Transcript
  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    1 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    Analysis of statically indeterminate structures

    Structure of any type is classified as statically indeterminate when the number of

    unknown reactions or internal forces exceeds the number of equations available for its

    analysis.

    Advantages of statically indeterminate structures

    1- For a given loading the maximum stress and deflection of an indeterminate

    structure are generally smaller than those of its statically determinate

    counterpart.

    2- Statically indeterminate structures can redistribute its load to its redundant

    supports in cases where faulty design or overloading occurs.

    Although from these advantages of selecting statically indeterminate structures, also;

    there are some disadvantages such as deformations caused by relative support

    displacement, or changes in member length caused by temperature or fabrication errors

    will introduce additional stresses in the structure, which must be considered when

    designing indeterminate structures.

    Methods of analysis

    When analyzing any indeterminate structures, it is necessary to satisfy equilibrium,

    compatibility, and force-displacement requirements for the structure. Equilibrium is

    satisfied when the reactive forces hold the structure at rest, and compatibility is satisfied

    when the various segments of the structures fit together without intentional breaks or

    overlaps. the force-displacements requirements depends upon the way of material

    responds. Generally, there are two different methods to satisfy these requirements: the

    force or flexibility method, and the displacement or stiffness method.

    In this stage, the following methods will be studied:

    1- Consistent method

    2- Slope-deflection method

    3- Moment distribution method

    4- Stiffness matrix method

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    2 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    1-consistent method

    1- Determine the degree of indeterminacy of structures.

    The above structure is statically indeterminate to third degree.

    2- Remove redundant to convert structure from statically indeterminate to stable

    statically determinate structure , this structure is named as primary structure.

    Primary structure

    3- Determine internal moment at each part of primary structure (M)

    4- Apply unit load in position of removed redundant, then internal moment at each

    part of structure is calculated as shown in figures.

    m1

    1

    m2

    1

    m3

    1

    X1 X2

    X3

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    3 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    5- Determine redundant by solving the following simultaneous equations

    βˆ†10 + 𝑠11π‘₯1 + 𝑠12π‘₯2 + 𝑠13π‘₯3 = π‘œ π‘œπ‘Ÿ π‘ π‘’π‘‘π‘‘π‘™π‘šπ‘’π‘›π‘‘ π‘Žπ‘‘ π‘ π‘’π‘π‘π‘œπ‘Ÿπ‘‘ 1-----1

    βˆ†20 + 𝑠21π‘₯1 + 𝑠22π‘₯2 + 𝑠23π‘₯3 = π‘œ π‘œπ‘Ÿ π‘Ÿπ‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘Žπ‘‘ π‘ π‘’π‘π‘π‘œπ‘Ÿπ‘‘ 2---2

    βˆ†30 + 𝑠31π‘₯1 + 𝑠32π‘₯2 + 𝑠33π‘₯3 = π‘œ π‘œπ‘Ÿ π‘ π‘’π‘‘π‘‘π‘™π‘šπ‘’π‘›π‘‘ π‘Žπ‘‘ π‘ π‘’π‘π‘π‘œπ‘Ÿπ‘‘ 3---3

    Where

    βˆ†10= βˆ«π‘€π‘š1 𝑑π‘₯

    𝐸𝐼

    βˆ†20= βˆ«π‘€π‘š2 𝑑π‘₯

    𝐸𝐼

    βˆ†30= βˆ«π‘€π‘š3 𝑑π‘₯

    𝐸𝐼

    𝑠11 = βˆ«π‘š1. π‘š1 𝑑π‘₯

    𝐸𝐼

    𝑠12 = βˆ«π‘š1. π‘š2 𝑑π‘₯

    𝐸𝐼

    𝑠13 = βˆ«π‘š1. π‘š3 𝑑π‘₯

    𝐸𝐼

    𝑠22 = βˆ«π‘š2. π‘š2 𝑑π‘₯

    𝐸𝐼

    𝑠33 = βˆ«π‘š3. π‘š3𝑑π‘₯

    𝐸𝐼

    S12=S21 , S31=S13, S32=S23

    Applications of consistent method

    1-beams

    Example(1):- determine the reaction at the supports

    A B L

    W

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    4 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    Solution

    The beam is statically indeterminate to first degree, the roller is considered as redundant

    and is removed

    π‘™π‘œπ‘Žπ‘‘ π‘Žπ‘‘ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ π‘₯ π‘“π‘Ÿπ‘œπ‘š 𝑏 =π‘Šπ‘‹

