dosimetry - medicinsk strålningsfysik, lund · • define the scientific field of dosimetry ......

101
Dosimetry Crister Ceberg Medical Radiation Physics Lund University Sweden

Upload: doduong

Post on 08-Sep-2018

242 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Dosimetry

Crister Ceberg

Medical Radiation Physics

Lund UniversitySweden

Page 2: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Part 1 – Introduction

After this lecture you will be able to:

• Define the scientific field of dosimetry

• Describe the scope of dosimetric quantities

• Outline the content of the following lectures on dosimetry

Page 3: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

The field of dosimetry

• Ionizing radiation may produce biological effects in livingmatter

• Dosimetric quantities are introduced to provide a physical measure to correlate with biological effects

• Dosimetry is concerned with the definition, calculation and measurement of dosimetric quantities

Page 4: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

The scope of dosimetric quantities

Deterministicbiological effect

Dosimetric quantity

Stochasticbiological effect

Dosimetric quantity

Page 5: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

The scope of dosimetric quantities

• Incident ionizing radiation

– Charged particles (e.g. electrons or protons) oruncharged particles (e.g. photons or neutrons)

– Produce ionizations in a medium (directly or indirectly)

– Practical threshold value Eionizing>Ethreshold≈10 eV

Unchargedparticle

Chargedparticle

Page 6: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

The scope of dosimetric quantities

• Conversion of energy (blue blobs)

– Energy is transferred to secondary particles

Unchargedparticle

Chargedparticle

Page 7: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

The scope of dosimetric quantities

• Conversion of energy (blue blobs)

– Energy is transferred to secondary particles

• Deposition of energy (yellow blobs)

– Not re-emitted by ionizing particles

Unchargedparticle

Chargedparticle

Page 8: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Content of the following lectures

• Definitions

– Dosimetric quantities

– ICRU 85

• Calculations

– The product of radiometric quantities and interaction coefficients

– Radiation equilibrium

• Measurements

– Detectors and cavity theory

– Perturbation factors

Page 9: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Summary

• Dosimetry is concerned with the definition, calculation and

measurement of dosimetric quantities

• Dosimetric quantities describe how the energy of ionizing

radiation is converted to secondary particles and deposited in

matter

• In the following lectures we will define dosimetric quantities

and discuss the fundamentals of radiation equilibrium and

cavity theory.

Page 10: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Part 2 – conversion of energy

After this lecture you will be able to:

• Define the dosimetric quantities given in ICRU 85, especially those relating to the conversion of energy

• Perform simple calculations of conversion quantities

Page 11: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Dosimetric quantities and units

• Conversion of energy (blue blobs)

– Kerma

– Exposition

– Cema

Unchargedparticle

Chargedparticle

Page 12: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy transfer

Incomingphoton, ein

Scatteredphoton, e1

Secondaryelectron, e2

Example: Compton scattering

Mean energy transferred: 𝑓𝑖

Page 13: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy transfer

Mean energy transferred: 𝑓𝑖

All interaction types: 𝑓 = 𝑖 𝑓𝑖𝜎𝑖 𝑖 𝜎𝑖

Page 14: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy transfer

Mean energy transferred: 𝑓𝑖

All interaction types: 𝑓 = 𝑖 𝑓𝑖𝜎𝑖 𝑖 𝜎𝑖

𝐸𝑡𝑟 = Φ𝜇𝑉𝜀𝑖𝑛𝑓 = Ψ𝜇

𝜌𝑚𝑓

V

Page 15: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy transfer

Mean energy transferred: 𝑓𝑖

All interaction types: 𝑓 = 𝑖 𝑓𝑖𝜎𝑖 𝑖 𝜎𝑖

𝐸𝑡𝑟 = Φ𝜇𝑉𝜀𝑖𝑛𝑓 = Ψ𝜇

𝜌𝑚𝑓

𝐸𝑡𝑟,𝑛𝑒𝑡 = 𝐸𝑡𝑟 1 − 𝑔

V

Page 16: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Kerma

• The kerma, K, for ionizing uncharged particles, is the quotient of dEtr by dm, where dEtr is the mean sum of the initial kinetic energies of all the charged particles liberated in a mass dm of a material by the uncharged particles incident on dm (ICRU 85, 2011)

• Unit: J kg-1

• Special name: Gy (gray)

𝐾 =𝑑𝐸𝑡𝑟𝑑𝑚

Page 17: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Kerma

𝐸𝑡𝑟 = Ψ𝜇

𝜌𝑚𝑓

𝜇𝑡𝑟𝜌

=𝜇

𝜌𝑓

𝐾 =𝑑𝐸𝑡𝑟𝑑𝑚

= Ψ𝜇𝑡𝑟𝜌

𝐾𝑐𝑜𝑙 = 𝐾 1 − 𝑔 = Ψ𝜇𝑒𝑛𝜌

Page 18: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Kerma

𝐾 = Ψ𝐸

𝜇𝑡𝑟𝜌𝑑𝐸 𝐾𝑐𝑜𝑙 = Ψ𝐸

𝜇𝑒𝑛𝜌

𝑑𝐸

From : www.nist.govFrom: ESM Ali and DWO Rogers,Phys. Med. Biol. 57 (2012)

Ψ𝐸 for a 10 MV beam𝜇𝑒𝑛𝜌

for water

Page 19: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Kerma

𝐾 = Φ𝑘Φ 𝑘Φ= 𝐾 Φ

From: MB Chadwick et al.,Med. Phys. 26 (1999)

𝑘Φ in ICRU−muscle tissue

Page 20: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Kerma rate

• The kerma rate, 𝐾, is the quotient of dK by dt, where dK is the increment of kerma in the time interval dt (ICRU 85, 2011)

• Unit: J kg-1 s-1

• Special name: Gy s-1 (gray per second)

𝐾 =𝑑𝐾

𝑑𝑡

Page 21: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Do you remember?

