Transcript
Page 1: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

BIOLOGICAL PLANT BIOLOGICAL PLANT SIZINGSIZING

Ing. Alberto ScaunichIng. Alberto Scaunich

Page 2: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

EXISTING PLANTEXISTING PLANT (or available data flowrate(or available data flowrateand pollutants concentration)and pollutants concentration)

Generally are available data for:Flow Q [m3/d]Pollutant concentration c [mg/l]

Pollutant Load C [kg/d] = Q*c/1000

STATISTIC ELABORATION

- Number of values N

- Average Value M

- Standard Deviation

WHICHEVER

DISTRIBUTION

NORMAL

DISTRIBUTION

- Typical Values

M+

M+2

M+3

75%

91%

68.3%

95.4%

99,7%

Page 3: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

EXISTING PLANTEXISTING PLANT (or available data flowrate(or available data flowrateand pollutants concentration)and pollutants concentration)

When are available a lot of data, it’s better to eliminate single data (only flow or only concentration).

Hence you proceed in statistic elaboration.At the end, when you have average values of flow and loads, calculate the

value ratio: average load (concentration)average flow

which generally is different from concentration average values and is more significant, representing the weighted average of concentrations.

Page 4: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

NOTNOT EXISTING PLANTEXISTING PLANT

1. MUNICIPAL WASTE WATER

You have to refer your design to the SPECIFIC CONTRIBUTION PER CAPITA, which generally result prudential values.

2. INDUSTRIAL WASTE WATER

You have to refer your design to the available SPECIFIC CONTRIBUTION PER UNIT OF PRODUCTS, adopting some security factors.

Page 5: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

POLLUTANTS BALANCE

In biological plant sizing the ratio COD/BOD and BOD/TKN (or In biological plant sizing the ratio COD/BOD and BOD/TKN (or COD/TKN) are very importantCOD/TKN) are very important

In Denitrification you need organic load to remove Nitrogen.In Denitrification you need organic load to remove Nitrogen.

assume:assume:

3 kgBOD/kg(N-NO3 kgBOD/kg(N-NO33))DENDEN sizing oxidationsizing oxidation

4 kgBOD/kg(N-NO4 kgBOD/kg(N-NO33))DENDEN sizing post-denitrificationsizing post-denitrification

(methanol requirements) (methanol requirements)

Calculate Pollutants balance for these following cases (to verify section Calculate Pollutants balance for these following cases (to verify section sizing):sizing):

M (BOD) + M(TKN)M (BOD) + M(TKN)M(BOD) + M+2M(BOD) + M+2(TKN) (TKN) M+2M+2BOD) + M(TKN)BOD) + M(TKN)

Page 6: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

NITROGEN BALANCE

TKNTKNinin+(N-NO+(N-NO

22))inin+(N-NO+(N-NO33))inin = =

= TKN= TKNSEDSED+(N-NO+(N-NO

33))DENDEN+TKN+TKNoxox+TKN+TKN

outout+(N-NO+(N-NO22))outout+(N-NO+(N-NO

33))outout

Where:Where:

TKNTKNinin = inlet Nitrogen (organic ed ammonia)= inlet Nitrogen (organic ed ammonia)

(N-NO(N-NO22))inin = inlet Nitrogen (nitrite):= inlet Nitrogen (nitrite): generally absentgenerally absent

(N-NO(N-NO33))inin = inlet Nitrogen (nitrate):= inlet Nitrogen (nitrate): present only in industrial wastewaterpresent only in industrial wastewater

TKNTKNSEDSED = organic Nitrogen removed in primary sedimentation: 10÷15% TKN= organic Nitrogen removed in primary sedimentation: 10÷15% TKN inin TKNTKNinin(N-NO(N-NO33))DENDEN = nitrogen to remove by denitrification= nitrogen to remove by denitrification

TKNTKNoxox = TKN removed by = TKN removed by bacterial metabolism (5% BOD removed in bacterial metabolism (5% BOD removed in biological treatment = 0,05 (BODibiological treatment = 0,05 (BODin Den n Den – BOD– BODoutout))

TKNTKNoutout = outlet Nitrogen (organic ed ammonia) - assume: 1 mg/l = outlet Nitrogen (organic ed ammonia) - assume: 1 mg/l

(N-NO(N-NO22))outout = outlet Nitrogen (nitrite) - negligible= outlet Nitrogen (nitrite) - negligible

(N-NO(N-NO33))outout = outlet Nitrogen (nitrate) - project requirement(10÷15 mg/l)= outlet Nitrogen (nitrate) - project requirement(10÷15 mg/l)

