donald l. anton - energy.govheat transfer fluid loop fuel cell coolant loop fuel cell/combustor air...

46
Donald L. Anton Director Theodore Motyka Assistant Director Savannah River National Laboratory May 15, 2012 Project ID# ST004 This presentation does not contain any proprietary, confidential or otherwise restricted information.

Upload: others

Post on 29-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

Donald L Anton Director

Theodore Motyka Assistant Director

Savannah River National Laboratory

May 15 2012

P r o j e c t I D ST0 0 4 This presentation does not contain any proprietary

confidential or otherwise restricted information

2 2

Overview Timeline

bullStart February 1 2009 bullEnd July 31 2014 bull55 Complete (as of 33112)

Budget bullTotal Center Funding

DOE Share $ 36232765 Contractor Share $ 3591709 FY rsquo11 Funding $ 5144156 FY rsquo12 Funding $ 5930000

bullProg Mgmt Funding FY rsquo11 $ 400000 FY rsquo12 $ 400000

Barriers

Partners

A System Weight and Volume B System Cost C Efficiency D Durability E ChargingDischarging Rates G Materials of Construction

H Balance of Plant (BOP) Components J Thermal Management K System Life-Cycle Assessment O Hydrogen Boil-Off P Understanding PhysiChemi-sorption S By-ProductSpent Material Removal

3 3

Why Perform Materials Development and System Engineering in Parallel

Materials rarr Thermal rarr H2 Storage rarr Fuel Cell rarr Vehicle rarr Wheels Management BoP

Engineered Heat Transfer BoP What is Needed Materials Designs Component of the Hydrogen Storage Properties Requirements Media amp System

continuous feedback with system design indicating materials requirements

Approach

4 4

HSECoE Objectives Develop materials based hydrogen storage systems for On-Board Hydrogen Storage for Light Duty Vehicles

Develop system models that lend insight into overall fuel cycle efficiency

Compile all relevant materials data for candidate storage media and define future data requirements

Using systems engineering concepts design innovative system architectures for metal hydride chemical and sorption materials-based storage technologies with the potential to meet DOE performance and cost targets

Design components and experimental test fixtures to evaluate the innovative storage devices and subsystem design concepts validate model predictions and improve both component design and predictive capability

Design fabricate test and decommission subscale prototype systems of selected materials-based technologies

Approach

Phase I System

Requirements amp Novel

Concepts

Phase II Novel Concept

Modeling Design amp Evaluation

Phase III Sub-Scale Prototype

Construction Test and

Evaluation

bull Where are we and where can we get to

bull Model development

bull Benchmarking bull Gap Identification bull Projecting

advances

bull How do we get there (closing the gaps) and how much further can we go

bull Component development bull Concept validation bull Integration testing bull System design

bull Put it all together and confirm claims

bull System integration bull System assessments bull Model validation bull Gap analysis bull Performance projections

Phased Approach

5

Approach

6

Important Dates Duration 55 years

Phase 1 Start Feb 1 2009

Phase 1-2 Transition March 31 2011

Phase 1 End June 30 2011

Phase 2 Start July 1 2011

Phase 3 GoNo-Go Determination March 312013 Phase 2 End June 30 2013 Phase 3 Start July 1 2013 Completion Date June 30 2014 123114

6 Phase 1-2 Transition

Materials Selection

System Selection

Design Subscale

Prototypes

GoNoGo Decision

Building Subscale Prototypes

Approach

7

Phase 1-2 Transition

Overviewed Integrated System Model and its Role in Target Achievement

Prepared Summaries of Status for Metal Hydride Chemical Hydride and Adsorbent Systems

Current status vs targets

Identification of critical technical barriers

Identification of potential solutions to barriers

Summary of projected system performance vs targets

7

8

Outcomes of Phase 1-2 Transition Continued Work

Adsorbent-Based Hydrogen Storage Systems Increasing compaction of the sorbent materials

Demonstration of improved thermal conduction within the sorbent

Thermal isolation of the inner storage bed

Flow through cooling designs must be accompanied with total cooling requirements

Liquid-Phase Chemical Hydrogen Storage Materials (including liquids solutions andor slurries)

Development and validation of the critical components for baseline ammonia borane solutions

Thermal management within the reaction chamber

Gas-liquid phase separations and the

Hydrogen purification train be emphasized for the baseline ammonia borane solutions

Endothermic release material (eg AlH3 alane) must be modeled

8

9

Outcomes of Phase 1-2 Transition

Discontinued Work Solid-Phase Chemical Hydrogen Storage Materials

Material transport becomes a major challenge for this class of material

A reliable process for loadingunloading solids from the onboard storage vessel nor transporting it through an onboard reactor have been identified

Work on Reversible Metal Hydrides Analyses for highly optimized vessel configurations that could adequately

manage thermal and mass flow rates needed for reversible onboard hydrogen storage to meet the DOE performance targets imposed requirements substantially exceeding the properties and behavior of any single currently existing candidate hydride

The necessary combination of gravimetric and volumetric capacities reaction kinetics thermodynamics properties and reversibility have not been found simultaneously in any hydride investigated to date

Novel engineering solutions that will allow any currently known hydride when incorporated into a complete system have not been identified

9

10

HSECoE Phase 3 GoNoGo Milestones

10

Approach

11

Phase 2 Gantt Chart Approach

P12 Metal Hydride System Projection 2017 Targets

1 Gravimetric Density 2 System Cost 3 Onboard Efficiency 4 Volumetric Density 5 Fill Time 6 Fuel Cost

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

12

Buffer Tank P 5-150 bar V 10 L T ambient Q 0-16 gs

Fuel Cell

Storage Tank P 5-150 bar V 176 Ltank T 25-200degC Q 0-16 gs

Fuel Cell Delivery P 5 bar T lt 80degC Q 16 gs Max

H2 Combustor P 5 bar T lt 80degC Q 0-16 gs 12 kW

H2 Delivery Loop

Heat Transfer Fluid Loop

Fuel Cell Coolant Loop

Fuel CellCombustor Air Loop Heat Transfer Fluid Tank

Dual Vessel Sodium Alanate Design (w 4 molTiCl3 amp 5 wt ENG)

GM1 Design fin and tube heat exchanger optimized to meet 105 min refueling time at the expense of wt

2 Type 3 composite tanks with SS liners

System includes a 10 l buffer tank and a 12 kW H2 combustor

Accomplishment

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 2: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

2 2

Overview Timeline

bullStart February 1 2009 bullEnd July 31 2014 bull55 Complete (as of 33112)

Budget bullTotal Center Funding

DOE Share $ 36232765 Contractor Share $ 3591709 FY rsquo11 Funding $ 5144156 FY rsquo12 Funding $ 5930000

bullProg Mgmt Funding FY rsquo11 $ 400000 FY rsquo12 $ 400000

Barriers

Partners

A System Weight and Volume B System Cost C Efficiency D Durability E ChargingDischarging Rates G Materials of Construction

H Balance of Plant (BOP) Components J Thermal Management K System Life-Cycle Assessment O Hydrogen Boil-Off P Understanding PhysiChemi-sorption S By-ProductSpent Material Removal

3 3

Why Perform Materials Development and System Engineering in Parallel

Materials rarr Thermal rarr H2 Storage rarr Fuel Cell rarr Vehicle rarr Wheels Management BoP

Engineered Heat Transfer BoP What is Needed Materials Designs Component of the Hydrogen Storage Properties Requirements Media amp System

continuous feedback with system design indicating materials requirements

Approach

4 4

HSECoE Objectives Develop materials based hydrogen storage systems for On-Board Hydrogen Storage for Light Duty Vehicles

Develop system models that lend insight into overall fuel cycle efficiency

Compile all relevant materials data for candidate storage media and define future data requirements

Using systems engineering concepts design innovative system architectures for metal hydride chemical and sorption materials-based storage technologies with the potential to meet DOE performance and cost targets