A water tank is exposed to 1.25 MeV gamma-radiation.At a certain point, the fluence rate is 3.5·109 cm-2s-1.What is the value of Kcol at this point after one hour?

Please write down your answer before moving on to the next page.

Page 22: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Were you right?

A water tank is exposed to 1.25 MeV gamma-radiation.At a certain point, the fluence rate is 3.5·109 cm-2s-1.What is the value of Kcol at this point after one hour?

Solution:Known data:

Ψ = Φ ℎ𝜈 𝑡 = 3.5 ∙ 109𝑐𝑚−2𝑠−1 ∙ 1.25𝑀𝑒𝑉 ∙ 1.6 ∙ 10−13𝐽

𝑀𝑒𝑉∙ 3600𝑠 = 2.520 𝐽𝑐𝑚−2

From www.nist.gov:𝜇𝑒𝑛𝜌

= 2.965 ∙ 10−2𝑐𝑚2𝑔−1 ∙ 1000𝑔

𝑘𝑔= 29.65𝑐𝑚2𝑘𝑔−1

Thus:

𝐾𝑐𝑜𝑙 = Ψ𝜇𝑒𝑛

𝜌= 2.520 𝐽𝑐𝑚−2 ∙ 29.65𝑐𝑚2𝑘𝑔−1 ⇒ 𝐾𝑐𝑜𝑙 = 74.7 𝐺𝑦

Page 23: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Do you remember?

A water tank is exposed to a 14.5 MeV neutron beam.

At a certain point, the kerma is 74.7 Gy.

What is the neutron fluence at this point?

Please write down your answer before moving on to the next page.

Page 24: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Were you right?

A water tank is exposed to a 14.5 MeV neutron beam.

At a certain point, the kerma is 74.7 Gy.

What is the neutron fluence at this point?

Solution:

Known data: 𝐾 = 74.7𝐺𝑦

From Caswell et al., Rad. Res. 83:217, 1980:𝑘Φ = 0.709 ∙ 10−10𝐺𝑦𝑐𝑚2

Thus:

Φ =𝐾

𝑘Φ=

74.7 𝐺𝑦

0.709 ∙ 10−10𝐺𝑦𝑐𝑚2⇒ Φ = 1.05 ∙ 1012𝑐𝑚−2

Page 25: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Exposure

• The exposure, X, is the quotient of dq by dm, where dq is the absolute value of the mean total charge of the ions of one sign produced when all the electrons and positrons liberated or created by photons incident on a mass dm of dry air are completely stopped in dry air (ICRU 85, 2011)

• Unit: C kg-1

𝑋 =𝑑𝑞

𝑑𝑚

Page 26: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Exposure vs. kerma

Mean energy per ion pair: 𝑊

𝑋 =𝑑𝑞

𝑑𝑚=𝑑𝐸𝑡𝑟𝑑𝑚

1 − 𝑔1

𝑊𝑒

= Ψ𝜇𝑡𝑟𝜌

1 − 𝑔1

𝑊𝑒

X = Ψ𝜇𝑒𝑛𝜌

1

𝑊𝑒

= 𝐾𝑎𝑖𝑟,𝑐𝑜𝑙1

𝑊𝑒

𝑊 = 33.97𝑒𝑉

𝑊𝑒 = 33.97 J𝐶−1

Page 27: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Exposure rate

• The exposure rate, 𝑋, is the quotient of dX by dt, where dX is the increment of exposure in the time interval dt (ICRU 85, 2011)

• Unit: C kg-1 s-1

𝑋 =𝑑𝑋

𝑑𝑡

Page 28: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Cema

• The cema, C, for ionizing charged particles, is the quotient of dEel by dm, where dEel is the mean energy lost in electronic interactions in a mass dm of a material by the charged particles, except secondary electrons, incident on dm (ICRU 85, 2011)

• Unit: J kg-1

• Special name: Gy (gray)

𝐶 =𝑑𝐸𝑒𝑙𝑑𝑚

Page 29: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Cema

C=𝑑𝐸𝑒𝑙𝑑𝑚

=Φ𝑆𝑒𝑙𝜌

Example: coulomb interaction

Incomingelectron, ein

Scatteredelectron, e1

Secondaryelectron, e2

Page 30: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Cema

𝐶 = Φ𝐸

𝑆𝑒𝑙𝜌𝑑𝐸 = Φ𝐸

𝐿∞𝜌𝑑𝐸

From : www.nist.govFrom: S Righi et al.,JACMP 14 (2013)

