Transcript
  • 8/3/2019 Carbon Nano tube (NEW Technology)

    1/60

    Carbon Nanotube Imperfection-Immune

    Digital VLSI

    H. Chen, J. Deng, A. Hazeghi, A. Lin, N. Patil, M. Shulaker, L. Wei, H. Wei, Prof. H.-S. P. Wong, J. Zhang

    Subhasish Mitra

    Robust Systems Group

    Department of EE & Department of CS

    Stanford University

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    2/60

    Carbon Nanotube (CNT)

    Diameter (D) : 0.5 - 3 nm

    D

    S. Iijima

    Carbon Nanotube FET (CNFET)

    2

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    3/60

    Ideal CNFET Inverter

    N+ dopedSemiconducting

    CNTs

    Gates

    Input

    P+ dopedSemiconducting

    CNTs Lithographic

    pitch

    4nm

    Sub-lithographicpitch

    Output

    Vdd

    Gnd

    3

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    4/60

    CNFET Technology Milestones

    4

    1998First CNFETdemonstration[Delft, IBM]

    1998First CNFETdemonstration[Delft, IBM]

    2001Single-CNTlogic gates[IBM]

    2001Single-CNTlogic gates[IBM]

    2006Single-CNTring osc.[IBM]

    2006Single-CNTring osc.[IBM]

    2004Best single-CNTCNFET[Stanford]

    2004Best single-CNTCNFET[Stanford]

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    5/60

    CNFETs: BIG Promise, BUT

    Major barriers for a decade

    Mis-positioned nanotubes

    Metallic nanotubes

    Processing alone inadequate

    Imperfection-immune

    design essential

    5

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    6/60

    Wanted: (A+C) (B+D)

    Got : B+D

    Out

    A B

    C D

    Vdd

    A C

    B D

    Gnd

    Wanted: AC + BD

    Got: AC + BD + AD

    Mis-positioned CNTs Incorrect Logic

    6

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    7/60

    Semiconducting CNT (s-CNT) Metallic CNT (m-CNT)

    CNFET with s-CNT CNFET with m-CNT

    Metallic CNTs

    Typical: 10 50% grown CNTs metallic

    Cu

    rrent

    Vg

    Transistor

    Vg

    Cu

    rrent

    No gate

    control

    7

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    8/60

    Results

    Yesterday

    SSI single-CNT ring oscillator

    Today

    Imperfection-immune VLSI circuits

    8

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    9/60

    CNFET Technology Milestones

    9

    1998First CNFETdemonstration[Delft, IBM]

    2001Single-CNTlogic gates[IBM]

    2001Single-CNTlogic gates[IBM]

    2006Single-CNTring osc.[IBM]

    2006Single-CNTring osc.[IBM]

    2004Best single-CNTCNFET[Stanford]

    2004Best single-CNTCNFET[Stanford]

    2008Mis-positioned-CNT-immuneVLSI logic gates[Stanford]

    2008FlexibleCNTcircuits[UIUC]

    2009Imperfection-immune adders& latches[Stanford]

    2009Defect-tolerantlogic gates[USC]

    2009Monolithic3D CNTcircuits[Stanford]

    2010Ultra-shortchannelCNFETs[IBM]

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    10/60

    CNFET Technology Outlook

    Problem Challenge Status

    CNT alignment

    & positioning Correct function

    Metallic CNTCorrect function

    Low leakage

    CNT densityHigh current

    density

    CNT dopingComplementary

    CNFETs

    10

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    11/60

    Outline

    Introduction

    Mis-positioned-CNT-immune logic Metallic-CNT-immune logic

    CNT variations

    Conclusion

    11Patil, IEEE TCAD 2008, Symp. VLSI Tech. 2008

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    12/60

    1. Grow CNTs

    Mis-positioned-CNT-Immune NAND

    12

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    13/60

    BA

    A

    B

    Out

    1. Grow CNTs

    2. Extended gate & contacts

    CRUCIAL

    13

    Mis-positioned-CNT-Immune NAND

    Vdd

    Gnd

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    14/60

    BA

    A

    B

    Out

    1. Grow CNTs

    2. Extended gate & contacts

    3. Etch gate & CNTs

    4. Chemically dope P & N regions

    Vdd

    Gnd

    14

    Mis-positioned-CNT-Immune NAND

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    15/60

    BA

    A

    B

    Out

    1. Grow CNTs

    2. Extended gate & contacts

    3. Etch gate & CNTs

    4. Chemically dope P & N regions

    Etchedregion

    ESSENTIAL

    Graph algorithms

    All possible functions

    Vdd

    Gnd

    15

    Mis-positioned-CNT-Immune NAND

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    16/60

    Automated Algorithms

    Given: Layout

    Determine Mis-positioned-CNT immune ?