Design components and experimental test fixtures to evaluate the innovative storage devices and subsystem design concepts validate model predictions and improve both component design and predictive capability

Design fabricate test and decommission subscale prototype systems of selected materials-based technologies

Approach

Phase I System

Requirements amp Novel

Concepts

Phase II Novel Concept

Modeling Design amp Evaluation

Phase III Sub-Scale Prototype

Construction Test and

Evaluation

bull Where are we and where can we get to

bull Model development

bull Benchmarking bull Gap Identification bull Projecting

advances

bull How do we get there (closing the gaps) and how much further can we go

bull Component development bull Concept validation bull Integration testing bull System design

bull Put it all together and confirm claims

bull System integration bull System assessments bull Model validation bull Gap analysis bull Performance projections

Phased Approach

5

Approach

6

Important Dates Duration 55 years

Phase 1 Start Feb 1 2009

Phase 1-2 Transition March 31 2011

Phase 1 End June 30 2011

Phase 2 Start July 1 2011

Phase 3 GoNo-Go Determination March 312013 Phase 2 End June 30 2013 Phase 3 Start July 1 2013 Completion Date June 30 2014 123114

6 Phase 1-2 Transition

Materials Selection

System Selection

Design Subscale

Prototypes

GoNoGo Decision

Building Subscale Prototypes

Approach

7

Phase 1-2 Transition

Overviewed Integrated System Model and its Role in Target Achievement

Prepared Summaries of Status for Metal Hydride Chemical Hydride and Adsorbent Systems

Current status vs targets

Identification of critical technical barriers

Identification of potential solutions to barriers

Summary of projected system performance vs targets

7

8

Outcomes of Phase 1-2 Transition Continued Work

Adsorbent-Based Hydrogen Storage Systems Increasing compaction of the sorbent materials

Demonstration of improved thermal conduction within the sorbent

Thermal isolation of the inner storage bed

Flow through cooling designs must be accompanied with total cooling requirements

Liquid-Phase Chemical Hydrogen Storage Materials (including liquids solutions andor slurries)

Development and validation of the critical components for baseline ammonia borane solutions

Thermal management within the reaction chamber

Gas-liquid phase separations and the

Hydrogen purification train be emphasized for the baseline ammonia borane solutions

Endothermic release material (eg AlH3 alane) must be modeled

8

9

Outcomes of Phase 1-2 Transition

Discontinued Work Solid-Phase Chemical Hydrogen Storage Materials

Material transport becomes a major challenge for this class of material

A reliable process for loadingunloading solids from the onboard storage vessel nor transporting it through an onboard reactor have been identified

Work on Reversible Metal Hydrides Analyses for highly optimized vessel configurations that could adequately

manage thermal and mass flow rates needed for reversible onboard hydrogen storage to meet the DOE performance targets imposed requirements substantially exceeding the properties and behavior of any single currently existing candidate hydride

The necessary combination of gravimetric and volumetric capacities reaction kinetics thermodynamics properties and reversibility have not been found simultaneously in any hydride investigated to date

Novel engineering solutions that will allow any currently known hydride when incorporated into a complete system have not been identified

9

10

HSECoE Phase 3 GoNoGo Milestones

10

Approach

11

Phase 2 Gantt Chart Approach

P12 Metal Hydride System Projection 2017 Targets

1 Gravimetric Density 2 System Cost 3 Onboard Efficiency 4 Volumetric Density 5 Fill Time 6 Fuel Cost

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

12

Buffer Tank P 5-150 bar V 10 L T ambient Q 0-16 gs

Fuel Cell

Storage Tank P 5-150 bar V 176 Ltank T 25-200degC Q 0-16 gs

Fuel Cell Delivery P 5 bar T lt 80degC Q 16 gs Max

H2 Combustor P 5 bar T lt 80degC Q 0-16 gs 12 kW

H2 Delivery Loop

Heat Transfer Fluid Loop

Fuel Cell Coolant Loop

Fuel CellCombustor Air Loop Heat Transfer Fluid Tank

Dual Vessel Sodium Alanate Design (w 4 molTiCl3 amp 5 wt ENG)

GM1 Design fin and tube heat exchanger optimized to meet 105 min refueling time at the expense of wt

2 Type 3 composite tanks with SS liners

System includes a 10 l buffer tank and a 12 kW H2 combustor

Accomplishment

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 3: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

3 3

Why Perform Materials Development and System Engineering in Parallel

Materials rarr Thermal rarr H2 Storage rarr Fuel Cell rarr Vehicle rarr Wheels Management BoP

Engineered Heat Transfer BoP What is Needed Materials Designs Component of the Hydrogen Storage Properties Requirements Media amp System

continuous feedback with system design indicating materials requirements

Approach

4 4

HSECoE Objectives Develop materials based hydrogen storage systems for On-Board Hydrogen Storage for Light Duty Vehicles

Develop system models that lend insight into overall fuel cycle efficiency

Compile all relevant materials data for candidate storage media and define future data requirements

Using systems engineering concepts design innovative system architectures for metal hydride chemical and sorption materials-based storage technologies with the potential to meet DOE performance and cost targets

Design components and experimental test fixtures to evaluate the innovative storage devices and subsystem design concepts validate model predictions and improve both component design and predictive capability

Design fabricate test and decommission subscale prototype systems of selected materials-based technologies

Approach

Phase I System

Requirements amp Novel

Concepts

Phase II Novel Concept

Modeling Design amp Evaluation

Phase III Sub-Scale Prototype

Construction Test and

Evaluation

bull Where are we and where can we get to

bull Model development

bull Benchmarking bull Gap Identification bull Projecting

advances

bull How do we get there (closing the gaps) and how much further can we go

bull Component development bull Concept validation bull Integration testing bull System design

bull Put it all together and confirm claims

bull System integration bull System assessments bull Model validation bull Gap analysis bull Performance projections

Phased Approach

5

Approach

6

Important Dates Duration 55 years

Phase 1 Start Feb 1 2009

Phase 1-2 Transition March 31 2011

Phase 1 End June 30 2011

Phase 2 Start July 1 2011

Phase 3 GoNo-Go Determination March 312013 Phase 2 End June 30 2013 Phase 3 Start July 1 2013 Completion Date June 30 2014 123114

6 Phase 1-2 Transition

Materials Selection

System Selection

Design Subscale

Prototypes

GoNoGo Decision

Building Subscale Prototypes

Approach

7

Phase 1-2 Transition

Overviewed Integrated System Model and its Role in Target Achievement

Prepared Summaries of Status for Metal Hydride Chemical Hydride and Adsorbent Systems

Current status vs targets

Identification of critical technical barriers

Identification of potential solutions to barriers

Summary of projected system performance vs targets

7

8

Outcomes of Phase 1-2 Transition Continued Work

Adsorbent-Based Hydrogen Storage Systems Increasing compaction of the sorbent materials

Demonstration of improved thermal conduction within the sorbent

Thermal isolation of the inner storage bed

Flow through cooling designs must be accompanied with total cooling requirements

Liquid-Phase Chemical Hydrogen Storage Materials (including liquids solutions andor slurries)

Development and validation of the critical components for baseline ammonia borane solutions

Thermal management within the reaction chamber

Gas-liquid phase separations and the

Hydrogen purification train be emphasized for the baseline ammonia borane solutions

Endothermic release material (eg AlH3 alane) must be modeled

8

9

Outcomes of Phase 1-2 Transition

Discontinued Work Solid-Phase Chemical Hydrogen Storage Materials

Material transport becomes a major challenge for this class of material

A reliable process for loadingunloading solids from the onboard storage vessel nor transporting it through an onboard reactor have been identified

Work on Reversible Metal Hydrides Analyses for highly optimized vessel configurations that could adequately

manage thermal and mass flow rates needed for reversible onboard hydrogen storage to meet the DOE performance targets imposed requirements substantially exceeding the properties and behavior of any single currently existing candidate hydride