Normally you can’t have in the same time significant values of (N-NHNormally you can’t have in the same time significant values of (N-NH33))outout and and (N-NO(N-NO33))outout

Page 7: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)
Page 8: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

DENITRIFICATION DESIGN

DENITRIFICATION VELOCITY (municipal effluents)DENITRIFICATION VELOCITY (municipal effluents)

((DD))TT = ( = (DD))2020 * * T-20T-20

Where:Where:

((DD))T T [gN-NO3/kgVSS*d] = Denitrification velocity:actual operative conditions [gN-NO3/kgVSS*d] = Denitrification velocity:actual operative conditions (temperature = T); (temperature = T);

((DD))2020 [gN-NO3/kgVSS*d] = Denitrification velocity: max value at T = 20 °C, [gN-NO3/kgVSS*d] = Denitrification velocity: max value at T = 20 °C, without any limiting factor; without any limiting factor;

= Temperature correction coefficient (higher value, higher T dependence)= Temperature correction coefficient (higher value, higher T dependence)

Process parameter Symbol M.U. Value Reference

Max Denitrification velocity (D)20 g N-NO3/

(Kg VSS*d) 80÷100 Ekama – Beccari

Temperature correction

coefficient / 1,06÷1.08 Ekama - Beccari

Page 9: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

DENITRIFICATION VELOCITYDENITRIFICATION VELOCITY

DENITRIFICATION

    INTERNAL CARBON

PRE-DEN Inizial velocity

PRE-DEN Average

vel.

POST-DEN Average

vel.   

VOCE Unità di misuraScaunich vecchio

Scaunich attuale

Forte influenza

T

Esercizio attuale

Debole influenza

T

Organic fraction SSV/SST 0,7 0,7 0,7 0,7 0,7

Temperature correction coefficient   1,12 1,065 1,200 1,080 1,030

Denitrification velocity a °C 20 gN-NO3/kgSSTxd 70,0 56,0 504,0 70,7 50,4

  a °C 18 gN-NO3/kgSSTxd 55,8 49,4 350,0 60,6 47,5

  a °C 16 gN-NO3/kgSSTxd 44,5 43,5 243,1 52,0 44,8

  a °C 14 gN-NO3/kgSSTxd 35,5 38,4 168,8 44,6 42,2

  a °C 12 gN-NO3/kgSSTxd 28,3 33,8 117,2 38,2 39,8

  a °C 10 gN-NO3/kgSSTxd 22,5 29,8 81,4 32,7 37,5

Denitrification velocity a °C 20 gN-NO3/kgSSVxd 100,0 80,0 720,0 101,0 72,0

  a °C 18 gN-NO3/kgSSVxd 79,7 70,5 500,0 86,6 67,9

  a °C 16 gN-NO3/kgSSVxd 63,6 62,2 347,2 74,2 64,0

  a °C 14 gN-NO3/kgSSVxd 50,7 54,8 241,1 63,6 60,3

  a °C 12 gN-NO3/kgSSVxd 40,4 48,3 167,4 54,6 56,8

  a °C 10 gN-NO3/kgSSVxd 32,2 42,6 116,3 46,8 53,6

Page 10: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

DENITRIFICATION VOLUME CALCULATION

(N-NO(N-NO33))DENDEN

VV = -------------------= -------------------

((DD))TT * * X X

Where:Where:

V [mV [m33]] = = Minimum design Denitrification volume Minimum design Denitrification volume

T [°C]T [°C] = = Minimum design TemperatureMinimum design Temperature

(N-NO(N-NO33))DENDEN [kg N-NO [kg N-NO33/d] = nitrogen to remove by denitrification/d] = nitrogen to remove by denitrification

XX [kgSSV/m [kgSSV/m33]: = Volatile Suspended Solids concentration in biological basins ]: = Volatile Suspended Solids concentration in biological basins (Denitrification – Nitrification)(Denitrification – Nitrification)

NoteNote:: It’s opportune to assure a minimum residential time of 3÷4 h at the maximum flow, to It’s opportune to assure a minimum residential time of 3÷4 h at the maximum flow, to give to mixed liquor enough time to reduce its Ogive to mixed liquor enough time to reduce its O22 content (DO concentration of 0,5 content (DO concentration of 0,5

mg/l reduce denitrification efficiency to 10%) mg/l reduce denitrification efficiency to 10%)

Page 11: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

MIXED LIQUOR TO RECYCLE CALCULATION

1000 * (N-NO1000 * (N-NO33))DENDEN

QQML ML = ------------------------- - Q= ------------------------- - QRR

24 * 24 * N-NON-NO3 out3 out

Where:Where:

