Transcript
Page 1: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

CalculationsofHigherModesinPyramidalHornAntennas

ByHalloArbely (S2337681)

Date:July13,2015

Supervisors:

Dr.ir.G.deLange(SRON) Prof.dr.ir.C.H.vanderWal(RuG)

Dr.T.L.CJansen(Rug)

Abstract

Forthisthesistheelectricfielddistributioniscalculatedonthemouthoftheapertureofpyramidalhornantennas.Apyramidalhornisbuiltofflaredplanesconnectedtoawaveguide.Ifthefielddistributionisknown,thefarfielddistributioniscalculatedbythetwodimensionalFouriertransform,whichisrepresentedastheradiationpattern.ThefinalproductisaMATLABcodewhichmakesfastplotsofradiationpatternforpyramidalhornantennaswithspecificdimensions.Theseradiationpatternscouldbeusedascomparisonmaterialtodetectedradiationpatternsbypyramidalhornantennas.

Page 2: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

2

Acknowledgement

Firstofall,Ithankdr.ir.GertdeLangewhoprovidedinsightandexpertisethatgreatlyassistedthisresearch.

Ithankdr.T.L.C.Jansenforassistanceforthecomputationalmethodandforexaminingthisworkandprof.dr.ir.C.H.vanderWalforexaminingandgradingthismanuscript.

IwouldalsoliketoshowmygratitudetomycolleaguesfromSRONforsharingtheirplaceandwisdomwithmeduringthisresearch.

Thankyouall,

HalloArbely

Groningen,July12,2015

Page 3: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

3

Tableofcontents

Introduction 4

Antennas 5

Apertureantenna 5

Pyramidalhornantenna 6

Modes 7

Theory 9

Apertureantenna 9

Uniformdistribution 9

Mode,planeaperture 10

Pyramidalhorn 11

Thefundamentalmode 11

Highermodes 12

Results 15

Modesappearedinliterature 15

Highermodes,pyramidalhornantenna 17

Computationalmethod 18

ConclusionsandDiscussions 19

References 19

Appendix 20

Derivationofequations[20]and[21]SectoralHornScripts

Page 4: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

4

Introduction

Inthisresearchprojectwecalculatethewayamulti‐modedpyramidalhornantennatransmitselectromagneticradiationfromfreespaceintoarectangularwaveguide.Waveguidesarehollowmetallicstructureswithdimensionsoforderofthetestedwaves.Thewavesarefromtheterahertzregionandthecorrespondingwavelengthsisinmillimeters.Apyramidalhornisaflaredextensionoftheendsofthewaveguidewhichendsinabiggeraperture.Thismakesthesurfaceofthedetectorinthewaveguidemuchbigger.Everyantennahasitsadvantagesanddisadvantages.Pyramidalhornsaresimpletodesignandmanufacture.Theyaredesignedinrectangularorsquareshapes.ElectromagneticradiationinthehornisanalyzedbytakingthesolutionsofMaxwell'sequationsasimposedbythemetallicsidewallsofthewaveguide,whichareexpressedasmodes.Modesaregroupedintransverseelectricmodes, ,whichhavenoelectricfieldsinthedirectionofpropagationandtransversemagnetic, ,withnomagneticfieldinthedirectionofpropagation.

Themaincharacteristicsofhornsareexpressedbythesocalledbeampattern(orradiationpattern)whichgivesthecouplingofelectromagneticfieldtoanantennaasafunctionofsphericalcoordinates.Radiationpatternsarebuiltofamainlobeandmanysidelobes.Radiationpatternsbecomenarrowerwhenhornsareused,becausemoreenergygetsinthewaveguide.Onemorebenefitofhornantennaisthepropertyofmakingthetranslationbetweenfreespaceandwaveguideverysmooth.Becauseofthismoreenergywillgothroughthehornintothewaveguideinsteadofreflection.Becauseofhornsphaseerroroccurs.Phaseerrorsareproportionaltothedimensionoftheapertureofthehorn.Greaterphaseerrorscauseawiderradiationpattern.Thisisrectifiedbymakingpyramidalhornslonger.ThedimensionsofhornantennasareshowninFigure3.Tounderstandthistopicsomebasiccasesaredevelopedfirst.Firstofall,apertureantennasarediscussed.Apertureantennasarepyramidalhornantennawithnohorn.Afterthatthepyramidalhornsarediscussedwithconstantelectricfieldandfielddistributionbymodes.TheresultsaremainlybasedontheanalysisasgiveninBalanis(referenceforthefundamentalmodeofpyramidalhorns),andtheextensionofthisanalysisasgiveninthepaperofMurphyandPadmanasreferenceforthehigherordermodes.Thebasicanalysisofthecalculationofradiationpatternsfromapertureantennascanbefoundinliterature,asinopticsbookbyHecht.Thedescriptionofdiffractionsfromrectangularandcircularaperturesarebasicallyalimitingcaseoftheanalysisaspresentedinthisthesis.Asanintroductiontothefinalresultsandasaproofoftheprecisenessofthecode,theresultsobtainedarecomparedtoliteraturevalues.Fromtheanalysisafinalequationisformedwhichisusedtopresenttheaskedmodes.TheusedsoftwareisMATLAB.