    16

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    17/60

    Mis-positioned-CNT-Immune NAND

    17

    E

    Doped

    Doped

    Gate B

    Contact

    Doped

    Contact

    Gate A

    Doped

    Etched

    1

    1A B

    1

    1

    0

    Contact

    Contact

    B

    Contact

    Contact

    A

    GA GB

    Intended:A or B

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    18/60

    Mis-positioned-CNT-Immune NAND

    18

    E

    Doped

    Doped

    Gate B

    Contact

    Doped

    Contact

    Gate A

    Doped

    Etched

    C-D-A-D-C : A

    1

    1A B

    1

    1

    0

    Contact

    Contact

    B

    Contact

    Contact

    A

    GA GB

    Intended:A or B

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    19/60

    Mis-positioned-CNT-Immune NAND

    19

    Gate B

    Contact

    Doped

    Contact

    Gate A

    Doped

    Etched

    C-D-A-D-C : A

    C-D-B-D-C : B

    1

    1A B

    1

    1

    0

    B

    Contact

    Contact

    A

    E

    Doped

    Doped

    Contact

    Contact

    GA GB

    Intended:A or B

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    20/60

    Mis-positioned-CNT-Immune NAND

    20

    E

    Doped

    Doped

    Gate B

    Contact

    Doped

    Contact

    Gate A

    Doped

    Etched

    C-D-A-D-C : A

    C-D-B-D-C : B

    C-D-B-D-A-D-B-D-C : A & B

    1

    1A B

    1

    1

    0

    Contact

    Contact

    B

    Contact

    Contact

    A

    GA GB

    Intended:A or B

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    21/60

    Mis-positioned-CNT-Immune NAND

    21

    E

    Doped

    Doped

    Gate B

    Contact

    Doped

    Contact

    Gate A

    Doped

    Etched

    C-D-A-D-C : A

    C-D-B-D-C : B

    C-D-B-D-A-D-B-D-C : A & B

    C-D-E-D-C : 0

    1

    1A B

    1

    1

    0

    Contact

    Contact

    B

    Contact

    Contact

    A

    GA GB

    Intended:A or B

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    22/60

    Mis-positioned-CNT-Immune NAND

    22

    E

    Doped

    Doped

    Gate B

    Contact

    Doped

    Contact

    Gate A

    Doped

    Etched

    Intended:A or B

    Implemented:

    A or B or

    (A & B) or 0==

    A or B

    C-D-A-D-C : A

    C-D-B-D-C : B

    C-D-B-D-A-D-B-D-C : A & B

    C-D-E-D-C : 0

    1

    1A B

    1

    1

    0

    Contact

    Contact

    B

    Contact

    Contact

    A

    GA GB

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    23/60

    Automated Algorithms

    Given: Logic function

    Produce

    Mis-positioned-CNT immune layout

    23

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    24/60

    Mis-positioned-CNT-Immune Layout

    24

    Gates

    Out =A + (B + C)(D + E)

    Etched regionsCNTs

    CB

    Vdd / Gnd Contact

    A

    Output Contact

    ED

    IntermediateContact

    Immune to LARGE number of mis-positioned CNTs

    Efficient

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    25/60

    Most Importantly

    VLSI processing

    No die-specific customization

    VLSI design flow

    Immune library cells

    25

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    26/60

    CNT Growth on Silicon Substrates

    Highly mis-positioned

    Not desirable for VLSI

    26

    10 m 4 m

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    27/60

    27

    SEM image (grown CNTs)