QQML ML [m[m33/h] = flowrate of recirculated Mixed Liquor /h] = flowrate of recirculated Mixed Liquor

QQR R [m[m33/h] = return sludge flowrate/h] = return sludge flowrate

(N-NO(N-NO33))DENDEN [kg N-NO [kg N-NO33/d] = nitrogen to remove by denitrification/d] = nitrogen to remove by denitrification

N-NON-NO3 out3 out [g/m[g/m33] = concentration of nitrogen in outlet stream (design value) ] = concentration of nitrogen in outlet stream (design value)

10001000 = conversion factor (kg = conversion factor (kg g) g)

24 =24 = conversion factor (d conversion factor (d h) h)

Page 12: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

MIXING - DENITRIFICATION

Above Above 8÷10 W/m8÷10 W/m33 energy density is required energy density is required (normal submersible mixers)(normal submersible mixers)

Mixer rotation velocity must be chosen as low as possible (< 700 rpm)Mixer rotation velocity must be chosen as low as possible (< 700 rpm)

Page 13: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OXIDATION DESIGN

PRELIMINARY SIZINGPRELIMINARY SIZING

BODBODinin

VV = --------------- = ---------------

XX * F/M * F/M

Where:Where:

BODBODinin [kgBOD/d] [kgBOD/d] = Inlet BOD, coming from Denitrification= Inlet BOD, coming from Denitrification

XX [kgSST/m [kgSST/m33] ] = Total Suspended Solids concentration in biological basins = Total Suspended Solids concentration in biological basins (Denitrification – Nitrification): Values: 4÷6 (Denitrification – Nitrification): Values: 4÷6

SSV/SSTSSV/SST = Organic fraction: typical = Organic fraction: typical = 0,7= 0,7

F/M [kgBOD/kgSST*d] = Ratio Food/Mass: F/M [kgBOD/kgSST*d] = Ratio Food/Mass: Typical valuesTypical values range range

- extended aeration- extended aeration 0,0750,075 (0,06÷0,09) (0,06÷0,09)

- nitrification - nitrification (according T)(according T) 0,15 0,15 (0,12÷0,18) (0,12÷0,18)

- carbon removal only (- carbon removal only ( =85-90%) =85-90%) 0,25 0,25 (0,2÷0,35) (0,2÷0,35)

Page 14: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OXIDATION DESIGN

NITRIFICATION VERIFINGNITRIFICATION VERIFING

Where:Where:

((nn))TT = Nitrification velocity: actual operative conditions (temperature = T [gTKN/kgSSV/d];= Nitrification velocity: actual operative conditions (temperature = T [gTKN/kgSSV/d];

((nn))2020 = Nitrification velocity: max value at T = 20 °C, without any limiting factor; = Nitrification velocity: max value at T = 20 °C, without any limiting factor;

[gTKN/kgSSV/d];[gTKN/kgSSV/d];

= Temperature correction coefficient;= Temperature correction coefficient;

KKTKNTKN, K, KOO = semisaturation constants, relating to TKN and DO [mg/l]; = semisaturation constants, relating to TKN and DO [mg/l];

TKN, O.D.= TKN and Oxygen concentrations in biological basins [mg/l]TKN, O.D.= TKN and Oxygen concentrations in biological basins [mg/l]

Page 15: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OXIDATION DESIGN

NITRIFICATION VERIFINGNITRIFICATION VERIFING

Page 16: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OXIDATION DESIGN

CALCULATIONCALCULATION OF NITRIFICANT OF NITRIFICANT

BACTERIA FRACTIONBACTERIA FRACTION

Where:Where:

y N y N = nitrificant bacteria cellular yield coefficient [kgSSV/kg/TKN]= nitrificant bacteria cellular yield coefficient [kgSSV/kg/TKN]

y y = heterotrophic= heterotrophic bacteria cellular yield coefficientbacteria cellular yield coefficient [gSSV/gBOD][gSSV/gBOD]

S0S0 = inlet organic matter [mg/l] = inlet organic matter [mg/l]

Se Se = outlet organic matter [mg/l]= outlet organic matter [mg/l]

TKN0 TKN0 = inlet TKN [mg/l]= inlet TKN [mg/l]

TKNe TKNe = outlet TKN [mg/l]= outlet TKN [mg/l]

y/yN = 4,72 (Bonomo, 2008)y/yN = 4,72 (Bonomo, 2008)

Page 17: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OXIDATION DESIGN

NITRIFICATION VOLUME CALCULATIONNITRIFICATION VOLUME CALCULATION

Where:Where:

x x == Total Suspended Solids concentration in biological basins [kgSST/m3] Total Suspended Solids concentration in biological basins [kgSST/m3]