Page 5: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

5

Antennas

1. Apertureantenna

Thesimplestformofanantennaistheapertureantenna(nohorn).Aperturesarefrequentlyusedasclassicalexamplesinopticscourses.Thedefinitionofthecoordinatesoftheapertureantennaisshowninfigure1,whichisalsovalidforthepyramidalhornantennadiscussedlater.

Figure1apertureantenna,dimensionaxb

Thespaceisdefinedbythesphericalcoordinates and andthedistancetothesource . hasthe

valuesbetween 0, and is 0,2 .Theradiationpatternofasquareapertureantennaisasinc

function.ThederivationisgiveninliteratureinopticscoursebookbyE.Hecht.Theradiationpatternisshowngraphically1infigure2.

1 Eugene Hecht, Optics, 4th edition, p. 465,466

Figure 2   a. aperture and source       b. sinc function c. radiation pattern

Page 6: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

6

2. Pyramidalhornantenna

Thischapterstartswithashortexplanationofthetwodifferenttypesofhornantennas.Pyramidalandsectoralhornantennas.Pyramidalhornsareflaredintwodirections,whilesectoralhornsarejustflaredinonedirection.Theplanesoftheseconddirectionofthesectoralhornareparalleltoeachother.Ifthefrontsideisshown,theapertureofthesectoralhornisasbigasthewaveguideinoneofthedirections.Thegoaloftheflaringisreceivingmoreenergybecausethesurfaceoftheapertureisbiggercomparedtothesizeofthewaveguide.Pyramidalhornantennasarediscussedinmoredetail,whiletheradiationpatternsforthesectoralhornareisintheappendix.Sectoralhornsarediscussedtoexpressthephysicalpropertiesofpyramidalhornantenna.Thedifferencebetweensectoralhornandpyramidalhornisschematicallygiveninthenextfigure.

a.sectoralhorn b.pyramidalhorn

c.E‐planeview,pyramidalhorn d.H‐planeview,pyramidalhorn

Figure32,Sectoralandpyramidalhornantenna

Becauseoftheflaredplanes,phaseerroroccurs.Thishappensasthecurveddashedlinereachthemouthoftheaperture, 0,whilethecurvedlineofthewavereachesthemouthoftheantennalater.Thephaseerrorisdefinedas .Whichmeans dependslinearlyonthesizeoftheaperture.Sothephaseerrorisdecreasedif islongerandtheflaringangleissmaller.

2 C. Balanis, Antenna theory, 2nd edition, p. 652, 683

Page 7: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

7

Modes

Modesaresolutionsofwavefunctionsdependingonboundaryconditions.InthiscasewelookatthesolutionsofMaxwell'sequationsontheboundariesofwaveguides.Theelectricfieldisvaryinginthehornandiszeroattwoboundaries.Differentmodescarrythesameamountofenergy,buttheenergyisdifferentlydistributedoverspace.Modesaredividedinmanygroups.Onlytherelevantonesarediscussedhere.Forthisthesisthenexttwotypesofmodesaretakenintoaccount:

- TransverseElectric(TE):thismodehasamagneticfieldinthedirectionofpropagation,butnoelectricfieldinthatdirection.

: cos sin ̂ sin cos ̂ [1]

- TransverseMagnetic(TM):thismodehasanelectricfieldinthedirectionofpropagation,but

nomagneticfieldinthatdirection.

: cos sin ̂ sin cos ̂ [2]

and arethedimensionsoftheapertureand and areconstantsthataredeterminedbynormalizingthesefunctionsforvaluesof and .Themodesaredefinedintwodimensions, and .Itisexplainedlaterhowtheplotsaredone.Finally, and aretheboundariesoftheaperture.

Foreachmodeacutofffrequencyisdetermined.

in , , 0,1,2, … and 0for [3]

, 1,2, … for

Amode,withspecific and values,willpropagateinawaveguidewithdimensions and ifthecutofffrequencyofthemodeislowerthanthefrequencyofthewave.Thedominantmodeisdefinedasthemodewiththelowest .Forrectangularwaveguidesthisisthe ,with 1, 0.Thismodedistributesitsenergymostlyinthedirectionoftheincomingwave.Theremainingenergyisdistributedeverywhereelse.

Multi‐modedantennastoleratemorethanonemode,becausetheirdimensionisbigenoughtodothis.Toleratingmoremodesmakesthereceivedsignalstronger.Thehigherthefrequencyofthereceivedsignalthemoremodesthatwillpropagatethroughthewaveguideuponattenuation.Soforthesamefrequencyofthewave,smallerhornscantoleratelessmodesthangreaterhornsandfortwoidenticalhornsthesamemodesaretoleratingwhendifferentwavesaretested.Unlessthewavescontainenoughmodes.

Thetotalfar‐fieldradiationpatternshouldcontainallthemodes, & ,thatarepropagatinginthehorntoformthefinalradiationpattern.Eachsinglemodecanbeplottedalonetostudythecontribution.Theperfectimageisformedwheninfinitemodesarepropagatinginthehorn,whichrequiresverybighorns.Thiscaseishardtorealizeinpractice.