    Quartz waferwith catalyst

    AlignedCNT growth

    99.5% CNTs aligned

    Quartz wafer

    First Wafer-Scale Aligned CNT Growth

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    28/60

    28

    Silicon substrates for VLSI

    Low temperature (90oC 120oC) processing

    2 m 2 m

    Before transfer After transfer

    Target Substrate (SiO2/Si)Source Substrate (Quartz)

    Thermal ReleaseAdhesive Tape

    Wafer-Scale CNT Transfer

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    29/60

    29

    First VLSI Demonstration

    10m10m10m

    Mis-positioned-CNT-immune logic gates

    NAND, NOR, AND-OR-INV, OR-AND-INV

    NOR pullup

    Etched Region

    0

    50

    100

    off

    off

    off

    on

    on

    off

    on

    on

    A

    B

    off = 2V, on = -2V

    Curren

    t(A)

    0

    0.75

    1.5

    off

    off

    off

    on

    on

    off

    on

    on

    A

    B

    off = 5V, on = -5V

    Curren

    t(A)

    NAND pullup

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    30/60

    Outline

    Introduction

    Mis-positioned-CNT-immune logic

    Metallic-CNT-immune logic

    CNT variations Conclusion

    30Patil, IEDM 2009, Shulaker, Nanoletters 2011, Wei, IEDM 2009, Symp. VLSI Tech. 2010

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    31/60

    Semiconducting CNT (s-CNT) Metallic CNT (m-CNT)

    CNFET with s-CNT CNFET with m-CNT

    Metallic CNTs

    Typical: 10 50% grown CNTs metallic

    Current

    Vg

    Transistor

    Vg

    Current

    No gate

    control

    31

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    32/60

    m-CNT Processing Options

    Grow 0% m-CNTs

    Open challenge

    Remove m-CNTs after growth

    99.99% removal required

    32

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    33/60

    Existing m-CNT Removal

    Sort CNTs

    Inadequate

    SDB

    Single Device electrical Breakdown Not scalable

    33

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    34/60

    SDB Technique

    Current-induced m-CNT breakdown

    Single-device level

    34m-CNTs

    s-CNTs

    Collins, Science 2001

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    35/60

    SDB Technique

    Current-induced m-CNT breakdown

    Single-device level

    35m-CNTs

    s-CNTs

    Collins, Science 2001

    Gate

    off

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    36/60

    SDB Technique

    Current-induced m-CNT breakdown

    Single-device level

    36m-CNTs

    s-CNTs

    Collins, Science 2001

    Gate

    off

    High Voltage

    Gnd

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    37/60

    SDB T h i

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    38/60

    SDB Technique

    Current-induced m-CNT breakdown

    Single-device level

    38m-CNTs

    s-CNTs

    Collins, Science 2001

    Gate

    off

    High Voltage

    Gnd

    m-CNTbroken

    Current density(A / m)

    102

    101

    100

    10-1

    100 102 104 106

    Ion/ Ioff

    BeforeSDB After

    SDB

    M j SDB Ch ll

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    39/60

    Major SDB Challenges

    Incorrect logic

    m-CNT fragments

    Impractical for giga-scale ICs

    Internal node access

    39

    I t L i ith SDB

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    40/60

    Incorrect Logic with SDB

    40

    Output Contact

    Gnd Contact

    Intermediate Contact

    A B

    C D

    off

    off

    off

    off

    Gnd

    High

    Broken

    High

    Pull-up Network

    Vdd

    Incorrect Logic !

    Wanted:(A + B) (C + D)

    Got:

    (C + D)