Φ𝐸 for linac electron beams𝑆𝑒𝑙𝜌

for water

Page 31: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Restricted cema

𝐶∆ = Φ′𝐸𝐿∆𝜌𝑑𝐸

e2>D: included in F’E

e2<D: included in LD

Incomingelectron, ein

Scatteredelectron, e1

Secondaryelectron, e2

Example: coulomb interaction

Page 32: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Cema rate

• The cema rate, 𝐶, is the quotient of dC by dt, where dC is the increment of cema in the time interval dt (ICRU 85, 2011)

• Unit: J kg-1 s-1

• Special name: Gy s-1 (gray per second)

𝐶 =𝑑𝐶

𝑑𝑡

Page 33: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Summary

• Conversion of energy takes place when energy of primary

particles is transferred to secondary particles

• Three important dosimetric quantities defined in the ICRU

report 85 for conversion of energy

– Kerma

– Exposure

– Cema

• The restricted cema is applicable when the energy transport

with high-energy delta particles cannot be disregarded

Page 34: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Part 3 – deposition of energy

After this lecture you will be able to:

• Define the dosimetric quantities given in ICRU 85, especially those relating to the deposition of energy

• Perform simple calculations of deposition quantities

Page 35: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Dosimetric quantities and units

• Deposition of energy (yellow blobs)– Energy deposit

– Energy imparted

– Absorbed dose

Unchargedparticle

Chargedparticle

Page 36: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy deposit

• The energy deposit, 𝜀𝑖, is the energy deposited in a single interaction, i,

where 𝜀𝑖𝑛 is the energy of the incident ionizing particle (excluding rest energy), 𝜀𝑜𝑢𝑡 is the sum of the energies of all charged and uncharged ionizing particles leaving the interaction (excluding rest energy), and Q is the change in rest energies of the nucleus and of all elementary particles involved in the interaction (ICRU 85, 2011)

• Unit: J

𝜀𝑖 = 𝜀𝑖𝑛 − 𝜀𝑜𝑢𝑡 + 𝑄

Page 37: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy deposit

Incomingelectron, ein

Scatteredelectron, e1

Secondaryelectron, e2

Example: coulomb interaction, Q=0

𝜀𝑖 = 𝜀𝑖𝑛 − 𝜀𝑜𝑢𝑡 + 𝑄

Page 38: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy deposit

Incomingelectron, ein

Scatteredelectron, e1

Secondaryelectron, e2

hn

EA

𝜀𝑖 = 𝜀𝑖𝑛 − 𝜀𝑜𝑢𝑡 + 𝑄𝜀𝑖 = 𝜀𝑖𝑛 − 𝜀1 + 𝜀2 + ℎ𝜈 + 𝐸𝐴

Example: coulomb interaction, Q=0

Page 39: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy deposit

• Energy deposit may appear as– Visible light

– Chemical bindning energy

– Heat

• Stochastic quantity– Subject to random fluctuations

– Associated with a probability distribution

Page 40: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy imparted

• The energy imparted, 𝜀, to the matter in a given volume is the sum of all energy deposits in the volume

where the summation is performed over all energy deposits, 𝜀𝑖, in that volume (ICRU 85, 2011)

• Unit: J

𝜀 =

𝑖

𝜀𝑖

Page 41: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy imparted

𝜀 =

𝑖

𝜀𝑖

𝜀 =

𝑖

𝜀𝑖𝑛 −

𝑖

𝜀𝑜𝑢𝑡 +

𝑖

𝑄

Page 42: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy imparted

e

f(e)

e

Page 43: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy imparted

𝜀 = 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡 + Σ𝑄Rin Rout

Page 44: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy imparted

Ψ𝑑 𝐴

𝜀 = 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡 + Σ𝑄

𝜀 = − Ψ𝑑 𝐴 + Σ𝑄

𝜀 = − 𝑑𝑖𝑣Ψ𝑑𝑉 + Σ𝑄

Page 45: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Energy imparted

Ψ𝑑 𝐴

𝜀 = 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡 + Σ𝑄

𝜀 = − Ψ𝑑 𝐴 + Σ𝑄

𝜀 = − 𝑑𝑖𝑣Ψ𝑑𝑉 + Σ𝑄

𝑑 𝜀

𝑑𝑚= −

1

𝜌𝑑𝑖𝑣Ψ +

1

𝜌

𝑑(Σ𝑄)

𝑑𝑉

Page 46: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Do you remember?

A 6 MeV photon interacts by compton scattering in a given volume. The secondary electron spend half its kinetic energy in electroniccollisions and one fourth in radiation losses. The scattered photoncarries 4 MeV when it escapes the volume. What are the values ofenergy transfer, net energy transfer, and energy imparted?

Please write down your answer before moving on to the next page.

Page 47: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Were you right?

A 6 MeV photon interacts by compton scattering in a given volume. The secondary electron spend half its kinetic energy in electroniccollisions and one fourth in radiation losses. The scattered photoncarries 4 MeV when it escapes the volume. What are the values ofenergy transfer, net energy transfer, and energy imparted?

Solution:

𝜀𝑖𝑛 = 6𝑀𝑒𝑉

𝜀𝑜𝑢𝑡,1 = 4𝑀𝑒𝑉

𝐸𝑡𝑟 = 2𝑀𝑒𝑉

Page 48: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Were you right?

A 6 MeV photon interacts by compton scattering in a given volume. The secondary electron spend half its kinetic energy in electroniccollisions and one fourth in radiation losses. The scattered photoncarries 4 MeV when it escapes the volume. What are the values ofenergy transfer, net energy transfer, and energy imparted?

