu E6, a jakie z E12? 4. Jaki kod barwny będzie miał rezystor ciągu E24 o wartości znamionowej 91 Ω? 5. Czym się różni potencjometr od rezystora? 6. Jakie wyróżniamy charakterystyki potencjometrów i gdzie stosujemy te potencjometry? 7. Co to jest warystor? 8. Czym charakteryzuje się termistor CTR? 9. Co to jest współczynnik β warystora? 4.1.3. Ćwiczenia

Ćwiczenie 1

Odczytaj i sprawdź wartość rezystancji znamionowej i tolerancję przedstawionych rezystorów oznaczonych kodem paskowym lub literowo-cyfrowym.

Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś:

1) ustalić kolory występujące na obudowie rezystorów, 2) ustalić, po której stronie znajduje się pasek tolerancji rezystancji badanego opornika, 3) rozszyfrować wartość znamionową rezystancji, 4) odczytać zakodowaną wartość tolerancji rezystora, 5) zweryfikować odczyt poprzez sprawdzenie, czy odczytana wartość mieści się w szeregu

wynikającym z odczytanej tolerancji, 6) zmierzyć omomierzem rzeczywistą wartość rezystancji, 7) obliczyć względną różnicę między wartością zmierzoną i znamionową, 8) porównać wyrażoną w % różnicę między obliczoną wartością a tolerancją rezystora.

Wyposażenie stanowiska pracy:

− zestaw rezystorów, − omomierz, − kalkulator i zeszyt do ćwiczeń. 4.1.4. Sprawdzian postępów Czy potrafisz: Tak Nie 1) odczytać wartości rezystancji znamionowej i tolerancji korzystając z kodu

paskowego? 2) ustalić, do jakiego szeregu wartości należy odczytana wartość rezystancji

znamionowej? 3) zmierzyć wartość rzeczywistą rezystancji? 4) obliczyć względną różnicę między wartością zmierzoną a wartością

znamionową rezystancji opornika?

Page 14: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 13

4.2. Pojemnościowe i indukcyjne elementy bierne

4.2.1. Materiał nauczania

Kondensatory Kondensatory można podzielić, w zależności od ich przeznaczenia na:

− stałe (o stałej pojemności), − zmienne (o zmiennej pojemności, stosowane do przestrajania obwodów rezonansowych), − biegunowe, zwane polarnymi (przeznaczone do pracy przy jednym określonym kierunku

doprowadzonego napięcia stałego). Ze względu na rodzaj zastosowanego dielektryka kondensatory dzielimy na:

− powietrzne (brak dielektryka), − mikowe (symbol: KM), − ceramiczne (symbole: KCP, KFP, KCR, KFR), − z tworzyw sztucznych (symbole: KSE, KSF, MKSE, MKSF, MKSW, KMP, KFMP), − elektrolityczne (symbole: KEN, KEO, 02/T, 04/U, 164D, 196D, ETO).

Rys. 8. Obudowy kondensatorów elektrolitycznych [3] Parametry kondensatorów Najważniejszymi parametrami kondensatora są:

− pojemność znamionowa CN – wyrażana w faradach [F], która określa zdolność kondensatora do gromadzenia ładunków elektrycznych; podawana na obudowie kondensatora – ciąg wartości z szeregu E6 lub E12,

− napięcie znamionowe UN – największe dopuszczalne napięcie stałe lub zmienne, które może być przyłożone do kondensatora; zwykle podawane na obudowie kondensatora,

− tangens kąta stratności tgδ – stosunek mocy czynnej wydzielającej się na kondensatorze do mocy biernej magazynowanej w kondensatorze, przy napięciu sinusoidalnie zmiennym o określonej częstotliwości,

− prąd upływowy Iu prąd płynący przez kondensator przy napięciu stałym, − temperaturowy współczynnik pojemności – αC określa względną zmianę pojemności,

zależną od zmian temperatury. Kondensatory stałe

a) b) c)

Rys. 9. Symbole graficzne kondensatora: a) niebiegunowego, b) biegunowego, c) zmiennego

+

Page 15: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 14

Kondensatory mikowe mają mały współczynnik αC oraz mały tangens kąta stratności dielektrycznej. Wadą jest wysoka cena kondensatorów o większych wartościach pojemności.

Kondensatory ceramiczne mają duży współczynnik αC oraz mały tangens kąta stratności dielektrycznej. Zaletą ich jest duża wartość pojemności znamionowej i małe wymiary. Mają niewielkie wartości indukcyjności własnej, w związku z tym mogą być stosowane w obwodach wielkiej częstotliwości oraz jako pojemności sprzęgające (pojemności w obwodach rezonansowych i filtrach).

Kondensatory z tworzyw sztucznych należą do kondensatorów zwijkowych, w których dielektrykiem może być folia polistyrenowa, poliestrowa lub polipropylenowa. Kondensatory polistyrenowe mają małe współczynniki tgδ oraz αC i są stosowane w układach pracujących w zakresie wielkich częstotliwości. Kondensatory poliestrowe mają duży współczynnik tgδ i są stosowane głównie w układach napięcia stałego lub zmiennego o małej częstotliwości. Kondensatory polipropylenowe mają właściwości zbliżone do właściwości kondensatorów poliestrowych i stosuje się je w obwodach prądu zmiennego o częstotliwości 50 Hz.

Kondensatory elektrolityczne, ze względu na użyty do ich budowy materiał dzielimy na: aluminiowe i tantalowe (z elektrolitem ciekłym – mokre oraz z elektrolitem suchym – półprzewodnikowe). Pod względem zastosowań układowych rozróżniamy kondensatory: biegunowe i niebiegunowe, stosowane w układach filtracji napięcia zasilania i jako kondensatory sprzęgające w układach małej częstotliwości. Kondensatory elektrolityczne mają duże wartości pojemności znamionowej (1 ÷ 47000 μF), a zakres napięć od 6,3 V do 450 V. Tolerancje kondensatorów elektrolitycznych mają bardzo duże wartości sięgające (-10 ÷ +100 % dla aluminiowych, ±30 % dla tantalowych). Długotrwała praca kondensatora przy napięciu mniejszym niż napięcie znamionowe powoduje znaczny wzrost jego pojemności. Wadą tych kondensatorów jest duży współczynnik strat tgδ (aluminiowe – do 0,5; tantalowe – do 0,2) i duży prąd upływowy Iu, którego wartość rośnie ze wzrostem temperatury oraz duża indukcyjność własna (zwłaszcza aluminiowych). Kondensatory elektrolityczne mają oznaczoną biegunowość. Zmiana biegunów (elektrod) powoduje zniszczenie kondensatora.

Oznaczenia kondensatorów stałych Kondensatory, tak jak i rezystory, mogą być oznaczane cyfrowo, literowo-cyfrowo lub za

pomocą kodu barwnego (głównie kondensatory miniaturowe). Systemy oznaczeń są bardzo różne i zależne od rodzaju kondensatora i jego producenta.

Pewne typy kondensatorów mają swoje systemy oznaczeń parametrów, a do najpopularniejszych kondensatorów należą: zwijkowe (z tworzyw sztucznych), ceramiczne i elektrolityczne.

Oznaczenia kondensatorów zwijkowych i ceramicznych, umieszczane na korpusie, są

w pewnym zakresie podobne i zawierają następujące dane: − znak producenta, − typ kondensatora, − kategoria klimatyczna (w zwijkowych nie umieszczana), − pojemność znamionowa w pF, nF i μF (dotyczy tylko zwijkowych) – w zapisie

skróconym litery p, n, μ używane są jako przecinki, − tolerancja pojemności w % lub w zapisie skróconym literowo (B - ±0,1%,

C - ±0,25%, D - ±0,5%, F - ±1%, G - ±2%, J - ±5%, K - ±10%, M - ±20%, N - ±30%), − napięcie znamionowe w V lub małymi literami (m – 25 V, l – 40 lub 50 V, a – 63 V,

b – 100 V, c – 160 V, d – 250 V, e – 400 V, f – 600 V, h – 1000 V, i – 1600 V).

Page 16: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 15

Kondensatory ceramiczne są produkowane z różnych materiałów o różnym współczynniku αC, który może przybierać wartość dodatnią lub ujemną. Materiał dielektryka oznacza się literą wskazującą znak αC (N - ujemny, P - dodatni, NPO - zerowy) i liczbą wyrażającą nominalną wartość modułu αC.

Ponadto w kondensatorach ceramicznych stosuje się również skrócony 3-cyfrowy zapis wartości znamionowej pojemności. Pierwsza i druga cyfra oznaczają wartość (najczęściej z szeregu E6) a trzecia wykładnik potęgi liczby 10 . Po przemnożeniu dwucyfrowej wartości przez 10 podniesione do odpowiedniej potęgi otrzymujemy wartość CN wyrażoną w pF.

Przykłady: P100 / 101 - αC = +100·10-6/°C i CN = 100 pF, NPO / 222 - αC = 0·10-6/°C i CN = 2,2 nF, N33 / 473 - αC = -33·10-6/°C i CN = 47 nF Pełne oznaczenie kondensatorów elektrolitycznych obejmuje następujące dane:

− znak producenta, − typ kondensatora, − kategoria klimatyczna, − pojemność znamionowa w μF, − napięcie znamionowe w V, − oznaczenie biegunowości (kropka lub kreska oznacza minus), − data produkcji.

Kondensatory aluminiowe (02/T – z wyprowadzeniami osiowymi, 04/U – z wyprowadzeniami równoległymi) oraz tantalowe (196D – z elektrolitem stałym i ETO – z elektrolitem ciekłym) o małych rozmiarach pozbawione są oznaczeń kategorii klimatycznej i daty produkcji.

Kondensatory zmienne Kondensatory o zmiennej pojemności są to kondensatory z dielektrykiem powietrznym

(symbol: AM, FM) lub kondensatory ceramiczne (dostrojcze), zwane trymerami (symbol: TCP). Kondensatory te składają się z dwu zespołów płytek (lub pojedynczych płytek), zwanych statorem i rotorem, które zmieniając swe położenie powodują zmianę wartości pojemności kondensatora. Charakter zmian pojemności kondensatora zależy od kształtu płytek rotora i statora.

Kondensatory obrotowe mają pojemności mniejsze niż 500 pF, natomiast kondensatory nastawne, zwane trymerami, mają pojemności mniejsze niż 100 pF.

Sprawdzanie i pomiary parametrów kondensatorów Najczęściej spotykanym uszkodzeniem kondensatorów jest przebicie elektryczne, po

przyłożeniu zbyt wielkiego napięcia do okładek kondensatora. Uszkodzeniu ulega dielektryk i okładki zwierają się ze sobą. Uszkodzenie to można łatwo wykryć za pomocą omomierza, który wskaże w tym przypadku zwarcie.

W kondensatorze może pojawić się „przerwa”, spowodowana urwaniem się wyprowadzenia od okładki wewnątrz kondensatora (ceramiczne i zwijkowe) lub wyschnięciem elektrolitu (elektrolityczne z elektrolitem ciekłym). W tym przypadku sprawdzenie stanu technicznego kondensatora jest trudniejsze.

W przypadku dużych pojemności (powyżej 100 μF) kondensator można sprawdzić za pomocą omomierza, przez który popłynie zmieniający się prąd ładowania kondensatora. Jeżeli kondensator jest sprawny, to omomierz powinien rozpocząć wskazania od zwarcia do

Page 17: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 16

przekroczenia zakresu miernika. Gdy zmiany wskazań następują zbyt szybko to należy odpowiednio zwiększyć zakres omomierza. Ponadto można porównać szybkość zmian wskazań miernika występującą w przypadku badanego i wzorcowego kondensatora. Szybsze zmiany (na tym samym zakresie) wskazują mniejszą wartość pojemności.

Dokładny pomiar pojemności można wykonać za pomocą: − uniwersalnych mierników cyfrowych (w ograniczonym zakresie pojemności), − specjalizowanych, mostkowych mierników (testerów) RLC, − metodą techniczną w układach pomiarowych pokazanych na poniższym rysunku.

Rys. 10. Schematy układów do pomiaru metodą techniczną a) dużych pojemności, b) małych pojemności [2] Cewki indukcyjne Cewka indukcyjna, będąca dwójnikiem elektrycznym w postaci zwojnicy, składa się

z uzwojenia, korpusu oraz rdzenia (magnetowodu).

Rys. 11. Symbole graficzne cewek indukcyjnych [9]

Cewki są stosowane w obwodach rezonansowych, filtrach jako elementy sprzęgające

oraz jako dławiki w układach wielkiej lub małej częstotliwości. Rodzaje cewek Ze względu na sposób wykonania cewki dzielimy na:

− powietrzne: stosowane w zakresie dużych częstotliwości, a w przypadku bardzo dużej częstotliwości cewki mają postać odcinka drutu lub ścieżki drukowanej,

− rdzeniowe: stosowane tam, gdzie wymagana jest duża wartość indukcyjności lub jej przestrajanie. Cewki nawijane są na korpusy z tworzywa sztucznego, wewnątrz których znajdują się rdzenie ferromagnetyczne lub niemagnetyczne mosiężne.

Parametry cewek Podstawowymi parametrami cewki są

− indukcyjność własna L w μH lub mH, − rezystancja cewki rL w Ω, − dobroć QL (zależna od częstotliwości pracy i rezystancji uzwojenia) i określona wzorem

L

L rfLQ π2

= , gdzie f jest częstotliwością pracy,

− stała indukcyjności AL w nH,

Page 18: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 17

− pojemność własna C0 (występująca między poszczególnymi zwojami cewki, między korpusem oraz innymi elementami otaczającymi cewkę) i zależy od wymiarów cewki i sposobu uzwojenia. Dławiki Dławik jest to cewka nieprzestrajana, z rdzeniem ferromagnetycznym o nieliniowej

charakterystyce magnesowania rdzenia. Jest to element o dużej indukcyjności własnej, którego zadaniem jest eliminowanie lub tłumienie składowej zmiennej sygnału w obwodzie. Zwykle współpracuje on z kondensatorami, tworząc filtry dolnoprzepustowe. W zależności od częstotliwości pracy wyróżniamy dławiki małej i wielkiej częstotliwości.

Dławiki wykonuje się z cieńszego drutu niż cewki indukcyjne (ich średnica wynosi od 0,05 do 0,1 mm), gdyż ich rezystancja odgrywa drugorzędną rolę.

Oznaczenia cewek indukcyjnych W urządzeniach elektronicznych i elektrycznych są stosowane różnorodne cewki.

Większość z nich jest charakterystyczna tylko dla konkretnego typu urządzenia, ale są również cewki typowe występujące w wielu urządzeniach i zawierające pewne charakterystyczne oznaczenia (dotyczy to głównie cewek ekranowanych).

Podstawowym oznaczeniem znajdującym się na ekranach cewek jest symbol materiału rdzenia dostrojczego lub ekranującego. W zależności od rodzaju materiału rdzenia dostrojczego i istnienia rdzenia ekranującego zmienia się stała indukcyjności AL. Stała ta jest wielkością charakteryzującą rdzeń i konstrukcję cewki i określa zależność indukcyjności od liczby zwojów Z według wzoru

2ZLAL =

Przykłady:

F605 (z ekranem) - AL = 15,5 nH, F82 (bez ekranu) - AL = 7,0 nH, F24 (bez ekranu) - AL = 6,2 nH.

Sprawdzanie i pomiar indukcyjności cewek indukcyjnych Cewki rzadko ulegają uszkodzeniom spowodowanym przez prąd elektryczny

(za wyjątkiem cewek dużej mocy lub wysokonapięciowych). Jeżeli podejrzewamy, że cewka jest uszkodzona, to najpierw należy sprawdzić, czy nie

jest pęknięty rdzeń, korpus lub osłona ekranująca, a następnie sprawdzić omomierzem czy uzwojenia nie są przerwane, zwarte ze sobą lub z osłoną ekranującą. W cewce mogą wystąpić również zwarcia międzyzwojowe.