    𝐿

    𝑀 = βˆ’π‘‹π‘Šπ‘‹

    𝐿.1

    2.𝑋

    3= βˆ’

    π‘Šπ‘‹3

    6𝐿

    Apply unit load at position of removed support

    π‘š1 = βˆ’π‘‹

    βˆ†10 + 𝑠11π‘₯1 = π‘œ

    βˆ†10= βˆ«π‘€π‘š1 𝑑π‘₯

    𝐸𝐼= ∫

    βˆ’π‘€π‘₯3

    6𝑙

    𝑙

    π‘œ

    βˆ—βˆ’π‘₯𝑑π‘₯

    𝐸𝐼=

    𝑀𝑙4

    30𝐸𝐼

    𝑠11 = βˆ«π‘š1. π‘š1 𝑑π‘₯

    𝐸𝐼= ∫ βˆ’π‘₯

    𝑙

    0

    βˆ’π‘₯𝑑π‘₯

    𝐸𝐼=

    𝑙3

    3𝐸𝐼

    𝑀𝑙4

    30𝐸𝐼+

    𝑙3

    3𝐸𝐼π‘₯1 = π‘œ

    A L

    W

    X

    M

    A L

    X

    m1 1

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    5 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    π‘₯1 = βˆ’π‘€π‘™

    10=

    𝑀𝑙

    10↑

    After the reaction at roller is known , remaining reactions can be determined by applying

    equilibrium equations.

    𝑅𝑦𝐴 =𝑀𝑙

    2βˆ’

    𝑀𝑙

    10=

    2

    5𝑀𝑙 ↑

    𝑀𝐴 =𝑀𝑙

    10𝑙 βˆ’

    𝑀𝑙

    2βˆ—

    1

    3= βˆ’

    𝑀𝑙2

    15=

    𝑀𝑙2

    15 π‘π‘œπ‘’π‘›π‘‘π‘’π‘Ÿπ‘π‘™π‘œπ‘π‘˜ 𝑀𝑖𝑠𝑒

    H.W: repeat previous example and choose end moment at A as redundant

    Example (2): analysis the following beam

    The beam is statically indeterminate to first degree due to symmetry

    𝑀 =π‘ŠπΏ

    2𝑋 βˆ’

    π‘Šπ‘‹2

    2=

    π‘Š

    2[𝐿𝑋 βˆ’ 𝑋2]

    A L B

    w

    A L B

    w M

    X

    X

    A L B

    m 1 1

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    6 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    m=1

    βˆ†10= βˆ«π‘€π‘š1 𝑑π‘₯

    𝐸𝐼= ∫

    𝑀

    2𝐸𝐼[𝑙π‘₯ βˆ’ π‘₯2]

    𝑙

    0

    𝑑π‘₯ =𝑀𝑙3

    12𝐸𝐼

    𝑠11 = βˆ«π‘š1. π‘š1 𝑑π‘₯

    𝐸𝐼= ∫

    𝑑π‘₯

    𝐸𝐼

    𝑙

    0

    =𝑙

    𝐸𝐼

    βˆ†10 + 𝑠11π‘₯1 = π‘œ

    𝑀𝑙3

    12𝐸𝐼+

    𝑙

    𝐸𝐼π‘₯1 = π‘œ

    π‘₯1 = βˆ’π‘€π‘™2

    12

    Example (3):- determine the internal moments acting in the beam at support B and c .

    the wall at A moves upward 30mm. take E=200GPa,I=90(106)mm4.

    The structure is statically indeterminate to first degree.

    MAB=0

    MBC=-20X

    MCD=-40X

    10 m 10 m 5 m

    40 kN A B C D

    M M M

    60

    10 m 10 m 5 m

    A B C D 40 kN

    X X X

    20

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    7 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    mAB=-X