Solution:

𝜀𝑖𝑛 = 6𝑀𝑒𝑉

𝜀𝑜𝑢𝑡,1 = 4𝑀𝑒𝑉

0.5 𝑀𝑒𝑉

𝐸𝑡𝑟 = 2𝑀𝑒𝑉𝐸𝑡𝑟,𝑛𝑒𝑡 = 1.5 𝑀𝑒𝑉

Page 49: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Were you right?

A 6 MeV photon interacts by compton scattering in a given volume. The secondary electron spend half its kinetic energy in electroniccollisions and one fourth in radiation losses. The scattered photoncarries 4 MeV when it escapes the volume. What are the values ofenergy transfer, net energy transfer, and energy imparted?

Solution:

𝜀𝑖𝑛 = 6𝑀𝑒𝑉

𝜀𝑜𝑢𝑡,1 = 4𝑀𝑒𝑉

1 𝑀𝑒𝑉

0.5 𝑀𝑒𝑉𝜀𝑜𝑢𝑡,2 = 0.5 𝑀𝑒𝑉

𝐸𝑡𝑟 = 2𝑀𝑒𝑉𝐸𝑡𝑟,𝑛𝑒𝑡 = 1.5 𝑀𝑒𝑉

𝜀 = 1.0 𝑀𝑒𝑉

Page 50: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Absorbed dose

• The absorbed dose, D, is the quotient of 𝑑 𝜀 by dm, where 𝑑 𝜀is the mean energy imparted by ionizing radiation to matter of mass dm (ICRU 85, 2011)

• Unit: J kg-1

• Special name: Gy (gray)

𝐷 =𝑑 𝜀

𝑑𝑚

Page 51: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Absorbed dose rate

• The absorbed dose rate, 𝐷, is the quotient of dD by dt, where dD is the increment of absorbed dose in the time interval dt(ICRU 85, 2011)

• Unit: J kg-1 s-1

• Special name: Gy s-1 (gray per second)

𝐷 =𝑑𝐷

𝑑𝑡

Page 52: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Summary

• Deposition of energy takes place when energy is locally

absorbed

• Three important dosimetric quantities defined in the ICRU

report 85 for deposition of energy

– Energy deposit

– Energy imparted

– Absorbed dose

• There is a close relation between radiation transport and

dosimetry

Page 53: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Part 4 – radiation equilibrium

After this lecture you will be able to:

• Define different types of radiation equilibrium and discuss its consequences for absorbed dose calculations

• Perform simple calculations of absorbed dose under different types of radiation equilibrium

Page 54: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Radiation equilibrium

Rin Rout 𝑅𝑖𝑛 = 𝑅𝑜𝑢𝑡 (𝑑𝑖𝑣 Ψ = 0)

Page 55: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Radiation equilibrium

Rin Rout 𝑅𝑖𝑛 = 𝑅𝑜𝑢𝑡 𝑑𝑖𝑣 Ψ = 0

𝜀 = 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡 + Σ𝑄

⇒ 𝐷 =𝑑 𝜀

𝑑𝑚=1

𝜚

𝑑(Σ𝑄)

𝑑𝑉

Page 56: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Radiation equilibrium

Rin Rout 𝑅𝑖𝑛 = 𝑅𝑜𝑢𝑡 (𝑑𝑖𝑣 Ψ = 0)

Distance greater thanrange of particle

Page 57: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Radiation equilibrium

𝑅𝑖𝑛 = 𝑅𝑜𝑢𝑡 (𝑑𝑖𝑣 Ψ = 0)

𝑅𝑖𝑛,𝑖 = 𝑅𝑜𝑢𝑡,𝑖 𝑑𝑖𝑣 Ψ𝑖 = 0

Distance greater thanrange of particle i

Rin Rout

Page 58: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Partial radiation equilibrium

Charged particle equilibrium (CPE): 𝑅𝑖𝑛,𝑐 = 𝑅𝑜𝑢𝑡,𝑐 𝑑𝑖𝑣 Ψ𝑐 = 0

d-particle equilibrium: 𝑅𝑖𝑛,𝛿= 𝑅𝑜𝑢𝑡,𝛿 (𝑑𝑖𝑣 Ψ𝛿 = 0)

Partial d-particle equilibrium: 𝑅𝑖𝑛,𝛿,Δ = 𝑅𝑜𝑢𝑡,𝛿,Δ (𝑑𝑖𝑣 Ψ𝛿,Δ = 0)

Page 59: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Charged particle equilibrium (CPE)

Incoming beam ofuncharged particles

Page 60: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Charged particle equilibrium (CPE)

Incoming beam ofuncharged particles

𝑅𝑖𝑛,𝑢

𝑅𝑜𝑢𝑡,𝑢

𝑅𝑖𝑛,𝑐

𝑅𝑜𝑢𝑡,𝑐

𝜀 ≈ 𝐸𝑡𝑟

Distance greater thanrange of charged particles

Page 61: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Charged particle equilibrium (CPE)