Page 8: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

8

Figure4,Modespectrum3for

Thefigureaboverepresentstheorderofappearanceofmodesinhornantennas.Thechosenapertureisrectangular,thatiswhydegeneratemodesdonotexist.Whensquareaperturesarechosen,degeneratemodesappearatthesamefrequency.Thisisclearlyshownbylookingatequation[3].

Asyoucanseethefundamentalmodeisthefirstmode.Allmodestotheleftoftheyellowline,whichisthewavelength,arepropagatinginthishorn.Thesamefigurecouldbeobtainedfor modesbyusingthesameapplet.Inadditiontothe modesgiveninblueinfigure4thesamenumberof modesarepresent. modesdonotexistforindicesequaltozero.Equation[2]showsthedetails.Figure4isonlyshowntomaketheideaofmodesthatarepropagatinginthehornclear.

Theregularityintheplotsbecomesclearifwetakealookatupcominghighermodes.The modesare modesrotatedby /2for .Themodeswithindicesnotequaltozero,havecomplexstructures.Next,sixmodesareshownforsquareapertures.

Figure5,modesa. b. c. d. e. f. (lefttoright)

3 Applet showing modes, http://www.amanogawa.com/archive/RectWaveGuide/RectWaveGuide.html

Page 9: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

9

Theelectricandmagneticfielddistributionsthatareshowninfigure5areusedtodeterminethefarfielddistributionbyapplyingthetwodimensionalFouriertransform.Inthisthesisthisisdoneanalytically.

Theory

Forthisthesisweconsidertwotypesofantennas,apertureandpyramidalhornantennas.Thedifferenceindesignaffectsthedistributionofthefield.

1. Apertureantenna:twocaseswillbeconsidered:uniformandsinusoidalelectromagneticfielddistributions

a. Uniformdistribution

Thefieldradiatedbytheapertureiswrittenintermsofitscomponents,whichisdoneinBalanis4.

sin cos cos 0 [4]

Where, [5]

Theangles and coverthewholespaceand isthedistancefromthecenteroftheplanetothesourceasgiveninfigure1. and arethedimensionoftheaperture, and istheconstantof

thefield. and aregivenasfollowing:

sin cos sin sin [6]

Thetotalfielddistribution, ,isthen:

| | sin cos cos [7]

Thetotalelectricfielddistributionisplottedasfunctionofthedimensionoftheapertureandspacecoordinatesin3D.Theplotsgivetheprojectionof inthe and axesand itselfonthe axis.

Theprojectionsof onthe and ‐axesaredonebyvectoranalysisfromsphericaltoCartesiancoordinates:

: | | sin cos and :| | sin sin [8]

4 C. Balanis, Antenna theory, 2nd edition, p. 588

Page 10: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

10

Forarectangularshapedantenna, ,thefollowingdistributionsappear

Figure6, a. b.

The plane,with 0,iscalledthe plane( 90°)and 0isthe plane.

Theshapeofthegraphsisnotsymmetricindifferentdirections.ThisisbecauseofthedifferentinputsXandYwhicharegivenbyequation[6].

Theseplottedfiguresarecomparedwithfiguresgiveninliterature5andtheresultsmatch.

b. Mode,planeaperture

Thelastsectiondiscussedtheuniformdistributionontheplane.Thissectionisaboutelectromagneticdistributionattheaperture,whichisdescribedbyatrigonometricfunction.Thismodecoversmorethan80%oftheenergythewavesarecarryinginthemaindirection,thedirectionwherethesignalcomesin.Theformulasofthissectionare:

sin

cos cos 0 [9]

| | sin cos cos [10]

5 C. A. Balanis, Antenna theory, 2nd edition, pages 589 and 590

Page 11: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

11

Thefigurebellowshowstheapplicationofequation[10],the mode.

Figure7,

2. PyramidalHorn

Thefirststeptowardantennasisaddingahorntothewaveguide.Withahorn ,variesbetween 0,

insteadof 0, asinthecaseofapertureantennas,whichmeansthehornradiatessignalsinall

directionsaroundit.

a. Thefundamentalmode

AsgiveninBalanis6,theequationdescribingthefarfielddistributionforthefundamentalmode, ,asfunctionofsphericalcoordinatesanddimensionsofthehorn,is:

| | | 1 | [11]

Where and are

12

exp2

exp2

exp [12]

6 C. A. Balanis, Antenna theory, 2nd edition, pages 684

Page 12: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

12

And

sin cos sin cos sin cos [13]

valuesdependlinearlyon , andareusedasinputsfortheFresnelintegralswhicharerepresentedas and .ThefullderivationisgiveninBalanis.

b. Highermodes

Nowitisthetasktoreconstructtheaboveequation,equation[11],tocontainhighermodes.themethodusedisexplainedinthearticleofMurphy7.Thefarfielddistributionforanymodeinthehorniscalculatedasfollowing

∬ [14]

For' 'inequation[14]anymodecanbechosenfromequations[1]and[2].Thisderivationisdonebytakingcareoftheflaringoftheplanesofthehorn,1stexponent.Aslongtheangleoftheflaringisnottoowide,thisassumptionisvalid.ForthisangleΨ ,anglesupto45°areacceptable.Theangles,Ψ andΨ ,aregraphicallyrepresentedinfigure3.Thelastterminequation[14]isforthetwodimensionalFouriertransformofthedistributionatthemouthoftheaperture.Inequation[14]eachtermdependsonlyon or ,whichmakesitpossibletodivideitintotwoindependentparts.

