Transcript
untitled--(VLS)
Hirabayashi O2-C2H2



22~25 °C
3-1 ASTeX

(secondary
85
X-ray
k 15 kV 1.5 nm
(2)



86
TEM
(chemical
EFTEM)
Gatan image filter (GIF)
87

2000

SEM Raman
Ni 10-6
Torr~1 Å/sec
88
stub
tuner
5 min
1000 W 60 Torr
(optical pyrometer) 1130 oC
(9 sccm) 291 sccm
3 % 5 min 2 hr

30 min

TEM
10 µm
{100}{111}
3-2(a-d) SEM
90
3-3 (a)(b)
91
HFCVD 3-5
( 3-3)
cm-1 peak sp2 1136 cm-1
peak paek
(nanocrystalline diamond)

3-7(a) 3-7(b) SEM Raman
1350 cm-1 1580 cm-1(disorder carbon)
(crystalline graphite) 3-8(a)
92
G1
262 eV sp2
sp2 sp3

sp2 sp3 100
sp2 sp2
2000
3000
4000
5000
6000
7000
8000
9000
200
400
600
800
1000
1200
In te
ns ity
Fig 3-6(b)
disorder carbon
(b) C KVV a b
c(Highly oriented pyrolytic graphite)[16]
96
3.3.3

EDS
3-9(b)
<0001><0001>
3-10<111><0001> (
P63/mmc a = 2.52 Å ;c = 4.12 Å)<0001> (
P63/mmc a = 2.47 Å ; c = 6.93 Å)
3-2 3-10 3-2

{ }1010
98
DIFFRACTION
SPOT
3-2
0011 2.182 Å Hexagonal Diamond
1021 1.260 Å 0112 1.235 Å
0011 2.139 Å Graphite 1021 1.235 Å
100
()
3-11(b)
) 3-4
>< 2110 1110 B
d
<111> 10.03o >< 4110 <0001> 9.03o
10o >< 4110
<0001> 14.83o B
<121><111> 19.47o
>< 2110 <0001> 17.64o
(19.5o) >< 2110 <0001>
27.91o
(shape effect)(
)
(

<121> >< 2110
B d c
d 1110 c 1021
1021 1110
c 220 d 111
111
(A axis B axis)
A axis :
B axis :
CUBIC DIAMOND
1021 1.260 Å 613.65 Hexagonal Diamond
1220 1.055 Å 8.49 1110 2.044 Å 13.37
1021 1.235 Å 17.3 Graphite 1220 1.057 Å 1.64
106
3-13(a) 3-13(b)) 3-13(a)<323><121>
<111><111>
<202> TEM
<323><121>
<323>
<121> >< 4110
>< 2110 <0001>
<111>

High order
order Laue zone (FOLZ) Laue circle
FOLZ ZOLZ

(H)d FOLZ ZOLZ(R) Laue circle
[4]
{0001}[111][0001]
CBED
FOLZ Ewald sphere
(R) FOLZ ZOLZ 6.22
Å 3-16 (a)<111>
FOLZ ZOLZ 6.18 Å 3-16 (b)
0001 FOLZ
ZOLZ 6.93 Å CBED

1021 3-11(b) B d
c CBED
FOLZ ZOLZ
[111] 3m
[0001] 6m 3-15(b) m
pattern
108


109
Laue circle
m
(b) 0001
(twin)
{ }2243/1 (Forbiddem diffraction spots) [5]
forbidden diffraction
FCC(


180o(

3-19<111><123>3-20(a-f)
( 3-20(a))[111]
[121]( 3-20(b-c))[231]
113
3-20(d))(matrix)(twin)
()

Wang[8]



(SAD) FOLZ
<121>
3-18 (a)[231](b)
[231] (*)(double
(c)[121](d)[231](e)[231]
111 (f) [231]
T111
EwaldEwald spheresphere

(bulk plasmon) 23 eV
(shoulder)(surface plasmon) sp2
[9] log-ratio
(low energy loss region)
I0 I0
Diffraction mode (image-coupled mode)camera length 150
mm Philips Tecnai 20GIF camera length
150 mm GIF(collection angle; β) 3.9 mrad
(λ)[18]
)/2ln( )/(106
0 )511/1( 1022/1
λ = 156 nmλ Iu Io
(3) 30 nm
SEM( 3-3)
( 3-23) [10-11]
EELS

log-ratio Zero loss peak Low energy
loss EFTEM GIF
log-ratio (elastic
image)(energy slit width) 5 eV
(unfiltered image low energy loss
) 3-24(a-e)



120 nm 6 nm
24~30 nm
<110> 60o
[231]


121
image(c) thickness mapping image(d)(e)
3-24(c) ab cd

57.6
220 {220}
{220}
123
Moiré fringe?
{ }0211 {220} 0.02 Å
{220}{ }0211 (3)Moiré fringe
54.7 Å
Moiré fringe
[111]dia//[0001]g ( )dia202 // ( )g0121 Evans

[111]dia//[0001]g ( )dia202 // ( )g0121 [12]
Lambrecht, Li Jungnickel
[13-15]

3-27
HRTEM
3-28(a-d)[111]
3-28 (b) 20 min
124
210 min
( 3-28(d))