The necessary combination of gravimetric and volumetric capacities reaction kinetics thermodynamics properties and reversibility have not been found simultaneously in any hydride investigated to date

Novel engineering solutions that will allow any currently known hydride when incorporated into a complete system have not been identified

9

10

HSECoE Phase 3 GoNoGo Milestones

10

Approach

11

Phase 2 Gantt Chart Approach

P12 Metal Hydride System Projection 2017 Targets

1 Gravimetric Density 2 System Cost 3 Onboard Efficiency 4 Volumetric Density 5 Fill Time 6 Fuel Cost

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

12

Buffer Tank P 5-150 bar V 10 L T ambient Q 0-16 gs

Fuel Cell

Storage Tank P 5-150 bar V 176 Ltank T 25-200degC Q 0-16 gs

Fuel Cell Delivery P 5 bar T lt 80degC Q 16 gs Max

H2 Combustor P 5 bar T lt 80degC Q 0-16 gs 12 kW

H2 Delivery Loop

Heat Transfer Fluid Loop

Fuel Cell Coolant Loop

Fuel CellCombustor Air Loop Heat Transfer Fluid Tank

Dual Vessel Sodium Alanate Design (w 4 molTiCl3 amp 5 wt ENG)

GM1 Design fin and tube heat exchanger optimized to meet 105 min refueling time at the expense of wt

2 Type 3 composite tanks with SS liners

System includes a 10 l buffer tank and a 12 kW H2 combustor

Accomplishment

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 4: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

4 4

HSECoE Objectives Develop materials based hydrogen storage systems for On-Board Hydrogen Storage for Light Duty Vehicles

Develop system models that lend insight into overall fuel cycle efficiency

Compile all relevant materials data for candidate storage media and define future data requirements

Using systems engineering concepts design innovative system architectures for metal hydride chemical and sorption materials-based storage technologies with the potential to meet DOE performance and cost targets

Design components and experimental test fixtures to evaluate the innovative storage devices and subsystem design concepts validate model predictions and improve both component design and predictive capability

Design fabricate test and decommission subscale prototype systems of selected materials-based technologies

Approach

Phase I System

Requirements amp Novel

Concepts

Phase II Novel Concept

Modeling Design amp Evaluation

Phase III Sub-Scale Prototype

Construction Test and

Evaluation

bull Where are we and where can we get to

bull Model development

bull Benchmarking bull Gap Identification bull Projecting

advances

bull How do we get there (closing the gaps) and how much further can we go

bull Component development bull Concept validation bull Integration testing bull System design

bull Put it all together and confirm claims

bull System integration bull System assessments bull Model validation bull Gap analysis bull Performance projections

Phased Approach

5

Approach

6

Important Dates Duration 55 years

Phase 1 Start Feb 1 2009

Phase 1-2 Transition March 31 2011

Phase 1 End June 30 2011

Phase 2 Start July 1 2011

Phase 3 GoNo-Go Determination March 312013 Phase 2 End June 30 2013 Phase 3 Start July 1 2013 Completion Date June 30 2014 123114

6 Phase 1-2 Transition

Materials Selection

System Selection

Design Subscale

Prototypes

GoNoGo Decision

Building Subscale Prototypes

Approach

7

Phase 1-2 Transition

Overviewed Integrated System Model and its Role in Target Achievement

Prepared Summaries of Status for Metal Hydride Chemical Hydride and Adsorbent Systems

Current status vs targets

Identification of critical technical barriers

Identification of potential solutions to barriers

Summary of projected system performance vs targets

7

8

Outcomes of Phase 1-2 Transition Continued Work

Adsorbent-Based Hydrogen Storage Systems Increasing compaction of the sorbent materials

Demonstration of improved thermal conduction within the sorbent

Thermal isolation of the inner storage bed

Flow through cooling designs must be accompanied with total cooling requirements

Liquid-Phase Chemical Hydrogen Storage Materials (including liquids solutions andor slurries)

Development and validation of the critical components for baseline ammonia borane solutions

Thermal management within the reaction chamber

Gas-liquid phase separations and the

Hydrogen purification train be emphasized for the baseline ammonia borane solutions

Endothermic release material (eg AlH3 alane) must be modeled

8

9

Outcomes of Phase 1-2 Transition

Discontinued Work Solid-Phase Chemical Hydrogen Storage Materials

Material transport becomes a major challenge for this class of material

A reliable process for loadingunloading solids from the onboard storage vessel nor transporting it through an onboard reactor have been identified

Work on Reversible Metal Hydrides Analyses for highly optimized vessel configurations that could adequately

manage thermal and mass flow rates needed for reversible onboard hydrogen storage to meet the DOE performance targets imposed requirements substantially exceeding the properties and behavior of any single currently existing candidate hydride

The necessary combination of gravimetric and volumetric capacities reaction kinetics thermodynamics properties and reversibility have not been found simultaneously in any hydride investigated to date

Novel engineering solutions that will allow any currently known hydride when incorporated into a complete system have not been identified

9

10

HSECoE Phase 3 GoNoGo Milestones

10

Approach

11

Phase 2 Gantt Chart Approach

P12 Metal Hydride System Projection 2017 Targets

1 Gravimetric Density 2 System Cost 3 Onboard Efficiency 4 Volumetric Density 5 Fill Time 6 Fuel Cost

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

12

Buffer Tank P 5-150 bar V 10 L T ambient Q 0-16 gs

Fuel Cell

Storage Tank P 5-150 bar V 176 Ltank T 25-200degC Q 0-16 gs

Fuel Cell Delivery P 5 bar T lt 80degC Q 16 gs Max

H2 Combustor P 5 bar T lt 80degC Q 0-16 gs 12 kW

H2 Delivery Loop

Heat Transfer Fluid Loop

Fuel Cell Coolant Loop

Fuel CellCombustor Air Loop Heat Transfer Fluid Tank

Dual Vessel Sodium Alanate Design (w 4 molTiCl3 amp 5 wt ENG)

GM1 Design fin and tube heat exchanger optimized to meet 105 min refueling time at the expense of wt

2 Type 3 composite tanks with SS liners

System includes a 10 l buffer tank and a 12 kW H2 combustor

Accomplishment

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 5: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

Phase I System

Requirements amp Novel

Concepts

Phase II Novel Concept

Modeling Design amp Evaluation

Phase III Sub-Scale Prototype

Construction Test and

Evaluation

bull Where are we and where can we get to

bull Model development

bull Benchmarking bull Gap Identification bull Projecting

advances

bull How do we get there (closing the gaps) and how much further can we go

bull Component development bull Concept validation bull Integration testing bull System design

bull Put it all together and confirm claims

bull System integration bull System assessments bull Model validation bull Gap analysis bull Performance projections

Phased Approach

5

Approach

6

Important Dates Duration 55 years

Phase 1 Start Feb 1 2009

Phase 1-2 Transition March 31 2011

Phase 1 End June 30 2011

Phase 2 Start July 1 2011

Phase 3 GoNo-Go Determination March 312013 Phase 2 End June 30 2013 Phase 3 Start July 1 2013 Completion Date June 30 2014 123114

6 Phase 1-2 Transition

Materials Selection

System Selection

Design Subscale

Prototypes

GoNoGo Decision

Building Subscale Prototypes

Approach

7

Phase 1-2 Transition

Overviewed Integrated System Model and its Role in Target Achievement

Prepared Summaries of Status for Metal Hydride Chemical Hydride and Adsorbent Systems

Current status vs targets

Identification of critical technical barriers

Identification of potential solutions to barriers

Summary of projected system performance vs targets

7

8

Outcomes of Phase 1-2 Transition Continued Work

Adsorbent-Based Hydrogen Storage Systems Increasing compaction of the sorbent materials