XXNN = Total nitrificant bacteria in nitrification basins [kgSST]= Total nitrificant bacteria in nitrification basins [kgSST]

Page 18: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OXIDATION DESIGN

RETURN SLUDGE FLOWRATERETURN SLUDGE FLOWRATE

Where:Where:

xxrr = = Total Suspended Solids concentration in return sludge [kgSST/m3] Total Suspended Solids concentration in return sludge [kgSST/m3]

Page 19: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OXIDATION DESIGN

RETURN SLUDGE FLOWRATE – IMHOFF CONERETURN SLUDGE FLOWRATE – IMHOFF CONE

(Q + Q(Q + Qrr)V)Vaa = Q = Qrr V Vrr

QQrr V Vaa

-------------- -------------- = --------------- = ---------------

QQ V Vrr - V - V

aa

If VIf Vr r == 1 l/l1 l/l

QQrr V Vaa

-------------- -------------- = --------------- = ---------------

QQ 1 - V 1 - Vaa

Page 20: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OXIDATION DESIGN

RETURN SLUDGE FLOWRATE SVI (sludge volume index)RETURN SLUDGE FLOWRATE SVI (sludge volume index)

Where:Where:

x =x = Total Suspended Solids concentration in biological basins [g/l]Total Suspended Solids concentration in biological basins [g/l]

QQrr x x

-------------- -------------- = --------------- = ---------------

QQ 1000/SVI - x 1000/SVI - x

Imhoff cone – 30 min [ml/l] or [cc/l]

Imhoff Imhoff SVI = --------------- SVI = --------------- xx

Page 21: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OXIDATION DESIGN

EXCESS SLUDGE FLOWRATE CALCULATIONEXCESS SLUDGE FLOWRATE CALCULATION

Page 22: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OXIDATION DESIGN

ACTUAL OXYGEN REQUIREMENTS (AOR) & STANDARD OXYGEN ACTUAL OXYGEN REQUIREMENTS (AOR) & STANDARD OXYGEN REQUIREMENTS (SOR)REQUIREMENTS (SOR)

Where:Where:

a a = Carbon removal coefficient = 0,5 kgO2/kgBOD= Carbon removal coefficient = 0,5 kgO2/kgBOD

b b = Endogenous respiration coefficient = 0,08 kgO2/kgSST/d= Endogenous respiration coefficient = 0,08 kgO2/kgSST/d

N N da nitrificare da nitrificare = N to remove in nitrification [kgN-NH4/d]= N to remove in nitrification [kgN-NH4/d]

2,86 KgO2/KgN2,86 KgO2/KgNDENDEN = Oxygen recovery = Oxygen recovery

Page 23: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OXIDATION DESIGN

ACTUAL OXYGEN REQUIREMENTS (AOR) & STANDARD OXYGEN ACTUAL OXYGEN REQUIREMENTS (AOR) & STANDARD OXYGEN REQUIREMENTS (SOR)REQUIREMENTS (SOR)

Where:Where:

aa = rapporto tra il coefficiente di trasferimento relativo al liquido reale a 20°C e = rapporto tra il coefficiente di trasferimento relativo al liquido reale a 20°C e quello relativo alle condizioni standard, fissato pari a 0,70;quello relativo alle condizioni standard, fissato pari a 0,70;

bb = rapporto tra la concentrazione di ossigeno a saturazione nel liquido reale in = rapporto tra la concentrazione di ossigeno a saturazione nel liquido reale in condizioni di esercizio e quella in acqua pulita in condizioni di esercizio;condizioni di esercizio e quella in acqua pulita in condizioni di esercizio;

CCs,Ts,T = concentrazione di ossigeno a saturazione in acqua pulita alla temperatura di = concentrazione di ossigeno a saturazione in acqua pulita alla temperatura di esercizio T;esercizio T;

CCw,Tw,T = concentrazione di ossigeno nel liquido reale alle condizioni di esercizio, fissata = concentrazione di ossigeno nel liquido reale alle condizioni di esercizio, fissata pari a 2 mg/l;pari a 2 mg/l;

CCs,*s,* = concentrazione di saturazione in acqua pulita in condizioni standard (20 °C);= concentrazione di saturazione in acqua pulita in condizioni standard (20 °C);

T T = Temperatura nelle condizioni di esercizio= Temperatura nelle condizioni di esercizio

Page 24: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OXIDATION DESIGN

AIR DEMANDAIR DEMAND

Where:Where:

24 = days hours;24 = days hours;

0,28 = Kg O0,28 = Kg O22 / mc air in standard conditions (20°C – 0 m a.s.l.); / mc air in standard conditions (20°C – 0 m a.s.l.);

hh = transfer efficiency O = transfer efficiency O2 2 = 5% / m depth. = 5% / m depth.