Thefinalequation,writtenverycompact,isoftheform:

∬ cos sin exp exp sin cos sin sin

[15]

∬ sin cos exp exp sin cos sin sin

[16]

∑ ∑ [17]

Equation[14]asgiveninthisthesisgivestheelectricfielddistributionofthefarfield.Thesameequationisusedtogivethepowerdistribution,whichisthesquarevalueofthesameequation.Inthisthesis,equation[14]isusedtorepresenttheradiationpatterngraphically,thiswhytheequationisgiveninthisform.Inthesamearticle,theconstantofequation[15]isdetermined.

7 Equation (7) of the same article by A.J. Murphy and R. Padman

Page 13: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

13

Theintegralisdevelopedbymakinguseofthesemathematicalrules:

cos exp exp sin cos exp

exp [18]

sin exp exp sin sin exp

exp [19]

Thefullyderivationsofthefinalformsaregivenintheappendix.Equation[15]becomes

exp sin cos2

exp sin sin2

exp2 2

exp sin cos2

exp sin sin2

exp2 2

exp sin cos2

exp sin sin2

exp2 2

exp sin cos2

exp sin sin2

exp2 2

[20]

And[16]is

2

2 2 2

2

2 2 2

2

2 2 2

2

2 2 2

[21]

: ̂ ̂ : ̂ ̂ [22]

Thisisthefirstpartofthefinalequation.

Page 14: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

14

Thesumofthesetwoexpressions, and ,givethefielddistributionofamodeattheapertureforthefarfield.F‐valuesarethesameinbothcases,whicharetheFresnelintegralsforeach and .Any

modecanbeformedbyaddingthesetwoequationstogether,thesamefor modesbysubtracting from .Forexample,ifwetakealookatthefundamentalmode.Ifthederivationiscorrect,equation[14]shouldbereducibletoequation[11].Thisisthecasesince ‐modesisequaltozeroifn=0and impliestoequation[11].Thederivationisgivenintheappendix.

Theformulasgivenintheliteraturecontainonemoreterm, 1 cos .Thisisdonebytakingthecomponentsinthe and directionofthequantity8.Thetotalelectricfielddistributionisthentheabsolutevalueofthecomponents.Thisnewexpressionisextremelyhelpful.Nowhigherordermodescanbepresentedgraphically.Toplotthesefunctions,theabsolutevaluesareneeded.

[23]

Approximationsignisusedinsteadofequalsignbecausetheconstantsinfrontoftheexpressionhavebeenomitted.

8 Balanis, p. 914

Page 15: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

15

Results

Byusingthefinalequationobtainedinthelastchapter,infinitenumberofmodesarepossibletoplot.Inthischapteronlyimportantmodesareplotted.Thesemodesareusedfordiscussionandtestpurposes.

- Modesappearedinliterature

Firstofall,themodesusedinBalanisareplottedtojustifythecode.Thenextplotshowstheradiationpatternforthefundamentalmodeforthesedimensions: 5.5 2.75intermsof andtheaxiallengthofthehornis6 inbothplanes.

Figure8,radiationpatternfundamentalmode,a.bycode b.literature

Thetwoplotsareequivalenttoeachotherbysimpleobservation.

For 12 , 6 and 6 thefielddistributionhastwotops,whilefordimensionusedinthelastplot,figure8,onlyonetopoccurs.

Figure9,radiationpattern mode,a.3D b.sideview(Y‐Zplane)

Page 16: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

16

Theappearanceofdoubletoppointsisduetocomponentswhichareofoutofphasewiththeplanesofthehornantenna.Thevaluesdonotaddconstructivelythen.

Figure10,c.literature

Withsimpleobservationoffigures10aand10c,weconcludetheequivalenceoftheplots.Figure10aisnotrelativized.Thecomponentsonthez‐axishavevaluesaccordingtothedimensionoftheantenna.Relativizingthevaluesofthegraphstothemaximumvalueisfrequentlydoneinliterature.

Theintensityplotsaregiveninliteraturealso.Thispartisofmoreinterestindesigntheories,whichrequiressidelobelevelsoflowerthan‐30dB.Theseplotsareonlygiventoshowtheabilityofthecodetoconstructtheseplots,aswell.

Figure11,a.Intensityplot

Page 17: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

17

- Highermodespyramidalhornantenna

Itispreferredtoshowresultsinsurfaceplots,whichmakethemvisuallybetterunderstood.Thedifferencebetweensurfaceandcontourplotsistheprojectionontheaxes.Contourplotsrepresentthephysicalquantityonthez‐axiswiththeprojectionsofspacecoordinateonbothxandyaxes.Surfaceplots,ontheotherside,useonlyprojectionsofthequantityonallaxes.Thesurfaceplotofthefundamentalmodegiveninfigure8isshownbelow.

Figure12,surfaceplotfundamentalmode

Themostcommondesignofhornantennasaresquareapertureantennasformanufacturingreasons.Forsquareapertureantennas,degeneratemodesoccur.Degeneratemodesaremodeswiththesamecutofffrequency.Radiationpatternsofdegeneratemodesareequivalentbyarotationof .This

propertyisshownforapyramidalhornofthefollowingdimensions: 5.5 and60 .