Demonstration of improved thermal conduction within the sorbent

Thermal isolation of the inner storage bed

Flow through cooling designs must be accompanied with total cooling requirements

Liquid-Phase Chemical Hydrogen Storage Materials (including liquids solutions andor slurries)

Development and validation of the critical components for baseline ammonia borane solutions

Thermal management within the reaction chamber

Gas-liquid phase separations and the

Hydrogen purification train be emphasized for the baseline ammonia borane solutions

Endothermic release material (eg AlH3 alane) must be modeled

8

9

Outcomes of Phase 1-2 Transition

Discontinued Work Solid-Phase Chemical Hydrogen Storage Materials

Material transport becomes a major challenge for this class of material

A reliable process for loadingunloading solids from the onboard storage vessel nor transporting it through an onboard reactor have been identified

Work on Reversible Metal Hydrides Analyses for highly optimized vessel configurations that could adequately

manage thermal and mass flow rates needed for reversible onboard hydrogen storage to meet the DOE performance targets imposed requirements substantially exceeding the properties and behavior of any single currently existing candidate hydride

The necessary combination of gravimetric and volumetric capacities reaction kinetics thermodynamics properties and reversibility have not been found simultaneously in any hydride investigated to date

Novel engineering solutions that will allow any currently known hydride when incorporated into a complete system have not been identified

9

10

HSECoE Phase 3 GoNoGo Milestones

10

Approach

11

Phase 2 Gantt Chart Approach

P12 Metal Hydride System Projection 2017 Targets

1 Gravimetric Density 2 System Cost 3 Onboard Efficiency 4 Volumetric Density 5 Fill Time 6 Fuel Cost

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

12

Buffer Tank P 5-150 bar V 10 L T ambient Q 0-16 gs

Fuel Cell

Storage Tank P 5-150 bar V 176 Ltank T 25-200degC Q 0-16 gs

Fuel Cell Delivery P 5 bar T lt 80degC Q 16 gs Max

H2 Combustor P 5 bar T lt 80degC Q 0-16 gs 12 kW

H2 Delivery Loop

Heat Transfer Fluid Loop

Fuel Cell Coolant Loop

Fuel CellCombustor Air Loop Heat Transfer Fluid Tank

Dual Vessel Sodium Alanate Design (w 4 molTiCl3 amp 5 wt ENG)

GM1 Design fin and tube heat exchanger optimized to meet 105 min refueling time at the expense of wt

2 Type 3 composite tanks with SS liners

System includes a 10 l buffer tank and a 12 kW H2 combustor

Accomplishment

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 6: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

6

Important Dates Duration 55 years

Phase 1 Start Feb 1 2009

Phase 1-2 Transition March 31 2011

Phase 1 End June 30 2011

Phase 2 Start July 1 2011

Phase 3 GoNo-Go Determination March 312013 Phase 2 End June 30 2013 Phase 3 Start July 1 2013 Completion Date June 30 2014 123114

6 Phase 1-2 Transition

Materials Selection

System Selection

Design Subscale

Prototypes

GoNoGo Decision

Building Subscale Prototypes

Approach

7

Phase 1-2 Transition

Overviewed Integrated System Model and its Role in Target Achievement

Prepared Summaries of Status for Metal Hydride Chemical Hydride and Adsorbent Systems

Current status vs targets

Identification of critical technical barriers

Identification of potential solutions to barriers

Summary of projected system performance vs targets

7

8

Outcomes of Phase 1-2 Transition Continued Work

Adsorbent-Based Hydrogen Storage Systems Increasing compaction of the sorbent materials

Demonstration of improved thermal conduction within the sorbent

Thermal isolation of the inner storage bed

Flow through cooling designs must be accompanied with total cooling requirements

Liquid-Phase Chemical Hydrogen Storage Materials (including liquids solutions andor slurries)

Development and validation of the critical components for baseline ammonia borane solutions

Thermal management within the reaction chamber

Gas-liquid phase separations and the

Hydrogen purification train be emphasized for the baseline ammonia borane solutions

Endothermic release material (eg AlH3 alane) must be modeled

8

9

Outcomes of Phase 1-2 Transition

Discontinued Work Solid-Phase Chemical Hydrogen Storage Materials

Material transport becomes a major challenge for this class of material

A reliable process for loadingunloading solids from the onboard storage vessel nor transporting it through an onboard reactor have been identified

Work on Reversible Metal Hydrides Analyses for highly optimized vessel configurations that could adequately

manage thermal and mass flow rates needed for reversible onboard hydrogen storage to meet the DOE performance targets imposed requirements substantially exceeding the properties and behavior of any single currently existing candidate hydride

The necessary combination of gravimetric and volumetric capacities reaction kinetics thermodynamics properties and reversibility have not been found simultaneously in any hydride investigated to date

Novel engineering solutions that will allow any currently known hydride when incorporated into a complete system have not been identified

9

10

HSECoE Phase 3 GoNoGo Milestones

10

Approach

11

Phase 2 Gantt Chart Approach

P12 Metal Hydride System Projection 2017 Targets

1 Gravimetric Density 2 System Cost 3 Onboard Efficiency 4 Volumetric Density 5 Fill Time 6 Fuel Cost

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

12

Buffer Tank P 5-150 bar V 10 L T ambient Q 0-16 gs

Fuel Cell

Storage Tank P 5-150 bar V 176 Ltank T 25-200degC Q 0-16 gs

Fuel Cell Delivery P 5 bar T lt 80degC Q 16 gs Max

H2 Combustor P 5 bar T lt 80degC Q 0-16 gs 12 kW

H2 Delivery Loop

Heat Transfer Fluid Loop

Fuel Cell Coolant Loop

Fuel CellCombustor Air Loop Heat Transfer Fluid Tank

Dual Vessel Sodium Alanate Design (w 4 molTiCl3 amp 5 wt ENG)

GM1 Design fin and tube heat exchanger optimized to meet 105 min refueling time at the expense of wt

2 Type 3 composite tanks with SS liners

System includes a 10 l buffer tank and a 12 kW H2 combustor

Accomplishment

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 7: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

7

Phase 1-2 Transition

Overviewed Integrated System Model and its Role in Target Achievement

Prepared Summaries of Status for Metal Hydride Chemical Hydride and Adsorbent Systems

Current status vs targets

Identification of critical technical barriers

Identification of potential solutions to barriers

Summary of projected system performance vs targets

7

8

Outcomes of Phase 1-2 Transition Continued Work

Adsorbent-Based Hydrogen Storage Systems Increasing compaction of the sorbent materials

Demonstration of improved thermal conduction within the sorbent

Thermal isolation of the inner storage bed

Flow through cooling designs must be accompanied with total cooling requirements

Liquid-Phase Chemical Hydrogen Storage Materials (including liquids solutions andor slurries)

Development and validation of the critical components for baseline ammonia borane solutions

Thermal management within the reaction chamber

Gas-liquid phase separations and the

Hydrogen purification train be emphasized for the baseline ammonia borane solutions

Endothermic release material (eg AlH3 alane) must be modeled

8

9

Outcomes of Phase 1-2 Transition

Discontinued Work Solid-Phase Chemical Hydrogen Storage Materials

Material transport becomes a major challenge for this class of material

A reliable process for loadingunloading solids from the onboard storage vessel nor transporting it through an onboard reactor have been identified

Work on Reversible Metal Hydrides Analyses for highly optimized vessel configurations that could adequately

manage thermal and mass flow rates needed for reversible onboard hydrogen storage to meet the DOE performance targets imposed requirements substantially exceeding the properties and behavior of any single currently existing candidate hydride

The necessary combination of gravimetric and volumetric capacities reaction kinetics thermodynamics properties and reversibility have not been found simultaneously in any hydride investigated to date

Novel engineering solutions that will allow any currently known hydride when incorporated into a complete system have not been identified