Przerwę w obwodzie można łatwo wykryć za pomocą omomierza, natomiast wykrycie zwarcia całkowitego lub częściowego jest uzależnione od możliwych, najmniejszych zakresów omomierza. Po zmierzeniu rezystancji rL badanej cewki można wynik pomiaru porównać z wartością katalogową lub zmierzoną cewki wzorcowej.

Dokładny pomiar indukcyjności można wykonać za pomocą: − uniwersalnych mierników cyfrowych (w ograniczonym zakresie indukcyjności), − specjalizowanych, mostkowych mierników (testerów) RLC.

Page 19: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 18

4.2.2. Pytania sprawdzające

Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Jakie typy kondensatorów stosuje się w obwodach rezonansowych, w zakresie wysokich

częstotliwości ? 2. Jak dzielimy kondensatory ze względu na zastosowany dielektryk? 3. W jaki sposób oznaczamy kondensatory? 4. Czym różni się kondensator elektrolityczny od kondensatora wykonanego z tworzywa

sztucznego? 5. Co to jest trymer? 6. Jak sprawdzić stan techniczny kondensatora o pojemności 1mF za pomocą omomierza? 7. Na czym polega różnica między cewkami indukcyjnymi a dławikami? 8. Jakie są podstawowe parametry cewek indukcyjnych? 9. W jaki sposób można regulować indukcyjność w cewkach? 10. Co to jest stała indukcyjności cewki? 4.2.3. Ćwiczenia

Ćwiczenie 1

Dokonaj wyboru najbardziej odpowiedniego kondensatora (spośród kilku przedstawionych) do określonych warunków pracy, kierując się tylko oznaczeniami tych kondensatorów.

Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś:

1) odczytać lub rozszyfrować pojemności znamionowe przedstawionych kondensatorów, 2) spośród kondensatorów, których pojemności spełniają warunki ćwiczenia, wybrać te

typy, które mogą pracować w określonych warunkach, 3) odczytać pozostałe dane zaszyfrowane w oznaczeniach kondensatorów, 4) wybrać kondensator o parametrach najbardziej zbliżonych do kondensatora

poszukiwanego, 5) poszukać w załączonym katalogu wybranego kondensatora, 6) odczytać istotne parametry wybranego kondensatora, 7) sprawdzić, czy odczytane parametry spełniają warunki zadania.

Wyposażenie stanowiska pracy:

− zestaw kilkunastu kondensatorów różnych typów i o różnych parametrach, − katalog kondensatorów, − kalkulator, − zeszyt do ćwiczeń i długopis. 4.2.4. Sprawdzian postępów Czy potrafisz: Tak Nie 1) rozpoznać pojemności znamionowe na podstawie oznaczeń na obudowach

kondensatorów? 2) odczytać z katalogu wartości określonych parametrów kondensatorów? 3) odczytać znaki naniesione na obudowę kondensatorów i rozszyfrować

wartości parametrów pod nimi ukryte? 4) dobrać typ i parametry kondensatora do określonych zadań?

Page 20: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 19

4.3. Diody prostownicze i stabilizacyjne 4.3.1. Materiał nauczania

Złącze P - N i diody półprzewodnikowe Złączem nazywamy połączenie dwóch kryształów ciała stałego w taki sposób, że tworzą

one ze sobą ścisły kontakt. W elektronice najczęściej wykorzystywane są złącza metal-półprzewodnik i półprzewodnik - półprzewodnik, którym w większości przypadków jest krzem. W momencie połączenia półprzewodnika typu P (gdzie nośnikami większościowymi są dodatnie dziury) z półprzewodnikiem typu N (gdzie nośnikami większościowymi są ujemne elektrony) powstaje złącze PN.

Polaryzacja złącza PN Przez pojęcie polaryzacji rozumiemy stan, jaki następuje w złączu pod wpływem

przyłożenia z zewnątrz różnych potencjałów do obydwu obszarów półprzewodnika. Jeżeli do półprzewodnika typu P przyłożymy potencjał dodatni a do półprzewodnika typu

N potencjał ujemny, to mówimy, że złącze jest spolaryzowane w kierunku przewodzenia. Powstała bariera energetyczna obniża się o wartość przyłożonego napięcia zewnętrznego i złącze przewodzi prąd, który całkowicie składa się z nośników większościowych. W przeciwnym wypadku mówimy, że złącze jest spolaryzowane w kierunku zaporowym i złącze takie prawie nie przewodzi prądu.

Dioda półprzewodnikowa Diodą półprzewodnikową nazywamy element półprzewodnikowy zawierający jedno

złącze PN z dwiema końcówkami wyprowadzeń. Charakterystyka diody oraz jej parametry są podobne jak złącza PN. Diody są stosowane w elektronicznych układach analogowych i cyfrowych. Ze względu na zastosowanie wyróżnia się diody: prostownicze, stabilizacyjne, impulsowe, pojemnościowe, detekcyjne i generacyjne.

Diody prostownicze Diody prostownicze są przeznaczone do prostowania napięcia lub prądu przemiennego

małej częstotliwości. Są one głównie stosowane w układach prostowniczych urządzeń zasilających oraz w powielaczach wysokiego napięcia.

Diody prostownicze spolaryzowane zaczynają przewodzić (następuje gwałtowny wzrost prądu) dopiero po przekroczeniu pewnej wartości napięcia w kierunku przewodzenia. Dla diod krzemowych wynosi ona ok. 0,7 V a dla germanowych ok. 0,3 V. Diody prostownicze mają bardzo małą rezystancję w kierunku przewodzenia – rzędu pojedynczych Ω, co pozwala na uzyskanie dużych sprawności prostowania. Natomiast diody spolaryzowane w kierunku zaporowym wykazują bardzo dużą rezystancję i wartość prądu wstecznego IR diody (np. krzemowej – najczęściej stosowanej) jest 106÷108 razy mniejsza. Symbol graficzny diody prostowniczej pokazano na rys. 13 a. Działanie diody najlepiej pokazuje charakterystyka prądowo-napięciowa przedstawiona na rys. 13 b.

Napięcie i prąd na osiach współrzędnych oznaczone indeksem F wskazują kierunek przewodzenia diody, natomiast oznaczone indeksem R kierunek zaporowy.

Elektroda „+” (anoda) pokazana na rysunku połączona jest z półprzewodnikiem typu P a elektroda „–” (katoda) z półprzewodnikiem typu N.

Page 21: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 20

a) b)

Rys. 12. Dioda prostownicza: a) symbol graficzny, b) charakterystyka prądowo-napięciowa [5]

Oznaczenia i wygląd diod prostowniczych Oznaczenia i wygląd diod prostowniczych zmieniają się w zależności od producenta,

mocy i napięcia występującego w urządzeniach zawierających te elementy oraz od ich konstrukcji i przeznaczenia.

Przykładowo diody prostownicze mogą mieć następujące oznaczenia: − typowe diody małej mocy: BYP 401, BYP 660R, − typowe diody małej i średniej mocy: BYP 680R, − diody wysokonapięciowe: BAYP 50, BAYP 350, − diody mocy: D00-100-10, D3A2-10-12, D20-300-10, − diody szybkie mocy: DR12-10-01, DR51-80-12.

W oznaczeniach diod można rozpoznać pewne prawidłowości: − pierwsza litera oznacza materiał półprzewodnikowy A - german, B - krzem, − druga litera Y oznacza diody prostownicze, − litera R umieszczona na końcu oznacza, że anoda diody znajduje się na obudowie diody, − cyfry poprzedzone znakiem „–” określają maksymalne napięcie wsteczne diody

wyrażone w woltach, − pierwsza litera D oznacza diodę mocy, a pierwsze litery DR oznaczają szybkie diody

mocy, − w przypadku diod mocy cyfry poprzedzone pierwszym znakiem „–” określają

maksymalny prąd diody wyrażony w amperach, a cyfry poprzedzone drugim znakiem „–” określają maksymalne napięcie wsteczne diody wyrażone w setkach woltów. Przykłady:

− BYP 401-600R oznacza diodę prostowniczą małej mocy o napięciu wstecznym 600 V i anodą na obudowie,

− D20-300-10 oznacza prostowniczą diodę mocy o maksymalnym prądzie przewodzenia 300 A i napięciu wstecznym 1000 V.

Niektórzy producenci oznaczają diody symbolem 1Nxxxxx, przy czym interpretacja

pozostałych znaków tego symbolu ustalona jest przez producenta Obudowy diod mają bardzo różną konstrukcję i wygląd.

(+)

(-)

IF

UR

URWM

I0

0

UF(I0)

UF

IR

IR(URWM)

Page 22: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 21

Parametry diod prostowniczych Parametry charakterystyczne:

− napięcie progowe U(TO), poniżej którego prąd przewodzenia ma bardzo małą wartość (0,2 V dla diod germanowych i 0,6 V dla krzemowych),

− napięcie przebicia U(BR) lub powtarzalne szczytowe napięcie wsteczne URRM przyjmowane jako 0,8 napięcia przebicia (od kilku woltów do kilku kilowoltów),

− napięcie przewodzenia UF przy określonym prądzie przewodzenia I0, − prąd wsteczny IR przy określonym napięciu w kierunku zaporowym, − rezystancja cieplna Rth, zależna od sposobu chłodzenia diody i informująca o szybkości

odprowadzania ciepła przez diodę − Parametry graniczne: − dopuszczalny średni prąd przewodzenia IF(AV), jaki może przepływać przez diodę

w kierunku przewodzenia (od dziesiątek miliamperów do kilku kiloamperów), − szczytowe napięcie wsteczne URSM, powyżej którego dioda może ulec uszkodzeniu, − maksymalne straty mocy Ptot max przy danej temperaturze otoczenia diody (najczęściej

25°C), które mieszczą się w przedziale od kilkuset miliwatów do kilku kilowatów, − dopuszczalna temperatura złącza Tjmax, umożliwiająca obliczenie maksymalnej mocy

rozpraszanej przez diodę w określonych warunkach, − parametr przeciążeniowy I2t podawany dla diod mocy i określający na jak długo (i jakim

prądem) można przeciążyć daną diodę mocy. Diody stabilizacyjne (diody Zenera) Diody te są przeznaczone do stabilizacji lub ograniczania napięcia. Są one głównie

stosowane w urządzeniach zasilających jako elementy stabilizatorów napięcia oraz jako źródła napięć odniesienia i ograniczniki amplitudy w innych układach elektronicznych.

Diody stabilizacyjne pracują przy polaryzacji w kierunku zaporowym, charakteryzując się niewielkimi zmianami napięcia pod wpływem dużych zmian prądu. Wykorzystują one zjawisko Zenera (w złączach krzemowych dla napięć < 5 V) i zjawisko powielania lawinowego (w złączach krzemowych dla napięć > 7 V) występujące powyżej określonego napięcia wstecznego diody. Obydwa te zjawiska są całkowicie odwracalne, przy czym napięcia stabilizacji wywołane tymi zjawiskami reagują przeciwnie na zmiany temperatury. Symbol graficzny diody Zenera jest zamieszczony poniżej na rys. 13a. Działanie diody stabilizacyjnej najlepiej pokazuje charakterystyka prądowo-napięciowa przedstawiona na rys. 13 b).

Rys. 13. Symbol graficzny diody stabilizacyjnej oraz charakterystyka I = f(U) diody stabilizacyjnej [5]

Page 23: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 22

Oznaczenia i wygląd diod stabilizacyjnych Oznaczenia i wygląd diod stabilizacyjnych zmieniają się w zależności od mocy i napięcia

stabilizacji diody oraz od ich konstrukcji i przeznaczenia. Przykładowo diody stabilizacyjne mogą mieć następujące oznaczenia:

− typowe diody Zenera: BZAP 30, BZP 650, − diody Zenera do układów hybrydowych: BZX 84, − diody skompensowane temperaturowo: BZY 566 – wykorzystują one temperaturową

stabilność napięcia Zenera w wąskim zakresie od 6,08 V do 6,72 V, − diody układów elektronicznego zapłonu: BZYP 01.

W oznaczeniach tych diod można rozpoznać pewne prawidłowości: − pierwsza litera oznacza materiał półprzewodnikowy, najczęściej B - krzem, − druga litera Z oznacza diody stabilizacyjne (diody Zenera), − litera poprzedzona znakiem „-” określa tolerancję napięcia stabilizacji: A - 1%, B - 2%,

C - 5%, D - 10%, E - 15%, − po tej literze następują cyfry określające wartość znamionowego napięcia stabilizacji

w woltach, a jeżeli napięcie to jest liczbą ułamkową, to zamiast przecinka stosuje się literę V,

− litera R umieszczona na końcu oznacza, że anoda diody znajduje się na obudowie diody, a polaryzacji normalnej (obudowa połączona z katodą) nie oznacza się.

Obudowy diod stabilizacyjnych mają podobną konstrukcję i wygląd jak diod

prostowniczych. Przykład: BZP 683-C5V1 oznacza diodę stabilizacyjną małej mocy o napięciu stabilizacji równym 5,1 V z dokładnością 5%.

Parametry diod stabilizacyjnych Parametry charakterystyczne:

− napięcie stabilizacji UZ (zwane również napięciem Zenera), którego wartość mieści się w granicach od trzech do kilkuset woltów,

− napięcie przewodzenia UF przy określonym prądzie przewodzenia I0, − prąd wsteczny IR przy określonym napięciu w kierunku zaporowym, − rezystancja dynamiczna rz jaką stanowi dioda w zakresie stabilzacji, − temperaturowy współczynnik napięcia stabilizacji αuz. − Parametry graniczne: − maksymalny prąd stabilizacji IZmax, płynący przez diodę podczas stabilizacji napięcia, − maksymalne straty mocy Ptot max przy danej temperaturze otoczenia diody (najczęściej

25°C).

Wyznaczanie charakterystyk prądowo-napięciowych diod półprzewodnikowch Charakterystyki prądowo-napięciowe umożliwiają wyznaczenie podstawowych

parametrów diod półprzewodnikowych jak: napięcie przewodzenia UF, napięcie stabilizacji UZ i rezystancja dynamiczna rz..

Najprostszą metodą wyznaczania charakterystyk diod jest metoda „punkt po punkcie”, w której odpowiednie prądy i napięcia mierzymy za pomocą amperomierza i woltomierza włączonych w poniższe układy pomiarowe.

Page 24: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 23

Rys. 14. Układ pomiarowy do wyznaczania charakterystyki prądowo-napięciowej zarówno diody prostowniczej jak i diody Zenera (w kierunku przewodzenia) [9]

Wyniki należy zapisać w karcie pomiarowej zawierającej tabelę 4.

Tabela 4. Karta pomiarowa do badania diod spolaryzowanych w kierunku przewodzenia Dioda prostownicza (lub stabilizacyjna) typ: .................... - kierunek przewodzenia

UF [V] IF [mA]

Rys. 15. Układy pomiarowe do wyznaczania charakterystyki prądowo - napięciowej diody prostowniczej

i stabilizacyjnej (w kierunku zaporowym) [9] Wyniki należy zapisać w karcie pomiarowej zawierającej tabelę 5.