Figure 13, Pyramidal horn    a.      b.   

Page 18: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

18

and modeshaveonlyanelectricfieldintheaxialdirections,while modeswith, 0havecontributionsinbothdirectionsasgiveninfigure5.Theradiationpatternofthree

casesareshowntounderstandthepattern.

Figure14, ,a. b. c.

Computationalmethod

ThesoftwareusedtodevelopthewantedcodeisMATLAB.Thecodecontains150rows.Itismeanttoplotanyaskedmodewithanydimensionsofapyramidalhornantenna.Theequationusedtomaketheplotscontainsadoubleintegral,equation[14].Theintegralissolvedanalytically.ThesolutionoftheintegralcontainstheFresnelintegrals.TheseintegralsareleftforMATLABtosolve.Thescripttakesaboutaminutetosolvethetask.Thiscalculationtimeisfastercomparedwithdesignsoftwarewhichtakesadaytogivethesamesimulations.Theadvantageofthecodeisitssimplicity,whichmakeiteasytoanalyzeandeditit.Adisadvantageistherepeatedcalculationsifsomeindicesarechanged.

ThiscalculationtimecouldbeevenshorterifapproximationequationsareusedfortheFresnelintegralsinsteadoftheanalyticsolutionbyMATLAB.Becauseofthelimitedtimespendonthisthesis,thenewcodehasnotbeenfinished.

Thisapproximationequation9couldbeusedtomakethecodeworkfaster.

cos sin cos [24]

Where .

. .,

. . . , 0

Thenextstepwouldbeacodethatsummatemanyradiationpatternsinonegraph.Thiswouldbetheappliedformofequation[17].Forthesamereasonabove,thiscodeisnotready.

Thescriptisgivenintheappendix.

9 Article, Computation of Fresnel Integrals

Page 19: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

19

DiscussionsandConclusions

Inthisthesis,thedescriptionofthefundamentalmodeisusedasgiveninAntennaTheorybyC.Balanis.ThisformulationisextendedtocontainhigherordermodesasexplainedinthearticlebyMurphyandPadman.Inthisarticle,anexpressionisgivenwrongly.Becauseofthis,theequationobtainedforthehigherordermodesiswrong,too.Theexponentontheright‐handsideofequation(8)ofthesamearticlemustbeaplusinsteadofaminus.Thefinalformoftheequationisexpectedtobereducibletothefundamentalmodeforthevalues 1, 0.Byreplacingthismistake,thefinalequationderivediscorrectandisreducibletotheequationsgiveninAntennaTheoryforthefundamentalmode.

Furthermore,thewaytheradiationpatternsareplottedisexplained.Theplotsaretheabsolutevaluesofthetotalelectricfielddistributionwhichhascomponentsinthe and directions.Ifsquareaperturesareusedwith ,thenboth and radiationpatternsbecomeundistinguishable.Thisisillustratedbyusingequation[23]with .

Lastly,apropertyofthefundamentalmodeistoradiatethebiggestpercentageofitsenergyinthemaindirection.Thismeansthathighermodesdistributetheirenergymainlyinotherdirectionsandcontributeasmallamounttothemaindirection.Ifallmodesarepropagatinginthehorn,alargehorncomparedtowavelength,thenthesameamountofenergyisradiatedeverywhereinspacesurroundingtheantenna.Thispointisnotpresentedgraphically,becausethescriptisonlyabletoplotthepatternstogetherindependentlyinsteadofaddingthemtogether.Possibleadditionalresearchinthefuturecouldmakethescriptmoreadvanced.

References

[1]Balanis,C.A.,2ndedition,AntennaTheoryanalysisanddesign,ArizonaStateUniversity,JohnWiley&Sons,INC,NewYork.[2]J.A.Murphy,R.Padman,1990,RadiationPatternsofFew‐modedHornsandCondensingLightpipes,InfraredPhys.Vol.31,No.3,pp.291‐299,St.Patrick'sCollege,Maynooth.[3]MaireadBevan,May2013,ElectromagneticAnalysisofHornAntennasintheTerahertzregion,DepartmentofExperimentalPhysics,NUIMaynoothIreland,MasterThesis.http://eprints.maynoothuniversity.ie/4486/1/MaireadBevan_MScThesis.pdf[4]Hecht,H.,2014,Optics,4thedition,PearsonNewInternationalEdition,UnitedStatesofAmerica.[5]Milenz,K.D.,1997,ComputationofFresnelIntegrals,JournalofResearchoftheNationalInstituteofStandardsandTechnology,Vol.102,Number3.[6]Whites,E.E.,2013,MicrowaveEngineering,OnlineLecture10http://whites.sdsmt.edu/classes/ee481/http://whites.sdsmt.edu/classes/ee481/notes/481Lecture10.pdf[7]OnlineApplet,www.amanogawa.com,2015,Module8.5,RectangularWaveguide,http://www.amanogawa.com/archive/RectWaveGuide/RectWaveGuide.html

Page 20: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

20

Appendix

1. Derivationofequations[20]and[21]

Theelectromagneticmodesaredescribedbygoniometricfunctionwitharguments.Thearguments

areintegermultiplesof

.

cos sin sin cos

Thederivationisdonefor followingthearticlewrittenbyMurhy.