9

10

HSECoE Phase 3 GoNoGo Milestones

10

Approach

11

Phase 2 Gantt Chart Approach

P12 Metal Hydride System Projection 2017 Targets

1 Gravimetric Density 2 System Cost 3 Onboard Efficiency 4 Volumetric Density 5 Fill Time 6 Fuel Cost

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

12

Buffer Tank P 5-150 bar V 10 L T ambient Q 0-16 gs

Fuel Cell

Storage Tank P 5-150 bar V 176 Ltank T 25-200degC Q 0-16 gs

Fuel Cell Delivery P 5 bar T lt 80degC Q 16 gs Max

H2 Combustor P 5 bar T lt 80degC Q 0-16 gs 12 kW

H2 Delivery Loop

Heat Transfer Fluid Loop

Fuel Cell Coolant Loop

Fuel CellCombustor Air Loop Heat Transfer Fluid Tank

Dual Vessel Sodium Alanate Design (w 4 molTiCl3 amp 5 wt ENG)

GM1 Design fin and tube heat exchanger optimized to meet 105 min refueling time at the expense of wt

2 Type 3 composite tanks with SS liners

System includes a 10 l buffer tank and a 12 kW H2 combustor

Accomplishment

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 8: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

8

Outcomes of Phase 1-2 Transition Continued Work

Adsorbent-Based Hydrogen Storage Systems Increasing compaction of the sorbent materials

Demonstration of improved thermal conduction within the sorbent

Thermal isolation of the inner storage bed

Flow through cooling designs must be accompanied with total cooling requirements

Liquid-Phase Chemical Hydrogen Storage Materials (including liquids solutions andor slurries)

Development and validation of the critical components for baseline ammonia borane solutions

Thermal management within the reaction chamber

Gas-liquid phase separations and the

Hydrogen purification train be emphasized for the baseline ammonia borane solutions

Endothermic release material (eg AlH3 alane) must be modeled

8

9

Outcomes of Phase 1-2 Transition

Discontinued Work Solid-Phase Chemical Hydrogen Storage Materials

Material transport becomes a major challenge for this class of material

A reliable process for loadingunloading solids from the onboard storage vessel nor transporting it through an onboard reactor have been identified

Work on Reversible Metal Hydrides Analyses for highly optimized vessel configurations that could adequately

manage thermal and mass flow rates needed for reversible onboard hydrogen storage to meet the DOE performance targets imposed requirements substantially exceeding the properties and behavior of any single currently existing candidate hydride

The necessary combination of gravimetric and volumetric capacities reaction kinetics thermodynamics properties and reversibility have not been found simultaneously in any hydride investigated to date

Novel engineering solutions that will allow any currently known hydride when incorporated into a complete system have not been identified

9

10

HSECoE Phase 3 GoNoGo Milestones

10

Approach

11

Phase 2 Gantt Chart Approach

P12 Metal Hydride System Projection 2017 Targets

1 Gravimetric Density 2 System Cost 3 Onboard Efficiency 4 Volumetric Density 5 Fill Time 6 Fuel Cost

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

12

Buffer Tank P 5-150 bar V 10 L T ambient Q 0-16 gs

Fuel Cell

Storage Tank P 5-150 bar V 176 Ltank T 25-200degC Q 0-16 gs

Fuel Cell Delivery P 5 bar T lt 80degC Q 16 gs Max

H2 Combustor P 5 bar T lt 80degC Q 0-16 gs 12 kW

H2 Delivery Loop

Heat Transfer Fluid Loop

Fuel Cell Coolant Loop

Fuel CellCombustor Air Loop Heat Transfer Fluid Tank

Dual Vessel Sodium Alanate Design (w 4 molTiCl3 amp 5 wt ENG)

GM1 Design fin and tube heat exchanger optimized to meet 105 min refueling time at the expense of wt

2 Type 3 composite tanks with SS liners

System includes a 10 l buffer tank and a 12 kW H2 combustor

Accomplishment

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 9: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

9

Outcomes of Phase 1-2 Transition

Discontinued Work Solid-Phase Chemical Hydrogen Storage Materials

Material transport becomes a major challenge for this class of material

A reliable process for loadingunloading solids from the onboard storage vessel nor transporting it through an onboard reactor have been identified

Work on Reversible Metal Hydrides Analyses for highly optimized vessel configurations that could adequately

manage thermal and mass flow rates needed for reversible onboard hydrogen storage to meet the DOE performance targets imposed requirements substantially exceeding the properties and behavior of any single currently existing candidate hydride

The necessary combination of gravimetric and volumetric capacities reaction kinetics thermodynamics properties and reversibility have not been found simultaneously in any hydride investigated to date

Novel engineering solutions that will allow any currently known hydride when incorporated into a complete system have not been identified

9

10

HSECoE Phase 3 GoNoGo Milestones

10

Approach

11

Phase 2 Gantt Chart Approach

P12 Metal Hydride System Projection 2017 Targets

1 Gravimetric Density 2 System Cost 3 Onboard Efficiency 4 Volumetric Density 5 Fill Time 6 Fuel Cost

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

12

Buffer Tank P 5-150 bar V 10 L T ambient Q 0-16 gs

Fuel Cell

Storage Tank P 5-150 bar V 176 Ltank T 25-200degC Q 0-16 gs

Fuel Cell Delivery P 5 bar T lt 80degC Q 16 gs Max

H2 Combustor P 5 bar T lt 80degC Q 0-16 gs 12 kW

H2 Delivery Loop

Heat Transfer Fluid Loop

Fuel Cell Coolant Loop

Fuel CellCombustor Air Loop Heat Transfer Fluid Tank

Dual Vessel Sodium Alanate Design (w 4 molTiCl3 amp 5 wt ENG)

GM1 Design fin and tube heat exchanger optimized to meet 105 min refueling time at the expense of wt

2 Type 3 composite tanks with SS liners

System includes a 10 l buffer tank and a 12 kW H2 combustor

Accomplishment

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 10: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

10

HSECoE Phase 3 GoNoGo Milestones

10

Approach

11

Phase 2 Gantt Chart Approach

P12 Metal Hydride System Projection 2017 Targets

1 Gravimetric Density 2 System Cost 3 Onboard Efficiency 4 Volumetric Density 5 Fill Time 6 Fuel Cost

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

12

Buffer Tank P 5-150 bar V 10 L T ambient Q 0-16 gs

Fuel Cell

Storage Tank P 5-150 bar V 176 Ltank T 25-200degC Q 0-16 gs

Fuel Cell Delivery P 5 bar T lt 80degC Q 16 gs Max

H2 Combustor P 5 bar T lt 80degC Q 0-16 gs 12 kW

H2 Delivery Loop

Heat Transfer Fluid Loop

Fuel Cell Coolant Loop

Fuel CellCombustor Air Loop Heat Transfer Fluid Tank

Dual Vessel Sodium Alanate Design (w 4 molTiCl3 amp 5 wt ENG)

GM1 Design fin and tube heat exchanger optimized to meet 105 min refueling time at the expense of wt

2 Type 3 composite tanks with SS liners

System includes a 10 l buffer tank and a 12 kW H2 combustor

Accomplishment

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 11: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

11

Phase 2 Gantt Chart Approach

P12 Metal Hydride System Projection 2017 Targets

1 Gravimetric Density 2 System Cost 3 Onboard Efficiency 4 Volumetric Density 5 Fill Time 6 Fuel Cost

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

12

Buffer Tank P 5-150 bar V 10 L T ambient Q 0-16 gs

Fuel Cell

Storage Tank P 5-150 bar V 176 Ltank T 25-200degC Q 0-16 gs

Fuel Cell Delivery P 5 bar T lt 80degC Q 16 gs Max

H2 Combustor P 5 bar T lt 80degC Q 0-16 gs 12 kW

H2 Delivery Loop

Heat Transfer Fluid Loop

Fuel Cell Coolant Loop

Fuel CellCombustor Air Loop Heat Transfer Fluid Tank

Dual Vessel Sodium Alanate Design (w 4 molTiCl3 amp 5 wt ENG)