    mBC=-(10+X)+2X=-10+X

    mCD=0

    βˆ†10= βˆ«π‘€π‘š1 𝑑π‘₯

    𝐸𝐼=

    1

    𝐸𝐼[∫ βˆ’20π‘₯(βˆ’10 + π‘₯)𝑑π‘₯

    10

    0

    ] =10000

    3πΈπΌπ‘˜π‘2. π‘š3

    𝑠11 = βˆ«π‘š12 𝑑π‘₯

    𝐸𝐼=

    1

    𝐸𝐼[∫ π‘₯2𝑑π‘₯ +

    10

    0

    ∫ (βˆ’10 + π‘₯)2𝑑π‘₯10

    0

    ] =2000

    3πΈπΌπ‘˜π‘2. π‘š3

    βˆ†10 + 𝑠11π‘₯1 = π‘ π‘’π‘‘π‘‘π‘™π‘’π‘šπ‘’π‘›π‘‘

    10000

    3 βˆ— 200 βˆ— 90+

    2000

    3 βˆ— 200 βˆ— 90π‘₯1 = βˆ’30 βˆ— 10

    βˆ’3

    π‘₯1 = βˆ’5.81 π‘˜π‘

    RA=5.81 KN upward

    RB=-20+2*-5.81=-31.62=31.62 downward

    RC=60-1*5.81=65.81 upward

    MB=5.81*10=58.1 kN.m

    MC=40*5=200 kN.m

    10 m 10 m 5 m

    A B C D

    1

    X X X

    2 1

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    8 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    2-frame

    Example(4):- Analysis the frame shown. There is rotational slip of 0.003 rad counter

    clockwise at support B. take EI=104 kN.m2

    The structure above is statically indeterminate to 2nd degree, there is part of structure is

    statically determinate

    4kN/m

    3m

    4m

    4m 2m 1m 1m

    2kN

    4kN/m

    3m

    4m

    4m

    1kN

    2kN.m

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    9 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    Primary structure

    βˆ†10 + 𝑠11π‘₯1 + 𝑠12π‘₯2 = π‘œ

    βˆ†20 + 𝑠21π‘₯1 + 𝑠22π‘₯2 = 0.003

    βˆ†10= βˆ«π‘€π‘š1 𝑑π‘₯

    𝐸𝐼=

    1

    𝐸𝐼[∫ (7.6𝑋 βˆ’ 1.6𝑋2)(0.8𝑋)𝑑π‘₯

    5

    0

    ] =53.33

    𝐸𝐼

    4kN/m 3m

    4m

    4m

    1kN

    2kN.m

    11.5

    9.5

    0

    X

    M

    M=0

    X

    M

    M=9.5(0.8x)-

    4x(0.4x)=7.6x-

    1.6x2

    3m

    4m

    4m 1.75

    1.75

    1

    X

    M

    M=X

    X

    M

    M=1.75(0.8X)-

    1(0.6X)=0.8X

    1

    3m

    4m

    4m 0.25

    0.25

    1 X

    M

    M=-1

    X

    M

    M=-0.25(0.8X)=-

    0.2X

    0

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    10 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    βˆ†20= βˆ«π‘€π‘š1 𝑑π‘₯

    𝐸𝐼=

    1

    𝐸𝐼[∫ (7.6𝑋 βˆ’ 1.6𝑋2)(βˆ’0.2𝑋)𝑑π‘₯

    5

    0

    ] =βˆ’13.33

    𝐸𝐼

    𝑠11 = βˆ«π‘š12 𝑑π‘₯

    𝐸𝐼=

    1

    𝐸𝐼[∫ (0.8𝑋)2𝑑π‘₯ +

    5

    0

    ∫ (π‘₯)2𝑑π‘₯4

    0

    ] =48

    𝐸𝐼

    𝑠12 = βˆ«π‘š1. π‘š2 𝑑π‘₯

    𝐸𝐼=

    1

    𝐸𝐼(∫ (0.8𝑋)(βˆ’0.2𝑋)𝑑π‘₯ + ∫ βˆ’π‘‹π‘‘π‘₯) =

    4

    0

    5

    0

    βˆ’14.67

    𝐸𝐼

    𝑠22 = βˆ«π‘š22 𝑑π‘₯

    𝐸𝐼=

    1

    𝐸𝐼[∫ (βˆ’0.2𝑋)2𝑑π‘₯ +

    5

    0

    ∫ (βˆ’1)2𝑑π‘₯4

    0

    ] =5.67

    𝐸𝐼

    53.33

    𝐸𝐼+

    48

    𝐸𝐼𝑋1 βˆ’

    14.67

    𝐸𝐼𝑋2 = 0

    48𝑋1 βˆ’ 14.67𝑋2 = βˆ’53.33 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 1

    βˆ’13.33

    πΈπΌβˆ’