Distance greater thanrange of charged particles

Incoming beam ofuncharged particles

𝑅𝑖𝑛,𝑢

𝑅𝑜𝑢𝑡,𝑢,𝑟𝑎𝑑

𝜀 = 𝐸𝑡𝑟 − 𝑅𝑜𝑢𝑡,𝑢,𝑟𝑎𝑑

𝑅𝑜𝑢𝑡,𝑢,𝑛𝑜𝑛𝑟𝑎𝑑

𝑅𝑜𝑢𝑡,𝑢𝑅𝑖𝑛,𝑐

𝑅𝑜𝑢𝑡,𝑐

Page 62: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Charged particle equilibrium (CPE)

𝜀 = 𝑅𝑖𝑛,𝑢 + 𝑅𝑖𝑛,𝑐 − 𝑅𝑜𝑢𝑡,𝑢 − 𝑅𝑜𝑢𝑡,𝑐 + Σ𝑄

𝑅𝑖𝑛,𝑐 = 𝑅𝑜𝑢𝑡,𝑐

𝜀 = 𝑅𝑖𝑛,𝑢 − 𝑅𝑜𝑢𝑡,𝑢 + Σ𝑄

𝜀 = 𝑅𝑖𝑛,𝑢 − 𝑅𝑜𝑢𝑡,𝑢,𝑛𝑜𝑛𝑟𝑎𝑑 − 𝑅𝑜𝑢𝑡,𝑢,𝑟𝑎𝑑 + Σ𝑄

𝜀 = 𝐸𝑡𝑟 − 𝑅𝑜𝑢𝑡,𝑢,𝑟𝑎𝑑

𝜀 = 𝐸𝑡𝑟(1 − 𝑔)

Page 63: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Charged particle equilibrium (CPE)

𝐷 =𝑑 𝜀

𝑑𝑚=𝑑𝐸𝑡𝑟𝑑𝑚

1 − 𝑔 = 𝐾 1 − 𝑔

𝐷 = 𝐾𝑐𝑜𝑙

Page 64: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Charged particle equilibrium (CPE)

DepthDepthRange ofcharged particle

Collision kerma, Kcol

Absorbed dose, D

Without attenuation With attenuation

Range ofcharged particle

Page 65: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Charged particle equilibrium (CPE)

Depth

Collision kerma, Kcol

Absorbed dose, D

With attenuation

d

𝐷 𝑑 = 𝐾𝑐𝑜𝑙 𝑑 − 𝑥

𝐾𝑐𝑜𝑙 𝑑 = 𝐾𝑐𝑜𝑙 𝑑 − 𝑥 𝑒−𝜇 𝑥

𝐷 𝑑 = 𝐾𝑐𝑜𝑙 𝑑 𝑒𝜇 𝑥

𝐷 𝑑 = 𝐾𝑐𝑜𝑙 𝑑 (1 + 𝜇 𝑥)

𝑥

Page 66: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Charged particle interactions

𝜀 =

𝑖

𝜀𝑖

𝜀 = 𝑁1

𝑁

𝑖

𝜀𝑖 = 𝑁 𝜀𝑖

𝜀 = 𝑁 𝜀𝑖

Page 67: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Charged particle interactions

𝐷 =𝑑 𝜀

𝑑𝑚=𝑑 𝑁

𝑑𝑚 𝜀𝑖

𝑑 𝑁

𝑑𝑚= Φ

𝑁𝐴𝑀𝜎

𝐷 = Φ𝑁𝐴𝑀𝜎 𝜀𝑖

Page 68: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Charged particle interactions

𝐷 =𝑑 𝜀

𝑑𝑚=𝑑 𝑁

𝑑𝑚 𝜀𝑖

𝑑 𝑁

𝑑𝑚= Φ

𝑁𝐴𝑀𝜎

𝐷 = Φ𝑁𝐴𝑀𝜎 𝜀𝑖

𝐷 = Φ𝑆𝑒𝑙𝜌𝑘

Page 69: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Delta-particle equilibrium

Distance greater thanrange of delta particles

𝑅𝑖𝑛,𝑐

𝑅𝑜𝑢𝑡,𝑐

𝑅𝑖𝑛,𝛿

𝑅𝑜𝑢𝑡,𝛿

𝑘 = 1

Charged particlefluence

Page 70: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Delta-particle equilibrium

𝐷 = Φ𝑆𝑒𝑙𝜌𝑘 = Φ

𝑆𝑒𝑙𝜌

𝐷 = 𝐶

k=1

Page 71: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Partial delta-particle equilibrium

Distance greater thanrange of slow delta particles

Charged particlefluence

𝑅𝑖𝑛,𝑐

𝑅𝑜𝑢𝑡,𝑐

𝑅𝑖𝑛,𝛿,∆

𝑅𝑜𝑢𝑡,𝛿,∆

𝑘 < 1

Page 72: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Partial delta-particle equilibrium

𝐷 = Φ𝑆𝑒𝑙𝜌𝑘 = Φ′

𝐿∆𝜌

𝐷 = 𝐶∆

k<1

Page 73: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Do you remember?

A water tank is exposed to 1.25 MeV gamma-radiation.At a certain point, the fluence is 2.1·1011 cm-2.Assuming CPE, what is the absorbed dose at this point?

Please write down your answer before moving on to the next page.

Page 74: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Were you right?

A water tank is exposed to 1.25 MeV gamma-radiation.At a certain point, the fluence is 2.1·1011 cm-2.Assuming CPE, what is the absorbed dose at this point?