GM1 Design fin and tube heat exchanger optimized to meet 105 min refueling time at the expense of wt

2 Type 3 composite tanks with SS liners

System includes a 10 l buffer tank and a 12 kW H2 combustor

Accomplishment

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 12: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

P12 Metal Hydride System Projection 2017 Targets

1 Gravimetric Density 2 System Cost 3 Onboard Efficiency 4 Volumetric Density 5 Fill Time 6 Fuel Cost

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

12

Buffer Tank P 5-150 bar V 10 L T ambient Q 0-16 gs

Fuel Cell

Storage Tank P 5-150 bar V 176 Ltank T 25-200degC Q 0-16 gs

Fuel Cell Delivery P 5 bar T lt 80degC Q 16 gs Max

H2 Combustor P 5 bar T lt 80degC Q 0-16 gs 12 kW

H2 Delivery Loop

Heat Transfer Fluid Loop

Fuel Cell Coolant Loop

Fuel CellCombustor Air Loop Heat Transfer Fluid Tank

Dual Vessel Sodium Alanate Design (w 4 molTiCl3 amp 5 wt ENG)

GM1 Design fin and tube heat exchanger optimized to meet 105 min refueling time at the expense of wt

2 Type 3 composite tanks with SS liners

System includes a 10 l buffer tank and a 12 kW H2 combustor

Accomplishment

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 13: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

13

MH Barriers and Approaches

13

Gravimetric amp Volumetric Density New materials discovery Improved Tank Design Low mass BoP Components Improved Internal HX

Media Thermal Conductivity Internal HX Design

System mass 4575 kg

Improved Internal HX Concept discharged as-milled

NaAlH4 systems

Compacted Media

Accomplishment

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 14: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

14

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 15: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

15

MH Barriers and Approach

15

On Board Efficiency Improved Catalytic Combustor

Microchannel Catalytic Combustor gt96Efficency

Exploded View of Combustor

Assembled Experimental Facility

Wet Deposited Pt Catalyst

V Narayanan D Haley M Ghazvini amp K Drost

Accomplishment

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 16: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

Metal Hydride System 1 Use Waste Heat Only Attributes

Very simple system Fuel cell waste heat stream used No separate buffer tank use H2 in pores

Media Characteristics ∆H = 27 kJmol-H2 (T5 bar = 207 oC)

11 wt material capacity Results

Satisfies all targets On-board efficiency ~100 System 101 kg 124 liters

BOP

fittings regulators 145 14

BOP combustor

loop 0 0

Hydride 6588 65

HX 238 3

Pressure vessel

183 18

Weight distributionusing waste heat

BOP fittings

regulators 48 4

BOP combustor loop 0 0

Hydride 1046 84

HX 17 1

Pressure vessel

134 11

Volume distributionusing waste heat

Accomplishment

16

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 17: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

Metal Hydride System 2 Combust Some H2

Attributes Mix of fuel cell coolant and

recycled fluid used for warm-up and to maintain Ttank

No separate buffer tank use H2 in pores

Media Characteristics ∆H = -40 kJmol-H2 (T5 bar =

1228 oC) 17 wt pure material

capacity Results

Satisfies all targets except on-board system efficiency

On-board efficiency ~81 System 103 kg 126 liters Operating at 130oC delivers

54 kg-H2 (delivered + combusted 66 kg-H2)

BOP fittings

regulators 145 15

BOP combustor loop 160

17

Hydride 465 48

Expanded Natural

Graphite 47 5

HX 31 3

Pressure vessel

115 12

Weight distributionwith combustor

BOP fittings

regulator 48 4BOP

combustor loop 141

11

Hydride 613 50

Void space 272 22

Expanded Natural

Graphite 22 2

HX 22 2

Pressure vessel

115 9

Volume distributionwith combustor

Accomplishment

17

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 18: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

Gravimetric Capacity vs Enthalpy Accomplishment

18

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 19: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

MH System Conclusions

bull A material will need reasonably fast charging kinetics (3-8X better than SAH) at moderate pressures (lt 100 bar)

bull Any additional hydrogen capacity (1 to 15 wt) gained by using higher pressure hybrid tanks would be negated by the additional weight associated with the additional carbon fiber needed to reinforce the tank walls

bull For many material densities (gt800 kgm3) ndash the volumetric target can be easily met if the gravimetric target is met

bull A minimum material H2 capacity to meet the DOE 2017 Targets is 10 to 11 wo (with no hydrogen combusted ie ΔH lt 27 kJmol-H2)

bull For materials with a higher ΔH (some H2 combustion required ie ΔH gt30 kJmol-H2) a minimum material capacity would need to be 15 to 16 wo 19

Accomplishment

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 20: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

20

1 Gravimetric Density 2 On-Board Efficiency

3 Min Op Temperature 4 Fuel Cost 5 System Cost 6 H2 Purity

20

Media Type Fluid Phase Ammonia Borane

Composition 50wt AB in BMIMCl (1-n-butyl-3-methylimidazolium chloride)

Products Similar rheological properties to reactants

Chemical Hydride System Projection 2017 Targets

Accomplishment

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 21: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

21

Chemical Hydride Barriers and Approaches Gravimetric Density

Improved SolventSlurry to Achieve Higher Density Loading

Minimum Operating Temperature Identify Viscosity vs Temperature

System Cost Low Cost SolventSlurry

21

Slurry AB Development

20wtAB silicone oil sonicated

10wtAB silicone oil

as-is

30wtAB silicone oil sonicated

40wtAB silicone oil sonicated

TC

Oil bath

Heat stirrer

Water condenser

AB slurry

N2 feeder

H2 outlet

Slurry AB Kinetics Measurement

Slurry AB Viscosity

Measurement

Accomplishment

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 22: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

22

Chemical Hydride Barriers and Approaches

22

Hydrogen Purity Improved SolventSlurry Improved Chemical Trapping Good Thermal Control

Impurities Trap Development

Metal Chloride on Porous Supports

Activated Carbon Vermiculite

Accomplishment

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 23: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

23

Chemical Hydride Barriers and Approaches

23

On-Board Efficiency Endothermic vs Exothermic Daily Utilization

T Semelsberger K Brooks

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 24: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

24 24

Chemical Hydride Component Flow Through Reactor Validation Experiments

Fluid AB Flow Through Reactors amp Test Facility

H2 Purification

Gas-Liquid Separator

Heat Exchanger

Reactor

Accomplishment

GasLiquid Separator Test Facility

Drain

Pump

Mass Flow Controller

Static Mixer GLS

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 25: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

25

CH Projections of Progress

25

Step Description

A Phase 1 Baseline 5050 Fluid composition

B Change from steel shell ballast tank to aluminum

C Reduce HX from 76 kW to 38 kW D Reduce H2 Wetted Tubing E Low Mass Borazine Scrubber F Low Mass Ammonia Scrubber

G Increase AB loading from 50 to 65 wt

H Increase AB loading from 65 to 80 wt

Accomplishment

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 26: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

26 26

Adsorbent System Projection 2017 Targets

1 Gravimetric Density 2 Volumetric Density 3 System Cost 4 Loss of Usable H2 5 On-Board Efficiency

Accomplishment

2000 bar AX-21 no thermal enhancement 80 K initial fill

Type 3 CFAl lined pressure vessel 6 mm liner 200 bar

Double-wall 60-layer MLVI jacket design 5W heat leak 80 K

Porous-bed ldquoflow-throughrdquo coolingfueling design for adsorption

Desorption heat via tank-integral electrical resistance elementsHX

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 27: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