    14.67

    𝐸𝐼𝑋1 +

    5.67

    𝐸𝐼𝑋2 = 0.003

    βˆ’14.67𝑋1 + 5.67𝑋2 = 43.33 βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ 2

    Solving Eqs 1&2,gives

    X1=5.85kN , X2=22.78 kN.m

    Final result

    4kN/m

    3m

    4m

    4m 2m 1m 1m

    2kN

    1

    6.96

    14.04

    5.85

    5.85

    22.78

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    11 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    Example(5):- using method of consistent deformation, analysis the frame shown

    EI=104 kN.m2, settlement at support A=0.002m ↓and 0.003m← , rotational slip at

    A=0.003 rad counter clock wise , settlement at B=0.004m ↓

    The structure is statically indeterminate to 1st degree, the deformations of support

    A must be included by using virtual work

    3m

    4m

    4m

    A

    B

    3m

    4m

    4m

    A

    B

    1

    1

    4

    X

    m=0.8X

    X m=4

    βˆ†equ

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    12 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    1π‘₯βˆ†π‘’π‘ž= 4π‘₯0.003 βˆ’ 1π‘₯0.002 + 0π‘₯0.003 = 0.01

    βˆ†π‘‘π‘œπ‘‘π‘Žπ‘™= 0.01 + 0.004 = 0.014π‘š

    βˆ†10 + 𝑠11π‘₯1 = 0.014

    βˆ†10= π‘œ π‘›π‘œ π‘™π‘œπ‘Žπ‘‘ π‘Žπ‘π‘π‘™π‘–π‘’π‘‘

    𝑠11 = βˆ«π‘š12 𝑑π‘₯

    𝐸𝐼=

    1

    𝐸𝐼(∫ 16 𝑑π‘₯ + ∫ (0.8π‘₯)2𝑑π‘₯) =

    90.67

    𝐸𝐼

    5

    0

    4

    0

    90.67

    𝐸𝐼π‘₯1 = 0.014

    π‘₯1 = 1.54 ↓ π‘˜π‘

    3-Arch

    Example(6):- Analysis the semi-circular arch shown in figure by the method of consistent

    deformation. Radius=R, EI constant

    3m

    4m

    4m

    A

    B

    1.54

    1.54

    6.16

    P

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    13 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    The arch is statically indeterminate to 1st degree

    βˆ†10 + 𝑠11π‘₯1 = 0

    βˆ†10= βˆ«π‘€π‘š1 𝑑π‘₯

    𝐸𝐼= 2 ∫

    𝑃

    2𝑅(1 βˆ’ π‘π‘œπ‘ πœƒ)(βˆ’π‘…π‘ π‘–π‘›πœƒ)π‘…π‘‘πœƒ

    𝐸𝐼

    0.5πœ‹

    0

    =βˆ’π‘ƒπ‘…3

    𝐸𝐼[βˆ’π‘π‘œπ‘ πœƒ βˆ’

    𝑠𝑖𝑛2πœƒ

    2]0

    0.5πœ‹

    =βˆ’π‘ƒπ‘…3

    2𝐸𝐼

    𝑠11 = βˆ«π‘š12 𝑑π‘₯

    𝐸𝐼

    = 2 ∫(βˆ’π‘…π‘ π‘–π‘›πœƒ)2π‘…π‘‘πœƒ

    𝐸𝐼=

    2𝑅3

    𝐸𝐼

    0.5πœ‹

    0

    [∫(1 βˆ’ π‘π‘œπ‘ 2πœƒ)

    2π‘‘πœƒ]

    0.5πœ‹

    0

    =2𝑅3

    𝐸𝐼[πœƒ

    2βˆ’ 0.25𝑠𝑖𝑛2πœƒ]0.5πœ‹ =

    πœ‹π‘…3

    2𝐸𝐼

    βˆ’π‘ƒπ‘…3

    2𝐸𝐼+

    πœ‹π‘…3

    2𝐸𝐼π‘₯1 = 0

    π‘₯1 =𝑃

    πœ‹

    0.5P

    P

    0.5P

    M

    ΞΈ

    𝑀 =𝑃

    2𝑅(1 βˆ’ π‘π‘œπ‘ πœƒ)

    m

    ΞΈ

    π‘š = βˆ’π‘…π‘ π‘–π‘›πœƒ

    1 1

    P

    0.5P 0.5P

    P/Ο€ P/Ο€

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    14 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    4-Trusses