126
3-28 (a) 0 min(b) 20 min(c) 90
min(d) 210 minMoiré fringe

128
3-29 (b)[110]
20 nm 3-29 (b)

111T
( 3-29 (d))
{111}/{001}
3-29 (e) TEM
3-29(a)
3-30(a) 3-29 (a)
ab c
129
3-30 (b)
3-30 (c)(

HRTEM HRTEM

{111}
(100)/(111)
[1-3](100)/(111)
3-29 (b)
(
{ }2243/1
([111] ZOLZ)
[111] { }2243/1

131
]101[ (c)(d)
3-29 (a) (e)
{111}/{001}
[111] ZOLZ FOLZ
[111] { }2243/1
]011[ ZOLZ
60 Torr 3 % 2

SEM


(pin hole)


136
1000 w 60 Torr 3 % 15
min30 min 60 min 3-35 15 min

{001}
3-39(a-c)
(
3-40 (a-c)

(roughening)




3-36()
{001}
3-41(c)


{100} CVD
{111}{100}()
Wang [8] TEM
{111}
{100}
SEM (b)
SEM
143
144

SEM
(b)
(c)
( 3-43(a)){001}{001}

153
{100}(b)


155
[110] 20~30 nm
()


3.5
[1] J. C. Angus, M. Sunkara, S. R. Sahaida, J. T. Glass, Twinning and
faceting in early stage of diamond growth by chemical vapor
deposition, J. Mater. Res., 7 (1992) 3001.
[2] K. Hirabayashi, T. Kimura, Y. Hirose, Morphology of flattened
diamond crystals synthesized by the oxy-acetylene flame method,
Appl. Phys. Lett., 62 (1993) 354.
[3] K. Hirabayashi, S. Matsumoto, Flattened diamond crystals
synthesized by microwave plasma chemical vapor deposition in a
CO-H2 system, J. Appl. Phys., 75 (1994) 1151.
[4] D. B. Williams, C. B. Carter, Transmission Electron Microscopy a
Textbook for Materials Science, Plenum Press, New York, 1996.
[5] D. Cherns, Direct resolution of surface atomic steps by transmission
electron microscopy, Phil. Mag., 30 (1974) 549.
[6] S. Iijima, Observation of atomic steps of (111) surface of a silicon
crystal using bright fields electron microscopy, Ultramicroscopy 6,
41 (1981).
[7] P. B. Hirsch, A. Howie, R. B. Nicholoson, D. W. Pashley and M. J.
Whelan, Electron Microscopy of Thin Crystals, Butterworths,
London, 1965, pp. 143-144.
[8] Z. L. Wang, J. Bentley, R. E. Clausing, L. Heatherly, L. L. Horton,
Direct correlation of microtwin distribution with growth face
morphology of CVD diamond films by a novel TEM technique, J.
Mater. Res., 9 (1994) 1552.
157
Avalos-Borja, G. A. Hirata and L. Cota-Araiza, Study of different
forms of carbon by analytical electron microscopy, J. Electron
Spectrosc. 104 (1999) 61.
[10] V. Serin, E. Beche, R. Berjoan, O. Abidate, D. Rats, J. Fontaine,
L.Vandenbulcke, C. Germain and A. Catherinot,Proc. of the Vth Int.
Symp. on Diamond Materials, J. L. Davidson, W.D.Brown, A.
Gicquel, B.V. Spytsin and J.C. Angus Eds, The Electrochem. Soc.,
Pennington, NJ, 1998, p. 126-141.
[11] http://www.cemes.fr/eelsdb.
[12] T. Evans in The Properties of Diamond, edited by J. E. Field
(Academic Press, London, 1979), pp. 403-424.
[13] W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, M.
Sunkara, Diamond nucleation by hydrogenation of the edges of
graphitic precursors, Nature 364 (1993) 607.
[14] Z. Li, L. Wang, T. Suzuki, A. Argoitia, P. Pirouz, J. C. Angus,
Orientation relationship between chemical vapor-deposition diamond
and graphite substrates, J. Appl. Phys., 73 (1993) 711.
[15] G. Jungnickel, D. Porezag, T. Frauenheim, M. I. Heggie, W. R. L.
Lambrecht, B. Segall and J. C. Angus, Graphitization effects on
diamond surfaces and the diamond graphite interface, phys. status.
solidi. (a), 154 (1996) 109.
158
[16] J. C. Arnault, F. Vonau, F. Wyczisk, P. Legagneux, Bias enhanced
nucleation of diamond on iridium buffer layers studied by a
NanoAuger probe, Diamond Relat. Mater., 13 (2004) 261.
[17] A. I. Kirkland, D. A. Jefferson, D. G. Duff, P. P. Edwards, I.
Gameson, B. F. G. Johnson, D. J. Smith, Structural studies of trigonal
lamellar particles of gold and silver, Proc. R. Soc. London, Ser. A
440 (1993) 589.
[18] R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron
Microscope, Plenum Press, New York, 1996.
[19] X. Chen, J. M. Gibson, Measurement of roughness at buried Si/SiO2
interfaces by transmission electron diffraction, Phys. Rev. B 54
(1996) 2846.

Top Related