Page 25: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

SEDIMENTATION DESIGN

Hydraulic head Hydraulic head (mc/mqxh)(mc/mqxh)

CCii=Q/A=Q/A 0,20 – 0,300,20 – 0,30 - Q (mc/h), flowrate- Q (mc/h), flowrate

- A (mq), area- A (mq), area Solid load Solid load

(kg SST/mqxd)(kg SST/mqxd)Cs = G/ACs = G/A < 5 a Q< 5 a Q2424

<9 a Q<9 a Qmaxmax

- G (kgSST/d), solid - G (kgSST/d), solid flowrate = 2,5 Qr Xflowrate = 2,5 Qr X

- X (kgSST/mc), - X (kgSST/mc), activated sludge activated sludge concentrationconcentration

- Qr (mc/h), return - Qr (mc/h), return sludge flowrate = 1 – 1,5 sludge flowrate = 1 – 1,5 QQ2424

Height (m)Height (m) ≥≥3m3m

Bridge Bridge Suction bridgeSuction bridge

Page 26: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

BIOLOGICAL TREATMENTS

WASTEWATER TREATMENT PLANT

Page 27: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

PIATTELLI PER AERAZIONE AD ALTA PIATTELLI PER AERAZIONE AD ALTA EFFICIENZAEFFICIENZA

BIOLOGICAL TREATMENTS

Page 28: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

PIATTELLI PER AERAZIONE AD ALTA PIATTELLI PER AERAZIONE AD ALTA EFFICIENZAEFFICIENZA

BIOLOGICAL TREATMENTS

Page 29: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

PIATTELLI PER AERAZIONE AD ALTA PIATTELLI PER AERAZIONE AD ALTA EFFICIENZAEFFICIENZA

BIOLOGICAL TREATMENTS

Page 30: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

PIATTELLI PER AERAZIONE AD ALTA PIATTELLI PER AERAZIONE AD ALTA EFFICIENZAEFFICIENZA

BIOLOGICAL TREATMENTS

Page 31: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

DENITRIFICAZIONE - OSSIDAZIONEDENITRIFICAZIONE - OSSIDAZIONE

BIOLOGICAL TREATMENTS

Page 32: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OSSIDAZIONE E TUBAZIONI RICIRCOLOOSSIDAZIONE E TUBAZIONI RICIRCOLO

BIOLOGICAL TREATMENTS

Page 33: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OSSIDAZIONEOSSIDAZIONE

BIOLOGICAL TREATMENTS

Page 34: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OSSIDAZIONEOSSIDAZIONE

BIOLOGICAL TREATMENTS

Page 35: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

DENITRIFICAZIONE - OSSIDAZIONEDENITRIFICAZIONE - OSSIDAZIONE

BIOLOGICAL TREATMENTS

Page 36: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OSSIDAZIONE - OKIOSSIDAZIONE - OKI

BIOLOGICAL TREATMENTS

Page 37: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OSSIDAZIONEOSSIDAZIONE

BIOLOGICAL TREATMENTS

Page 38: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OSSIDAZIONE - OKIOSSIDAZIONE - OKI

BIOLOGICAL TREATMENTS

Page 39: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

OSSIDAZIONE A BOLLE MEDIEOSSIDAZIONE A BOLLE MEDIE

BIOLOGICAL TREATMENTS

Page 40: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

BIODISCHIBIODISCHI

BIOLOGICAL TREATMENTS

Page 41: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

SEDIMENTAZIONESEDIMENTAZIONE

BIOLOGICAL TREATMENTS

Page 42: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

SEDIMENTAZIONESEDIMENTAZIONE

BIOLOGICAL TREATMENTS

Page 43: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

SEDIMENTAZIONE – CARROPONTE ASPIRATOSEDIMENTAZIONE – CARROPONTE ASPIRATO

BIOLOGICAL TREATMENTS

Page 44: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

SEDIMENTAZIONESEDIMENTAZIONE

BIOLOGICAL TREATMENTS

Page 45: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

SEDIMENTAZIONESEDIMENTAZIONE

BIOLOGICAL TREATMENTS

Page 46: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

SEDIMENTAZIONESEDIMENTAZIONE

BIOLOGICAL TREATMENTS

Page 47: BIOLOGICAL PLANT SIZING Ing. Alberto Scaunich. EXISTING PLANT (or available data flowrate EXISTING PLANT (or available data flowrate and pollutants concentration)

SEDIMENTAZIONESEDIMENTAZIONE

BIOLOGICAL TREATMENTS


Top Related