    Same procedure for beam and frame can be followed for truss, the following equations

    are used in the analysis of trusses. The truss may externally indeterminate or internally

    indeterminate or both cases

    βˆ†10 + 𝑠11π‘₯1 + 𝑠12π‘₯2 + 𝑠13π‘₯3 = π‘œ

    βˆ†20 + 𝑠21π‘₯1 + 𝑠22π‘₯2 + 𝑠23π‘₯3 = π‘œ

    βˆ†30 + 𝑠31π‘₯1 + 𝑠32π‘₯2 + 𝑠33π‘₯3 = π‘œ

    Where

    βˆ†10= βˆ‘π‘›1𝑁𝐿

    𝐸𝐴+ βˆ‘ 𝑛1 ∝ βˆ†π‘‡πΏ + βˆ‘ 𝑛1 π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ

    βˆ†20= βˆ‘π‘›2𝑁𝐿

    𝐸𝐴+ βˆ‘ 𝑛2 ∝ βˆ†π‘‡πΏ + βˆ‘ 𝑛2 π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ

    βˆ†30= βˆ‘π‘›3𝑁𝐿

    𝐸𝐴+ βˆ‘ 𝑛3 ∝ βˆ†π‘‡πΏ + βˆ‘ 𝑛3 π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ

    𝑠11 = βˆ‘π‘›1

    2𝐿

    𝐸𝐴

    𝑠12 = βˆ‘π‘›1𝑛2𝐿

    𝐸𝐴

    𝑠13 = βˆ‘π‘›1𝑛3𝐿

    𝐸𝐴

    𝑠22 = βˆ‘π‘›2

    2𝐿

    𝐸𝐴

    𝑠33 = βˆ‘π‘›3

    2𝐿

    𝐸𝐴

    𝑠33 = βˆ‘π‘›2𝑛3𝐿

    𝐸𝐴

    S12=S21 , S31=S13, S32=S23

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    15 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    Example(7):- Analysis the truss shown. EA constant

    The truss is statically indeterminate to 2nd degree; it is internally and externally

    indeterminate

    b+r 2j 6+4 2(4) 10 8

    4m

    3m

    3m

    A

    B

    D C

    E

    10kN

    4m 10

    3m

    A

    B

    D C 13.33

    10

    13.33

    10

    13.33

    10

    0

    -16.67

    N

    4m

    3m

    A

    B

    D C 1.6

    0.6

    0.8

    0

    -1.6

    -0.6

    0

    1

    1 0.6

    0.8

    n1

    n2

    4m

    3m

    A

    B

    D C 0

    0

    0

    -0.6

    -0.8

    -0.6

    -0.8

    1 1

    1

    0.6

    0.8

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    16 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    βˆ†10= βˆ‘π‘›1𝑁𝐿

    𝐸𝐴=

    βˆ’186.66

    𝐸𝐴

    βˆ†20= βˆ‘π‘›2𝑁𝐿

    𝐸𝐴=

    βˆ’162.01

    𝐸𝐴

    𝑠11 = βˆ‘π‘›1

    2𝐿

    𝐸𝐴=

    21.32

    𝐸𝐴

    𝑠12 = βˆ‘π‘›1𝑛2𝐿

    𝐸𝐴=

    11.2

    𝐸𝐴

    𝑠22 = βˆ‘π‘›2

    2𝐿

    𝐸𝐴=

    17.28

    𝐸𝐴

    21.32π‘₯1 + 11.2π‘₯2 = 186.66 βˆ’ βˆ’ βˆ’ βˆ’1

    11.2π‘₯1 + 17.28π‘₯2 = 162.01 βˆ’ βˆ’ βˆ’ βˆ’2

    π‘₯1 = 5.8 , π‘₯2 = 5.6

    Force in each member=N+n1X1+n2X2

    member L(m) N n1 n2 N n1 L N n2 L n12 L n22 L n1 n2 L DC 4 13.33 -1.6 -0.8 -85.312 -42.66 10.24 2.56 5.12

    AB 4 0 0 -0.8 0 0 0 2.56 0 AD 3 10 -0.6 -0.6 -18 -18 1.08 1.08 1.08

    BC 3 10 0 -0.6 0 -18 0 1.08 0

    AC 5 -16.67 1 1 -83.35 -83.35 5 5 5 EC 5 0 1 0 0 0 5 0 0

    DB 5 0 0 1 0 0 0 5 0 βˆ‘ -

    186.66 -162.01 21.32 17.28 11.2

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    17 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    member F

    DC -0.43 AB -4.48

    AD 3.16

    BC 6.64 AC -5.27

    EC 5.8 DB 5.6

    Example(8):- repeat example 7, if member BC subjected to rise of temperature 40o take

    Ξ±=12(10-6) and member DC has error of 1cm too short.