Tabela 5. Karta pomiarowa do badania diod spolaryzowanych w kierunku zaporowym Dioda prostownicza (lub stabilizacyjna) typ: .................... - kierunek zaoporowy

UR [V] IR [mA lub μA]

Dobieranie parametrów diod półprzewodnikowych

Tabela 6.. Parametry katalogowe przykładowo wybranych diod [opracowanie własne] UF przy IF IR przy UR αuz przy IZ Dioda URRM

V

max

IF mA (A) max

Ptot mW (W) max

V max

mA (A)

μA max

V

UZ V

znam.

rz Ω

max 10-4/K max

mA

Tjmax °C

I2t A2s

D00-100-10

1k (100) 180M

BYP 401

800 (1) 1,1 (1) 5 800 150

BZP 630- C7V5

200 250 1,2 100 1 1,5 7,5 10 +5 5 150

Page 25: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 24

Podstawowe zasady dobierania parametrów diod półprzewodnikowych: − amplituda prądu przewodzenia nie może przekraczać parametru IFmax, − iloczyn wartości skutecznej prądu przewodzenia I i wartości skutecznej napięcia

przewodzenia UF nie może przekraczać wartości Ptot, − amplituda napięcia wstecznego diody prostowniczej nie powinna przekroczyć URRM, − napięcie zasilające układ z diodą Zenera musi być większe od UZ, ale musi być na tyle

małe, aby iloczyn totZZ PIU ≤⋅ , − podczas szukania zamienników diod należy szukać diod o nie mniejszych parametrach

granicznych oraz o możliwie tych samych parametrach charakterystycznych. Sprawdzanie diod półprzewodnikowych Przyczyną elektrycznego uszkodzenia diody jest przekroczenie dopuszczalnych wartości

prądów i napięć. Uszkodzenia mechaniczne polegające na stłuczeniu lub ułamaniu obudowy, czy złamaniu końcówki wynikają najczęściej z zaginania końcówek zbyt blisko obudowy.

Uszkodzenia w diodzie można łatwo wykryć omomierzem wyposażonym w źródło napięcia o wartości 1,5 V. Badaną diodę należy wylutować z układu (wystarczy odlutować tylko jedną końcówkę) i zmierzyć rezystancję w obydwu kierunkach. Rezystancja w kierunku zaporowym (plus omomierza na katodzie) jest bardzo duża i często przekracza maksymalne zakresy miernika. Natomiast w kierunku przewodzenia (plus omomierza na anodzie) rezystancja jest znacznie mniejsza, chociaż trudna do określenia. Rezystancja w kierunku przewodzenia zależy od kształtu charakterystyki diody oraz rodzaju i zakresu omomierza. Oznacza to, że w zmieniając typ lub zakres miernika a także samą diodę na inny egzemplarz tego samego typu, otrzymamy różne wartości rezystancji diody w kierunku przewodzenia.

Sprawdzanie diody Zenera można przeprowadzić analogicznie do sprawdzania diody prostowniczej, za wyjątkiem pomiaru samego napięcia stabilizacji UZ, pod warunkiem, że napięcie stabilizacji jest większe niż napięcie źródłowe omomierza. Pomiar napięcia UZ, można przeprowadzić w układzie pomiarowym pokazanym na rys. 17. Nie ma jednak potrzeby mierzenia tych wielkości, ponieważ sprawne złącze stwierdzone omomierzem na ogół gwarantuje zachowanie właściwych wartości innych parametrów.

Jeżeli podczas mierzenia rezystancji diody w obu kierunkach omomierz wskazuje zwarcie, to oznacza przebicie elektryczne złącza, a jeżeli rozwarcie to oznacza przerwę mechaniczną wewnątrz diody.

Obecnie cyfrowe mierniki uniwersalne wyposażone są w układy do mierzenia spadku napięcia na złączu PN. Miernik musimy przestawić na tryb oznaczony i przyłożyć do końcówek diody przewody miernika. Jeżeli „minus” miernika jest przyłączony do katody, to miernik wskaże wartość spadku napięcia w mV, a jeżeli odwrotnie to miernik wskaże przekroczenie zakresu. 4.3.2. Pytania sprawdzające

Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Jakie są warunki spolaryzowania diody w kierunku przewodzenia i w kierunku

zaporowym? 2. Jakie są podstawowe parametry charakterystyczne diody prostowniczej? 3. Jakie są podstawowe parametry graniczne diody stabilizacyjnej? 4. Jakie informacje można odczytać z oznaczenia diody BZP 683-D12? 5. Co oznacza litera R umieszczona na końcu oznaczenia diody? 6. Jakie parametry graniczne diody mocy należy wziąć pod uwagę podczas szukania

zamiennika dla diody D3A2-10-12? 7. Jak można sprawdzić stan diody prostowniczej lub stabilizacyjnej za pomocą cyfrowego

multimetru uniwersalnego?

Page 26: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 25

4.3.3. Ćwiczenia

Ćwiczenie 1 Wyznacz charakterystykę prądowo-napięciową określonej diody Zenera spolaryzowanej

w kierunku zaporowym i odczytaj z niej parametry UZ i rz. Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś:

1) odczytać z karty katalogowej podstawowe parametry diody, 2) zaproponować układ pomiarowy do zbadania diody, 3) zaproponować zakresy mierników przedstawionych w układzie pomiarowym, 4) połączyć układ pomiarowy, 5) sporządzić tabelę do wpisywania wyników badań, 6) wyznaczyć metodą „punkt po punkcie” charakterystykę diody, 7) narysować charakterystykę diody na papierze milimetrowym, 8) odczytać z narysowanej charakterystyki UZ i rz, 9) porównać wyznaczony fragment charakterystyki diody i wyznaczone parametry diody

z danymi katalogowymi.

Wyposażenie stanowiska pracy: − karta katalogowa badanej diody, − zestaw mierników stosowanych w układach pomiarowych do badania elementów

półprzewodnikowych metodą „punkt po punkcie” i instrukcje mierników, − zasilacz regulowany, − makieta z badaną diodą i przewody połączeniowe, − zeszyt do ćwiczeń i papier milimetrowy, − kalkulator, − ołówek, linijka, inne przyrządy kreślarskie. 4.3.4. Sprawdzian postępów

Czy potrafisz: Tak Nie 1) odczytać z karty katalogowej wybrany parametr diody? 2) połączyć układ pomiarowy do badania diody stabilizacyjnej? 3) rozpoznać diodę stabilizacyjną i jej parametry po oznaczeniach

katalogowych? 4) wyznaczyć charakterystykę diody stabilizacyjnej? 5) odczytać z narysowanej charakterystyki diody stabilizacyjnej określone

parametry diody?

Page 27: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 26

4.4. Tranzystory i tyrystory 4.4.1. Materiał nauczania

Tranzystory i tyrystory należą do grupy elementów półprzewodnikowych

o regulowanym przepływie prądu. Tranzystory należą do elementów wzmacniających i przełączających, a tyrystory tylko do elementów przełączających. Tranzystory, ze względu na zasadę działania, dzielimy na: bipolarne i unipolarne.

Budowa i struktura tranzystorów bipolarnych Tranzystory bipolarne są najczęściej wykonywane z krzemu. Ze względu na kolejność

ułożenia warstw półprzewodnika rozróżniamy tranzystory typu NPN i PNP. Każda z tych warstw (obszarów) ma swoją nazwę: baza - B, emiter - E, kolektor - C. Złącza utworzone między sąsiednimi obszarami półprzewodnika nazywamy: złączem emiterowym (E-B) i kolektorowym (B-C). Na rys. 16 przedstawiono modele struktury tranzystorów bipolarnych i odpowiadające im symbole graficzne.

tranzystor PNP tranzystor NPN

Rys. 16. Struktura i symbole graficzne tranzystorów bipolarnych [10]

Podział tranzystorów bipolarnych Ze względu na wydzielaną moc tranzystory dzielimy na:

− małej mocy: do 0,3 W, − średniej mocy: do 5 W, − dużej mocy: powyżej 5 W, nawet do 300 W.

Ze względu na maksymalną częstotliwość pracy tranzystory dzielimy na: − małej częstotliwości: do kilkudziesięciu MHz, − wielkiej częstotliwości: nawet do kilku GHz.

Zasada działania tranzystora bipolarnego Działanie tranzystora bipolarnego rozpatrzymy na przykładzie polaryzacji normalnej

tranzystora, tzn. gdy złącze emiter-baza jest spolaryzowane w kierunku przewodzenia, a złącze baza - kolektor spolaryzowane w kierunku zaporowym. Stan taki jest zapewniony,

P N P

E

B

C

E

C

B

N P N

E

B

C

E

C

B

B

E

C

E

C

B

Page 28: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 27

gdy spełniona jest następująca zależność między potencjałami na poszczególnych elektrodach: − dla tranzystora NPN VE < VB < VC, − dla tranzystora PNP VE > VB > VC

Rys. 17. Rozkład napięć i rozpływ prądów tranzystora bipolarnego przy polaryzacji normalnej [5] Oznaczenia rozpływu prądów w tranzystorze i spadków napięć na nim są następujące:

IB – prąd bazy, IC – prąd kolektora, IE – prąd emitera, UCE – napięcie kolektor-emiter, UBE – napięcie baza-emiter, UCB – napięcie kolektor-baza, VE – potencjał emitera, VB – potencjał emitera, VC – potencjał kolektora. Między prądami poszczególnych elektrod tranzystora zachodzą następujące związki:

βB

C

II

= BCE III += ,

gdzie β jest współczynnikiem wzmocnienia prądowego tranzystora i mieści się w granicach od 20 do 850.

Układy pracy tranzystora bipolarnego Zależnie od doprowadzenia i wyprowadzenia sygnału rozróżniamy trzy sposoby

włączenia tranzystora do układu pokazane na rys. 8 − układ ze wspólnym emiterem OE (WE), − układ ze wspólną bazą OB (WB), − układ za wspólnym kolektorem OC (WC).

Rys. 18. Układy pracy tranzystorów bipolarnych [5]

B

E

E

E

C

C

B

B

C

WE

WB

WC

Page 29: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 28

Wybór układu pracy tranzystora jest zależny od przeznaczenia i rodzaju zastosowanego tranzystora.

Tranzystor pracujący w układzie OE charakteryzuje się: − dużym wzmocnieniem prądowym β, − dużym wzmocnieniem napięciowym, − dużym wzmocnieniem mocy, − rezystancją wejściową rzędu kilkuset Ω, a wyjściową rzędu kilkadziesiąt kΩ. − napięcie wyjściowe w układzie OE jest odwrócone w fazie o 180° w stosunku do

napięcia wejściowego, − Tranzystor pracujący w układzie OB charakteryzuje się: − małą rezystancją wejściową, − bardzo dużą rezystancją wyjściową, − wzmocnieniem prądowym bliskim jedności, − bardzo dużą częstotliwością graniczną pracy, − Tranzystor pracujący w układzie OC charakteryzuje się: − dużą rezystancją wejściową – co ma istotne znaczenie we wzmacniaczach małej

częstotliwości, − wzmocnieniem napięciowym równym jedności, − dużym wzmocnieniem prądowym.

Stany pracy tranzystora Tranzystor składa się z dwóch złączy PN, które mogą być spolaryzowane w kierunku

przewodzenia jak i w kierunku zaporowym. W związku z tym wyróżniamy cztery stany pracy tranzystora przedstawione w tabeli 7.

Tabela 7. Stany pracy tranzystora bipolarnego

Kierunki polaryzacji złączy tranzystora Stan

tranzystora złącze emiter – baza

złącze kolektor – baza

Zatkanie zaporowy zaporowy

Przewodzenie aktywne przewodzenia zaporowy

Nasycenie przewodzenia przewodzenia

Przewodzenie inwersyjne zaporowy przewodzenia

Tranzystor pracujący w układach wzmacniających musi być w stanie aktywnym, natomiast w układach przełączających w stanie zatkania lub nasycenia.

Page 30: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 29

Rodzaje obudów tranzystorów bipolarnych

Rys. 19. Obudowy tranzystorów bipolarnych: a) dużej mocy, b) małej mocy [5] Kształt obudowy tranzystora i kolejność jego wyprowadzeń zależy od parametrów,

przeznaczenia i producenta tranzystora. Istnieją jednak pewne ogólne zasady rozpoznawania niektórych wyprowadzeń w określonych typach obudów.

Jeżeli tranzystor mocy w obudowie metalowej ma wyprowadzone tylko dwie końcówki, to trzecią (zawsze kolektor) jest właśnie ta metalowa obudowa. Jeżeli tranzystor przystosowany jest do montowania na radiatorze, ale posiada 3 końcówki, to jedna z nich (kolektor) jest wewnętrznie połączona z metalową obudową.

Niektóre tranzystory małej mocy w obudowie plastykowej mają charakterystyczne „ścięcie”, które wskazuje umiejscowienie końcówki kolektora tranzystora.

Tranzystory małej mocy w okrągłej, metalowej obudowie mają charakterystyczny „ząbek”, który wskazuje końcówkę emitera, kolektor w tym przypadku jest również połączony z metalową obudową.

Parametry tranzystorów bipolarnych Do podstawowych parametrów charakterystycznych tranzystora bipolarnego zaliczamy:

− β (lub h21E) – współczynnik wzmocnienia prądowego w układzie OE, − fT – częstotliwość graniczna tranzystora, przy której współczynnik h21E spada do zera, − UCEsat – napięcie między kolektorem a emiterem w stanie nasycenia.

Do podstawowych parametrów granicznych tranzystora bipolarnego zaliczamy: − Ptot – dopuszczalna moc całkowita wydzielana w tranzystorze, − UCE0max – maksymalne napięcie między kolektorem a emiterem, − ICmax – maksymalny dopuszczalny prąd kolektora, − Tj – dopuszczalna temperatura złączy.

Oznaczanie i dobieranie tranzystorów bipolarnych Tranzystory bipolarne wykonywane są najczęściej z krzemu. Poniżej przedstawiamy

przykładowe typy, oznaczenia i parametry tranzystorów krzemowych. Tabela 8. Przykłady oznaczeń i parametrów tranzystorów krzemowych

Typ Symbol UCEmax [V]

ICmax [mA]

Ptot [mW]

Grupa h21E

h21E fT [MHz]

Polaryzacja

małej mocy m.cz. BC107 45 100 300 A B

110÷240 200÷480 100 NPN

dużej mocy m.cz. BDP286 80 7000 25000 - 30÷200 10 PNP małej mocy w.cz. BF180 20 20 150 - 15 500 NPN

wysokonapięciowe BU205 700 2500 10000 - 2 7,5 NPN

Page 31: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 30

Podstawowe zasady dobierania parametrów tranzystorów bipolarnych: − amplituda prądu kolektora nie może przekraczać parametru ICmax, − iloczyn wartości skutecznej prądu kolektora IC i wartości skutecznej napięcia UCE nie

może przekraczać wartości Ptot, − amplituda napięcia kolektor-emiter nie może przekroczyć UCEmax, − wartość współczynnika wzmocnienia prądowego h21E w wielu układach elektronicznych

nie jest istotna, ale należy dobierać tranzystory z tej samej grupy, − podczas szukania zamienników tranzystorów należy szukać tranzystorów o nie

mniejszych parametrach granicznych oraz o możliwie tych samych parametrach charakterystycznych,

− większość tranzystorów produkcji europejskiej ma swoje odpowiedniki wśród tranzystorów produkcji amerykańskiej, których symbole katalogowe zaczynają się na 2Nxxxx (należy je dobierać według danych katalogowych lub według wyszczególnionych odpowiedników). Sprawdzanie tranzystorów bipolarnych Uszkodzenie tranzystora może nastąpić pod wpływem tych samych czynników

co w diodzie półprzewodnikowej. Sprawdzenie stanu technicznego tranzystora można przeprowadzić w podobny sposób jak w przypadku diody, za pomocą omomierza lub cyfrowego miernika uniwersalnego nastawionego na pomiar napięcia na złączu PN. Sposób pomiaru i kontrolę stanu technicznego tranzystora pokazuje poniższa tabela.