: ̂ ̂ : ̂ ̂

Whichresultsin: ∬ ′ ′ exp exp cos sin sin sin

Theboundariesoftheintegralsare , and , . and arethedimensionoftheapertureof

theantenna.Sometimesthesearelabeledinadifferentway.InAntennaTheory,thedimensionsoftheapertureofthepyramidalhornare and .

, exp exp cos sin sin sin

Dividethisexpressionintotwoparts, and .

cos exp exp cos sin

sin exp exp sin sin

So , ,withboth and dividedintotwoparts.

′′ ′′

Thiscomesfromthedevelopmentofthegoniometricequationsintermsofexponents.

sin cos

Page 21: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

21

These , ′and , ′′aregivingrespectivelyinthefollowingrows.

exp exp exp exp

exp exp exp exp

12exp

2exp

2exp

2exp

2

12

exp2

exp2

exp2

exp2

With sin cos sin cos

sin sin sin sin

Developingtheintegralgivesthefollowingexpression:

exp2

′′ ′′ ′′ ′′

Sofarthefirstpartofthetotalformoftheequationiscompletelydone.Thefollowingparts,however,followthesamelineofderivation.

exp2

exp exp

Sothepreviousequationsarenowsummarizedinthenextequation:

exp exp exp exp

followsthesameprocedureasabove.Thefinalformof is:

exp2

exp2

exp2

exp2

Page 22: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

22

Derivationof :Thefundamentalcaseisincludedintheaboveformula,for 1and 0.

Fillinginthesetwovaluemakes 0and ̂ ,sotheremainingtermis

exp2 2

exp

Evaluatingtheintegralsgivethefollowingexpression

2

exp sin sin2

exp sin cos2

exp sin cos2

Whichisthefundamentalmodeasgiveninliterature.

2. SectoralHorn

Sectoralhornsradiatesonlyinonedirection,onlyEorHplaneisdetectable.

| , |

8 1 ,

cos 2

2

Figure15,Sectoralhorn, . and .

Page 23: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

23

3. Script

a. Toplotthemodes% Author H. Arbely % Netherlands Institute of Space Research, SRON % Physics Department @ University of Groningen, The Netherlands % % This scripts make plots of higher modes separately % Input values are: dimension of aperture of antenna, wavelength, axial % lengths rho1 and rho2 % Pyramidal horn antenna % July 2015 clear all % Parameters in units of lambda a1= input('Give the value of a1 in terms of lambda: '); %dimensions of aperture b1= input('Give the value of b1 in terms of lambda: '); rho1= input('Give the value of rho1 in terms of lambda: '); %for x-axis rho2= input('Give the value of rho2 in terms of lambda: '); %for y-axis m= input('Give the value of m: '); n= input('Give the value of n: '); lambda=1; klambda=2*pi/lambda; theta=linspace(0,pi,100); % space is defined phi=linspace (0,2*pi,100); [Theta,Phi]=meshgrid(theta,phi); c = @(x) cos((pi/2)*x.^2); %FRESNEL FUNCTION, s = @(x) sin((pi/2)*x.^2); %FRESNEL FUNCTION, kx1=(klambda*sin(Theta).*cos(Phi)+m*pi/a1); kx2=(klambda*sin(Theta).*cos(Phi)-m*pi/a1); ky1=(klambda*sin(Theta).*sin(Phi)+n*pi/b1); ky2=(klambda*sin(Theta).*sin(Phi)-n*pi/b1); k=1; %loop 1, Integral bounadaries j=1; for theta_int=theta for phi_int=phi t1= sqrt(1/(klambda*rho1*pi))*(-klambda*a1/2-(klambda*sin(theta_int)*cos(phi_int)+m*pi/a1)*rho1); %kx2

Page 24: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

24

t2= sqrt(1/(klambda*rho1*pi))*(+klambda*a1/2-(klambda*sin(theta_int)*cos(phi_int)+m*pi/a1)*rho1); t3= sqrt(1/(klambda*rho2*pi))*(-klambda*b1/2-(klambda*sin(theta_int)*sin(phi_int)+n*pi/b1)*rho2); %ky2 t4= sqrt(1/(klambda*rho2*pi))*(+klambda*b1/2-(klambda*sin(theta_int)*sin(phi_int)+n*pi/b1)*rho2); t5= sqrt(1/(klambda*rho1*pi))*(-klambda*a1/2-(klambda*sin(theta_int)*cos(phi_int)-m*pi/a1)*rho1); %kx1 t6= sqrt(1/(klambda*rho1*pi))*(+klambda*a1/2-(klambda*sin(theta_int)*cos(phi_int)-m*pi/a1)*rho1); t7= sqrt(1/(klambda*rho2*pi))*(-klambda*b1/2-(klambda*sin(theta_int)*sin(phi_int)-n*pi/b1)*rho2); %ky1 t8= sqrt(1/(klambda*rho2*pi))*(+klambda*b1/2-(klambda*sin(theta_int)*sin(phi_int)-n*pi/b1)*rho2); C =integral(c,0,t2)-integral(c,0,t1); S =integral(s,0,t2)-integral(s,0,t1); CC =integral(c,0,t4)-integral(c,0,t3); SS =integral(s,0,t4)-integral(s,0,t3); CCC =integral(c,0,t6)-integral(c,0,t5); SSS =integral(s,0,t6)-integral(s,0,t5); CCCC =integral(c,0,t8)-integral(c,0,t7); SSSS =integral(s,0,t8)-integral(s,0,t7); F3(k,j) =C -1i * S; %F5 & F7 as defined in derivation in essay F4(k,j) =CC -1i * SS; %F4 & F8 F1(k,j) =CCC -1i * SSS ; %F1 & F3 F2(k,j) =CCCC -1i *SSSS; %F2 & F6 k=k+1; if(k>length(phi)) k=1; end end j=j+1; end k=1; %loop 2, to plot values > pi/2 j=1; for theta_int=theta for phi_int=phi if theta_int > pi/2 X(k,j)=(2-sin(theta_int)).*cos(phi_int); Y(k,j)=(2-sin(theta_int)).*sin(phi_int);