    βˆ†10= βˆ‘π‘›1𝑁𝐿

    𝐸𝐴+ βˆ‘ 𝑛1 ∝ βˆ†π‘‡πΏ + βˆ‘ 𝑛1 π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ

    βˆ†10=βˆ’186.66

    𝐸𝐴+ 0π‘₯40π‘₯3π‘₯12𝐸 βˆ’ 6 βˆ’ 1.6π‘₯(βˆ’0.01) =

    βˆ’186.66

    𝐸𝐴+ 0.016

    βˆ†20= βˆ‘π‘›2𝑁𝐿

    𝐸𝐴+ βˆ‘ 𝑛2 ∝ βˆ†π‘‡πΏ + βˆ‘ 𝑛2 π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ

    βˆ†20=βˆ’162.01

    πΈπ΄βˆ’ 0.6π‘₯40π‘₯3π‘₯12𝐸 βˆ’ 6 βˆ’ 0.8π‘₯(βˆ’0.01) =

    βˆ’162.01

    𝐸𝐴+ 0.00713

    Take EA=105

    21.32π‘₯1 + 11.2π‘₯2 = 186.66 βˆ’ 0.016π‘₯10𝐸5 βˆ’ βˆ’ βˆ’ βˆ’1

    11.2π‘₯1 + 17.28π‘₯2 = 162.01 βˆ’ 0.00713π‘₯10𝐸5 βˆ’ βˆ’ βˆ’ βˆ’2

    X1=-75.11 X2=16.801

    Then find the force in each bar by same procedure of Example 7

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    18 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    5-composite structure

    Example(8):- Analysis the composite structure shown in figure. The beam has moment

    of inertia of 240x106mm4,the member AB&BC each have a cross-sectional area 0f 1250

    mm2, and BD has across-sectional area 0f 2500 mm2. Take E=200 GPa.

    The structure is statically indeterminate to 1st degree

    A

    B

    D C

    0.9m

    0.9m

    1.2m 150kN

    A

    B

    D C

    0.9m

    0.9m

    1.2m 150kN

    200kN 350kN

    M=-150x

    x x

    M=-200x 0 0

    A

    B

    D C

    0.9m 1.2m

    0.00033

    m=0.53x

    x x

    m=0.7067x

    1

    0.707

    0.707

    0.707

    0.53

    0.884

    1.24

    0.53

    0.707

    0.707 0.707

    1.24

    0.00033

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    19 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT

    βˆ†10= βˆ«π‘€π‘š1 𝑑π‘₯

    𝐸𝐼+ βˆ‘

    𝑛1𝑁𝐿

    𝐸𝐴

    =1

    200π‘₯240[∫ (βˆ’150𝑋)(0.53𝑋)𝑑𝑋 + (βˆ’200𝑋)(0.7067𝑋)𝑑𝑋]

    1.2

    0

    = βˆ’1.67π‘₯10βˆ’3

    𝑠11 = βˆ«π‘š12 𝑑π‘₯

    𝐸𝐼

    + βˆ‘π‘›1

    2𝐿

    𝐸𝐴

    =1

    200π‘₯240[∫ (0.53𝑋)2𝑑𝑋 + (0.7067𝑋)2𝑑𝑋] +

    0.8842π‘₯1.5

    200π‘₯1250+

    1.242π‘₯0.9

    200π‘₯2500

    1.2

    0

    +12π‘₯1.27

    200π‘₯1250= 1.84π‘₯10βˆ’5

    βˆ†10 + 𝑠11π‘₯1 = 0

    π‘₯1 = 90.76 𝑇

    FAB=90.76T

    FBD=1.24x90.76=112.5 C

    FBC=0.884x90.76=80.2 T

    A

    B

    D C

    0.9m

    -112.5

    1.2m 150kN

    90.76 80.2

    200.03 350.03

  • THEORY OF STRUCTURES -------------------- BY THAAR AL-GASHAM

    20 WASSIT UNIVERSITY – ENGINEERING COLLEGE- CIVIL ENGINEERING DEPARTMENT


Top Related