Solution:Known data:

Ψ = Φ ℎ𝜈 = 2.1 ∙ 1011𝑐𝑚−2𝑠−1 ∙ 1.25𝑀𝑒𝑉 ∙ 1.6 ∙ 10−13𝐽

𝑀𝑒𝑉= 4.20 ∙ 10−2𝐽𝑐𝑚−2

From www.nist.gov:𝜇𝑒𝑛𝜌

= 2.965 ∙ 10−2𝑐𝑚2𝑔−1 ∙ 1000𝑔

𝑘𝑔= 29.65𝑐𝑚2𝑘𝑔−1

Given that CPE exists, we get:

𝐷 = 𝐾𝑐𝑜𝑙 = Ψ𝜇𝑒𝑛

𝜌= 4.20 ∙ 10−2𝐽𝑐𝑚−2 ∙ 29.65𝑐𝑚2𝑘𝑔−1 ⇒ 𝐷 = 1.25 𝐺𝑦

Page 75: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Do you remember?

A thin disc of lithium fluoride (LiF) is irradiated by an electronfluence of 4.1·109 cm-2 with energy 6 MeV. Assuming delta-particle equilibrium, what is the absorbed dose in the disc?

Please write down your answer before moving on to the next page.

Page 76: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Were you right?

A thin disc of lithium fluoride (LiF) is irradiated by an electronfluence of 4.1·109 cm-2 with energy 6 MeV. Assuming delta-particle equilibrium, what is the absorbed dose in the disc?

Solution:

Known data: Φ = 4.1 ∙ 109𝑐𝑚−2

From www.nist.gov:𝑆𝑒𝑙𝜌

= 1.547 𝑀𝑒𝑉𝑐𝑚2𝑔−1 ∙ 1000𝑔

𝑘𝑔∙ 1.6 ∙ 10−13

𝐽

𝑀𝑒𝑉= 2.48 ∙ 10−10 𝐽𝑐𝑚2 𝑘𝑔−1

Given that delta-particle equilibrium exists, we get:

D = C = Φ𝑆𝑒𝑙

𝜌= 4.1 ∙ 109𝑐𝑚−2 ∙ 2.48 ∙ 10−10 𝐽𝑐𝑚2 𝑘𝑔−1 ⇒ 𝐷 = 1.02 𝐺𝑦

Page 77: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Summary

• Radiation equilibrium can only be approximate in a medium

exposed to external irradiation

• Different types of partial radiation equilibrium have important

consequences for absorbed dose calculations

– Charged particle equilbrium (CPE)

– Delta-particle equilibrium

– Partial delta-particle equilibrium

• Unless CPE exists, absorbed dose calculations need to account

for charged particle interactions

Page 78: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Part 5 – Cavity theory

After this lecture you will be able to:

• Discuss absorbed dose measurements in the context of cavity theory

• Describe ideal cases of large and small cavities, and discuss the case of mid-size cavities in terms of charged particle fluence

• Perform simple calculations based on the Bragg-Gray theory

• Describe the particular case of a gas-filled ion chamber, and explain the concept of perturbation factor

Page 79: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Cavity theory

Incoming beam ofionizing particles

𝐷𝑚𝑒𝑑

Page 80: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Cavity theory

Incoming beam ofionizing particles

𝐷𝑑𝑒𝑡 = 𝑐𝑀

Page 81: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Cavity theory

Incoming beam ofionizing particles

𝐷𝑚𝑒𝑑 = 𝐷𝑑𝑒𝑡𝐷𝑚𝑒𝑑

𝐷𝑑𝑒𝑡

Page 82: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Ideal case – large detector

Charged particle equilibrium (CPE): 𝐷 = 𝐾𝑐 = Ψ𝜇𝑒𝑛

𝜌

𝐷𝑚𝑒𝑑

𝐷𝑑𝑒𝑡=

Ψ𝑚𝑒𝑑𝜇𝑒𝑛𝜌

𝑚𝑒𝑑

Ψ𝑑𝑒𝑡𝜇𝑒𝑛𝜌

𝑑𝑒𝑡

Incoming beam ofionizing particles

Page 83: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Ideal case – large detector

Charged particle equilibrium (CPE): 𝐷 = 𝐾𝑐 = Ψ𝜇𝑒𝑛

𝜌

𝐷𝑚𝑒𝑑

𝐷𝑑𝑒𝑡=

Ψ𝑚𝑒𝑑𝜇𝑒𝑛𝜌

𝑚𝑒𝑑

Ψ𝑑𝑒𝑡𝜇𝑒𝑛𝜌

𝑑𝑒𝑡

Incoming beam ofionizing particles

Page 84: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Ideal case – large detector

Charged particle equilibrium (CPE): 𝐷 = 𝐾𝑐 = Ψ𝜇𝑒𝑛

𝜌

𝐷𝑚𝑒𝑑

𝐷𝑑𝑒𝑡=

Ψ𝑚𝑒𝑑𝜇𝑒𝑛𝜌

𝑚𝑒𝑑

Ψ𝑑𝑒𝑡𝜇𝑒𝑛𝜌

𝑑𝑒𝑡

=

𝜇𝑒𝑛𝜌

𝑚𝑒𝑑

𝜇𝑒𝑛𝜌

𝑑𝑒𝑡

≡𝜇𝑒𝑛𝜌

𝑑𝑒𝑡

𝑚𝑒𝑑

Samefluence

Incoming beam ofionizing particles

Page 85: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Ideal case – small detector