Tabela 9. Rezystancje lub napięcia między elektrodami prawidłowo pracującego tranzystora bipolarnego Tranzystor Badane

przejście Biegun dodatni

miernika Rezystancja zmierzona

Napięcie złącza

PNP B-E E mała poniżej 1 V PNP B-E B bardzo duża lub duża poza zakresem PNP B-C C mała poniżej 1V PNP B-C B bardzo duża lub duża poza zakresem PNP E-C E bardzo duża poza zakresem PNP E-C C bardzo duża lub mała różne NPN B-E B mała poniżej 1 V NPN B-E E bardzo duża poza zakresem NPN B-C B mała poniżej 1 V NPN B-C C bardzo duża poza zakresem NPN E-C E bardzo duża lub mała różne NPN E-C C bardzo duża poza zakresem Tranzystory unipolarne Tranzystor unipolarne (polowe) stosowane są w układach elektronicznych rzadziej niż

bipolarne. Tranzystory te mają kanał typu N lub P, który może być wzbogacany lub zubożany. Elektrody tych tranzystorów mają następujące nazwy i oznaczenia: źródło - S, bramka - G, dren - D. W tranzystorach polowych w przepływie prądu biorą udział nośniki większościowe jednego rodzaju – elektrony (N) lub dziury (P). Prąd może płynąć przez kanał pomiędzy źródłem i drenem, natomiast przewodnictwo tego kanału zależy od napięcia bramka-źródło UGS. Istnieje pewne napięcie UGSoff przy którym następuje odcięcie kanału i tranzystor przestaje przewodzić. Ze względu na rodzaj sterowania kanałem i właściwości tranzystory unipolarne dzielimy na złączowe (FET) i z izolowaną bramką (MOSFET).

Tranzystory bipolarne spełniają podobną rolę w układach elektronicznych co tranzystory unipolarne, chociaż mają inne właściwości. Przede wszystkim bramka (odpowiednik bazy)

Page 32: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 31

sterowana jest napięciowo, ponieważ nie istnieje prąd bramki. Sterowanie napięciowe powoduje znaczny wzrost rezystancji wejściowej tranzystorów unipolarnych w stosunku do bipolarnych. Ponadto ze względu na zwiększoną pojemność wewnętrzną tranzystory unipolarne są wolniejsze od bipolarnych.

Rys. 20. Przykładowe symbole graficzne tranzystorów unipolarnych: a) FET - kanał N, b) FET - kanał P [5] W zależności od typu kanału i rodzaju tranzystora napięcie UGSoff może być dodatnie lub

ujemne. Jeżeli założymy, że UGS jest dodatnie, gdy potencjał VG jest większy od VS, to przewodzenie każdego typu tranzystora unipolarnego można przedstawić następująco.

Tabela 10. Warunki przewodnictwa różnych typów tranzystorów unipolarnych [opracowanie własne]

Typ tranzystora Tranzystor przewodzi dla: FET z kanałem typu N -UGSoff < UGS < 0 FET z kanałem typu P 0 < UGS <+UGSoff

MOSFET z kanałem zubożanym typu N -UGSoff < UGS MOSFET z kanałem wzbogacanym typu N +UGSoff < UGS

MOSFET z kanałem zubożanym typu P UGS <+UGSoff MOSFET z kanałem wzbogacanym typu P UGS <-UGSoff

Parametry tranzystorów unipolarnych są analogiczne do bipolarnych, za wyjątkiem

napięcia odcięcia kanału UGSoff, które jest parametrem charakterystycznym Obudowy i oznaczenia tranzystorów bipolarnych i unipolarnych są podobne, przy czym

tranzystory MOSFET mają zwykle cztery końcówki. Tą czwartą jest tzw. podłoże B, które w układach pracy prawie zawsze połączone jest ze źródłem S.

Przykład: tranzystor FET; BF245; Ptot max = 360 mW, UDSmax = 30V, UGSoff = 0,5÷8V, kanał N Sprawdzanie tranzystorów unipolarnych W przypadku tranzystorów unipolarnych typu FET należy sprawdzić przejście między

drenem i źródłem (powinno istnieć w obydwie strony) i między źródłem lub drenem a bramką. Sprawdzanie tranzystorów typu MOSFET jest utrudnione ze względu na dużą wrażliwość tych tranzystorów na napięcie elektrostatyczne, powodujące przebicie warstwy tlenku krzemu. Do uszkodzenia tranzystora wystarczy ładunek elektryczny, który zostanie wprowadzony na bramkę tranzystora poprzez ręce lub narzędzia badającego.

Tyrystor Tyrystor, zwany także sterowaną diodą krzemową, składa się z 4 warstw półprzewodnika

PNPN. Trzy wyprowadzone na zewnątrz końcówki są dołączone do trzech warstw półprzewodnika : anoda A do skrajnej warstwy P, katoda K do skrajnej warstwy N oraz trzecia, zwana bramką G do wewnętrznej warstwy N.

A

G K Rys. 21. Symbol graficzny tyrystora [opracowanie własne]

Page 33: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 32

Działanie tyrystora przy polaryzacji w kierunku zaporowym jest takie same jak diody prostowniczej, ten stan nazywamy stanem zaworowym. Natomiast przy polaryzacji w kierunku przewodzenia (anoda połączona z biegunem „+” zasilania) tyrystor jest w stanie blokowania (nie przewodzi prądu) lub w stanie przewodzenia (przewodzi prąd tak jak dioda prostownicza). Stąd drugie określenie tyrystora - dioda sterowana.

Przejście tyrystora ze stanu blokowania do stanu przewodzenia następuje po przekroczeniu napięcia progowego U(BO) nazywanego napięciem przełączania. Napięcie przełączania nie jest parametrem tyrystora, ponieważ zależy od wartości prądu IG wpływającego do bramki tyrystora (im większe IG, tym mniejsze U(BO)). Istnieje również możliwość samoczynnego, niekontrolowanego załączenia tyrystora podczas zbyt szybkiego narastania napięcia w stanie blokowania.

Wyłączenie tyrystora, czyli przejście ze stanu przewodzenia w stan blokowania lub zaworowy, wymaga zmniejszenia prądu anodowego tyrystora do wartości tzw. prądu podtrzymania IH lub do zera poprzez zmianę polaryzacji napięcia anoda-katoda. W praktyce na ogół wykorzystuje się ten drugi sposób.

Parametry i oznaczenia tyrystorów Podstawowymi parametrami tyrystora są:

− maksymalne napięcie blokowania UDRM, − powtarzalne szczytowe napięcie wsteczne URRM, − maksymalna wartość skuteczna prądu przewodzenia IT(RMS), − napięcie przełączające bramki UGT, − prąd przełączający bramki IGT, − prąd podtrzymania IH.

Przykład:

BTP128-400: UDRM = 400V, URRM = 4V, IT(RMS) = 8A, UGT = 4V, UGT = 45mA, IH = 5mA Tyrystory małej mocy mają obudowy podobne kształtem do diod lub tranzystorów i nie

posiadają oznaczeń zawierających informacje o parametrach tyrystora. Natomiast tyrystory dużej mocy (podobne kształtem do diod prostowniczych dużej mocy) mają specjalne oznaczenia naniesione na obudowę:

Przykład: T 32-20-10-54 T – tyrystor (tyrystory szybkie mogą mieć oznaczenie TR lub F), 32 – cechy konstrukcyjne tyrystora, 20 – prąd IT(RMS) w A, 10 – napięcie UDRM = URRM w setkach V, 54 – parametry dynamiczne

Sprawdzanie tyrystorów Tyrystory ulegają uszkodzeniom tego samego rodzaju, co wszystkie elementy

półprzewodnikowe, tzn. przebiciom złączy. Typową przyczyną uszkodzeń tyrystorów jest przegrzanie, w wyniku którego następuje pogorszenie parametrów tyrystora, przede wszystkim jego czasu wyłączania.

Prawidłowość działania tyrystora można sprawdzić w układzie wyposażonym w baterię 4,5 V, miliamperomierz i 2 rezystory 1k Ω i 470 Ω. Biegun ujemny zasilacza łączymy z katodą tyrystora, natomiast dodatni łączymy z anodą przez rezystor 470 Ω, a przez 1 kΩ i ewentualnie przełącznik z bramką tyrystora. Przy odłączonej bramce tyrystor nie powinien się włączyć i miliamperomierz nie powinien wskazywać przepływu prądu. Po podłączeniu bramki do obwodu tyrystor powinien się włączyć i miliamperomierz powinien wskazywać przepływ prądu rzędu kilku miliamperów.

Page 34: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 33

4.4.2. Pytania sprawdzające

Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Jakie funkcje mogą spełniać tranzystory i tyrystory w układzie elektronicznym? 2. Na czym polega różnica w działaniu tranzystorów bipolarnych i unipolarnych? 3. Jak nazywamy wyprowadzenia tranzystorów bipolarnych a jak unipolarnych? 4. Jaka jest polaryzacja złączy tranzystora bipolarnego w stanie nasycenia? 5. Co to jest współczynnik β tranzystorów? 6. Jak należy dobierać moc tranzystorów bipolarnych w układach elektronicznych? 7. Co to jest napięcie odcięcia kanału tranzystora? 8. Jaki typ tranzystora unipolarnego przewodzi prąd dla dodatniego napięcia większego od

UGSoff? 9. Jakie stany pracy tyrystora wyróżniamy? 10. Jakie warunki muszą być spełnione, aby tyrystor został wyłączony? 11. Co to za parametr UDRM? 4.4.3. Ćwiczenia

Ćwiczenie 1 Rozpoznaj elektrody tranzystora bipolarnego oraz sprawdź jego sprawność. Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś:

1) odczytać z karty katalogowej podstawowe parametry tranzystora, 2) dokonać wyboru przyrządu pomiarowego, 3) za pomocą wybranego przyrządu ustalić czy tranzystor jest sprawny, 4) za pomocą wybranego przyrządu ustalić polaryzację tranzystora, 5) rozpoznać wyprowadzenie bazy tranzystora, 6) na podstawie oględzin zewnętrznych ustalić wyprowadzenia emitera i kolektora, 7) rozpoznać w dołączonym katalogu typ obudowy danego tranzystora, 8) sprawdzić, czy rozpoznanie wyprowadzeń badanego tranzystora jest zgodne z danymi

katalogowymi. Wyposażenie stanowiska pracy:

− karty katalogowe badanych tranzystorów, − uniwersalny miernik cyfrowy, − omomierz, woltomierz, − zeszyt do ćwiczeń.

Ćwiczenie 2 Wyznacz charakterystykę prądowo-napięciową tyrystora w stanie przewodzenia i zmierz

wartość prądu podtrzymania IH tego tyrystora. Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś:

1) połączyć układ pomiarowy zgodnie z instrukcją, 2) wybrać zakresy urządzeń pomiarowych i zasilających zgodnie z instrukcją, 3) zapoznać się z danymi katalogowymi tyrystora,

Page 35: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 34

4) nastawić maksymalne wartości rezystancji potencjometrów w obwodzie głównym i bramkowym tyrystora,

5) dobrać zakres napięć wyjściowych regulowanych zasilaczy zasilających obwód główny i bramkowy tyrystora,

6) podłączyć badany układ do zasilaczy, 7) nastawić napięcia wyjściowe zasilaczy tak, aby tyrystor przewodził prąd, 8) potencjometrem obwodu głównego nastawić podane w instrukcji wartości prądu

anodowego, 9) zmierzyć napięcie przewodzenia tyrystora dla każdej zadanej wartości prądu anodowego, 10) zapisać wyniki pomiarów w opracowanej przez Ciebie tabeli, 11) narysować charakterystykę prądowo-napięciową tyrystora IT = f(UT), 12) nastawić napięcie wyjściowe zasilaczy tak, aby tyrystor był w stanie przewodzenia, 13) rozewrzeć obwód bramki tyrystora, 14) zwiększać rezystancję potencjometru obwodu głównego tyrystora, 15) zmierzyć wartość prądu anodowego dla każdej nastawy potencjometru, 16) zagęścić pomiary przy zbliżaniu się do katalogowej wartości IH, 17) zwiększać rezystancję potencjometru do chwili, gdy prąd anodowy przestanie płynąć, 18) odczytać wartość prądu anodowego bezpośrednio przed wyłączeniem tyrystora i zapisać

jako zmierzoną wartość prądu podtrzymania tego tyrystora. Wyposażenie stanowiska pracy:

− tyrystor, 2 rezystory i 2 potencjometry, − 2 regulowane zasilacze napięciowe DC, − instrukcja do ćwiczenia, − 2 woltomierze i amperomierz DC, − instrukcje obsługi przyrządów pomiarowych, − kalkulator, − zeszyt do ćwiczeń i papier milimetrowy, − ołówek, linijka, inne przyrządy kreślarskie.

4.4.4. Sprawdzian postępów Czy potrafisz: Tak Nie 1) odczytać z karty katalogowej podstawowe parametry tranzystora? 2) określić na podstawie danych katalogowych typ obudowy tranzystora? 3) przedstawić metodę sprawdzania stanu technicznego tranzystora? 4) rozpoznać polaryzację i wyprowadzenia tranzystora? 5) porównać wyniki badań z danymi katalogowymi? 6) wyznaczyć charakterystykę tyrystora? 7) zmierzyć podstawowe parametry tyrystora?

Page 36: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 35

4.5. Elementy optoelektroniczne i wskaźniki LED 4.5.1. Materiał nauczania

Dioda elektroluminescencyjna Dioda elektroluminescencyjna jest źródłem promieniowania widzialnego (dioda LED,

zwana również diodą świecącą) oraz niewidzialnego promieniowania podczerwonego (dioda IR). Dioda pracuje prawidłowo przy polaryzacji w kierunku przewodzenia. Długość fali generowanego promieniowania zależy od materiałów półprzewodnikowych, z których dioda jest wykonana, takich jak: GaAs, GaP lub GaAsP o odpowiednim domieszkowaniu. Diody emitują promieniowanie o barwach: niebieskiej, żółtej, zielonej, pomarańczowej, czerwonej oraz w zakresie podczerwieni. Spotyka się również diody świecące kilkoma kolorami. W zależności od zakresu emitowanego promieniowania, diody elektroluminescencyjne można stosować jako: wskaźniki optyczne, wskaźniki stanów logicznych (diody świecące) oraz źródła promieniowania podczerwonego (diody IR) w systemach zdalnego sterowania, czy w systemach alarmowych.

Rys. 22. Symbol graficzny diody LED lub IR

Diody elektroluminescencyjne mają takie same parametry elektryczne jak inne diody, tj. prąd przewodzenia (może być ciągły lub impulsowy), napięcie przewodzenia, napięcie wsteczne oraz moc strat, która wynosi od kilkudziesięciu do kilkuset mW.

Do parametrów optycznych diody zaliczamy: − strumień energetyczny Pe (moc emitowana przez diodę) wyrażony w W, którego wartość

rośnie ze wzrostem prądu przewodzenia i maleje ze wzrostem temperatury złącza, − światłość JV (stosunek strumienia świetlnego do kąta bryłowego, w który dioda

wypromieniowuje ten strumień) wyrażona w kandelach,

Talela 11. Przykładowa karta katalogowa diod elektroluminescencyjnych [9] Typ Barwa IFmax

[mA] UF [V]

Pe [mW] (Je) [mW/sr]

Soczewka

CQP431 czerwona 30 2,0 1 czerwona matowa CQP463 żółta 30 3,0 0,6 żółta przezroczysta CQYP15 podczerwona 100 1,5 0,5 --------

Fotodetektory Fotodetektory (zwane również odbiornikami fotoelektrycznymi) wykorzystują

wewnętrzne zjawisko fotoelektryczne do zmiany własnej przewodności pod wpływem zaabsorbowanego przez półprzewodnik promieniowania elektromagnetycznego. Do fotodetektorów zaliczamy: fotorezystory, fotodiody, fotoogniwa, fototranzystory, fototyrystory.