Page 25: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

25

else X(k,j)=sin(theta_int).*cos(phi_int); Y(k,j)=sin(theta_int).*sin(phi_int); end k=k+1; if(k>length(phi)) k=1; end end j=j+1; end I1= exp(1i*kx1.^2*rho1/(2*klambda)).*exp(1i*ky1.^2*(rho2/(2*klambda))).*F3.*F4*exp(1i*pi*(m+n)/2)/1i; % contributions of final equation I2= exp(1i*kx1.^2*rho1/(2*klambda)).*exp(1i*ky2.^2*(rho2/(2*klambda))).*F3.*F2*exp(1i*pi*(m-n)/2)/1i; I3= exp(1i*kx2.^2*rho1/(2*klambda)).*exp(1i*ky1.^2*(rho2/(2*klambda))).*F1.*F4*exp(1i*pi*(-m+n)/2)/1i; I4= exp(1i*kx2.^2*rho2/(2*klambda)).*exp(1i*ky2.^2*(rho2/(2*klambda))).*F1.*F2*exp(-1i*pi*(m+n)/2)/1i; E_1 = ((pi*sqrt(rho1*rho2)/(4*1i*klambda))*((I1)+(I2)-(I3)-(I4)).*(1+cos(Theta))); E_2 = ((pi*sqrt(rho1*rho2)/(4*1i*klambda))*((I1)-(I2)+(I3)-(I4)).*(1+cos(Theta))); E_total1=abs(sqrt((abs(E_1)*m/a1).^2+(abs(E_2)*n/b1).^2)); E_total2=abs(sqrt((abs(E_1)*n/b1).^2+(abs(E_2)*m/a1).^2)); A1=max(max(E_total1)) ; % to plot the relativized graphs D1=E_total1/A1; A2=max(max(E_total2)) ; D2=E_total2/A2; Z=10*log10(D1); K=Theta*180/pi; hold on figure(1) % Contour Plot contour3(X,Y,D1,1000) % D1 for TE, D2 for TM title(['E-field distribution Pyramidal Horn, TE' int2str(m),int2str(n)]) xlabel('x(theta,phi)') ylabel('y(theta,phi)') zlabel('Relative magnitude, energy')

Page 26: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

26

figure (2) % Surface Plot surface(D1.*sin(Theta).*cos(Phi),D1.*sin(Theta).*sin(Phi),D1.*cos(Theta)) title(['Surface Plot Pyramidal Horn, TE' int2str(m),int2str(n)]) xlabel('x(theta,phi)') ylabel('y(theta,phi)') zlabel('Relative magnitude, energy') %%% END

b. Toplotthelogarithmicscales% Author H. Arbely % Netherlands Institute of Space Research, SRON % Physics Department @ University of Groningen, The Netherlands % % This scripts make plots of higher modes separately % Input values are: dimension of aperture of antenna, wavelength, axial % lengths rho1 and rho2 % Pyramidal horn antenna % July 2015 clear all % Parameters in units of lambda lambda=1; a=0.5; b=0.25; a1=12; b1=6; rho1=6; rho2=6; m=1; n=0; klambda=2*pi/lambda; theta=linspace(-pi,pi,100); phi=0; phi2=pi/2; [Theta,Phi]=meshgrid(theta,phi); %t1= -((1/2)+sin(Theta)*sin(Phi)); %GRENZEN VAN DE INTEGRAAL %t2= +((1/2)-sin(Theta)*sin(Phi)); %GRENZEN VAN DE INTEGRAAL c = @(x) cos((pi/2)*x.^2); %FRESNEL FUNCTIE, MATLAB HOORT DIT TE HERKENNEN %q = integral(fun,0,t1); s = @(x) sin((pi/2)*x.^2); %FRESNEL FUNCTIE, MATLAB HOORT DIT TE HERKENNEN kx1=(klambda*sin(Theta).*cos(Phi)-m*pi/a1); kx11=(klambda*sin(Theta).*cos(Phi2)-m*pi/a1);