Incoming beam ofionizing particles

Delta-particle equilibrium: 𝐷 = 𝐶 = Φ𝑆𝑒𝑙

𝜌

𝐷𝑚𝑒𝑑

𝐷𝑑𝑒𝑡=

Φ𝑚𝑒𝑑𝑆𝑒𝑙𝜌

𝑚𝑒𝑑

Φ𝑑𝑒𝑡𝑆𝑒𝑙𝜌

𝑑𝑒𝑡

Page 86: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Ideal case – small detector

Incoming beam ofionizing particles

Delta-particle equilibrium: 𝐷 = 𝐶 = Φ𝑆𝑒𝑙

𝜌

𝐷𝑚𝑒𝑑

𝐷𝑑𝑒𝑡=

Φ𝑚𝑒𝑑𝑆𝑒𝑙𝜌

𝑚𝑒𝑑

Φ𝑑𝑒𝑡𝑆𝑒𝑙𝜌

𝑑𝑒𝑡

=

𝑆𝑒𝑙𝜌

𝑚𝑒𝑑

𝑆𝑒𝑙𝜌

𝑑𝑒𝑡

≡𝑆𝑒𝑙𝜌

𝑑𝑒𝑡

𝑚𝑒𝑑

Samefluence

Page 87: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Electron fluence – large detector

Attenuation of primary beam is neglected

DepthFtotal

Fmed

Fdet

Medium Detector Medium

Page 88: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Electron fluence – small detector

Depth

Attenuation of primary beam is neglected

Medium Detector Medium

Ftotal

Fmed

Fdet

Page 89: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Electron fluence – mid-size detector

Depth

Attenuation of primary beam is neglected

Medium Detector Medium

Ftotal

Fmed

Fdet

Page 90: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Practical application – ion chamber

Incoming beam ofionizing particles

Page 91: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Practical application – ion chamber

Incoming beam ofionizing particles

𝐷𝑑𝑒𝑡 =𝑀

𝜌𝑉 𝑊𝑒

Page 92: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Do you remember?

An air-filled ion chamber is exposed to 1.25 MeV gamma radiation and the collected charge is 11.55 nC. The gas volume is 0.1 cm3, and the polystyrene wall is thicker than the range of the secondary chargedparticles. Assuming the Bragg-Gray condition is fulfilled, what is the absorbed dose in the adjacent polystyrene wall?

Please write down your answer before moving on to the next page.

Page 93: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Were you right?

An air-filled ion chamber is exposed to 1.25 MeV gamma radiation and the collected charge is 11.55 nC. The gas volume is 0.1 cm3, and the polystyrene wall is thicker than the range of the secondary chargedparticles. Assuming the Bragg-Gray condition is fulfilled, what is the absorbed dose in the adjacent polystyrene wall?

Solution

Known data:

𝑀 = 11.55 ∙ 10−9 𝐶𝑉 = 0.1 𝑐𝑚3

𝜌 = 1.293 ∙ 10−6𝑘𝑔𝑐𝑚3

𝑊𝑒 = 33.97 J𝐶−1

⇒ 𝐷𝑑𝑒𝑡 =𝑀

𝜌𝑉 𝑊𝑒 =3.03 𝐺𝑦

Page 94: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Were you right?

An air-filled ion chamber is exposed to 1.25 MeV gamma radiation and the collected charge is 11.55 nC. The gas volume is 0.1 cm3, and the polystyrene wall is thicker than the range of the secondary chargedparticles. Assuming the Bragg-Gray condition is fulfilled, what is the absorbed dose in the adjacent polystyrene wall?

Solution

From www.nist.gov:𝑓 = 0.467

𝐸𝑒 =1

2ℎ𝜈 𝑓 =

1

21.25 𝑀𝑒𝑉 0.467 = 292 𝑘𝑒𝑉

𝑆𝑒𝑙𝜌

𝑑𝑒𝑡

= 2.11 𝑀𝑒𝑉𝑐𝑚2𝑔−1

𝑆𝑒𝑙𝜌

𝑚𝑒𝑑

= 2.34 𝑀𝑒𝑉𝑐𝑚2𝑔−1

Page 95: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Were you right?

An air-filled ion chamber is exposed to 1.25 MeV gamma radiation and the collected charge is 11.55 nC. The gas volume is 0.1 cm3, and the polystyrene wall is thicker than the range of the secondary chargedparticles. Assuming the Bragg-Gray condition is fulfilled, what is the absorbed dose in the adjacent polystyrene wall?