Fotoodbiorniki możemy sprzęgać z diodami elektroluminescencyjnymi, w celu przesyłania sygnałów na drodze optycznej. W ten sposób uzyskujemy przekazywanie sygnałów z jednego układu do drugiego, przy galwanicznym odseparowaniu tych układów. Tak powstały przyrząd nazywamy transoptorem (dioda i fotodetektor w różnych obudowach)

Page 37: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 36

lub łączem optoelektronicznym (dioda i fotodetektor w jednej obudowie). Transoptor może być zamknięty (transmisja promieniowania następuje za pomocą światłowodu) lub otwarty (transmisja następuje w powietrzu).

Fotodetektory, transoptory i łącza optoelektroniczne znajdują zastosowanie m.in. w: układach automatyki, zdalnego sterowania, układach telekomunikacyjnych, urządzeniach alarmowych, sygnalizacyjnych i kontrolno-pomiarowych. a) b) c)

Rys. 23. Symbole graficzne: a) fotorezystora, b) fototranzystora, c) fototranzystora z wyprowadzoną bazą

Fotorezystor Fotorezystorem nazywamy element półprzewodnikowy, w którym pod wpływem

oświetlenia następuje zmiana jego przewodności niezależnie od kierunku przyłożonego napięcia zewnętrznego.

Oświetlenie fotorezystora powoduje zwiększenie przepływającego prądu (zmniejszenie rezystancji). Prądem fotoelektrycznym nazywamy różnicę między całkowitym prądem płynącym przez fotorezystor i tzw. prądem ciemnym, płynącym przez fotorezystor przy braku oświetlenia.

Podstawowymi parametrami fotorezystora są: − czułość widmowa, czyli zależność rezystancji od natężenia oświetlenia, − rezystancja ciemna RD (przy braku oświetlenia), zawierająca się w przedziale 106 ÷ 1012Ω − współczynnik n określany jako stosunek rezystancji ciemnej do rezystancji przy danej

wartości natężenia oświetlenia (np. 50 lx), sięgający kilku tysięcy.

Tabela 12. Przykładowa karta katalogowa fotorezystorów [9] Typ Umax

[V] Pmax [W]

RD [MΩ]

n λ [nm]

RPP111 <500 <0,1 >100 >2000 580÷680 RPP333 <60 <0,05 >5 >2500 540÷630 RPP550 <350 <0,6 >1 >5000 580÷680

Fototranzystor Fototranzystor jest to element półprzewodnikowy z dwoma złączami PN, który działa tak

samo jak konwencjonalny tranzystor, przy czym jego prąd kolektora nie zależy od prądu bazy, lecz od natężenia promieniowania oświetlającego obszar bazy.

W fototranzystorach końcówka bazy może być wyprowadzona lub nie wyprowadzona na zewnątrz obudowy. Pierwszy przypadek umożliwia niezależne sterowanie optyczne i elektryczne fototranzystorem.

Kształt charakterystyki prądowo-napięciowej fototranzystora jest identyczny z kształtem charakterystyki konwencjonalnego tranzystora. Ze wzrostem temperatury złącza zwiększa się prąd ciemny i prąd fotoelektryczny, a przy wzroście napięcia UCE rośnie tylko prąd ciemny.

Page 38: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 37

Półprzewodnikowe wskaźniki cyfrowe LED Półprzewodnikowym wskaźnikiem cyfrowym nazywamy przyrząd zbudowany z diod

świecących, który pod wpływem sygnałów elektrycznych wyświetla informację w postaci cyfr. Obecnie produkowane są segmentowe i mozaikowe wskaźniki cyfrowe.

We wskaźnikach segmentowych znak (cyfra) jest tworzony w wyniku wybrania określonej kombinacji segmentów. Najczęściej stosuje się 7-segmentowy układ cyfr w kształcie ósemki.

Wskaźnik 7-segmentowy umożliwia odtworzenie wszystkich cyfr (od 0 do 9) oraz niektórych liter (A, C, E, F, H, I, L, O, P, S, U). Przy większych długościach segmentu stosuje się szeregowe połączenie kilku diod świecących lub światłowody. We wskaźnikach segmentowych, wszystkie anody (względnie katody) diod w obrębie danego wskaźnika mają wspólne połączenie elektryczne.

Wskaźniki mozaikowe składają się z wielu diod świecących, a odpowiednią konfigurację znaku uzyskuje się w wyniku wybrania pojedynczych diod, które będą tworzyć dany znak. Wskaźniki tego typu są nazywane również alfanumerycznymi. Wskaźniki mozaikowe umożliwiają odtworzenie wszystkich liter i cyfr, a nawet pewnych symboli. Najczęściej spotykane wskaźniki mozaikowe składają się z 35 (7x5) pojedynczych diod świecących (jest to liczba minimalna).

Wysokość wyświetlanego znaku zależy od konstrukcji wskaźnika cyfrowego. Przy wysokości znaku równej 20 mm, odczyt wyświetlanej informacji jest możliwy z odległości około10 m, natomiast przy wysokości znaku równej 3 mm – odległość ta zmniejsza się do 1 m.

Sprawdzanie elementów optoelektronicznych Uszkodzenie elementów optoelektronicznych jest dość łatwe do stwierdzenia. Brak

świecenia diody LED może być spowodowany przerwą wewnątrz obudowy lub jej przegrzaniem. Należy sprawdzić, czy w czasie pracy na jej końcówkach jest napięcie polaryzujące diodę w kierunku przewodzenia. Jeśli jest należy wymienić diodę na nową. Trudniej jest sprawdzić diodę IR, ponieważ promieniowanie podczerwone nie jest widoczne. Do sprawdzenia należy użyć odbiornika podczerwieni uprzednio sprawdzonego, którym steruje badana dioda. Ponadto można przeprowadzić badania sprawdzające takie same jak dla diod prostowniczych.

Fotorezystor można sprawdzić, mierząc jego rezystancję przy różnych natężeniach światła. Jeżeli rezystancja znacznie się zmienia to fotorezystor jest sprawny. W podobny sposób można sprawdzić fototranzystor mierząc (w stanie pracy) jego napięcie na kolektorze przy różnych natężeniach światła. Jeżeli tranzystor ma wyprowadzoną bazę, to można dokonać badania takiego samego jak dla tranzystora. 4.5.2. Pytania sprawdzające

Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Jakie są rodzaje elementów optoelektronicznych? 2. W oparciu o jakie zjawisko działają fotodetektory? 3. Jakie są podstawowe parametry diody elektroluminescencyjnej? 4. Gdzie mogą być stosowane elementy optoelektroniczne? 5. Jakie są podstawowe parametry fotodetektorów? 6. Jak sprawdzić sprawność diody LED? 7. Czym różnią się wskaźniki mozaikowe od wskaźników segmentowych?

Page 39: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 38

4.5.3. Ćwiczenia

Ćwiczenie 1 Sprawdź działanie i parametry elektryczne określonej diody IR. Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś:

1) zaproponować metodę najprostszego sprawdzenia diody IR w oparciu o urządzenia i przyrządy pomiarowe przedstawione w instrukcji,

2) dokonać wyboru przyrządów pomiarowych, 3) sprawdzić stan techniczny diody diody, 4) zaproponować układ pomiarowy do wyznaczenia charakterystyki prądowo-napięciowej

diody, 5) zmontować układ pomiarowy, 6) wyznaczyć charakterystykę diody metodą „punkt po punkcie”, 7) oszacować, przy jakim prądzie przewodzenia diody (przy określonej odległości)

odbiornik zaczyna reagować na promieniowanie diody, 8) narysować charakterystykę diody, 9) wyznaczyć prąd wsteczny diody IR, napięcie przewodzenia UF.

Wyposażenie stanowiska pracy:

− nadajnik i odbiornik IR, − zestaw mierników stosowanych do wyznaczania charakterystyki diody, − instrukcje obsługi mierników, − przewody połączeniowe, − zeszyt do ćwiczeń i papier milimetrowy, − kalkulator, − ołówek, linijka, inne przyrządy kreślarskie. 4.5.4. Sprawdzian postępów Czy potrafisz: Tak Nie

1) zidentyfikować parametry diody IR? 2) znaleźć w katalogach określone parametry elementów diody IR? 3) wybrać urządzenia do pomiaru parametrów diody IR? 4) zmierzyć określony parametr diody IR? 5) wyznaczyć charakterystykę prądowo-napięciową diody IR? 6) określić wybrane parametry diody IR na podstawie charakterystyk

prądowo-napięciowych?

Page 40: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 39

4.6. Układy prostownicze i sterowniki prądu przemiennego 4.6.1. Materiał nauczania

Układy prostownicze niesterowane Układy prostownicze są najczęściej podzespołem urządzenia, zwanego zasilaczem

napięciowym, które przetwarza napięcie przemienne sieci zasilającej (w Polsce 230 V, 50 Hz) na napięcie stale o ustabilizowanej wartości. Zadaniem prostownika jest wytworzenie na wyjściu napięcia zmiennego, ale o stałej polaryzacji.

Prostownik jednopulsowy przewodzi prąd tylko w jednym kierunku, w wyniku czego na wyjściu pojawiają się tylko dodatnie „połówki” wejściowego napięcia sinusoidalnego, co pokazano na poniższym rysunku.

Rys. 24. Prostownik jednopulsowy: a) schemat, b) przebiegi napięć i prądów w układzie [6] Elementem załączającym jest dioda półprzewodnikowa D, która przewodzi, gdy napięcie

uwe > UF i nie przewodzi, gdy uwe < UF. W stanie nieprzewodzenia napięcie wyjściowe jest równe 0, w stanie przewodzenia określone jest wzorem Fwewy Uuu −=

W celu zmniejszenia tętnień oraz zwiększenia wydatkowania energii, w obciążeniu prostownika stosuje się kondensatory, które magazynują energię w czasie ΔT, co pokazano na rysunku 25.

Prostownik z obciążeniem rezystancyjno - pojemnościowym utrzymuje na wyjściu napięcie o wartości zbliżonej do wartości szczytowej napięcia wejściowego. Prąd iD w tym układzie płynie tylko w czasie ΔT doładowywania pojemności, czyli krócej niż przy obciążeniu rezystancyjnym.

Page 41: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 40

Rys. 25. Prostownik jednopulsowy z obciążeniem RC: a) schemat, b) przebiegi napięć i prądów w układzie [6]

Lepszymi parametrami charakteryzują się prostowniki dwupulsowe pokazane

na poniższych rysunkach.

Rys. 26. Prostownik dwupulsowy: a) układ z transformatorem, b) układ Graetza [6] W układach tych prąd płynie przez obciążenie Ro praktycznie przez cały czas w jednym

kierunku. Mostek Graetza jest najczęściej stosowanym układem prostowniczym. W celu poprawy parametrów prostowników, w układach zasilaczy stosuje się prostowniki pracujące w układzie mostka Graetza z filtrem dolnoprzepustowym, którym może być: − obciążenie RC stosowane przy małych prądach obciążenia, − obciążenie RL stosowane przy dużych prądach obciążenia.

Układy prostownicze sterowane W układach regulacji automatycznej lub sterowania urządzeń przemysłowych, głównie

dużej mocy, istnieje konieczność ciągłego nastawiania wartości napięcia lub prądu wyjściowego. W dotychczas omówionych układach prostowniczych z diodami zmianę napięcia wyjściowego można uzyskać tylko przez zmianę przekładni transformatora lub włączenie dodatkowych rezystorów szeregowo z obciążeniem.

W prostownikach sterowanych wartość napięcia stałego nastawia się, zmieniając przesunięcie fazowe sygnału bramkowego wyzwalającego tyrystor.

Wśród układów prostowników sterownych jednofazowych występują układy jedno- i dwupulsowe. Układ jednopulsowy pokazany jest na poniższym rysunku.

Page 42: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 41

Rys. 27. Prostownik jednopulsowy sterowany a) schemat, b) przebiegi napięć i prądy w układzie [3]

Załączenie tyrystora w tym układzie następuje w wyniku doprowadzenia do bramki dodatniego impulsu z układu wyzwalającego w chwili t1. Chwila ta odpowiada kątowi załączenia α1 = ωt1 , nazywanemu również kątem opóźnienia zapłonu. Tyrystor zostaje wyłączony w chwili zmiany polaryzacji napięcia u2, w chwili t2 odpowiadającej kątowi α2 = ωt2. Tyrystor przewodzi więc w czasie odpowiadającym kątowi przewodzenia αp= α2 - α1. Składowa stała napięcia wyjściowego osiąga maksimum przy α1 = 0, a minimum przy α1 = π. Zależność składowej stałej od kąta α1 nazywa się charakterystyką sterowania.

Najczęściej jednak wykorzystuje się prostowniki sterowane dwupulsowe pokazane na rysunku.

Rys. 28. Prostowniki dwupulsowe sterowane [3]

Page 43: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 42

Prostowniki te mogą być utworzone z: − dwóch tyrystorów w układzie z transformatorem (rys. 30a), − czterech tyrystorów w układzie mostkowym (rys. 30b), − dwóch tyrystorów i dwóch diod w układzie mostkowym (rys. 30c).

Sterowniki prądu przemiennego Sterowniki prądu przemiennego, zwane również regulatorami napięcia, stosuje się

do bezstopniowej zmiany wartości skutecznej napięcia, prądu lub mocy czynnej dostarczonej do jedno- lub trójfazowego odbiornika prądu przemiennego. Regulatorów napięcia używa się do: − ściemniania światła, − łagodnego rozruchu i zatrzymywania silników prądu przemiennego, − regulacji prędkości obrotowej silników asynchronicznych (wiertarki, miksery itd.), − regulacji temperatury.

Z względu na liczbę faz sterowniki prądu przemiennego można podzielić na jednofazowe i trójfazowe.

Rys. 29. Sterowniki prądu przemiennego z łącznikami tyrystorowymi: a) jednofazowe, b) trójfazowe [2]

Ze względu na sposób sterowania można wyróżnić : − sterowniki o symetrycznym sterowaniu fazowym, − sterowniki sterowane metodą modulacji szerokości impulsów PWM.

Układy o sterowaniu fazowym mają dwie istotne wady. Pobierają z sieci zasilającej prąd

impulsowy znacznie odkształcony od przebiegu sinusoidalnego, a odpowiedź sterownika na zmianę sygnału sterującego jest zbyt wolna dla niektórych zastosowań przemysłowych. Jednym z typowych sterowników prądu przemiennego jest układ z tyrystorami włączonymi odwrotnie równolegle. Wady te można częściowo wyeliminować w sterownikach sterowanych metodą modulacji szerokości impulsów PWM, w których stosuje się łączniki w pełni sterowalne.

W jednofazowych sterownikach prądu przemiennego układ sterowania impulsami umożliwia zmianę kata wysterowania α w granicach od 0 do π. Dzięki temu zmienia się prąd i przebieg napięcia wyjściowego sterownika. W przypadku obciążenia rezystancyjnego przebiegi będą takie jak na rys. 31, a przy obciążeniu RL wartość skuteczna napięcia wyjściowego będzie dodatkowo zależała od stałej czasowej L/R.

Page 44: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 43

Rys. 30. Układ połączeń jednofazowego sterownika prądu przemiennego[2]

Rys. 31. Przebiegi występujące w jednofazowym sterowniku prądu przemiennego z obciążeniem rezystancyjnym: a) napięcia wejściowego, b) napięcia na odbiorniku, c) prądu odbiornika [2]

Page 45: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 44

4.6.2. Pytania sprawdzające

Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Jakie są rodzaje prostowników niesterowanych? 2. Jaka jest wpływ kondensatora na wyjściu prostownika na kształt napięcia wyjściowego? 3. Kiedy stosujemy obciążenie RL prostowników? 4. Co to jest mostek Graetza? 5. Gdzie stosujemy sterowane układy prostownicze? 6. Co to jest kąt zapłonu elementu sterowanego w układach prostowniczych?