Page 27: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

27

kx2=(klambda*sin(Theta).*cos(Phi)+m*pi/a1); kx22=(klambda*sin(Theta).*cos(Phi2)+m*pi/a1); ky1=(klambda*sin(Theta).*sin(Phi)-n*pi/b1); ky11=(klambda*sin(Theta).*sin(Phi2)-n*pi/b1); ky2=(klambda*sin(Theta).*sin(Phi)+n*pi/b1); ky22=(klambda*sin(Theta).*sin(Phi2)+n*pi/b1); k=1; j=1; for theta_int=theta for phi_int=phi t1= sqrt(1/(klambda*rho1*pi))*(-klambda*a1/2-(klambda*sin(theta_int)*cos(phi_int)+m*pi/a1)*rho1); %kx2 t2= sqrt(1/(klambda*rho1*pi))*(+klambda*a1/2-(klambda*sin(theta_int)*cos(phi_int)+m*pi/a1)*rho1); t3= sqrt(1/(klambda*rho2*pi))*(-klambda*b1/2-(klambda*sin(theta_int)*sin(phi_int)+n*pi/b1)*rho2); %ky2 t4= sqrt(1/(klambda*rho2*pi))*(+klambda*b1/2-(klambda*sin(theta_int)*sin(phi_int)+n*pi/b1)*rho2); t5= sqrt(1/(klambda*rho1*pi))*(-klambda*a1/2-(klambda*sin(theta_int)*cos(phi_int)-m*pi/a1)*rho1); %kx1 t6= sqrt(1/(klambda*rho1*pi))*(+klambda*a1/2-(klambda*sin(theta_int)*cos(phi_int)-m*pi/a1)*rho1); t7= sqrt(1/(klambda*rho2*pi))*(-klambda*b1/2-(klambda*sin(theta_int)*sin(phi_int)-n*pi/b1)*rho2); %ky1 t8= sqrt(1/(klambda*rho2*pi))*(+klambda*b1/2-(klambda*sin(theta_int)*sin(phi_int)-n*pi/b1)*rho2); C=integral(c,0,t2)-integral(c,0,t1); S=integral(s,0,t2)-integral(s,0,t1); CC=integral(c,0,t4)-integral(c,0,t3); SS=integral(s,0,t4)-integral(s,0,t3); CCC=integral(c,0,t6)-integral(c,0,t5); SSS=integral(s,0,t6)-integral(s,0,t5); CCCC=integral(c,0,t8)-integral(c,0,t7); SSSS=integral(s,0,t8)-integral(s,0,t7); F3(k,j)=C -1i * S; %F5 & F7 F4(k,j)=CC -1i * SS; %F4 & F8 F1(k,j)=CCC -1i * SSS; %F1 & F3 F2(k,j)=CCCC -1i *SSSS; %F2 & F6

Page 28: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

28

k=k+1; if(k>length(phi)) k=1; end end j=j+1; end k=1; j=1; for theta_int=theta for phi_int=phi if theta_int > pi/2 X(k,j)=(2-sin(theta_int)).*cos(phi_int); Y(k,j)=(2-sin(theta_int)).*sin(phi_int); else X(k,j)=sin(theta_int).*cos(phi_int); Y(k,j)=sin(theta_int).*sin(phi_int); end k=k+1; if(k>length(phi)) k=1; end end j=j+1; end I1= exp(1i*kx1.^2*rho1/(2*klambda)).*exp(1i*ky1.^2*(rho2/(2*klambda))).*F1.*F2*exp(1i*pi*(m+n)/2)/1i; I2= exp(1i*kx1.^2*rho1/(2*klambda)).*exp(1i*ky2.^2*(rho2/(2*klambda))).*F1.*F4*exp(1i*pi*(m-n)/2)/1i; I3= exp(1i*kx2.^2*rho1/(2*klambda)).*exp(1i*ky1.^2*(rho2/(2*klambda))).*F3.*F2*exp(1i*pi*(-m+n)/2)/1i; I4= exp(1i*kx2.^2*rho2/(2*klambda)).*exp(1i*ky2.^2*(rho2/(2*klambda))).*F3.*F4*exp(-1i*pi*(m+n)/2)/1i; E_1 = abs((pi*sqrt(rho1*rho2)/(4*1i*klambda))*((I1)+(I2)-(I3)-(I4)).*(1+cos(Theta))); E_2 = abs((pi*sqrt(rho1*rho2)/(4*1i*klambda))*((I1)-(I2)+(I3)-(I4)).*(1+cos(Theta))); E_total1=abs(sqrt(((E_1)*m/a1).^2+((E_2)*n/b1).^2));

Page 29: Calculations of Higher Modes in Pyramidal Horn Antennasfse.studenttheses.ub.rug.nl/13092/1/verslag.pdf · 3 Table of contents Introduction 4 Antennas 5 Aperture antenna 5 Pyramidal

29

E_total2=abs(sqrt((E_1*n/b1).^2+(E_2*m/a1).^2)); A=max(max(E_total1)) % to plot the log graph D=E_total1/A; Z=10*log10(D); K=Theta*180/pi; hold on figure(1) plot(K,Z) title(['Intensity , TE' int2str(m),int2str(n)]) xlabel('Theta (angles)') ylabel('Intensity (dB)') figure(2) plot(K,Z) title(['Intensity , TE' int2str(m),int2str(n)]) xlabel('Theta (angles)') ylabel('Intensity (dB)') legend('E-plane','H-plane') % END


Top Related