27

Adsorbent Barriers and Approaches

27

Accomplishment

Gravimetric Density Media Media Compaction Type 3 amp 4 Tank Development Advanced HX Design

Modular Tank Insert Flow

MOF-5 Activated Carbon

Type IV Cryogenic Pressure Vessel Manufacturing

Cryogenic Materials Testing

Cryogenic Tank Burst Facility

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 28: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

28

Adsorbent Barriers and Approaches

28

Compacted Media Incorporating ENG

Flow Through Cooling

Accomplishment

Volumetric Density Media Compaction Advanced HX Design

Modular Tank Insert Flow Through Cooling Hexagonal Pellet Array

Modular Tank Insert Cryogenic Adsorbent Component Test System

Pellet Thermal Modeling

Stacked Pellet Array

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 29: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

29

Adsorbent Materials Characterization

29

MOF-5 Thermal Conductivity Measurements MOF-5 Excess Adsorption Measurements

MOF-5 Cryogenic Permeability Measurements

25oC

Accomplishment

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 30: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

30

Adsorbent Barriers and Approaches

30

Loss of Usable H2 Reducing Parasitic Load

Improved thermal isolation Utilizing Vented Hydrogen

KevlarTM-suspended tank Vacuum shell

Heat Leak Evaluations

MLVI Development

Cryogenic Vacuum Outgassing

Accomplishment

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 31: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

31

Adsorbent Barriers and Approaches

31

On-Board Efficiency Low Pressure Design

Flow-through cooling for refueling Resistance heater for desorption 40K lt Toperating lt 120K

Aluminum Type I Tank Composite Type III Tank

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 32: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

32

Adsorbent Barriers and Approaches

32

System Cost Low Pressure Type I Tank Low cost BoP component identification

MOF-5 Cost Analysis Oct 2011

=

Accomplishment

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 33: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

33

Adsorbent System Projection of Progress

33

Step Description

A Phase 1 Baseline ndash Activated Carbon in a Composite Tank Flow-Through Cooling with a Resistance Heater Full Conditions of 80 K 200 bar

B Change Material to Powdered MOF-5

C Change Full Tank Conditions to 40 K 60 bar

D Change Tank to Type I Aluminum (lower cost)

E Change to Compacted MOF-5 (032 gcc)

F Increase Compacted MOF-5 thermal conductivity by an order of magnitude

G Change from Flow-Through Cooling with a Resistance Heater to the MATI

H Reduce mass and volume of BOP components by 25

I Improve material capacity by 10

J Improve material capacity by 20

Compromises in Gravimetric Density need to be made to make advancements

in Volumetric Density and Cost

Accomplishment

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 34: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

34

HSECoEHSECoE System Comparison ($System)System Comparison ($System)

-

1000

2000

3000

4000

5000

6000

7000

8000

AB MH MOF-5

Assembly

Balance of Plant

Valves

Hydrogen Cleanup

Media

Tanks

SA

500k Units

$2871

$7982

$4193

$23kWh $43kWh $15kWh

Initial System Cost Projections

MOF System Cost ComparisonMOF System Cost Comparison

TIAX higher cost

HSECoEhigher cost

1

1

2

3

3

4

55

5

Comments Observations1 Further analysis is required to evaluate pressure vessel cost (fiber and liner)2 MOF media difference is expected (MOF-177 with Tiax vs MOF-5 with HSECoE3 The insulation criteria for the fill tube and MLVI needs confirmation4 Heat exchanger details needs to be expanded into individual items5 The main difference is related to the number of parts assumed in the system

bull Developing bill-of-materials for various storage systems bull Assessed industry available parts with appropriate capabilities for system conditions bull Reviewed quotes from distributors and manufactures for different quantity levels bull Evaluated progress ratio models based on production level and volume bull Compared costs with direct material models and other benchmarks

34

Accomplishment

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 35: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

35

FMEA (Failure Modes and Effects Analysis) FMEA Completed for both Adsorbent and

Chemical Hydride Systems

Considered for deployed system Severity

Probability of Occurrence

Probability of Detection

Risk Priority Number

35

Accomplishment

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 36: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

36

FMEA Results

36

High RPN values due to insufficient controls

Potential Cause

Failure Mode (RPN) Actions

Material release rate insufficient due to inhomogeneous materials at end of life

Hydrogen supply unable to achieve full flow rate (720) Storage system only accepts partial fill (630) Storage system on-board efficiency lt 90 (560) System only supplies partial capacity (560) Storage system fills in gt 33 minutes (450)

Consider a vibration test Need to evaluate bed packing Use system models to evaluate sensitivity of contact resistance

Type IV tank liner incompatible with adsorbent or in-service activation

System unable to contain hydrogen due to component rupture (700) System exceeds allowable external leak rate limit (700)

Consider in-service process and evaluate the HDPE out-gassing

Material release rate insufficient due to impurities

Hydrogen supply unable to achieve full flow rate (640) Storage system only accepts partial fill (560) Storage system fills in gt 33 minutes (400)

Add a cycle test with spec hydrogen at the limits of J2719

Fuel cell system requires higher delivery pressure

System only supplies partial capacity (560)

Need to confirm with the fuel cell tech team regarding the probability of the min pressure increase

High RPN values due to insufficient material properties

Potential Cause Failure Mode (RPN) Actions

Not able to charge supply fuel due to the plugged plumbing (8)

System unable to supply hydrogen (320) Hydrogen supply unable to achieve full flow rate (320) Storage system only accepts partial fill (280) Storage system does not accept fuel (280)

Need to evaluate low temperature properties of the media Add settlingflocculation test for evaluating clogging

Incomplete phase separation (8)

Hydrogen supply pressure below 5 bar (320) System only supplies partial capacity (280) Storage system on-board efficiency lt 90 (280) System only supplies partial capacity (245)

Assess the separator effectiveness and quantify the hydrogen in spent fuel

Volume displacement from solids build-up in bladder tank (7)

Storage system only accepts partial fill (294) Lab scale test of pressurizing the slurry

Filling receptacle allows air exposure to fuel (7)

System exceeds allowable external leak rate limit (280)

Need to evaluate the system effects to air exposure

Incomplete reaction of the media (7)

Hydrogen supply pressure below 5 bar (320) Storage system on-board efficiency lt 90 (245)

Evaluate if material build-up within the reactor can still provide heat transfer

BOP components fail to close (7)

System exceeds allowable internal leak rate limit (280)

Include BOP components in bench tests and evaluate cycles

Adsorbent System Chemical Hydride System

Accomplishment

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 37: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

37

New Updated WEB Site Launched

wwwHSECoEorg

37

Description of Model

List of Models Available

Outline of Analysis

Model Download

Identification of User

WEB Czar responsible for updating Load models on site for public dissemination

Accomplishment

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 38: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

38

Future Work

Chemical Hydride System Improved SlurrySolvent CompositionsProperties Improved Chemical Trap Properties Flow Through Reactor Design and Evaluation GasLiquid Separator Evaluation

Adsorbent System Media CompactionCharacterization Advanced HX System Evaluation Advanced Insulation Evaluation Cryogenic Materials Evaluation

Phase 3 Preparations Construct Phase 3 Test Facilities Design Phase 3 Test Protocols

38

Cryogenic Adsorbent System

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 39: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

39

Conclusion bull None of the media considered to

date will allow systems to meet all of the DoE technical targets simultaneously but most can be met

bull Chemical Hydrides and Adsorbent Systems hold the highest near term promise of approaching the DoE 2017 Technical Targets

bull Chemical Hydride transport is facilitated by incorporation into a liquid via slurry or dissolution

39

0

100Gravimetric Density

Min Delivery Temperature

Max Delivery Temperature

Min Delivery Pressure (PEMFC)

Max Delivery Pressure

Minimum Operating Temperature

Maximum Operating Temperature

Minimum Full Flow Rate

System Cost

On Board Efficiency

Volumetric Density

Cycle Life (14 - full)