4.6.3. Ćwiczenia

Ćwiczenie 1

Zaobserwuj i narysuj przebiegi czasowe napięć i prądów niesterowanego prostownika pracującego w układzie mostkowym Graetza z obciążeniem rezystancyjnym.

Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś:

1) połączyć układ pomiarowy zgodnie z instrukcją, 2) wybrać zakresy urządzeń pomiarowych zgodnie z instrukcją, 3) podłączyć układ pomiarowy przez wyłącznik i transformator separujący do źródła

jednofazowego napięcia sieciowego 230 V AC, 4) zaobserwować na ekranie oscyloskopu przebiegi napięcia wejściowego i wyjściowego

prostownika, 5) odczytać wartości charakterystyczne napięcia wyjściowego wskazane w instrukcji dla

3 różnych wartości rezystancji obciążenia, 6) zmierzyć wartości charakterystyczne napięcia wyjściowego wskazane w instrukcji dla

3 różnych wartości rezystancji obciążenia, 7) narysować obserwowane przebiegi czasowe, skalując odpowiednio osie współrzędnych

i zaznaczając na rysunkach charakterystyczne wartości podane w instrukcji, 8) zapisać wyniki pomiarów w opracowanej przez Ciebie tabeli, 9) na podstawie wyników pomiarów i odpowiednich wzorów narysować 3 przebiegi

czasowe prądu obciążenia prostownika, 10) zaobserwować na ekranie oscyloskopu przebiegi napięcia wejściowego oraz napięcia na

jednej z diod prostownika i prądu przez nią płynącego (dla jednej wybranej wartości rezystancji obciążenia),

11) narysować obserwowane przebiegi czasowe, skalując odpowiednio osie współrzędnych i zaznaczając na rysunkach charakterystyczne wartości podane w instrukcji,

12) zinterpretować kształt przebiegu prądu i napięcia na diodzie w porównaniu z przebiegiem napięcia wejściowego prostownika. Wyposażenie stanowiska pracy:

− makieta do demonstracji działania prostownika w układzie mostkowym Graetza, − transformator separujący 1:1, − oscyloskop dwukanałowy, − woltomierze wartości skutecznej i średniej, − prądowa sonda pomiarowa, − instrukcje obsługi przyrządów pomiarowych, − kalkulator, − zeszyt do ćwiczeń i papier milimetrowy, − ołówek, linijka, inne przyrządy kreślarskie.

Page 46: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 45

Ćwiczenie 2 Zaobserwuj i narysuj przebiegi czasowe napięć i prądów jednopulsowego prostownika

sterowanego fazowo i pracującego z obciążeniem rezystancyjnym. Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś:

1) połączyć układ pomiarowy zgodnie z instrukcją, 2) wybrać zakresy urządzeń pomiarowych zgodnie z instrukcją, 3) podłączyć układ pomiarowy przez wyłącznik i transformator separujący do źródła

jednofazowego napięcia sieciowego 230 V AC, 4) nastawić potencjometrem 3 różne kąty wysterowania sterownika sterującego bramką

tyrystora zgodnie z instrukcją, 5) zaobserwować na ekranie oscyloskopu, dla każdego kąta wysterowania, przebiegi

napięcia wejściowego i wyjściowego prostownika, 6) odczytać wartości charakterystyczne napięcia wyjściowego wskazane w instrukcji dla

3 różnych wartości kąta wysterowania, 7) zmierzyć wartości średnie napięcia wyjściowego wskazane w instrukcji dla 3 różnych

kątów wysterowania i 1 wartości rezystancji obciążenia, 8) narysować obserwowane przebiegi czasowe, skalując odpowiednio osie współrzędnych

i zaznaczając na rysunkach charakterystyczne wartości podane w instrukcji, 9) zapisać wyniki pomiarów w opracowanej przez Ciebie tabeli, 10) na podstawie wyników pomiarów i odpowiednich wzorów narysować 3 przebiegi

czasowe prądu obciążenia prostownika, 11) zaobserwować na ekranie oscyloskopu przebiegi napięcia wejściowego oraz napięcia

wyjściowego dla 3 różnych wartości rezystancji obciążenia podanych w instrukcji i jednego kąta wysterowania α = π/2,

12) narysować obserwowane przebiegi czasowe skalując odpowiednio osie współrzędnych i zaznaczając na rysunkach charakterystyczne wartości podane w instrukcji,

13) zmierzyć wartości średnie napięcia wyjściowego wskazane w instrukcji dla 3 różnych rezystancji obciążenia i 1kąta wysterowania,

14) ustalić na podstawie zapisanych wyników, jak zmienia się wartość średnia napięcia wyjściowego prostownika sterowanego w stosunku do wartości skutecznej napięcia wejściowego przy zmianach kąta wysterowania i wartości rezystancji obciążenia. Wyposażenie stanowiska pracy:

− makieta do demonstracji działania jednopulsowego prostownika sterowanego fazowo, − transformator separujący 1:1, − oscyloskop dwukanałowy, − woltomierze wartości skutecznej i średniej, − prądowa sonda pomiarowa, − instrukcje do przyrządów pomiarowych, − kalkulator, − zeszyt obsługi ćwiczeń i papier milimetrowy, − ołówek, linijka, inne przyrządy kreślarskie.

Ćwiczenie 3

Wyznacz charakterystykę sterowania jednofazowego sterownika prądu przemiennego z tyrystorami w połączeniu odwrotnie równoległym dla obciążeń R, L i RL.

Page 47: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 46

Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś:

1) połączyć układ pomiarowy zgodnie z instrukcją, 2) wybrać zakresy urządzeń pomiarowych zgodnie z instrukcją, 3) podłączyć układ pomiarowy przez wyłącznik i transformator separujący i sieciowy

do źródła jednofazowego napięcia przemiennego 45 V AC, 4) zaobserwować na ekranie oscyloskopu kształt impulsu bramkowego jednego

z tyrystorów na tle przebiegu napięcia wejściowego sterownika dla kątów wysterowania α = 0, π/6, π/3, π/2, 2π/3, 5π/6, π i obciążenia rezystancyjnego,

5) zaobserwować na ekranie oscyloskopu czasowe przebiegi napięcia na obciążeniu R i na łączniku tyrystorowym dla kątów wysterowania α = 0, π/6, π/3, π/2, 2π/3, 5π/6, π,

6) narysować obserwowane przebiegi czasowe, skalując odpowiednio osie współrzędnych i zaznaczając na rysunkach charakterystyczne wartości podane w instrukcji,

7) odczytać wartości charakterystyczne napięcia wyjściowego wskazane w instrukcji dla 7 różnych wartości kąta wysterowania i obciążenia rezystancyjnego,

8) zmierzyć wartości skuteczne napięcia wyjściowego wskazane w instrukcji dla 7 różnych kątów wysterowania i 1 wartości rezystancji obciążenia,

9) zapisać wyniki pomiarów w opracowanej przez Ciebie tabeli, 10) ustalić na podstawie zapisanych wyników jak zmienia się wartość skuteczna napięcia

na obciążeniu R sterownika w zależności od kąta wysterowania, czyli jak przebiega charakterystyka sterowania tego sterownika,

11) podłączyć do wyjścia sterownika obciążenie indukcyjne L oraz powtórzyć obserwacje, pomiary, rysunki i ustalenia zawarte w punktach 4÷10, podłączyć do wyjścia sterownika obciążenie rezystancyjno-indukcyjne RL oraz powtórzyć obserwacje, pomiary, rysunki i ustalenia zawarte w punktach 4÷10. Wyposażenie stanowiska pracy:

− makieta do demonstracji działania jednofazowego sterownika prądu przemiennego z tyrystorami w połączeniu odwrotnie równoległym,

− transformator separujący 1:1 i sieciowy 230V/45V, − oscyloskop dwukanałowy, − woltomierze wartości skutecznej,, − instrukcje obsługi przyrządów pomiarowych, − kalkulator − zeszyt do ćwiczeń, − papier milimetrowy, − ołówek, linijka, inne przyrządy kreślarskie.

4.6.4. Sprawdzian postępów Czy potrafisz: Tak Nie

1) określić jakie są rodzaje prostowników niesterowanych? 2) określić jaki jest wpływ kondensatora na wyjściu prostownika na

kształt napięcia wyjściowego? 3) określić kiedy stosujemy obciążenie RL prostowników? 4) scharakteryzować mostek Graetza? 5) określić gdzie stosujemy sterowane układy prostownicze? 6) scharakteryzować kąt zapłonu elementu sterowanego w układach

prostowniczych?

Page 48: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 47

4.7. Wzmacniacze elektroniczne 4.7.1. Materiał nauczania

Podstawowe właściwości i parametry wzmacniaczy Podstawową funkcją wzmacniacza jest wzmocnienie sygnału, przy zachowaniu nie

zmienionego jego kształtu. Wzmocnienie to odbywa się kosztem energii doprowadzonej z pomocniczego źródła napięcia stałego. W związku z tym w każdym wzmacniaczu wyróżnia się dwa zasadnicze obwody: obwód sygnału i obwód zasilania. Obwód zasilania stwarza właściwe warunki dla wzmocnienia sygnału, natomiast obwód sygnału jest związany z przenoszeniem sygnału przez wzmacniacz. Dla wzmacnianego sygnału wzmacniacz jest czwórnikiem do którego zacisków wejściowych dołączono źródło sygnału a do wyjściowych odbiornik sygnału.

Rys. 32. Schemat zastępczy wzmacniacza [6]

Do najważniejszych parametrów wzmacniacza należą:

− wzmocnienie: napięciowe kU, prądowe kI, mocy kP, które są definiowane następująco:

we

wyU U

Uk =

we

wyI I

Ik =

we

wyP P

Pk =

− częstotliwości graniczne (dolna i górna) wynikające z przebiegu charakterystyki amplitudowo-częstotliwościowej – są to takie częstotliwości sygnału wejściowego, dla których wzmocnienie napięciowe maleje względem wzmocnienia maksymalnego o 3 dB (czyli do poziomu 0,707 swej wartości maksymalnej), a wzmocnienie mocy maleje do połowy,

− zniekształcenia nieliniowe określające zniekształcenia kształtu sygnału wyjściowego w stosunku do wejściowego wyrażone w %,

− rezystancja wejściowa Rwe – jest to rezystancja „widziana” z zacisków wejściowych

układu, przy rozwartym wyjściu, tzn. we

wewe I

UR = przy ∞=oR ,

− rezystancja wyjściowa Rwy – jest to rezystancja „widziana” z zacisków wyjściowych

układu, przy zwartym wejściu, tzn. wy

wywy I

UR = przy 0=weU .

Ze względu na rodzaj wzmocnienia danego wzmacniacza rozróżniamy: wzmacniacze

napięciowe, prądowe i wzmacniacze mocy. Ze względu na zakres częstotliwości wzmacnianego sygnału rozróżniamy: wzmacniacze

prądu stałego, małej i wielkiej częstotliwości, szerokopasmowe oraz selektywne.

Page 49: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 48

Ze względu na konstrukcję wzmacniacze dzielimy na tranzystorowe i scalone (w tym operacyjne).

Tranzystorowe wzmacniacze napięciowe małej częstotliwości Wybór układu pracy tranzystora jest zależny od przeznaczenia i rodzaju zastosowanego

tranzystora, co zostało opisane w punkcie 4.4.1. Na poniższym rysunku pokazano schemat wzmacniacza pracującego w konfiguracji OE

z potencjometrycznym układem zasilania z emiterowym sprzężeniem zwrotnym dla składowej stałej.

Rys. 33. Wzmacniacz małych częstotliwości – schemat ideowy [6]

Rezystory R1 i R2 polaryzują bazę tranzystora ustalając prąd bazy oraz zapewniają jego

pracę w zakresie aktywnym. Rezystor RE jest elementem sprzężenia zwrotnego, a rezystor RC jest obciążeniem kolektorowym wzmacniacza. Kondensatory C1 i C2 oddzielają składowe stałe napięcia generatora i obciążenia od napięć stałych wzmacniacza.

Budowa i parametry wzmacniaczy mocy Na poniższym rysunku przedstawiono schemat funkcjonalny wzmacniacza mocy. Sygnał

wejściowy jest podawany na wejście wzmacniacza napięciowego, z którego poprzez stopień sterujący jest doprowadzany do stopnia wyjściowego. Następnie jest on podawany na obciążenie Ro (najczęściej głośnik) oraz poprzez pętlę sprzężenia zwrotnego na wejście wzmacniacza napięciowego.

Rys. 34. Schemat funkcjonalny wzmacniacza mocy [6]

Dzięki sprzężeniu zwrotnemu uzyskuje się stabilizację punktów pracy tranzystorów oraz

linearyzację charakterystyki amplitudowej wzmacniacza, a co za tym idzie minimalizację zniekształceń nieliniowych.

Zadaniem stopnia sterującego jest doprowadzenie do stopnia wyjściowego sygnału o odpowiednich poziomach napięcia i prądu niezbędnego do jego prawidłowej pracy. Stopień wyjściowy może być sterowany ze źródła napięciowego, jak również ze źródła prądowego.

Page 50: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 49

Przy sterowaniu napięciowym zniekształcenia wprowadzane przez stopień wyjściowy są nieznaczne, a różnice wzmocnienia prądowego β tranzystorów mało istotne.

Do podstawowych parametrów wzmacniaczy mocy należą:

− wzmocnienie mocy kP, − moc wyjściowa Pwy (przy określonym poziomie sygnału wejściowego), mierzona

w watach, − współczynnik sprawności energetycznej η, podawany w %, − współczynnik zawartości harmonicznych, podawany w %, − pasmo B przenoszonych częstotliwości podawane w kHz.

Klasy pracy wzmacniaczy mocy Zależnie od położenia punktu pracy tranzystorów wzmacniacze dzieli się na klasy: A,

AB, B i C. Podział ten jest związany wyłącznie ze sposobem wzmacniania sygnału w pojedynczym stopniu wyjściowym, ponieważ stopnie wstępne zwykle pracują w klasie A.

Najczęściej jako stopnie końcowe stosuje się wzmacniacze klasy AB i B, a wzmacniacze klasy A używa się w sprzęcie profesjonalnym.

Jeżeli sygnał wejściowy podawany na dany stopień wzmacniający powoduje, że przez

element aktywny tego wzmacniacza płynie prąd przez: − cały okres T sygnału sterującego, to wzmacniacz jest klasy A (sprawność 50%), − połowę okresu T sygnału sterującego, to wzmacniacz jest klasy B (sprawność 78,5%), − czas mniejszy od T, ale większy od T/2 sygnału sterującego, to wzmacniacz jest klasy AB

(sprawność od 50% do 70%), − czas krótszy od T/2 sygnału sterującego, to wzmacniacz jest klasy C (nie ma

zastosowania we wzmacnianiu sygnałów akustycznych, ze względu na bardzo duże zniekształcenia nieliniowe). Stopnie wyjściowe wzmacniaczy mocy Stopnie wyjściowe wzmacniaczy mocy zazwyczaj są bardziej rozbudowane, ponieważ

muszą wydzielić w obciążeniu pożądaną moc. W układach większej mocy wyraźnie wzrastają prądy wyjściowe wzmacniacza, a więc i prądy sterujące tranzystory końcowe. W celu zapobieżenia przeciążenia stopnia końcowego dużym prądem stosuje się w stopniach wyjściowych tranzystory złożone pracujące w układzie Darlingtona, co pokazano na rys. 35.

Tranzystory złożone charakteryzują się bardzo dużym wzmocnieniem prądowym β

będącym iloczynem wzmocnień tranzystorów składowych.