    VMR m CNT Imm ne Design

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    41/60

    VMR: m-CNT Immune Design

    New approach: VLSI Metallic CNT Removal

    Sufficient

    All logic designs

    VLSI processing & design flows

    41

    VMR Example

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    42/60

    Final intended design

    VDD

    GND

    VMR Example

    42

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    43/60

    VMR Steps

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    44/60

    2. Fabricate VMR electrodes1. Grow and transfer CNTs

    Silicon Back-Gate

    Back-Gate Oxide

    VMR ElectrodesVMR ElectrodesVMR ElectrodesVMR ElectrodesVMR Electrodes

    Inter-digitated VMR electrodesElectrical breakdown friendly

    44

    VMR Steps

    VMR Steps

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    45/60

    2. Fabricate VMR electrodes

    3. Electrical breakdown (back-gate)

    1. Grow and transfer CNTs

    High

    voltageGnd

    Silicon Back-Gate

    Back-Gate Oxide

    VMR ElectrodesVMR ElectrodesVMR ElectrodesVMR ElectrodesVMR Electrodes

    Inter-digitated VMR electrodesElectrical breakdown friendly

    45

    VMR Steps

    VMR Steps

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    46/60

    2. Fabricate VMR electrodes

    3. Electrical breakdown (back-gate)

    4. Etch CNTs : predefined regions(mis-positioned-CNT-immune design)

    5. Etch unneeded VMR electrodes

    1. Grow and transfer CNTs

    CNFETcontacts

    notremoved

    46

    VMR Steps

    VMR Steps

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    47/60

    2. Fabricate VMR electrodes

    3. Electrical breakdown (back-gate)

    4. Etch CNTs : predefined regions(mis-positioned-CNT-immune design)

    5. Etch unneeded VMR electrodes

    6. Top-gates (mis-positioned-CNT-immune design), doping, wires

    1. Grow and transfer CNTs

    47

    VMR Steps

    Theorem

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    48/60

    Theorem

    48

    VMR works for arbitrary logic design

    if

    Any two transistors in series

    Connected through contact

    Minimum pitch

    Immune library cells: very small impact

    First Experimental Demonstration

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    49/60

    First Experimental Demonstration

    49

    Half-adder Sum D-latch

    Imperfection-immune CNT VLSI circuits

    Arithmetic & storage elements

    First Monolithic CNT 3D ICs

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    50/60

    First Monolithic CNT 3D ICs

    50

    Conventional via, NOT TSV2-layer CNT XOR

    Outline

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    51/60

    Outline

    Introduction

    Mis-positioned-CNT-immune logic

    Metallic-CNT-immune logic

    CNT variations

    Conclusion

    51Zhang, IEEE TCAD 2009, DAC 2009, DAC 2010

    CNT Variations Challenging

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    52/60

    CNT Variations Challenging

    Probabilistic modeling essential [Borkar 07]

    52

    CNFET Ion variations

    OthersCNT diametervariations

    CNT density

    variations

    m-CNTs

    Channel lengthvariations

    Probabilistic CNT Growth Model

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    53/60

    Probabilistic CNT Growth Model

    Probability (m-CNT) = pm

    Probability (s-CNT) = ps = 1 - pm

    53

    2

    2 13 0.22

    3 3

    =

    s-CNT m-CNT

    3

    10.04

    3

    =

    3

    20.3

    3

    =

    2

    1 23 0.44

    3 3

    =

    m-CNT Removal Alone Inadequate

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    54/60

    m-CNT Removal Alone Inadequate

    54

    m-CNTs removed

    s-CNTs intact

    m-CNT

    Must be highly unlikely

    No CNTs left !

    prob. = (pm)3

    = (33%)3

    = 4%

    Probabilistic Design a MUST

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    55/60

    Probabilistic Design a MUST

    55

    DesignProcessing

    % grown m-CNTs

    CNT density variations

    Special layouts

    CNFET sizing

    Processing & Design Co-Optimization

    LeakageNoise margin Delay variations

    Special Layouts

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    56/60

    Special Layouts

    56

    Yield

    low

    high

    low high

    CNT

    variation-agnostic

    design

    Upsize CNFETs

    New technique

    Aligned-active layouts

    Engineered CNT correlations

    1

    Cost

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    57/60

    Thanks to our Sponsors

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    58/60

    p

    Photo credits:H. Dai, ibm.com, Nanoletters, Nature, Science, Stanford, Wikipedia

    58

    CNFET Technology Outlook

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    59/60

    gy

    Problem Challenge Status

    CNT alignment

    & positioning

    Correct function

    Metallic CNTCorrect function

    Low leakage

    CNT densityHigh current

    density

    CNT dopingComplementary

    CNFETs

    59

    Conclusion

  • 8/3/2019 Carbon Nano tube (NEW Technology)

    60/60

    Imperfection-immune design essential

    New solutions: practical, elegantly simple

    60

    Next challenge: CNT variations

    CNT correlation unique layouts


Top Related