Fuel Cost

Loss of Useable H2

Wells to Power Plan Efficency

Fuel Purity

Transient Response

Start Time to Full Flow (-20oC)

Fill Time (5Kg H2)

Start Time to Full Flow (20oC)

Metal Hydride System

Chemical Hydride System

Adsorbent System

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 40: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

40 40

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 41: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

Technical Back-Up Slides

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 42: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

42 42

Materials Properties

120C60bar15hrs Abs70C1bar Desorption 100C1bar Desorption 110C1bar Desorption 120C1bar Desorption 80C1bar Desorption

t h t h wt t h t h wt t h t h wt t h t h wt t h t h wt1728076 00000 -11485 1778116 00000 -26114 1592968 00000 -24216 1584628 00000 -23089 1664692 00000 -105791729744 00167 -11022 1779784 00167 -25425 1594636 00167 -23095 1586296 00167 -21174 166636 00167 -100121731412 00334 -10592 1781452 00334 -24875 1596304 00334 -22010 1587964 00334 -19457 1668028 00334 -10004173308 00500 -10580 178312 00500 -24404 1597972 00500 -21145 1589632 00500 -18102 1669696 00500 -09551

1734748 00667 -10409 1784788 00667 -23994 159964 00667 -20181 15913 00667 -16388 1671364 00667 -095001736416 00834 -10438 1786456 00834 -23523 1601308 00834 -19218 1592968 00834 -14835 1673032 00834 -093891738084 01001 -10306 1788124 01001 -23093 1602976 01001 -18296 1594636 01001 -13325 16747 01001 -090981739752 01168 -10117 1789792 01168 -22926 1604644 01168 -17475 1596304 01168 -11777 1676368 01168 -09048174142 01334 -10286 179146 01334 -22319 1606312 01334 -16595 1597972 01334 -10350 1678036 01334 -09000

1743088 01501 -10139 1793128 01501 -21993 160798 01501 -15796 159964 01501 -08886 1679704 01501 -090721744756 01668 -10050 1794796 01668 -21489 1609648 01668 -14939 1601308 01668 -07562 1681372 01668 -088441746424 01835 -10123 1796464 01835 -21144 1611316 01835 -13983 1602976 01835 -06140 168304 01835 -087581748092 02002 -10076 1798132 02002 -20521 1612984 02002 -13028 1604644 02002 -04979 1684708 02002 -08632174976 02168 -10031 17998 02168 -20059 1614652 02168 -12332 1606312 02168 -03939 1686376 02168 -08586

1751428 02335 -10065 1801468 02335 -19735 161632 02335 -11418 160798 02335 -03059 1688044 02335 -083821753096 02502 -10100 1803136 02502 -19354 1617988 02502 -10544 1609648 02502 -02360 1689712 02502 -084971754764 02669 -09975 1804804 02669 -18973 1619656 02669 -09632 1611316 02669 -01860 169138 02669 -084121756432 02836 -09769 1806472 02836 -18353 1621324 02836 -08898 1612984 02836 -01681 1693048 02836 -08108

17581 03002 -09965 180814 03002 -17892 1622992 03002 -08283 1614652 03002 -01322 1694716 03002 -082251759768 03169 -09662 1809808 03169 -17472 162466 03169 -07530 161632 03169 -01363 1696384 03169 -080621761436 03336 -09797 1811476 03336 -17272 1626328 03336 -06837 1617988 03336 -01363 1698052 03336 -078991763104 03503 -09715 1813144 03503 -16773 1627996 03503 -06084 1619656 03503 -01324 169972 03503 -078561764772 03670 -09751 1814812 03670 -16433 1629664 03670 -05609 1621324 03670 -01145 1701388 03670 -07752176644 03836 -09569 181648 03836 -15775 1631332 03836 -05055 1622992 03836 -01065 1703056 03836 -07710

1768108 04003 -09705 1818148 04003 -15317 1633 04003 -04699 162466 04003 -00986 1704724 04003 -077491769776 04170 -09523 1819816 04170 -14978 1634668 04170 -04244 1626328 04170 -01106 1706392 04170 -076261771444 04337 -09600 1821484 04337 -14659 1636336 04337 -03750 1627996 04337 -01026 170806 04337 -073841773112 04504 -09438 1823152 04504 -14161 1638004 04504 -03453 1629664 04504 -00947 1709728 04504 -07422177478 04670 -09476 182482 04670 -13703 1639672 04670 -03216 1631332 04670 -01067 1711396 04670 -07300

1776448 04837 -09553 1826488 04837 -13166 164134 04837 -02920 1633 04837 -01207 1714009 04932 -071601778116 05004 -09689 1828156 05004 -12906 1643008 05004 -02802 1634668 05004 -00988 1714732 05004 -071981779784 05171 -09429 1829824 05171 -12410 1644676 05171 -02604 1636336 05171 -01028 17164 05171 -070371781452 05338 -09348 1831492 05338 -12012 1646344 05338 -02467 1638004 05338 -01029 1718068 05338 -07035178312 05504 -09305 183316 05504 -11674 1648012 05504 -02467 1639672 05504 -00989 1719736 05504 -06914

1784788 05671 -09542 1834828 05671 -11216 164968 05671 -02349 164134 05671 -00909 1721404 05671 -067941786456 05838 -09460 1836496 05838 -10839 1651348 05838 -02270 1643008 05838 -01209 1723072 05838 -066531788124 06005 -09260 1838164 06005 -10560 1653016 06005 -02152 1644676 06005 -01029 172474 06005 -067311789792 06172 -09259 1839832 06172 -10143 1654684 06172 -02192 1646344 06172 -01069 1726408 06172 -06690179146 06338 -09256 18415 06338 -09726 1656352 06338 -02192 1648012 06338 -00910 1728076 06338 -06529

1793128 06505 -09374 1843168 06505 -09567 165802 06505 -02192 164968 06505 -01070 1729744 06505 -065691794796 06672 -09372 1844836 06672 -09150 1659688 06672 -02153 1651348 06672 -01030 1731412 06672 -06369

agex VPP

TRTnn ρβα

minus

+

minus= 022

max lnexpAdsorbents

( )χCP

PPRTEA

dtdC

e

e

minus

minus=

expMetal Hydrides

( )χCRTEA

dtdC

minus=

expChemical Hydrides

Materials Performance Models

bull Materials Data bull Kinetics in the entire P amp T

space anticipated bull Thermodynamic Properties

bull ∆H cp bull Physical Properties

bull ρc ρp κp

Materials Catalogue Developed And Deployed on SharePointreg

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 43: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

43

Storage System Modeling

Adiabatic Wall

Detailed FEM ThermalMass Analysis Lumped Parameter Models

SRNL 200 bar AX-21 Flow-Through

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 44: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

44

System Concepts

44

Flow through reactor

Gas

Liq

uid

Sepa

rato

r

Purif

ier

Fuel Cell

Radi

ator

RecyclePump

TransferPump

FeedPump

Fresh Fuel

Spent Fuel

BladderTank

FreshFuel

SpentFuel

H2

SpentFuel

Fluid Chemical Hydride System

Cryo-Adsorbent System

Metal Hydride System

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 45: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

45 45 45

BoP Catalogue Developed BoP Catalogue on SharePoint

Pressure Relief Device Metal Hydride System Operating Pressure

Burst Pressure Operating Temperature

Volume Weigh Cost

Specific System Design

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through

Page 46: Donald L. Anton - Energy.govHeat Transfer Fluid Loop Fuel Cell Coolant Loop Fuel Cell/Combustor Air Loop . Heat Transfer . Fluid Tank. Dual Vessel Sodium Alanate Design (w. 4 mol%TiCl

46 46

Integrated Model Framework

Vehicle level model

Fuel cell system H2 storage system

SRNL 200 bar AX-21 Flow-Through