Page 51: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 50

Rys. 35. Schematy podstawowych układów połączeń tranzystorów (układów Darlingtona) stosowanych w stopniach mocy: a) i c) odpowiedniki tranzystorów NPN; b) i d) odpowiedniki tranzystorów PNP [6] Wzmacniacze operacyjne Wzmacniacze operacyjne stanowią największą grupę analogowych układów scalonych.

Symbol graficzny wzmacniacza i jego sposób działania pokazano na rys. 36

Rys. 36. Wzmacniacz operacyjny - symbol ogólny [2]

Model idealnego wzmacniacza operacyjnego charakteryzuje się następującymi

właściwościami: − bardzo duże wzmocnienie napięciowe różnicowe dla prądu stałego i zmiennego, − odwracaniem fazy sygnału wyjściowego w stosunku do sygnału wejściowego

odwracającego podawanego na wejście oznaczone znakiem „-” oraz zachowaniem zgodności faz w stosunku do sygnału wejściowego nieodwracającego podawanego na wejście oznaczone znakiem „+”

− bardzo dużą rezystancją wejściową i bardzo małą rezystancją wyjściową, − bardzo dużą częstotliwością graniczną i szybkością zmian napięcia wyjściowego.

Dla rzeczywistych wzmacniaczy operacyjnych definiuje się parametry, których wartości

odbiegają od idealnych lub określają pewne wady wzmacniaczy rzeczywistych. Do tych parametrów zaliczamy:

Page 52: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 51

− wzmocnienie napięciowe przy otwartej pętli sprzężenia zwrotnego KUr, które definiujemy jako stosunek przyrostu napięcia wyjściowego do wywołującego ten przyrost napięcia wejściowego różnicowego. Wzmocnienie to nazywane jest również wzmocnieniem napięciowym sygnału różnicowego i w praktyce wynosi ok. 106 V/V. Należy pamiętać, że w przypadku wzmacniacza operacyjnego objętego ujemnym sprzężeniem zwrotnym o wartości wzmocnienia układu (przy dużym wzmocnieniu wzmacniacza operacyjnego) decyduje układ sprzężenia zwrotnego,

)( −+ −∆

∆=

wewe

wyUr UU

UK

− wejściowe napięcie niezrównoważenia UI0, jest to stałe napięcie różnicowe, które należy

podać na wejście wzmacniacza (przy otwartej pętli sprzężenia zwrotnego) w celu uzyskania zerowej wartości napięcia wyjściowego. W praktyce wynosi ono kilka lub kilkanaście mV, maksimum 50 mV.

− wzmocnienie napięciowe sygnału współbieżnego KUs, jest to stosunek zmiany napięcia wyjściowego pod wpływem zmian napięcia sygnału współbieżnego tzn. takiego, przy którym Uwe+ = Uwe- W praktyce wzmocnienie to w porównaniu ze wzmocnieniem sygnału różnicowego jest małe, a we wzmacniaczu idealnym byłoby równe zeru,

− współczynnik tłumienia sygnału współbieżnego CMRR, definiowany jako stosunek wartości wzmocnienia sygnału różnicowego KUr do wzmocnienia sygnału współbieżnego KUs. Współczynnik ten podawany jest w dB i w praktyce wynosi od 60 do 100 dB,

− rezystancja wejściowa wzmacniacza operacyjnego (zarówno dla wejścia odwracającego jak i nieodwracającego) jest duża i wynosi od 100 kΩ do 50 MΩ, natomiast rezystancja wyjściowa jest mała i nie przekracza 300 Ω,

− zakres napięcia wejściowego jest to zakres zmian napięcia na każdym z wejść względem masy, przy którym wzmacniacz pracuje prawidłowo w zakresie liniowym,

− napięcie zasilania UCC jest symetryczne i najczęściej wynosi ±15 V, − wejściowe prądy polaryzujące to prądy stałe wpływające do wejść wzmacniacza

operacyjnego. W praktyce Iwe+ = Iwe- i wynosi od 5 pA do 5 mA. Dobierając elementy sprzężenia zwrotnego wzmacniacza, należy pamiętać, aby prądy płynące w tych elementach były co najmniej 100 razy większe od wartości prądów polaryzujących wzmacniacza,

− częstotliwość graniczna fT wzmacniacza operacyjnego to częstotliwość przy której jego wzmocnienie maleje do jedności. W praktyce częstotliwość ta waha się w granicach od 1 do 100 MHz i decyduje ona o paśmie przenoszenia wzmacniacza.

Ze względu na przeznaczenie wyróżnia się wzmacniacze operacyjne: − ogólnego przeznaczenia (np. ULA6741N), − szerokopasmowe (szybkie np. μA715), − stosowane w urządzeniach dokładnych, gdzie wymagana jest duża rezystancja wejściowa

oraz bardzo mały wpływ temperatury i szumów na pracę wzmacniacza (np. LM 108, μA777, CA 3130),

− do zastosowań specjalnych (np. w technice kosmicznej lub biomedycznej) Wzmacniacze operacyjne są głównie stosowane w następujących układach

elektronicznych: − układy analogowe, które wykonują operacje dodawania, odejmowania, mnożenia,

całkowania, logarytmowania itd., − wzmacniacze o zadanej charakterystyce przejściowej i częstotliwościowej, − układy filtrów aktywnych,

Page 53: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 52

− generatory sygnałów np. prostokątnego, trójkątnego lub sinusoidalnego, − detektory np. wartości szczytowej, − układy próbkujące z pamięcią.

Wzmacniacz operacyjny pracujący z otwartą pętlą sprzężenia zwrotnego może służyć jako „przybliżony„ komparator (czyli układ porównujący wartości dwóch napięć), ale obarczony wieloma wadami. Zastosowanie ujemnego sprzężenia zwrotnego we wzmacniaczu operacyjnym zmniejsza nieliniowość jego charakterystyki, umożliwia realizację układu o szerszym paśmie niż pasmo częstotliwościowe wzmacniacza bez sprzężenia zwrotnego. Iloczyn wzmocnienia i odpowiadającej mu górnej częstotliwości granicznej – tzw. pole wzmocnienia – jest stały i wynosi TUU ffKfK ⋅== 12211

W układach ze wzmacniaczem operacyjnym objętym ujemnym sprzężeniem zwrotnym właściwości wzmacniacza i sprzężenia zwrotnego powodują wyrównanie napięć na obu wejściach wzmacniacza. Na tej podstawie wyznacza się wzmocnienie całego układu pracy.

Poniżej pokazujemy podstawowe układy pracy wzmacniacza operacyjnego z ujemnym sprzężeniem zwrotnym oraz odpowiadające tym układom wzmocnienia napięciowe.

Rys. 37. Układ wzmacniacza odwracającego: a) schemat ideowy, b) wzmocnienie napięciowe układu [2]

Rys. 38. Układ wzmacniacza nieodwracającego: a) schemat ideowy, b) wzmocnienie napięciowe układu [2]

Page 54: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 53

Rys. 39. Układ wzmacniacza odejmującego: a) schemat ideowy, b) wzmocnienie napięciowe układu [2]

4.7.2. Pytania sprawdzające

Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Jakie są podstawowe parametry wzmacniacza elektronicznego? 2. Jakie właściwości ma układ wzmacniacza z tranzystorem pracującym w układzie OE? 3. Z jakich bloków funkcjonalnych składa się wzmacniacz mocy? 4. Czym charakteryzuje się wzmacniacz mocy pracujący w klasie AB? 5. Czym charakteryzuje się układ Darlingtona? 4.7.3. Ćwiczenia

Ćwiczenie 1

Wyznacz charakterystykę amplitudową i pasmo przenoszenia tranzystorowego wzmacniacza napięciowego pracującego w układzie OE.

Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś:

1) połączyć układ pomiarowy zgodnie z instrukcją, 2) wybrać zakresy urządzeń pomiarowych zgodnie z instrukcją, 3) dobrać poziom sygnału z generatora poniżej napięcia przesterowania, 4) dobrać zakres częstotliwości, dla których badamy wzmacniacz, 5) wybrać częstotliwości pomiarowe, 6) wykonać pomiary, 7) zapisać wyniki pomiarów w opracowanej przez Ciebie tabeli, 8) narysować charakterystykę amplitudową wzmacniacza zgodnie ze skalą częstotliwości

podaną w instrukcji, 9) odczytać częstotliwości graniczne wzmacniacza i wyznaczyć jego pasmo przenoszenia.

Wyposażenie stanowiska pracy:

− makieta do demonstracji działania wzmacniacza, − instrukcja do ćwiczenia,

Page 55: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 54

− zestaw przyrządów pomiarowych niezbędnych do wykonania ćwiczenia, − instrukcje obsługi przyrządów pomiarowych, − zeszyt do ćwiczeń, − papier milimetrowy, − ołówek, linijka, inne przyrządy kreślarskie.

Ćwiczenie 2

Wyznacz charakterystykę przejściową wzmacniacza operacyjnego odwracającego i wyznacz napięcia przesterowania tego wzmacniacza dla określonych wzmocnień napięciowych.

Sposób wykonania ćwiczenia Aby wykonać ćwiczenie, powinieneś:

1) połączeć układ pomiarowy zgodnie z instrukcją, 2) wybrać zakresy urządzeń pomiarowych zgodnie z instrukcją, 3) dobrać poziom napięcia wejściowego poniżej napięcia przesterowania, 4) dobrać zakres napięcia wejściowego dla którego badamy wzmacniacz, 5) wybrać 3 różne rezystory pracujące w pętli sprzężenia zwrotnego, dla których

wzmocnienie napięciowe będzie równe 10 V/V, 50 V/V, 100 V/V 6) wykonać pomiary, 7) zapisać wyniki pomiarów w opracowanej przez Ciebie tabeli, 8) narysować 3 charakterystyki przejściowe wzmacniacza dla 3 podanych wzmocnień

napięciowych, 9) odczytać z 3 charakterystyk przejściowych wzmocnienia napięciowe wzmacniacza

operacyjnego oraz odpowiadające im napięcia przesterowania, 10) zinterpretować zależność wartości napięcia przesterowania od wzmocnienia

napięciowego wzmacniacza. Wyposażenie stanowiska pracy:

- makieta do demonstracji działania wzmacniacza, - zasilacz napięciowy DC, - dzielnik napięcia, - instrukcja do ćwiczenia, - zestaw przyrządów pomiarowych niezbędnych do wykonania ćwiczenia, - instrukcje obsługi przyrządów pomiarowych, - kalkulator, - zeszyt do ćwiczeń i papier milimetrowy, - ołówek, linijka, inne przyrządy kreślarskie. 4.7.4. Sprawdzian postępów Czy potrafisz: Tak Nie

1) połączyć układ pomiarowy do badania pasma przenoszenia wzmacniacza?

2) wybrać zakresy urządzeń pomiarowych zgodnie z instrukcją? 3) dobrać częstotliwości pomiarowe? 4) zastosować właściwe mierniki do pomiarów? 5) odczytać wartości napięcia wyjściowego dla wybranych częstotliwości? 6) narysować charakterystykę amplitudową wzmacniacza na podstawie

przeprowadzonych badań?

7) wyznaczyć częstotliwości graniczne wzmacniacza?

Page 56: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 55

4.8. Montaż i naprawa układów elektronicznych

4.8.1. Materiał nauczania

Montaż układów elektronicznych Najczęściej stosowaną przez elektromechanika technologią montażu układu

elektronicznego jest tzw. montaż przewlekany, polegający na umieszczeniu w odpowiednich otworach płytki drukowanej elementów elektronicznych i połączeniu metalowych końcówek tych elementów z punktami lutowniczymi za pomocą specjalnego spoiwa zwanego tinolem. Głównymi składnikami tinolu (drutu o średnicach od jednego do kilku milimetrów) są cyna i ołów o różnej zawartości oraz topnik, którym jest kalafonia.

Prawidłowe lutowanie wymaga przestrzegania następujących zasad: − moc lutownicy dobiera się w zależności od wielkości powierzchni lutowanej (zasadą jest,

aby grot lutownicy nie był mniejszy od powierzchni lutowanej), − przed każdym lutowaniem należy dokładnie oczyścić łączone powierzchnie z tlenków

metali, tłuszczów, lakierów i resztek innych spoiw, − grot lutownicy musi być czysty, pozbawiony brudu i resztek spalonego topnika oraz

pokryty spoiwem, − podczas lutowania grot lutownicy nie powinien dotykać bezpośrednio miejsc, które

chcemy połączyć, a wyłącznie poprzez tinol, − czas lutowania nie powinien przekraczać kilku sekund, gdyż może to spowodować

termiczne uszkodzenie lutowanych elementów lub spalić topnik. Prawidłowo wykonana spoina po wystygnięciu powinna być gładka, błyszcząca o ostrym

kącie przylegania spoiwa do punktu lutowniczego. Prawidłowy rozkład elementów na płytce drukowanej rozpoznajemy na podstawie

schematu montażowego obrazującego fizyczne rozstawienie elementów na płytce i schematu ideowego pokazującego obwód elektryczny montowanego układu elektronicznego.

Naprawa płytek drukowanych i elementów Płytka drukowana charakteryzuje się dużą wrażliwością na podgrzewanie jej podczas

procesu lutowania. Miedziana folia, z której wytrawione są ścieżki łączące poszczególne elementy, jest przyklejona do laminatu specjalnym klejem, tracącym swoje właściwości przy dłuższym podgrzewaniu lutownicą. Aby uniknąć odklejenia się ścieżki od podłoża, należy stosować lutownice o małej mocy i cienkim grocie oraz ograniczać czas nagrzewania do niezbędnego minimum. Po podgrzaniu punktu lutowniczego należy odsysaczem cyny usunąć stopione spoiwo, odsłaniając wystającą z otworu końcówkę elementu.

Jeżeli jednak ścieżka ulegnie odklejeniu, to możemy spróbować przykleić ją specjalnym klejem. W przypadku niepowodzenia tej próby należy obciąć ostrym nożem odklejony fragment ścieżki i zastąpić go odcinkiem przewodu (najlepiej drutem) dolutowanym do istniejącego fragmentu ścieżki. W przypadku pęknięcia ścieżki należy ją połączyć kawałkiem np. srebrzonego drutu. Podczas wykonywania tych czynności należy zwrócić szczególną uwagę na to, aby podczas lutowania kropla cyny nie zwarła dwóch sąsiednich ścieżek.

Uszkodzone elementy typu rezystory, kondensatory, diody tranzystory czy elementy optoelektroniczne nie nadają się do naprawy. Naprawiać można jedynie elementy indukcyjne.

Montaż i uszkodzenia elementów rezystancyjnych Rezystory najczęściej są montowane na płytce drukowanej, ale zdarza się też montaż

mechaniczny, gdzie korpus rezystora jest umieszczony w specjalnej obejmie, a do końcówek rezystora dolutowywane są przewody łączące go z układem. Uszkodzenia rezystorów

Page 57: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 56

możemy podzielić na mechaniczne i elektryczne. Do uszkodzeń mechanicznych możemy zaliczyć: urwanie końcówki, złamanie korpusu rezystora, odprysk ceramiki lub przecięcie drutu oporowego. Do uszkodzeń elektrycznych zalicza się spalenie rezystora w wyniku przegrzania lub przebicia napięciowego. Spalenie rezystora powoduje przerwanie ścieżki oporowej lub wzrost jej rezystancji. Często trudno odróżnić rezystor spalony od przegrzanego, ale sprawnego i dlatego w wypadkach wątpliwych należy sprawdzić czy rezystancja rzeczywista zgadza się ze znamionową (z uwzględnieniem tolerancji). Uszkodzenie elektryczne rezystora jest zwykle skutkiem innego uszkodzenia w układzie, np. zwarcia innego elementu lub przebicia kondensatora.