SolutionGiven that the Bragg−Gray condition is fulfilled:

𝐷𝑚𝑒𝑑

𝐷𝑑𝑒𝑡=

𝑆𝑒𝑙

𝜌 𝑑𝑒𝑡

𝑚𝑒𝑑⇒ 𝐷𝑚𝑒𝑑 = 3.03 𝐺𝑦

2.34

2.11⇒ 𝐷𝑚𝑒𝑑 = 3.36 𝐺𝑦

Page 96: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Ion chamber dosimetry

𝐷 = 𝐶∆ = Φ′𝐸𝐿∆𝜌𝑑𝐸

𝐷𝑑𝑒𝑡 =

Δ

𝐸𝑚𝑎𝑥

Φ′𝐸,𝑑𝑒𝑡𝐿Δ𝜌

𝑑𝑒𝑡

𝑑𝐸 + Φ′𝐸,𝑑𝑒𝑡(Δ)Δ

𝑆𝑒𝑙𝜌

𝑑𝑒𝑡

Page 97: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Ion chamber dosimetry

𝐷𝑚𝑒𝑑

𝐷𝑑𝑒𝑡=

Δ𝐸𝑚𝑎𝑥Φ′𝐸,𝑚𝑒𝑑

𝐿Δ𝜌 𝑚𝑒𝑑

𝑑𝐸 +Φ′𝐸,𝑚𝑒𝑑(Δ)Δ

𝑆𝑒𝑙𝜌 𝑚𝑒𝑑

Δ𝐸𝑚𝑎𝑥Φ′𝐸,𝑑𝑒𝑡

𝐿Δ𝜌

𝑑𝑒𝑡𝑑𝐸 +Φ′

𝐸,𝑑𝑒𝑡(Δ)Δ𝑆𝑒𝑙𝜌

𝑑𝑒𝑡

Page 98: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Ion chamber dosimetry

𝐷𝑚𝑒𝑑

𝐷𝑑𝑒𝑡=

Δ𝐸𝑚𝑎𝑥Φ′𝐸,𝑚𝑒𝑑

𝐿Δ𝜌 𝑚𝑒𝑑

𝑑𝐸 +Φ′𝐸,𝑚𝑒𝑑(Δ)Δ

𝑆𝑒𝑙𝜌 𝑚𝑒𝑑

Δ𝐸𝑚𝑎𝑥Φ′𝐸,𝑑𝑒𝑡

𝐿Δ𝜌

𝑑𝑒𝑡𝑑𝐸 +Φ′

𝐸,𝑑𝑒𝑡(Δ)Δ𝑆𝑒𝑙𝜌

𝑑𝑒𝑡

𝑆𝑚𝑒𝑑,𝑑𝑒𝑡 =

Δ𝐸𝑚𝑎𝑥Φ′𝐸,𝑚𝑒𝑑

𝐿Δ𝜌 𝑚𝑒𝑑

𝑑𝐸 + Φ′𝐸,𝑚𝑒𝑑(Δ)Δ

𝑆𝑒𝑙𝜌 𝑚𝑒𝑑

Δ𝐸𝑚𝑎𝑥Φ′𝐸,𝑚𝑒𝑑

𝐿Δ𝜌

𝑑𝑒𝑡𝑑𝐸 + Φ′

𝐸,𝑚𝑒𝑑(Δ)Δ𝑆𝑒𝑙𝜌

𝑑𝑒𝑡

Page 99: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Ion chamber dosimetry

𝐷𝑚𝑒𝑑

𝐷𝑑𝑒𝑡= 𝑆𝑚𝑒𝑑,𝑑𝑒𝑡 𝑝

𝑆𝑚𝑒𝑑,𝑑𝑒𝑡 =

Δ𝐸𝑚𝑎𝑥Φ′𝐸,𝑚𝑒𝑑

𝐿Δ𝜌

𝑚𝑒𝑑𝑑𝐸 + Φ′

𝐸,𝑚𝑒𝑑(Δ)Δ𝑆𝑒𝑙𝜌

𝑚𝑒𝑑

Δ𝐸𝑚𝑎𝑥Φ′𝐸,𝑚𝑒𝑑

𝐿Δ𝜌 𝑑𝑒𝑡

𝑑𝐸 + Φ′𝐸,𝑚𝑒𝑑(Δ)Δ

𝑆𝑒𝑙𝜌 𝑑𝑒𝑡

𝑝 =

Δ𝐸𝑚𝑎𝑥Φ′𝐸,𝑚𝑒𝑑

𝐿Δ𝜌

𝑑𝑒𝑡𝑑𝐸 + Φ′

𝐸,𝑚𝑒𝑑(Δ)Δ𝑆𝑒𝑙𝜌

𝑑𝑒𝑡

Δ𝐸𝑚𝑎𝑥Φ′𝐸,𝑑𝑒𝑡

𝐿Δ𝜌 𝑑𝑒𝑡

𝑑𝐸 + Φ′𝐸,𝑑𝑒𝑡(Δ)Δ

𝑆𝑒𝑙𝜌 𝑑𝑒𝑡

Page 100: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Ion chamber dosimetry

𝐷𝑚𝑒𝑑

𝐷𝑑𝑒𝑡= 𝑠𝑚𝑒𝑑,𝑑𝑒𝑡 𝑝

𝐷𝑑𝑒𝑡 =𝑀

𝜌𝑉 𝑊𝑒

𝐷𝑚𝑒𝑑 =𝑀

𝜌𝑉 𝑊𝑒 𝑠𝑚𝑒𝑑,𝑑𝑒𝑡 𝑝

Page 101: Dosimetry - Medicinsk strålningsfysik, Lund · • Define the scientific field of dosimetry ... –ICRU 85 • Calculations –The product of radiometric quantities and interaction

Summary

• A radiation detector forms a cavity in the medium

• Cavity theory deals with the conversion of absorbed dose in

the detector to absorbed dose in the medium

• While ideal cases are illustrative, the effect on the particle

fluence of a real detector needs to be taken inte account

• This can be accounted for through the concept of

perturbation factors