Potencjometry dostrojcze najczęściej są montowane na płytce drukowanej a regulacyjne na obudowie urządzenia. Te drugie pełnią często rolę wyłączników danego urządzenia. Przyczyną uszkodzenia potencjometru może być jego zużycie lub zniszczenie przez przekroczenie dopuszczalnych parametrów elektrycznych. Objawem zużycia potencjometru może być całkowity brak regulacji, trzeszczenie, iskrzenie, regulacja niezgodna z charakterystyką (np. skokowa). Często przyczyną nieprawidłowości w działaniu potencjometru jest zły kontakt ślizgacza ze ścieżką rezystywną. Nieprawidłowości te można usunąć za pomocą przemycia ścieżki odpowiednim środkiem chemicznym (np. benzyną ekstrakcyjną). Podczas wymiany potencjometru należy zwrócić uwagę na sposób mocowania (musi być ten sam), charakterystykę regulacji i moc znamionową. Nowy potencjometr powinien mieć również tę samą rezystancję znamionową, ale w mniej wymagających układach wystarczy zastosować rezystancję znamionową tego samego rzędu. Jeżeli potencjometr pracował jako dzielnik napięcia, to mniejszą rezystancję znamionową można uzupełnić szeregowo dołączonymi rezystorami kosztem zmniejszenia zakresu regulacji.

Montaż i uszkodzenia kondensatorów Kondensatory są montowane podobnie jak rezystory do płytki drukowanej, ale

kondensatory o dużych pojemnościach znajdują się najczęściej w specjalnych obejmach i nie są lutowane do druku. Najczęściej spotykanym uszkodzeniem kondensatorów jest przebicie elektryczne. Następuje ono po przyłożeniu zbyt wielkiego napięcia na okładki. Zniszczeniu ulega wtedy dielektryk i okładki zwierają się ze sobą. W kondensatorze może pojawić się też „przerwa” spowodowana urwaniem wyprowadzenia od okładki. W kondensatorach elektrolitycznych przerwa może być spowodowana również wyschnięciem elektrolitu ciekłego.

Przebicie kondensatora jest łatwo wykrywalne za pomocą omomierza, kondensator ma wtedy rezystancję od zera do kilkuset kΩ. Należy pamiętać, że kondensatory elektrolityczne mają stosunkowo dużą upływność i można zakwalifikować taki kondensator jako uszkodzony tylko wtedy, gdy jego rezystancja jest wyraźnie mała tzn. wynosi od zera do kilku kΩ. Do wykrycia przerwy w kondensatorach o małych pojemnościach konieczny jest miernik pojemności.

Stare kondensatory elektrolityczne, które montujemy po długim czasie od daty produkcji, należy poddać formowaniu. Polega ono na dołączeniu do kondensatora napięcia stałego, zgodnie z polaryzacją, na kilka godzin. Napięcie formujące stopniowo należy zwiększać do znamionowego utrzymując prąd upływu na niskim poziomie (sprawdzając jego wartość na mikroamperomierzu).

Montaż elementów półprzewodnikowych

Elementy półprzewodnikowe w większości są montowane na płytkach drukowanych, ale elementy wydzielające dużą moc często montuje się na radiatorach w celu zwiększenia emisji ciepła przez te elementy. Radiator zwykle połączony jest z masą układu, a jeżeli obudowa metalowa elementu półprzewodnikowego nie powinna być połączona z masą, to między

Page 58: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 57

radiatorem i obudową umieszcza się specjalne izolacyjne podkładki (np. mikowe). Podkładki te są smarowane pastą silikonową w celu zmniejszenia oporu cieplnego. Podczas montażu tego typu elementów należy dokładnie sprawdzić na schemacie ideowym, z jakim potencjałem powinna być połączona elektroda elementu montowana na radiatorze.

Przyczyną uszkodzeń elektrycznych elementów półprzewodnikowych (takich jak: diody, tranzystory, tyrystory czy elementy optoelektroniczne) jest przekroczenie dopuszczalnych wartości napięć i prądów wynikające z: - nieostrożności w czasie naprawy (praca pod napięciem), - niewłaściwego dobrania punktu pracy lub typu danego elementu.

Podczas wymiany diod półprzewodnikowych i tyrystorów należy sprawdzić dokładnie

gdzie jest katoda i anoda tego elementu. W przypadku wymiany elementu montowanego na radiatorze należy wymienić przekładkę albo przynajmniej dokładnie ją oczyścić z resztek opiłków i smarów.

Podczas wymiany tranzystorów bipolarnych należy dokładnie rozpoznać końcówki tego tranzystora i ich połączenie z pozostałymi elementami układu. Podczas wylutowywania tranzystorów należy zastosować odsysacz cyny i dopiero po usunięciu spoiwa z punktów lutowniczych można podważyć i wyjąć tranzystory. W przypadku tranzystorów typu MOSFET należy postępować bardzo ostrożnie, najlepiej czynności montażowe wykonywać w specjalnych obrączkach metalowych odprowadzających ładunek elektrostatyczny do masy układu.

Przed wymianą elementów optoelektronicznych należy sprawdzić, czy zabrudzenie obudowy tych elementów (brak emisji promieniowania – diody IR lub brak odbioru promieniowania – fototranzystory) nie jest przyczyną pozornego uszkodzenia tych elementów.

4.8.2. Pytania sprawdzające

Odpowiadając na pytania, sprawdzisz, czy jesteś przygotowany do wykonania ćwiczeń. 1. Na czym polega technologia elektronicznego montażu przewlekanego? 2. Jakich zasad należy przestrzegać podczas lutowania elementów na płytce drukowanej? 3. Co to jest tinol? 4. Jakie lutownice należy stosować, aby uniknąć odklejenia się ścieżki? 5. Jakie uszkodzone elementy elektroniczne można poddać naprawie? 6. Co jest najczęściej przyczyną elektrycznego uszkodzenia rezystora? 7. Jak można usunąć trzaski podczas regulacji głośności potencjometrem? 8. Kiedy podczas pomiaru omomierzem możemy uznać, że kondensator elektrolityczny

uległ przebiciu? 9. Kiedy stosujemy przekładki izolacyjne podczas montażu elementów

półprzewodnikowych na radiatorze? 10. Jakie środki ostrożności należy zastosować podczas montażu elementów tranzystorów

MOSFET na płytce drukowanej?

4.8.3. Ćwiczenia

Ćwiczenie 1 Wymień tranzystor wlutowany do płytki drukowanej i umieszczony na radiatorze. Sposób wykonania ćwiczenia

Page 59: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 58

Aby wykonać ćwiczenie, powinieneś: 1) zapoznać się z danymi katalogowymi tranzystora, 2) wybrać zamiennik uszkodzonego tranzystora, 3) zaproponować harmonogram wykonywanych czynności, 4) dokonać wyboru narzędzi montażowych, 5) wymontować i wylutować uszkodzony tranzystor, 6) oczyścić przekładkę i radiator oraz posmarować te miejsca pastą silikonową, 7) zamontować i przylutować tranzystor na płytce, 8) sprawdzić za pomocą omomierza prawidłowość montażu, 9) uruchomić układ elektroniczny, 10) zmierzyć napięcia stałe na elektrodach tranzystora, 11) porównać zmierzone wartości z zamieszczonymi na schemacie ideowym.

Wyposażenie stanowiska pracy:

− katalog tranzystorów, − schemat ideowy układu z naniesionymi wartościami napięć, − miernik uniwersalny, − zestaw lutowniczy, − pęseta, − wkrętak, − odsysacz cyny, − pasta silikonowa, − zeszyt do ćwiczeń. 4.8.4. Sprawdzian postępów

Czy potrafisz: Tak Nie 1) znaleźć w katalogu dane dotyczące obudowy wymienia tranzystora ? 2) wybrać z katalogu zamiennik uszkodzonego tranzystora? 3) wybrać narzędzia do montażu i demontażu tranzystora? 4) wymontować tranzystor umieszczony na radiatorze? 5) przygotować do montażu tranzystor mocowany na radiatorze? 6) wlutować i zamontować na radiatorze tranzystor? 7) sprawdzić jakość montażu? 8) sprawdzić wartości napięć na elektrodach tranzystora po włączeniu do

zasilania układu i porównać je z wartościami wzorcowymi na schemacie ideowym?

Page 60: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 59

5. SPRAWDZIAN OSIĄGNIĘĆ Instrukcja dla ucznia 1. Przeczytaj dokładnie instrukcję. 2. Podpisz imieniem i nazwiskiem kartę odpowiedzi. 3. Odpowiedzi udzielaj wyłącznie na karcie odpowiedzi. 4. Zapoznaj się z zestawem zadań testowych. 5. Test zawiera 20 zadań. 6. Do każdego pytania podane są trzy odpowiedzi, z których tylko jedna jest prawidłowa. 7. Zaznacz prawidłową według Ciebie odpowiedź, wstawiając literę X w odpowiednim

miejscu na karcie odpowiedzi. 8. W przypadku pomyłki zaznacz błędną odpowiedź kółkiem, a następnie literą X zaznacz

odpowiedź prawidłową. 9. Za każde poprawne rozwiązanie zadania otrzymujesz jeden punkt. 10. Za udzielenie błędnej odpowiedzi, jej brak lub zakreślenie więcej niż jednej odpowiedzi

otrzymujesz zero punktów. 11. Uważnie czytaj treść zadań i proponowane warianty odpowiedzi. 12. Nie odpowiadaj bez zastanowienia; jeśli któreś z zadań sprawi Ci trudność – przejdź do

następnego. Do zadań, na które nie udzieliłeś odpowiedzi, możesz wrócić później. 13. Pamiętaj, że odpowiedzi masz udzielać samodzielnie. 14. Na rozwiązanie testu masz 40 minut.

Powodzenia ! ZESTAW ZADAŃ TESTOWYCH 1. Na poniższym schemacie ideowym przedstawiono:

a) układ prostownika niesterowanego b) układ sterownika prądu przemiennego c) układ prostownika sterowanego

2. Do regulacji siły głosu we wzmacniaczach akustycznych stosuje się potencjometry

o charakterystyce: a) liniowej b) logarytmicznej c) wykładniczej

3. Wzmocnienie napięciowe wzmacniacza operacyjnego pracującego w układzie pokazanym na poniższym rysunku wynosi: a) 3 b) 2 c) 4

Page 61: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 60

4. Diody stabilizacyjne pracując w kierunku zaporowym (powyżej napięcia Zenera) charakteryzują się: a) niewielkimi zmianami napięcia pod wpływem dużych zmian prądu b) niewielkimi zmianami prądu pod wpływem dużych zmian napięcia c) nieodwracalnym przebiciem złącza PN

5. Parametr URWM definiowany dla diod półprzewodnikowych oznacza: a) maksymalne napięcie przewodzenia diody b) maksymalne napięcie wsteczne diody c) napięcie stabilizacyjne diody

6. Złącze emiterowe tranzystora NPN jest w stanie przewodzenia, gdy: a) VE > VB b) VB > VC c) VB > VE

7. Przedstawiony symbol graficzny jest symbolem: a) kondensatora zmiennego b) trymera c) kondensatora elektrolitycznego

8. Wyprowadzenia tranzystora bipolarnego pokazanego na rysunku to:

a) 1 - emiter, 2 - kolektor, 3 - baza b) 1 - emiter, 2 - baza, 3 - kolektor c) 1 - kolektor, 2 - emiter, 3 - baza

9. Jaki kod barwny będzie miał rezystor z szeregu E24 o wartości rezystancji znamionowej

1,2 MΩ: a) brązowy - czerwony - zielony - złoty b) brązowy - czerwony - niebieski - złoty c) brązowy - czerwony - zielony

10. Dla jakiego stanu pracy tyrystora określamy napięcie przełączania U(BO): a) zaworowego b) blokowania c) przewodzenia d)

11. Który z podanych parametrów dotyczy tranzystora unipolarnego: a) współczynnik wzmocnienia prądowego β b) napięcie odcięcia kanału UGSoff c) napięcie powtarzalne URRM

12. Rezystancja ciemna fotorezystora jest większa od rezystancji przy oświetleniu 50 lx około: a) 10 razy b) 100 razy c) 1000 razy

13. Do jakiego typu zaliczymy tranzystor, którego VE = 2 V, VB = 2,7 V, VC = 6 V a) NPN b) PNP c) JFET

Page 62: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 61

14. Jeżeli tranzystor unipolarny zaczyna przewodzić przy napięciu dodatnim UGS > UGSoff, to jest to tranzystor: a) MOSFET z kanałem wzbogacanym typu N b) MOSFET z kanałem zubażanym typu N c) MOSFET z kanałem wzbogacanym typu P

15. Dioda prostownicza pracuje w układzie prostownika z mostkiem Graetza przy napięciu 230 V/50 Hz. Spośród podanych wartości wybierz optymalną wartość parametru URRM tej diody: a) 150 V b) 250 V c) 400 V

16. Tranzystor bipolarny pracuje w układzie OE (klasa A, bez sprzężenia zwrotnego) jako wzmacniacz napięcia sinusoidalnego. Oblicz maksymalną wartość skuteczną prądu płynącego przez ten tranzystor, znając napięcie zasilania UCC = 10 V i rezystancję w obwodzie kolektora RC = 560 Ω: a) IC = 3,54 mA b) IC = 6,31 mA c) IC = 7,09 mA

17. Podczas montowania elementów elektronicznych na radiatorze stosujemy przekładki mikowe wtedy, gdy: a) potencjał obudowy elementu elektronicznego jest różny od potencjału radiatora b) radiator połączony jest z masą c) element elektroniczny pracuje pod wysokim napięciem

18. W jakim układzie pracy pracuje pojedynczy stopień wzmacniacza tranzystorowego, którego wyjście połączone jest z kolektorem a wejście z emiterem? a) OE b) OC c) OB

19. Która wartość parametru dotyczy tyrystora oznaczonego symbolem F71-225-12: a) IT(RMS) = 71 A b) IT(RMS) = 225 A c) IT(RMS) = 12 A

20. Które parametry dotyczą kondensatora ceramicznego oznaczonego symbolami N33 i 101: a) CN = 33 pF i ujemny współczynnik temperaturowy b) CN = 10 pF i zerowy współczynnik temperaturowy c) CN = 100 pF i ujemny współczynnik temperaturowy

Page 63: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 62

KARTA ODPOWIEDZI Imię i nazwisko..................................................................................................................... Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów Zakreśl poprawną odpowiedź.

Nr zadania Odpowiedź Punkty

1 a b c 2 a b c 3 a b c 4 a b c 5 a b c 6 a b c 7 a b c 8 a b c 9 a b c

10 a b c 11 a b c 12 a b c 13 a b c 14 a b c 15 a b c 16 a b c 17 a b c 18 a b c 19 a b c 20 a b c

Razem:

Page 64: Dobieranie elementów i podzespołów elektronicznych oraz sprawdzanie ich parametrów

„Projekt współfinansowany ze środków Europejskiego Funduszu Społecznego” 63

6. LITERATURA 1. Grabowski L.: Pracownia elektroniczna – układy elektroniczne. WSiP, Warszawa 1999 2. Chwaleba A., Moeschke B., Pilawski M.: Pracownia elektroniczna – elementy układów

elektronicznych. WSiP, Warszawa 1996 3. Chwaleba A., Moeschke B., Płoszajski G.: Elektronika. WSiP, Warszawa 1996 4. Marusak A.: Urządzenia elektroniczne, część 1. Elementy urządzeń, część 2. Układy

elektroniczne. WSiP, Warszawa 2000 5. Pióro B., Pióro M.: Podstawy elektroniki, cz. 1. WSiP, Warszawa 1998 6. Pióro B., Pióro M.: Podstawy elektroniki, cz. 2. WSiP, Warszawa 1997 7. http://pl.wikipedia.org 8. http://www.cyfronika.com.pl 9. http://www.edw.com.pl 10. http://www.matmic.neostrada.pl 11. http://www.meditronik.com.pl